
ASYNCHRONOUS ARCHITECTURE 

Design of a low-latency asynchronous adder using 
speculative completion 

S.M. Nowick 

Indexing terms: Asynchronous systems, Specubtive completion, Adders, Duiuputh design 

Abstract: A new general method for designing 
asynchronous datapath components, called 
speculative completion, is introduced. The method 
has many of the advantages of a bundled data 
approach, such as the use of single-rail 
synchronous datapaths, but it also allows early 
completion. As a case study, the method is 
applied to the high-performance parallel BLC 
adder design of Brent and Kung. Through careful 
gate-level analysis, performance improvements of 
up to 30% over a comparable synchronous 
implementation are expected. 

1 introduction 

Asynchronous design has enjoyed a resurgence in th 
last five to ten years, with a number of technical and 
practical advances [ 11. In principle, asynchronous 
systems promise several advantages over synchronous 
systems: (i) lower power, since an asynchronous 
component computes only when necessary; (ii) higher 
performance, since global clock distribution and 
synchronisation can be avoided; and finally, (iii) 
greater modularity and ease of design, since there are 
no global timing constraints. 

An important recent trend is the design and, in many 
cases, fabrication of practical large-scale asynchronous 
systems, such as microprocessors [2-7] and DSP chips 
[8 ] .  Critical to these systems is the design of efficient 
datapath support components, such as adders. This 
paper proposes a new method for designing 
asynchronous data-path components, targeted towards 
high-performance design. 

Many approaches have been proposed to designing 
asynchronous datapath components. Most fall into one 
of two categories, depending on how completion is 
determined: bundled data and completion detection. 

A bundled data design uses a worst-case model delay, 
designed to exceed the longest path through the subsys- 
tem [ l ,  91. This delay may be an inverter chain or a 
replicated portion of the critical path. This method has 
been widely used [3-5, 81. The main advantage is that a 
standard synchronous (i.e. non-hazard-free) single-rail 
implementation may be used, so implementations are 
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easy to design, and have low power and limited area. 
However, the key disadvantage is that completion is 
fixed to worst-case computation, regardless of actual 
data inputs [Note 11. 

A completion detection method [l, IO] detects when 
computation is actually completed. The datapath is 
typically implemented in dual-rail, where each bit is 
mapped to a pair of wires, which encode both the value 
and validity of the data. Different encoding schemes 
have been used, such as four-phase RZ and two-phase 
LEDR (see [l]), and the methods have been applied to 
a number of designs such as adders [lo, 111. In princi- 
ple, this approach has the advantage that the datapath 
itself indicates when computation is actually completed. 
The key disadvantage, in many applications, is that a 
completion detection network is usually required, add- 
ing several gate delays between completion and its 
detection. Furthermore, the increased wiring and 
switching activity often result in much greater area and 
power consumption. A promising alternative scheme 
avoids the detection network [ 121, but requires special 
current sensors and still requires a number of gate 
delays of overhead. 

In this paper, we propose a new alternative method 
for designing asynchronous datapath components, 
which we call speculative completion. Our method has 
many of the advantages of the bundled data approach, 
such as the use of a single-rail synchronous datapath. 
Unlike bundled data, though, we use several different 
matched delays: a worst-case model delay, and one or 
more speculative (i.e. early-completion) delays. There- 
fore, a component can operate at several possible 
speeds. A speculative delay allow early completion, and 
is disabled for worst-case data. Unlike existing comple- 
tion detection methods, however, early completion 
detection occurs in parallel with the datapath computa- 
tion, not after computation is complete. The comple- 
tion overhead is therefore minimal. 

The method is applicable to a number of datapath 
designs. As a case study, we illustrate it on a particular 
example: the design of a carry lookahead adder, based 
on the high-performance parallel design of Brent and 
Kung [13]. Through careful gate-level analysis, we esti- 
mate performance improvements up to 30% over a 
comparable synchronous implementation, for random 
input data. We intend to lay out and simulate the 
design in the future, so that wiring and fanout capaci- 
tance can be considered more accurately. 
Note 1. Unlike synchronous design though, delay margm may be some- 
what tighter, since timng constramts &re localised 
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2 Overview therefore seven gate delays. Between level-0 and level-6, 
the adder computes the cumulative p and g values in 
parallel for each of the 32-bit slices. In particular, level- 
1 computes all 2-bit p and g values, level-2 computes all 
4-bit values, and so on. (Though the Figure suggests 
that a 32-bit p is computed in level-5, this is not 
necessary.) In level-6, the ith sum bit, si, is computed as 
the XOR of propagate bit pi (taken from level-0), and 
the final generate bit (or 'carry-out') G,-l of the 
preceding stage (taken from level-5). 

