
ASYNCHRONOUS ARCHITECTURE

Design of a low-latency asynchronous adder using
speculative completion

S.M. Nowick

Indexing terms: Asynchronous systems, Specubtive completion, Adders, Duiuputh design

Abstract: A new general method for designing
asynchronous datapath components, called
speculative completion, is introduced. The method
has many of the advantages of a bundled data
approach, such as the use of single-rail
synchronous datapaths, but it also allows early
completion. As a case study, the method is
applied to the high-performance parallel BLC
adder design of Brent and Kung. Through careful
gate-level analysis, performance improvements of
up to 30% over a comparable synchronous
implementation are expected.

1 introduction

Asynchronous design has enjoyed a resurgence in th
last five to ten years, with a number of technical and
practical advances [11. In principle, asynchronous
systems promise several advantages over synchronous
systems: (i) lower power, since an asynchronous
component computes only when necessary; (ii) higher
performance, since global clock distribution and
synchronisation can be avoided; and finally, (iii)
greater modularity and ease of design, since there are
no global timing constraints.

An important recent trend is the design and, in many
cases, fabrication of practical large-scale asynchronous
systems, such as microprocessors [2-7] and DSP chips
[8] . Critical to these systems is the design of efficient
datapath support components, such as adders. This
paper proposes a new method for designing
asynchronous data-path components, targeted towards
high-performance design.

Many approaches have been proposed to designing
asynchronous datapath components. Most fall into one
of two categories, depending on how completion is
determined: bundled data and completion detection.

A bundled data design uses a worst-case model delay,
designed to exceed the longest path through the subsys-
tem [l , 91. This delay may be an inverter chain or a
replicated portion of the critical path. This method has
been widely used [3-5, 81. The main advantage is that a
standard synchronous (i.e. non-hazard-free) single-rail
implementation may be used, so implementations are
0 IEE, 1996
IEE Proceedings onlme no. 19960704
Paper first received 4th January 1996 and in revised form 19th June 1996
The author is wth the Department of Computer Science, Columbia
Umversity, New York, NY 10027, USA

easy to design, and have low power and limited area.
However, the key disadvantage is that completion is
fixed to worst-case computation, regardless of actual
data inputs [Note 11.

A completion detection method [l, IO] detects when
computation is actually completed. The datapath is
typically implemented in dual-rail, where each bit is
mapped to a pair of wires, which encode both the value
and validity of the data. Different encoding schemes
have been used, such as four-phase RZ and two-phase
LEDR (see [l]), and the methods have been applied to
a number of designs such as adders [lo, 111. In princi-
ple, this approach has the advantage that the datapath
itself indicates when computation is actually completed.
The key disadvantage, in many applications, is that a
completion detection network is usually required, add-
ing several gate delays between completion and its
detection. Furthermore, the increased wiring and
switching activity often result in much greater area and
power consumption. A promising alternative scheme
avoids the detection network [121, but requires special
current sensors and still requires a number of gate
delays of overhead.

In this paper, we propose a new alternative method
for designing asynchronous datapath components,
which we call speculative completion. Our method has
many of the advantages of the bundled data approach,
such as the use of a single-rail synchronous datapath.
Unlike bundled data, though, we use several different
matched delays: a worst-case model delay, and one or
more speculative (i.e. early-completion) delays. There-
fore, a component can operate at several possible
speeds. A speculative delay allow early completion, and
is disabled for worst-case data. Unlike existing comple-
tion detection methods, however, early completion
detection occurs in parallel with the datapath computa-
tion, not after computation is complete. The comple-
tion overhead is therefore minimal.

The method is applicable to a number of datapath
designs. As a case study, we illustrate it on a particular
example: the design of a carry lookahead adder, based
on the high-performance parallel design of Brent and
Kung [13]. Through careful gate-level analysis, we esti-
mate performance improvements up to 30% over a
comparable synchronous implementation, for random
input data. We intend to lay out and simulate the
design in the future, so that wiring and fanout capaci-
tance can be considered more accurately.
Note 1. Unlike synchronous design though, delay margm may be some-
what tighter, since timng constramts &re localised

IEE Proc -Camput Dzgglt Tech, Val 143, No 5, September 1996 301

2 Overview therefore seven gate delays. Between level-0 and level-6,
the adder computes the cumulative p and g values in
parallel for each of the 32-bit slices. In particular, level-
1 computes all 2-bit p and g values, level-2 computes all
4-bit values, and so on. (Though the Figure suggests
that a 32-bit p is computed in level-5, this is not
necessary.) In level-6, the ith sum bit, si, is computed as
the XOR of propagate bit pi (taken from level-0), and
the final generate bit (or 'carry-out') G,-l of the
preceding stage (taken from level-5).