Level: . - - , r 6  

2. I Speculative completion 
A standard single-rail bundled datapath is shown in 
Fig. 1. A single 'model delay' is used, with input req 
and output ack. The model delay receives a request, 
req, when data inputs are valid, and will produce an 
ack only after the function outputs are valid. This delay 
must be slower than the function block under all 
physical conditions and all data inputs. 

model delay 

req ack 

Fig. 1 Block diagram of standard bundled datapath 

model delay 1 

req P 
model dday 2 

req 

I '  
network 2 

0 . 0  

model delay n 

-abort detection 
network n 

function 
block 
(C/L)  

Fig. 2 General architecture of speculative completion datapath 

Fig. 2 shows the basic architecture of our speculative 
completion datapath. There are two key features. First, 
multiple (i.e. two or more) model delays are used: one 
for the worst-case and the remaining ones for 
speculative completion. Speculative delays are used to 
provide different speeds of early completion. For 
example, in a ripple-carry adder, an 'average-case' 
delay could be used if adder inputs result in short carry 
chains; a 'best-case' delay could be used if there is no 
carry (e.g. if an input is 0). 

Secondly, an abort detection network is associated 
with each speculative delay. The network determines if 
the coresponding early completion must be aborted, 
due to worst-case data. This detection is computed in 
parallel with datapath computation, and must be com- 
pleted before the delay produces its output. 

2.2 BLC adder design 
As a case study, we focus on the parallel carry-looka- 
head adder of Brent and Kung [13], as adapted by 
Suzuki et al. [14], as shown in Fig. 3. This adder uses a 
bitwise, or binary, lookahead carry (BLC) method. In a 
CMOS implementation, the stack depth of each gate is 
limited to two, and the gate fanout load is mostly lim- 
ited to two. The design is amenable to regular layout. 

) and 
generate (E) signals in level-0 and produces a sum in 
level-6. The critical path from input to output is 

The 32-bit adder produces all propagate 
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Fig.3 
pi* from level-0 

Binary lookahead carry (BLC) adder 

Our speculative design uses the same basic datapath, 
with several modifications. There are three key compo- 
nents. First, we use two model delays: one worst-case 
delay and one speculative average-case delay. The spec- 
ulative delay is enabled if all final generate bit values 
are produced by level-3, thus allowing early completion 
after only five gate delays. Secondly, we design an 
abort detection network, to inhibit early completion. 
This network computes in parallel with the datapath, 
and uses safe approximation to determine when to 
abort. Finally, some modifications of the sum genera- 
tor in level-6 are needed. As in a standard bundled data 
approach, there are no hazard-free requirements except 
on model delays. 

completion network (matched delays) 

W e t e c t  ion network 

.JL 

Fig .4 Block diugrum: adder with speculative completion 

3 Adder design 

3. I Completion network 
Fig. 4 shows a block diagram of our speculative 
completion adder. For simplicity, inverter chains are 
used for model delays, but extracted portions of the 
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critical path may be used instead. In this Figure, each 
inverter delay roughly corresponds to the delay of one 
level in the BLC adder. There are two model delay 
paths. The worst-case delay path has seven gate delays. 
The speculative delay path has five gate delays, and 
applies to cases where no useful computation occurs in 
level-4 and level-5, i.e. the final generate values are 
available in level-3. 

In the Figure, the speculative path is disabled by an 
abort signal, ‘abort’. This signal is allowed to glitch. 
The only timing requirement is that it becomes stable 
and valid before the speculative path enables the final 
gate [Note 21. Therefore, for this completion network, 
‘abort’ must be computed in less than four gate delays. 