Level: . - - , r 6

2. I Speculative completion
A standard single-rail bundled datapath is shown in
Fig. 1. A single 'model delay' is used, with input req
and output ack. The model delay receives a request,
req, when data inputs are valid, and will produce an
ack only after the function outputs are valid. This delay
must be slower than the function block under all
physical conditions and all data inputs.

model delay

req ack

Fig. 1 Block diagram of standard bundled datapath

model delay 1

req P
model dday 2

req

I '
network 2

0 . 0

model delay n

-abort detection
network n

function
block
(C/L)

Fig. 2 General architecture of speculative completion datapath

Fig. 2 shows the basic architecture of our speculative
completion datapath. There are two key features. First,
multiple (i.e. two or more) model delays are used: one
for the worst-case and the remaining ones for
speculative completion. Speculative delays are used to
provide different speeds of early completion. For
example, in a ripple-carry adder, an 'average-case'
delay could be used if adder inputs result in short carry
chains; a 'best-case' delay could be used if there is no
carry (e.g. if an input is 0).

Secondly, an abort detection network is associated
with each speculative delay. The network determines if
the coresponding early completion must be aborted,
due to worst-case data. This detection is computed in
parallel with datapath computation, and must be com-
pleted before the delay produces its output.

2.2 BLC adder design
As a case study, we focus on the parallel carry-looka-
head adder of Brent and Kung [13], as adapted by
Suzuki et al. [14], as shown in Fig. 3. This adder uses a
bitwise, or binary, lookahead carry (BLC) method. In a
CMOS implementation, the stack depth of each gate is
limited to two, and the gate fanout load is mostly lim-
ited to two. The design is amenable to regular layout.

) and
generate (E) signals in level-0 and produces a sum in
level-6. The critical path from input to output is

The 32-bit adder produces all propagate

302

SUm

U
32

9 p7g'
5 generation

sum
generation

"I

Fig.3
pi* from level-0

Binary lookahead carry (BLC) adder

Our speculative design uses the same basic datapath,
with several modifications. There are three key compo-
nents. First, we use two model delays: one worst-case
delay and one speculative average-case delay. The spec-
ulative delay is enabled if all final generate bit values
are produced by level-3, thus allowing early completion
after only five gate delays. Secondly, we design an
abort detection network, to inhibit early completion.
This network computes in parallel with the datapath,
and uses safe approximation to determine when to
abort. Finally, some modifications of the sum genera-
tor in level-6 are needed. As in a standard bundled data
approach, there are no hazard-free requirements except
on model delays.

completion network (matched delays)

W e t e c t ion network

.JL

Fig .4 Block diugrum: adder with speculative completion

3 Adder design

3. I Completion network
Fig. 4 shows a block diagram of our speculative
completion adder. For simplicity, inverter chains are
used for model delays, but extracted portions of the

IEE Proc -Comput Digit Tech, Vol 143, No 5, September 1996

critical path may be used instead. In this Figure, each
inverter delay roughly corresponds to the delay of one
level in the BLC adder. There are two model delay
paths. The worst-case delay path has seven gate delays.
The speculative delay path has five gate delays, and
applies to cases where no useful computation occurs in
level-4 and level-5, i.e. the final generate values are
available in level-3.

In the Figure, the speculative path is disabled by an
abort signal, ‘abort’. This signal is allowed to glitch.
The only timing requirement is that it becomes stable
and valid before the speculative path enables the final
gate [Note 21. Therefore, for this completion network,
‘abort’ must be computed in less than four gate delays.

3.2 Abort detection network
The key component of our design is the abort detection
network, which generates the abort signal. Unlike exist-,
ing completion detection schemes, the network does
not begin to detect early completion after completion
has occurred. Instead, the network detects conditions:
for early completion in parallel with the datapath com-,
putation.

There are three goals in designing the abort detection.
network:
(i) abort must be asserted whenever late completion
occurs
(ii) abort should not be asserted for most cases where
early completion occurs; and
(iii) the network should be small and fast.

Condition (i) is a safety requirement; it is satisfied by
using a conservative approximation to detect late com-,
pletion. Conditions (ii) and (iii) are optimality require-.
ments, on hit rate and logic realisation, respectively.