3.2 Abort detection network 
The key component of our design is the abort detection 
network, which generates the abort signal. Unlike exist-, 
ing completion detection schemes, the network does 
not begin to detect early completion after completion 
has occurred. Instead, the network detects conditions: 
for early completion in parallel with the datapath com-, 
putation. 

There are three goals in designing the abort detection. 
network: 
(i) abort must be asserted whenever late completion 
occurs 
(ii) abort should not be asserted for most cases where 
early completion occurs; and 
(iii) the network should be small and fast. 

Condition (i) is a safety requirement; it is satisfied by 
using a conservative approximation to detect late com-, 
pletion. Conditions (ii) and (iii) are optimality require-. 
ments, on hit rate and logic realisation, respectively. 

3.2.1 Conditions for late completion: We now 
derive safe conditions for late completion of the BLC! 
adder of Fig. 3. By early completion, in this paper, we: 
mean that all final ‘generate’ signals are available in 
level-3: no further changes occur on generate signals in. 
level-4 or level-5. This condition is fairly common, and. 
its detection results in an efficient adder implementa-, 
tion. 

At the nth level, a generate function of the ith stage: 
is computed as: G: = G1-l + Pn-’ L J  Gn--’, where j = i -- 

2fl-1 (we ignore the alternating inversions in the given 
implementation here). Clearly, Gr is the same as the: 
generate of the preceding level, Gr-l, if the propagate: 
term, PY-l, is 0. For the given detection, n = 4, so each 
level-4 generate signal is the same as the corresponding 
level-3 generate signal if each level-3 propagate signal is 
0. Each level-3 propagate signal is effectively the 
product of a run of eight consecutive level-0 propagate 
signals. Therefore, the following condition is safe for 
the detection of late completion: 

Condition 3.1: Late completion can only occur if 
there exists a run of eight consecutive level-0 propagate 
signals. 

We call such a condition an 8-p run. The goal of the: 
abort detection network is to detect any such run. This 
condition is safe, since the detection of all 8-p runs 
guarantees the detection of every instance of late com- 
pletion. 
Note 2 As an altemative, if the abort signal is guaranteed hazard-free, 
and is used to enable the early output, timing requirements can be 
relaxed, and the signal can arrive later. 
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A small optimisation is that, for addition, the carry- 
in to the first stage (stage 1) is 0, so a run of eight level- 
0 propagate signals from stage 1 to stage 8 can be 
ignored. Therefore, for purposes of this paper, we will 
ignore the contribution of level-0 p l .  Our goal is to 
detect any run of eight consecutive level-0 propagate 
signals, from stage 2 to stage 32. 

3.2.2 Detecting late completion: Abort detection 
networks can now be designed which safely detect the 
above condition. For efficiency, we further approxi- 
mate this condition, safely, to produce simpler net- 
works. 

Definition 3.1: A product c of level-0 propagate sig- 
nals covers a given 8-p run, pi pi+l __. pj-l pj, from i to j 
if each propagate signal px, that is an input to product 
c, is also contained in the run; that is, i I x sj. 

By this definition, a product covers an 8-p run if the 
product consists only of a non-empty subset of propa- 
gate signals in the run. If the 8-p run holds, all the 
propagate signals from pi to pj  are 1, and therefore 
product c will be 1. As an example, product c = p s  p6 
p7 covers the 8-p run from p3 to plo .  In this case, c 
detects the run using a safe approximation. If the run 
occurs, then c = 1. If the run does not occur, then c 
may or may not be set to 0. The use of c simplifies 
detection, and detection is safely approximate: c is 
never 0 when an 8-p run occurs. 

Our approach is to select products, each of which 
detects a set of 8-p runs. The abort detection network 
is constructed out of a sum of such products which, 
together, cover all possible 8-p runs. In this case, if any 
8-p run occurs, the network will detect it. 

A number of alternative designs are presented below. 
In each implementation, every 8-p run between stages 2 
and 32 is detected. Each design uses a different safe 
approximation to exact abort detection. In Section 4, 
we will evaluate the trade-offs between ‘hit rate’ and 
latency/area of these designs. 

3.2.3 Simple detection networks: A simple sum- 
of-products detection network can be used, where each 
product contains a short run of level-0 propagate sig- 
nals (‘p-signals’). 