3.2.1 Conditions for late completion: We now
derive safe conditions for late completion of the BLC!
adder of Fig. 3. By early completion, in this paper, we:
mean that all final ‘generate’ signals are available in
level-3: no further changes occur on generate signals in.
level-4 or level-5. This condition is fairly common, and.
its detection results in an efficient adder implementa-,
tion.

At the nth level, a generate function of the ith stage:
is computed as: G: = G1-l + Pn-’ L J Gn--’, where j = i --

2fl-1 (we ignore the alternating inversions in the given
implementation here). Clearly, Gr is the same as the:
generate of the preceding level, Gr-l, if the propagate:
term, PY-l, is 0. For the given detection, n = 4, so each
level-4 generate signal is the same as the corresponding
level-3 generate signal if each level-3 propagate signal is
0. Each level-3 propagate signal is effectively the
product of a run of eight consecutive level-0 propagate
signals. Therefore, the following condition is safe for
the detection of late completion:

Condition 3.1: Late completion can only occur if
there exists a run of eight consecutive level-0 propagate
signals.

We call such a condition an 8-p run. The goal of the:
abort detection network is to detect any such run. This
condition is safe, since the detection of all 8-p runs
guarantees the detection of every instance of late com-
pletion.
Note 2 As an altemative, if the abort signal is guaranteed hazard-free,
and is used to enable the early output, timing requirements can be
relaxed, and the signal can arrive later.

IEE ProcComput. Digit. Tech., Vol. 143, No. 5, September 1996

A small optimisation is that, for addition, the carry-
in to the first stage (stage 1) is 0, so a run of eight level-
0 propagate signals from stage 1 to stage 8 can be
ignored. Therefore, for purposes of this paper, we will
ignore the contribution of level-0 p l . Our goal is to
detect any run of eight consecutive level-0 propagate
signals, from stage 2 to stage 32.

3.2.2 Detecting late completion: Abort detection
networks can now be designed which safely detect the
above condition. For efficiency, we further approxi-
mate this condition, safely, to produce simpler net-
works.

Definition 3.1: A product c of level-0 propagate sig-
nals covers a given 8-p run, pi pi+l __. pj-l pj, from i to j
if each propagate signal px, that is an input to product
c, is also contained in the run; that is, i I x sj.

By this definition, a product covers an 8-p run if the
product consists only of a non-empty subset of propa-
gate signals in the run. If the 8-p run holds, all the
propagate signals from pi to pj are 1, and therefore
product c will be 1. As an example, product c = p s p6
p7 covers the 8-p run from p3 to plo . In this case, c
detects the run using a safe approximation. If the run
occurs, then c = 1. If the run does not occur, then c
may or may not be set to 0. The use of c simplifies
detection, and detection is safely approximate: c is
never 0 when an 8-p run occurs.

Our approach is to select products, each of which
detects a set of 8-p runs. The abort detection network
is constructed out of a sum of such products which,
together, cover all possible 8-p runs. In this case, if any
8-p run occurs, the network will detect it.

A number of alternative designs are presented below.
In each implementation, every 8-p run between stages 2
and 32 is detected. Each design uses a different safe
approximation to exact abort detection. In Section 4,
we will evaluate the trade-offs between ‘hit rate’ and
latency/area of these designs.

3.2.3 Simple detection networks: A simple sum-
of-products detection network can be used, where each
product contains a short run of level-0 propagate sig-
nals (‘p-signals’).

3-Literal products: Each product contains a run of
three p-signals (in level-0). The network contains four
products; it is given by equation: p7pgp9 + ~ 1 3 ~ 1 4 ~ 1 5 +

runs for stages: 2 - 9, 3 - 10, ... , 7 - 14. If any of these
runs occurs, this product will be 1. The remaining three
products cover the remaining runs, similarly.

4-Literal products: Each product contains a run of
four p-signals; there are five products. The sum-of-
products equation is: P6P7PgP9 + PiiPi2P13P14 +

uct covers fewer 8-p runs than in the preceding 3-literal
product design, so more products are required.

5-Literal products: Each product contains a run of
five p-signals; there are six products. The sum-of-prod-

P19P2OP12 + P25P26P21. Product PIP8P9 covers the 8-P

P16P17P18P19 + P21P22P23P24 + P26P27P28P29. Each prod-

ucts equation is: P5P6P7PXP9 + 1)9PlOPllP12P13 +

PI 3P14P15P16P17 + P17P18Pl9P20P?l + P21P2?P23P24P25 +
p2sp26p27p28p29. Note that in this case, adjacent prod-
ucts overlap; that is, they have a literal in common.

3.2.4 Augmented detection networks:
Alternative networks can be used, where each product
in a simple detection network is augmented with a new

303

literal: k, For example, the 3-literal simple network can

k y p 9p20p2L+ &p2$26p27. Consider the augmented
product, k6p7p8p9. Here, k6 is the (level-0) ‘kill’
condition for stage 6, A6 Bg, where both A and B
input bits are 0. The augmented product uses the
complement of this condition, k6; that is, either p6 or
g6 is 1.

Our motivation is that this augmented product cov-
ers the same 8-p runs covered by the original product,
but is a tighter approximation (i.e. indicates fewer
unnecessary aborts). To see this, consider the 8-p runs
covered by the original product: 2 ~ 9, 3 - 10, ..., 7 ~

14. If 8-p run 2 - 9 occurs, - for example, then p6, p7, p8
and p9 are 1. Therefore k6 is also 1, and the aug-
mented product is 1. A similar result holds for all 8-p
runs except 7 - 14. For this last case, if 8-p run 7 - 14
occurs, then p7, p8 and p9 are 1. If p6 or g6 is 1, the aug-
mented product is 1 (indicating abort). However, if k,
is 1, then even though the 8-p run occurs, it has no
effect, since it cannot propagate from a preceding kill
stage, kg. Therefore, the abort produced by the original
product, p7, PE, p9, is unnecessary. In contrast, the aug-
mented product is 0, and no abort occurs.

condition has a simpler CMOS implementation (2-
input NOR of the data inputs, A, + B,) than p , (2-
input XOR of the data inputs, A , 0 B,).

Each of the above three simple networks can be
transformed into an augmented network using this
method. The simple abort networks with 3-, 4- and 5-
literal products can be notated as (3p, Ok), (4p, 0 4 and
(5p, O k) , respectively. The corresponding augmented
networks are notated as (3g, lk), (4p, lk) and (5p, lk).

input as well. For the original product p7psp9, a 2-bit
kill is given by: k5,6 = k6 + k5p6. The complement is
used to produce an augmented product, ky6p7psp9.
The cCrrespon+ng augmented networks are notated as
(3p, 2 4 , (4p, 2 4 and (5 ~ , 2k).

3.2.5 Timing requirements: As indicated in Sec-
tion 3.1, the abort detection network is allowed to have
hazards. The only requirement is that it produces a sta-
ble and valid result within four gate delays (i.e. when
level-3 computation is completed in the adder data-
path).

Network (3p, 0 4 can easily be implemented in four
gate delays using simple CMOS gates with stack size 2
(three gate delays for the network, one gate delay for
the initial pigik generation). The remaining networks
can be implemented in five equivalent gate delays (in a
couple of cases, using one three-input NOR each).

Because this network is critical, we assume that the
designer can optimise its performance to meet this tim-
ing requirement. This assumption is reasonable consid-
ering that transistor sizing andlor dynamic logic can be
aggressively used to speed up this network, regardless
of any general optimisations used on the larger adder.

3.3 Sum generation

network and abort detection network, and their
interaction. The abort detection network will allow
early completion in many cases, and will always abort
if late completion is required. However, the sum-
generation in Figs. 3 and 5 does not yet produce

be augmented to: GP7YSP9 + GP13P14P15 +

A final motivation for this approach is that each k,

Each product can also be augmented with a 2-bit k

‘\ We have described the design of the CO

304

correct results. In partikcular8 in level-6, th
s, is computed as the XOR of propagate
from level-0) and the final generate bit,
G,-l of the preceding stage, taken from

pletion, we want the carry-out G,, of the

signals are final. Therefore, sum n
needs a bypass, so it can receive both level-3 and level-
5 signals.

PI*--&* sumi

stage taken from level-3, since 3

CLate A--
Fig. 5 Original sum generatxon
pi* IS from level-0
Clate i s G, I from level-5

Fig.6 Modified sum generation
pr* is from level-0
Clare IS G, I from level-5
Ceauly is G, from level-3

A corrected gate-level sum generator is shown in
Fig. 6. The level-3 Gf-l signal is labelled Ceurly, and
the level-5 G,-l signa ed Clute. For now,
assume that the late-

d by the abort detection
network. The abort signal is broadcast to every sum
module. This approach requires excessive delay, but
will be corrected below.