3-Literal products: Each product contains a run of 
three p-signals (in level-0). The network contains four 
products; it is given by equation: p7pgp9 + ~ 1 3 ~ 1 4 ~ 1 5  + 

runs for stages: 2 - 9, 3 - 10, ... , 7 - 14. If any of these 
runs occurs, this product will be 1. The remaining three 
products cover the remaining runs, similarly. 

4-Literal products: Each product contains a run of 
four p-signals; there are five products. The sum-of- 
products equation is: P6P7PgP9 + PiiPi2P13P14 + 

uct covers fewer 8-p runs than in the preceding 3-literal 
product design, so more products are required. 

5-Literal products: Each product contains a run of 
five p-signals; there are six products. The sum-of-prod- 

P19P2OP12 + P25P26P21. Product PIP8P9 covers the 8-P 

P16P17P18P19 + P21P22P23P24 + P26P27P28P29. Each prod- 

ucts equation is: P5P6P7PXP9 + 1)9PlOPllP12P13 + 

PI 3P14P15P16P17 + P17P18Pl9P20P?l + P21P2?P23P24P25 + 
p2sp26p27p28p29. Note that in this case, adjacent prod- 
ucts overlap; that is, they have a literal in common. 

3.2.4 Augmented detection networks: 
Alternative networks can be used, where each product 
in a simple detection network is augmented with a new 
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literal: k, For example, the 3-literal simple network can 

k y p  9p20p2L+ &p2$26p27. Consider the augmented 
product, k6p7p8p9. Here, k6 is the (level-0) ‘kill’ 
condition for stage 6, A6 Bg, where both A and B 
input bits are 0. The augmented product uses the 
complement of this condition, k6; that is, either p6 or 
g6 is 1. 

Our motivation is that this augmented product cov- 
ers the same 8-p runs covered by the original product, 
but is a tighter approximation (i.e. indicates fewer 
unnecessary aborts). To see this, consider the 8-p runs 
covered by the original product: 2 ~ 9, 3 - 10, ..., 7 ~ 

14. If 8-p run 2 - 9 occurs, - for example, then p6, p7,  p8 
and p9 are 1. Therefore k6 is also 1, and the aug- 
mented product is 1. A similar result holds for all 8-p 
runs except 7 - 14. For this last case, if 8-p run 7 - 14 
occurs, then p7,  p8 and p9 are 1. If p6 or g6 is 1, the aug- 
mented product is 1 (indicating abort). However, if k,  
is 1, then even though the 8-p run occurs, it has no 
effect, since it cannot propagate from a preceding kill 
stage, kg. Therefore, the abort produced by the original 
product, p7, PE, p9, is unnecessary. In contrast, the aug- 
mented product is 0, and no abort occurs. 

condition has a simpler CMOS implementation (2- 
input NOR of the data inputs, A, + B, ) than p ,  (2- 
input XOR of the data inputs, A ,  0 B,). 

Each of the above three simple networks can be 
transformed into an augmented network using this 
method. The simple abort networks with 3-, 4- and 5- 
literal products can be notated as (3p, Ok), (4p, 0 4  and 
(5p, O k ) ,  respectively. The corresponding augmented 
networks are notated as (3g, lk), (4p, lk) and (5p, lk). 

input as well. For the original product p7psp9, a 2-bit 
kill is given by: k5,6 = k6 + k5p6. The complement is 
used to produce an augmented product, ky6p7psp9. 
The cCrrespon+ng augmented networks are notated as 
(3p, 2 4 ,  (4p, 2 4  and ( 5 ~ ,  2k). 

3.2.5 Timing requirements: As indicated in Sec- 
tion 3.1, the abort detection network is allowed to have 
hazards. The only requirement is that it produces a sta- 
ble and valid result within four gate delays (i.e. when 
level-3 computation is completed in the adder data- 
path). 

Network (3p, 0 4  can easily be implemented in four 
gate delays using simple CMOS gates with stack size 2 
(three gate delays for the network, one gate delay for 
the initial pigik generation). The remaining networks 
can be implemented in five equivalent gate delays (in a 
couple of cases, using one three-input NOR each). 

Because this network is critical, we assume that the 
designer can optimise its performance to meet this tim- 
ing requirement. This assumption is reasonable consid- 
ering that transistor sizing andlor dynamic logic can be 
aggressively used to speed up this network, regardless 
of any general optimisations used on the larger adder. 