In each case, a c sum is produced. Suppose
completion is early a te-en is unasserted (/lute-en =
1). The network corr computes the XOR ofp , and
Ceavly. Since Ceurly es through only one gate, an
early sum is generated in a total of 4 + 1 = 5 gate
delays.

en = 0). In this case,
occur. Once the final Clate is produ e cases are
possible: (i) Ceuvly and Clute are 0,
Clate is 1, and (ii) Cearly and Clute are both 1. The
remaining case, Ceuvly is 1 and Clute is 0, is impossi-
ble, since Clate is a positive unate function of Ceurly.
In each case, the correct result is computed. In case (i),
AOI-gate produces p,, and
Clute. In case (ii), the AOI-
= z0 Ceurly = p @ Clute.
produces p, and, again, sum, = p z
Therefore, the result is alway functionally equivalent to
the original sum in Fig. 5. Since Clute passes through
three gates, a late sum is generated in a total of 6 + 3 =

with the above approach is that it
requires the critical /late-en signal to reach all 32 sum
modules within three gate delays, while the abort detec-
tion network itself may require four gate delays to gen-
erate it. Instead of broadcasting the inverted ‘abort’
signal as a late-enable for each sum bit, we note that
the abort detection network is a sum-of-products,
where each product covers, or detects, a set of 8-p runs.
We now show that these products in
used as /lute-en signals.

Alternatively, suppose

IEE Proe -Cornput Dzgzt Tech I Vol 143, No 5, Septembev 1996

As an example, in network (3p, Ok), product e =
p19~p20p21 detects a set of 8-p runs, one of which is 14-
21. In this case, the run might cause a late carry-out of
stage 21. Therefore, e itself can be used (actually, the
corresponding NAND C) as /lute-en to stage 22. If the
8-p run, 14-21, does not occur, no late carry-out from
stage 21 can occur, by Condition 3.1. That is, Ceurly =
Clute in the sum module of stage 22. In this case, llute-
en is unasserted (i.e., l), and the sum is correctly gener-
ated: sum22 = p22 0 Cearly. Alternatively, if the 8-p
run, 1421, occurs, a late carry-out is possible. In this
case, C is asserted (i.e., O), as is ahovt, and the sum is
correctly generated, as before, sum22 = p22 0 Clate. In
each case, a correct result is produced.

Intuitively, for each sum module which changes value
late, due to a change from Ceavly to Clute, the corre-
sponding product, C , which covers this case will be
asserted. A change from Ceurly to Clale cannot occur
without the corresponding 8-p run adjacent to it (in the
above example, from 14 to 21 enabling a change in 22).

Product c may be assumed to have two gate delays in
an optimised abort implementation, hence it will pro-
duce a valid and stable result after three gate delays
(one delay is for level-0). Since each individual /lute-en
is produced within three gate delays, the given timing
requirements are satisfied. As a result, an early sum
will be valid and stable after five gate delays, and a late
sum will be valid and stable after nine gate delays.

Note that the fanout load of C, in producing /lute-en
signals, depends on the abort detection network. For
network (3p, Ok), each product covers four 8-p runs, so
the fanout load is four /late-en signals. Either C from
the abort detection network can directly drive as /late-
en in Fig. 6, or the logic for 7 can be replicated as
needed to reduce the load. We are currently exploring
better techniques to implement /lute-en and the modi-
fied sum generation circuit. Preliminary work suggests
that alternative designs may reduce worst-case sum
generation to only seven gate delays [Note 31.

4 Results

We now analyse the performance and operation of an
asychronous BLC adder designed for speculative com-
pletion. In the analysis below, we assume that all gate
delays are equal. We also assume that the abort detec-
tion network can be implemented to meet timing con-
straints, so early completion takes five gate delays and
late completion takes nine gate delays. In addition, a
random input distribution is assumed.

Table 1 lists our initial results, on the nine abort
detection networks described in Section 3.2; other net-
works can also be considered. We compare against a
synchronous implementation, which is assumed to have
a latency of seven gate delays. The performance
improvement ranges from 5 to 30% over a comparable
synchronous implementation. Interestingly, for the best
abort detection network, (5p, 2k) , early completion
occurs for over 90% of inputs.

Several of the table entries have asterisks (*). In these
cases, products in the abort detection network overlap
(see Section 3.2). As a result, these products are not
independent, and probabilistic analysis of ‘early com-
pletion (oh)’ is more subtle. Details of our analysis are
presented in the Appendix.
Note 3: Personal communication with Prof. Charles Zukowski (Columbia
University)

IEE Pvoc.-Compur. Digit. Tech.. Vol. I43, No. 5, Sepccmher 1996

Table 1: Performance and area results

Abort Abort Early Average Performance
completion adder improvement detection detection

network area latency
(no. gates) (%) (no. lits.) (%)

(3p, OF) 12

(4p, OF) 20

(5p,Ok)* 30

(3p, Ik) 16

(4p, IC) 25

(5p, IF)* 36

(3p, 2k) 24

(5p, 2k)* 48

(4p, 2k)* 35

59

72

83

67

79

87

72

84

90

6.64

6.12

5.68

6.32

5.84

5.52

6.12

5.65

5.39

5

14

23

11

20

27

14

24

30

5 Conclusions

This paper has introduced a general method for the
design of asynchronous datapath components. The
method has many advantages of a bundled data
approach, but also allows early completion. The
method was applied to a high-performance parallel
BLC adder design. Through careful gate-level analysis,
we estimate performance improvements up to 30% over
a comparable synchronous implementation.

An important contribution of this work is to
demonstrate a bundled-data design method which can
take advantage of typical-case delays, and thereby
outperform one of the most efficient synchronous
adder designs.

Critical to the success of our method is the ability to
implement a fast abort detection network, which meets
the given timing requirements. We intend to simulate
and layout our design, so that the wiring and fanout
capacitance can be considered more accurately. We will
also explore different designs for modified sum
generation. In addition, we intend to apply our method
to other asynchronous adders, such as 4-bit carry-
lookahead adders, as well as other datapath
components such as multipliers and comparators.

6 Acknowledgments

The authors wish to thank Prof. Al Davis of the Uni-
versity of Utah, and Prof. Charles Zukowski and F.-C.
Cheng of Columbia University, for helpful discussions.
This work was supported by an NSF CAREER award
MIP-9501880 and by a grant from IBM Corporation.

7 References

1 BIRTWISTLE, G., and DAVIS, A., (Eds.): ‘Asynchronous dig-
ital circuit design’ (Springer-Verlag, London, 1995)

2 MARTIN, A.J., BURNS, S.M., LEE, T.K., BORKQVIC, D.,
and HAZEWINDUS, P.J.: ‘The design of an asynchronous
microprocessor’. Proceedings of Conference on Advanced research
VLSI, 1991
FURBER. S.B., DAY, P., GARSIDE, J.D., PAVER, N.C., and
WOODS, J.V.: ‘A micropipelined ARM’. Proceedings of VLSZ
93, 1993, pp. 5.4.1-5.4.10

4 BRUNVAND, E.: ‘The NSR processor’. Proceedings of 26th
HICSS, 1993, Vol. 1. pp. 428-435

5 SPROULL. R.F., SUTHERLAND, I.E., and MOLNAR, C.E.:
‘The counterflow pipeline processor architecture’, Des. Test Com-
put . , 1994, 11, (3), pp. 48-59

6 NANYA, T., UENO, Y., KAGOTANI, H., KUWAKO, M.,
and TAKAMURA, A.: ‘TITAC: design of a guasi-delay-insensi-
tive microprocessor’, Des. Test Comput., 1994, 11, (2), pp. 5 0 4 3

3

305

DEAN, M.E.: ‘STRIP: a self-timed RISC processor architecture’.
PhD thesis, Stanford University, 1992
VAN BERKEL, K., BURGESS, R., KESSELS, J.,
PEETERS, A., RONCKEN, M., and SCHALIJ, F.: ‘Asynchro-
nous circuits for low power: a DCC error corrector’, Des. Test
Comput., 1994, 11, (2), pp. 2-32
SUTHERLAND, I.E.: ‘Micropipelines’, Commun. ACM, 1989,
32, pp. 720-738

10 MARTIN, A.J.: ‘Asynchronous datapaths and the design of an
asynchronous adder’, Form. Methods Syst. Des., 1992, 1, (l), pp.
119-137

11 HWANG, K.: ‘Computer arithmetic: principles, architecture and
design’ (Wiley, New York, 1979)

12 DEAN. M.E.. DILL. D.L.. and HOROWITZ. M.: ‘Self-timed
logic using current-sensing ’completion detection (CSCD)’. Pro-
ceedings of ICCD, 1991

13 BRENT, R.P., and KUNG, H.T.: ‘A regular lavout for mrallel
adders’, IEEE Trans Comput , 1982, C-33, pp. 260-264

14 SUZUKI, K., YAMASHINA, M., and NAKAYAMA, T.: ‘A
500 MHz, 32 bit, 0.4 pm CMOS RISC processor’, IEEE JSSC,
1994, Vol 29, pp 1464-1473

A

8 Appendix: Probability analysis

This section gives details of our probabilistic analysis
of early completion, which was used to generate results
in Table 1.