3.3 Sum generation 

network and abort detection network, and their 
interaction. The abort detection network will allow 
early completion in many cases, and will always abort 
if late completion is required. However, the sum- 
generation in Figs. 3 and 5 does not yet produce 

be augmented to: GP7YSP9 + GP13P14P15 + 

A final motivation for this approach is that each k, 

Each product can also be augmented with a 2-bit k 

‘\ We have described the design of the CO 
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correct results. In partikcular8 in level-6, th 
s, is computed as the XOR of propagate 
from level-0) and the final generate bit, 
G,-l of the preceding stage, taken from 

pletion, we want the carry-out G,, of the 

signals are final. Therefore, sum n 
needs a bypass, so it can receive both level-3 and level- 
5 signals. 

PI*--&* sumi 

stage taken from level-3, since 3 

CLate A-- 
Fig. 5 Original sum generatxon 
pi* IS from level-0 
Clate i s  G, I from level-5 

Fig.6 Modified sum generation 
pr* is from level-0 
Clare IS G, I from level-5 
Ceauly is G, from level-3 

A corrected gate-level sum generator is shown in 
Fig. 6. The level-3 Gf-l signal is labelled Ceurly, and 
the level-5 G,-l signa ed Clute. For now, 
assume that the late- 

d by the abort detection 
network. The abort signal is broadcast to every sum 
module. This approach requires excessive delay, but 
will be corrected below. 

In each case, a c sum is produced. Suppose 
completion is early a te-en is unasserted (/lute-en = 
1). The network corr computes the XOR ofp ,  and 
Ceavly. Since Ceurly es through only one gate, an 
early sum is generated in a total of 4 + 1 = 5 gate 
delays. 

en = 0). In this case, 
occur. Once the final Clate is produ e cases are 
possible: (i) Ceuvly and Clute are 0, 
Clate is 1, and (ii) Cearly and Clute are both 1. The 
remaining case, Ceuvly is 1 and Clute is 0, is impossi- 
ble, since Clate is a positive unate function of Ceurly. 
In each case, the correct result is computed. In case (i), 
AOI-gate produces p,, and 
Clute. In case (ii), the AOI- 
= z0 Ceurly = p @  Clute. 
produces p, and, again, sum, = p z  
Therefore, the result is alway functionally equivalent to 
the original sum in Fig. 5. Since Clute passes through 
three gates, a late sum is generated in a total of 6 + 3 = 

with the above approach is that it 
requires the critical /late-en signal to reach all 32 sum 
modules within three gate delays, while the abort detec- 
tion network itself may require four gate delays to gen- 
erate it. Instead of broadcasting the inverted ‘abort’ 
signal as a late-enable for each sum bit, we note that 
the abort detection network is a sum-of-products, 
where each product covers, or detects, a set of 8-p runs. 
We now show that these products in 
used as /lute-en signals. 

Alternatively, suppose 
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As an example, in network (3p, Ok), product e = 
p19~p20p21 detects a set of 8-p runs, one of which is 14- 
21. In this case, the run might cause a late carry-out of 
stage 21. Therefore, e itself can be used (actually, the 
corresponding NAND C) as /lute-en to stage 22. If the 
8-p run, 14-21, does not occur, no late carry-out from 
stage 21 can occur, by Condition 3.1. That is, Ceurly = 
Clute in the sum module of stage 22. In this case, llute- 
en is unasserted (i.e., l), and the sum is correctly gener- 
ated: sum22 = p22 0 Cearly. Alternatively, if the 8-p 
run, 1421, occurs, a late carry-out is possible. In this 
case, C is asserted (i.e., O), as is ahovt, and the sum is 
correctly generated, as before, sum22 = p22 0 Clate. In 
each case, a correct result is produced. 

Intuitively, for each sum module which changes value 
late, due to a change from Ceavly to Clute, the corre- 
sponding product, C ,  which covers this case will be 
asserted. A change from Ceurly to Clale cannot occur 
without the corresponding 8-p run adjacent to it (in the 
above example, from 14 to 21 enabling a change in 22). 