Inputs are assumed to be randomly distributed. An
abort detection network contains products Pi, 1 5 i 5 n
where the Pis are identical functions of different bits.
There are two cases: (i) products P, in the abort detec-
tion network are all disjoint (i.e. have no shared bits),
and (ii) some products Pi overlap (i.e. share bits).

8. I
In this case, the probability that Pi = 0 is independent
of the probability that Pj = 0 for all i # j . Therefore,
the probability that every product in the abort network
is 0 is

Case I: Nonoverlapped P p

= Prob(E) ’ P r o b (5) . . . Prob(P,) (1)
= Prob(P,)” = (1 - Prob(P2))”

where Prob(P,) is the probability that an arbitrary
product Pi is 1 (all Pis have identical probability).
ProbOjf is the probability of no abort detection, hence
of early completion.

As an example, the abort detection network (4p, Ok‘)
has n = 5 nonoverlapped products, each covering a 4-p
run. Each p r propagate bit in product Pi has a 0.5 prob-
ability of being 1 (since pl = al 0 bl for corresponding
data inputs al and bl), so Prob(PJ = (0.5)4 = 0.125.
Therefore, the probability of early completion is:
Probog = (1 - 0.125)5 = 0.7242.

8.2 Case II: Overlapped Pis
In this case, products in the abort detection network
may overlap, i.e. share bits. For example, in network
(5p, O k) , product PI = p5p6p7psp9 and product P, =
p9!1@llp1$13 overlap in bit 9. For simplicity, we
assume that only adjacent products overline may over-
lap (i.e., Pi and Pi+& this assumption holds for all
overlapped cases in Table 1.

If Koducts Pi a& Pi+l overlap, probabilities
Puob(Pi) a&Prob(Pi+l) are not independent. In this
case, Prob(Pi so the
results of case I do not hold.

We first introduce notation to partition each Pi into
overlapped and nonoverlapped segments: Pl,i+l, PIi, and
Pi,i-l. This notation is illustrated on a fragment of net-
work (5p, O k) , showing bits covered by products P I , P,
and P3:

Pi+,) z Prob(Pi) . Pmb(

306

.18 17 16 15 14a-48 7 6 5 4 3 2 I
p 2 , 3 Pi p2,l -

pz
Prob(P,) is given by the product of the independent
probabilities of its three segments:

We distinguish segments Pc-l,l and Pz,l-l, although they
cover the same bits. Segment P7-,,, corresponds to

Prob(P,) = Prob(Pz,,+l) . P?-ob(P,’) ‘ Prob(Pz,,-l) (2)

” ...
product Pj-l, and segment -Pi,
Pi [Note 41.

corresponds to product

An outline of our approach is: first, compute the
probability, Puob,,, that at least 1 product, Pi in the
network is 1 (i.e., abort); secondly, use this result to
compute Probog = 1 - Prob,,, the probability that no
product is one in the network (i.e., early completion).

(i) Computing Prob,,: To compute Prob,,,, we build
up disjoint cases. First, we introduce the notation: Pi/-
= 1 if product P, = 1 and no other Pi = 1 for j < i.
That is, Pi/. = 1 if Pi is the rightmost product (i.e., low-
est index) that is 1. At most one condition, P,, holds
in the abort network at any time, since at most one Pi
is the rightmost product which is 1. Therefore, the
probability Pvob,, that some Pi = 1 can be broken into
a sum of disjoint cases
Prob,, = Prob(P1 + P2 + . . . + P,)

= Prob(P1/- + P2,- + . . . + l‘,/-)
= Prob(P1,-) + Prob(Pz/_) + ’ ’ ’ + Prob(P,+)

(3)

Prob(P1,J = Prob(P1) (4)

These probabilities, Prob(P,,-), can be computed recur-
sively. For the base case

since, whenever PI is 1, it is also the rightmost product
which is 1.