Product c may be assumed to have two gate delays in 
an optimised abort implementation, hence it will pro- 
duce a valid and stable result after three gate delays 
(one delay is for level-0). Since each individual /lute-en 
is produced within three gate delays, the given timing 
requirements are satisfied. As a result, an early sum 
will be valid and stable after five gate delays, and a late 
sum will be valid and stable after nine gate delays. 

Note that the fanout load of C, in producing /lute-en 
signals, depends on the abort detection network. For 
network (3p, Ok), each product covers four 8-p runs, so 
the fanout load is four /late-en signals. Either C from 
the abort detection network can directly drive as /late- 
en in Fig. 6, or the logic for 7 can be replicated as 
needed to reduce the load. We are currently exploring 
better techniques to implement /lute-en and the modi- 
fied sum generation circuit. Preliminary work suggests 
that alternative designs may reduce worst-case sum 
generation to only seven gate delays [Note 31. 

4 Results 

We now analyse the performance and operation of an 
asychronous BLC adder designed for speculative com- 
pletion. In the analysis below, we assume that all gate 
delays are equal. We also assume that the abort detec- 
tion network can be implemented to meet timing con- 
straints, so early completion takes five gate delays and 
late completion takes nine gate delays. In addition, a 
random input distribution is assumed. 

Table 1 lists our initial results, on the nine abort 
detection networks described in Section 3.2; other net- 
works can also be considered. We compare against a 
synchronous implementation, which is assumed to have 
a latency of seven gate delays. The performance 
improvement ranges from 5 to 30% over a comparable 
synchronous implementation. Interestingly, for the best 
abort detection network, (5p, 2k) ,  early completion 
occurs for over 90% of inputs. 

Several of the table entries have asterisks (*). In these 
cases, products in the abort detection network overlap 
(see Section 3.2). As a result, these products are not 
independent, and probabilistic analysis of ‘early com- 
pletion (oh)’ is more subtle. Details of our analysis are 
presented in the Appendix. 
Note 3: Personal communication with Prof. Charles Zukowski (Columbia 
University) 
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Table 1: Performance and area results 

Abort Abort Early Average Performance 
completion adder improvement detection detection 

network area latency 
(no. gates) (%) (no. lits.) (%) 

(3p, OF) 12 

(4p, OF) 20 

(5p,Ok)* 30 

(3p, Ik) 16 

(4p, IC) 25 

(5p, IF)* 36 

(3p, 2k) 24 

(5p, 2k)* 48 

(4p, 2k)* 35 

59 

72 

83 

67 

79 

87 

72 

84 

90 

6.64 

6.12 

5.68 

6.32 

5.84 

5.52 

6.12 

5.65 

5.39 

5 

14 

23 

11 

20 

27 

14 

24 

30 

5 Conclusions 

This paper has introduced a general method for the 
design of asynchronous datapath components. The 
method has many advantages of a bundled data 
approach, but also allows early completion. The 
method was applied to a high-performance parallel 
BLC adder design. Through careful gate-level analysis, 
we estimate performance improvements up to 30% over 
a comparable synchronous implementation. 

An important contribution of this work is to 
demonstrate a bundled-data design method which can 
take advantage of typical-case delays, and thereby 
outperform one of the most efficient synchronous 
adder designs. 

Critical to the success of our method is the ability to 
implement a fast abort detection network, which meets 
the given timing requirements. We intend to simulate 
and layout our design, so that the wiring and fanout 
capacitance can be considered more accurately. We will 
also explore different designs for modified sum 
generation. In addition, we intend to apply our method 
to other asynchronous adders, such as 4-bit carry- 
lookahead adders, as well as other datapath 
components such as multipliers and comparators. 
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8 Appendix: Probability analysis 

This section gives details of our probabilistic analysis 
of early completion, which was used to generate results 
in Table 1. 

Inputs are assumed to be randomly distributed. An 
abort detection network contains products Pi, 1 5 i 5 n 
where the Pis are identical functions of different bits. 
There are two cases: (i) products P, in the abort detec- 
tion network are all disjoint (i.e. have no shared bits), 
and (ii) some products Pi overlap (i.e. share bits). 