Assume we have Pvob(Pil-) for all i 5 n, for some n.
We now derive Prob(P,+llJ, which is the probability
that P,,+l is the rightmost product which is 1. We first
define a near-solution, X , and then adjust it

Xis the probability that product P,,+l is 1 and all lower
Pi are 0, 1 5 i 5 n - 1 (ignoring i = n). These Pis are not
adjacent to P,,+l (only P,, and Pn+2 are adjacent); hence,
by assumption, they do not overlap P,,+l. The above
equation is correct, since Prob(P,,+,) is independent of
the probability in the second clause. Therefore
X = Prob(P,+1) . (1 - Prob(P1 + P . + + 8 + P,-l))

-- - x = Prob(P,+J * Prob(Pn-l . P,-Z ’ * ‘ PI) (5)

= Prob(Pn+l) . (1 -Prob(Pl/- + P./- + . . . +P,-l/-))
= Prob(P,+1)
.(1-Prob(P1,-)-Prob(P2,-)- ’ . . -Prob(P,-l,_))

/ n-1 \

(6)
Note 4: This distinction is important only for augmented detection net-
works. For example, in network (5p, 18, product PI = k, psp6p,p8p9 and
product Pz = Z & ~ ~ p ~ ~ ~ i p ~ 2 p ~ ~ overlap in bits 8 and 9. Similarly, P2 and P3,
overlap in bits 12 and 13. P, is broken into three segments: = %p5, PI
= ~ ~ p , , and = p8p9; and P2 is broken into three segments: P2, = G p s ,
P2= p l o p I I , and P2,3 = p12pI3. In this case, the probabilities of and P2,1
differ, since P, contains only p bits (psp9), while P2 contains both p and
E bits (k,,p9: h b (P 1 , ,) = 0.75 . 0.50 = 0.375, and >rob(P,,,) = 0.5 . 0.50
= 0.25.

IEE Proc.-Comput. Digzt Tech., Vol. 143, No. 5, September 1996

To compute Prob(P,+l/-), X must be modified to
account for the overlapping product P,. In particular,
X includes the case where the overlapped product, P,,
is 1. In this case, product P, is 1 and the nonover-
lapped segments, Pn+l,n+2 and PA+, of P,+l arc also 1.
After removing this case, the result is the probability
that P,+l is the rightmost product which is 1
Prob(Pn+I/-)
= x - Prob(Pn+ll,,+z) . Prob(PA+,) * Prob(P+)

n- 1

(7)
This result uses eqn. 2 to simplify the second line
above. Prob(P,+,) is the probability that product P,+l
is 1, and Prob(P,+,,,) is the probability that the 'lower
overlap' segment P,+l,, of product P,+' is 1. Since each
product is an identical function, we can simplify,
arbitrarily replacing Prob(P,+J by the constant kl =
Prob(Pj) and Prob(P,,,+J by the constant k2
Prob(Pjj-!), for some arbitrary j (e.g., j = 1). The final
equation is

Prob(Pn/ -)
k2

Prob(Pn+l/-) = k1.

(8)
Eqn. 8 gives Prob(P,+l,-) as a recurrence relation,
defined in terms of n previously computed probabili-
ties, Prob(P+) (1 s i s n). An alternative, but equiva-
lent, recurrence relation defines P ~ O ~ (P , + ~ / _) in terms of

only two previously-computed probabilities, Prob(P,-)
and Prob(P,-l/-) (for n t 3)

This equation is derived from eqn. 8 by computing
Prob(P,+I/_) and Prob(P,_), subtracting Prob(P,+l/_) ~

Prob(P,-), and simplifying.
As an example, network (5p, 04 has n = 6 products,

each with five propagate inputs: P1 =,p5p6p?p8p9r P2 =
p9p10p1~12p13, etc. Products overlap in 1-bit segments
(e.g. p9). The probability Prob(Pi) that product Pi = 1 is
(0.5)5 = 0.03125. Since the overlap segment has 1 bit,
the probability Prob(P,,,) that the ith segment is 1 is
(0.5)' = 0.5. By eqn. 5, Prob(P1/-) = Prob(Pl) =
0.03125 is the probability that Pi is the rightmost prod-
uct which is 1. Using eqn. 8

= 0.03125. (1 - y) = 0.029297

1 - 0.3125 - ___
0.5

= 0.028442
Once the remaining probabilities are computed, they
are added to compute Prob,, (eqn. 3), which is the
probability of an abort.

(ii) Computing Prob, Once Prob,, is computed, the
computation of ProbOff is trivial: it is Prob,# = 1 -
Prob,,. Prob,ff is the probability of no abort, and hence
the probability of early completion.

IEE Proc.-Comput. Digit. Tech., Vol. 143, No. 5, September 1996 307