8. I 
In this case, the probability that Pi = 0 is independent 
of the probability that Pj = 0 for all i # j .  Therefore, 
the probability that every product in the abort network 
is 0 is 

Case I: Nonoverlapped P p  

= Prob(E)  ’ P r o b ( 5 )  . . . Prob(P,) (1) 
= Prob(P,)” = (1 - Prob(P2))” 

where Prob(P,) is the probability that an arbitrary 
product Pi is 1 (all Pis have identical probability). 
ProbOjf is the probability of no abort detection, hence 
of early completion. 

As an example, the abort detection network (4p, Ok‘) 
has n = 5 nonoverlapped products, each covering a 4-p 
run. Each p r  propagate bit in product Pi has a 0.5 prob- 
ability of being 1 (since pl  = al 0 bl for corresponding 
data inputs al and bl),  so Prob(PJ = (0.5)4 = 0.125. 
Therefore, the probability of early completion is: 
Probog = (1 - 0.125)5 = 0.7242. 

8.2 Case II: Overlapped Pis 
In this case, products in the abort detection network 
may overlap, i.e. share bits. For example, in network 
(5p, O k ) ,  product PI  = p5p6p7psp9 and product P, = 
p9!1@llp1$13 overlap in bit 9. For simplicity, we 
assume that only adjacent products overline may over- 
lap (i.e., Pi and Pi+& this assumption holds for all 
overlapped cases in Table 1. 

If Koducts Pi a& Pi+l overlap, probabilities 
Puob(Pi ) a&Prob(Pi+l) are not independent. In this 
case, Prob( Pi so the 
results of case I do not hold. 

We first introduce notation to partition each Pi into 
overlapped and nonoverlapped segments: Pl,i+l, PIi, and 
Pi,i-l. This notation is illustrated on a fragment of net- 
work (5p, O k ) ,  showing bits covered by products P I ,  P, 
and P3: 

Pi+,) z Prob( Pi ) . Pmb( 
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.18 17 16 15 14a-48 7 6 5 4 3 2 I 
p 2 , 3  Pi p2,l - 

pz 
Prob(P,) is given by the product of the independent 
probabilities of its three segments: 

We distinguish segments Pc-l,l and Pz,l-l, although they 
cover the same bits. Segment P7-,,, corresponds to 

Prob(P,) = Prob(Pz,,+l) . P?-ob(P,’) ‘ Prob(Pz,,-l) ( 2 )  

” ... 
product Pj-l, and segment -Pi, 
Pi [Note 41. 

corresponds to product 

An outline of our approach is: first, compute the 
probability, Puob,,, that at least 1 product, Pi in the 
network is 1 (i.e., abort); secondly, use this result to 
compute Probog = 1 - Prob,,, the probability that no 
product is one in the network (i.e., early completion). 

( i)  Computing Prob,,: To compute Prob,,,, we build 
up disjoint cases. First, we introduce the notation: Pi/- 
= 1 if product P, = 1 and no other Pi = 1 for j < i. 
That is, Pi/. = 1 if Pi is the rightmost product (i.e., low- 
est index) that is 1. At most one condition, P,, holds 
in the abort network at any time, since at most one Pi 
is the rightmost product which is 1. Therefore, the 
probability Pvob,, that some Pi = 1 can be broken into 
a sum of disjoint cases 
Prob,, = Prob(P1 + P2 + . . . + P,) 

= Prob(P1/- + P2,- + . . . + l‘,/-) 
= Prob(P1,-) + Prob(Pz/_) + ’ ’ ’ + Prob(P,+) 

( 3 )  

Prob(P1,J = Prob(P1) (4) 

These probabilities, Prob(P,,-), can be computed recur- 
sively. For the base case 

since, whenever PI  is 1, it is also the rightmost product 
which is 1. 

Assume we have Pvob(Pil-) for all i 5 n, for some n. 
We now derive Prob(P,+llJ, which is the probability 
that P,,+l is the rightmost product which is 1. We first 
define a near-solution, X ,  and then adjust it 

Xis the probability that product P,,+l is 1 and all lower 
Pi are 0, 1 5 i 5 n - 1 (ignoring i = n). These Pis are not 
adjacent to P,,+l (only P,, and Pn+2 are adjacent); hence, 
by assumption, they do not overlap P,,+l. The above 
equation is correct, since Prob(P,,+,) is independent of 
the probability in the second clause. Therefore 
X = Prob(P,+1) . (1 - Prob(P1 + P .  + + 8 + P,-l)) 

-- - x = Prob(P,+J * Prob(Pn-l . P,-Z ’ * ‘ PI) ( 5 )  

= Prob(Pn+l) . (1 -Prob(Pl/- + P./- + . . . +P,-l/-)) 
= Prob(P,+1) 
.(1-Prob(P1,-)-Prob(P2,-)- ’ .  . -Prob(P,-l,_)) 

/ n-1 \ 

(6) 
Note 4: This distinction is important only for augmented detection net- 
works. For example, in network (5p, 18,  product PI = k, psp6p,p8p9 and 
product Pz = Z & ~ ~ p ~ ~ ~ i p ~ 2 p ~ ~  overlap in bits 8 and 9. Similarly, P2 and P3, 
overlap in bits 12 and 13. P, is broken into three segments: = %p5, PI 
= ~ ~ p , ,  and = p8p9; and P2 is broken into three segments: P2,  = G p s ,  
P2= p l o p I I ,  and P2,3 = p12pI3. In this case, the probabilities of and P2,1 
differ, since P, contains only p bits (psp9), while P2 contains both p and 
E bits (k,,p9: h b ( P 1 , , )  = 0.75 . 0.50 = 0.375, and >rob(P,,,) = 0.5 . 0.50 
= 0.25. 
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To compute Prob(P,+l/-), X must be modified to 
account for the overlapping product P,. In particular, 
X includes the case where the overlapped product, P,, 
is 1. In this case, product P, is 1 and the nonover- 
lapped segments, Pn+l,n+2 and PA+, of P,+l arc also 1. 
After removing this case, the result is the probability 
that P,+l is the rightmost product which is 1 
Prob(Pn+I/-) 
= x - Prob(Pn+ll,,+z) . Prob(PA+,) * Prob(P+) 

n- 1 

(7 )  
This result uses eqn. 2 to simplify the second line 
above. Prob(P,+,) is the probability that product P,+l 
is 1, and Prob(P,+,,,) is the probability that the 'lower 
overlap' segment P,+l,, of product P,+' is 1. Since each 
product is an identical function, we can simplify, 
arbitrarily replacing Prob(P,+J by the constant kl = 
Prob(Pj) and Prob(P,,,+J by the constant k2 
Prob(Pjj-!), for some arbitrary j (e.g., j = 1). The final 
equation is  

Prob( Pn/ - ) 
k2 

Prob(Pn+l/-) = k1. 

(8) 
Eqn. 8 gives Prob(P,+l,-) as a recurrence relation, 
defined in terms of n previously computed probabili- 
ties, Prob(P+) (1 s i s n). An alternative, but equiva- 
lent, recurrence relation defines P ~ O ~ ( P , + ~ / _ )  in terms of 

only two previously-computed probabilities, Prob(P,-) 
and Prob(P,-l/-) (for n t 3) 

This equation is derived from eqn. 8 by computing 
Prob(P,+I/_) and Prob(P,_), subtracting Prob(P,+l/_) ~ 

Prob(P,-), and simplifying. 
As an example, network (5p, 04 has n = 6 products, 

each with five propagate inputs: P1 =,p5p6p?p8p9r P2 = 
p9p10p1~12p13, etc. Products overlap in 1-bit segments 
(e.g. p9).  The probability Prob(Pi) that product Pi = 1 is 
(0.5)5 = 0.03125. Since the overlap segment has 1 bit, 
the probability Prob(P,,,) that the ith segment is 1 is 
(0.5)' = 0.5. By eqn. 5, Prob(P1/-) = Prob(Pl) = 
0.03125 is the probability that Pi is the rightmost prod- 
uct which is 1. Using eqn. 8 

= 0.03125. (1 - y) = 0.029297 

1 - 0.3125 - ___ 
0.5 

= 0.028442 
Once the remaining probabilities are computed, they 
are added to compute Prob,, (eqn. 3),  which is the 
probability of an abort. 

(ii) Computing Prob, Once Prob,, is computed, the 
computation of ProbOff is trivial: it is Prob,# = 1 - 
Prob,,. Prob,ff is the probability of no abort, and hence 
the probability of early completion. 
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