
Symbolic Hazard-Free Minimization and Encoding of Asynchronous
Finite State Machines

�

Robert M. Fuhrer Bill Lin Steven M. Nowick
Dept. of Computer Science IMEC Laboratory Dept. of Computer Science
Columbia University Kapeldreef 75 Columbia University
New York, NY 10027 B-3001 Leuven, Belgium New York, NY 10027

Abstract — This paper presents an automated method for the
synthesis of multiple-input-change (MIC) asynchronous state ma-
chines. Asynchronous state machine design is subtle since, unlike
synchronous synthesis, logic must be implemented without haz-
ards, and state codes must be chosen carefully to avoid critical
races. We formulate and solve an optimal hazard-free and critical
race-free encoding problem for a class of MIC asynchronous state
machines called burst-mode. Analogous to a paradigm success-
fully used for the optimal encoding of synchronous machines, the
problem is formulated as an input encoding problem. Implementa-
tions are targeted to sum-of-product realizations. We believe this
is the first general method for the optimal encoding of hazard-free
MIC asynchronous state machines under a generalized fundamen-
tal mode of operation. Results indicate that improved solutions
are produced, ranging up to 17% improvement.

1 INTRODUCTION

There has been a renewed interest in asynchronous design,because
of their potential for high-performance, modularity and avoidance
of clock skew. This paper focuses on one class of asynchronous
designs: asynchronous state machines.

Several methods have recently been introduced for the synthe-
sis of asynchronous state machines [9, 17, 8]. These methods
have been automated and produce low-latency machines which
are guaranteed hazard-free at the gate-level. The design tools
have benefited from a number of hazard-free optimization algo-
rithms: exact two-level logic minimization [10], multi-level logic
optimization [15, 3, 4], and technology mapping [13]. However,
none of these methods includes algorithms for optimal state as-
signment. The contribution of this paper is a general method for
the optimal state assignment of asynchronous state machines.

Optimal state assignment of synchronous machines has been
an active area of research. De Micheli [7] formulated and solved
an input encoding problem, which approximates an optimal state
assignment for PLA-based state machines. Other formulations as
an output encoding or input/output encoding problem have also
been developed [6, 16, 12, 1].

Synchronous state assignment methods are inadequate for asyn-
chronous designs, since the resulting machines may have critical
races and logic hazards. In this paper, we consider two related
problems in the synthesis of asynchronous state machines: critical
race-free state encoding and hazard-free logic minimization. In
existing synthesis trajectories [17, 8], these problems are solved
separately, where state assignment is typically performed with-
out regard to the optimality of the eventual logic implementation,

�
Supported in part by NSF under Grant no. MIP-9308810, by a grant

from the IBM Corporation, and by the E.C. under Grant no. ESPRIT-6143
(EXACT).

which may lead to unnecessarily expensive solutions.

Recently, we introduced algorithms to solve two constrained
optimal state assignment problems for asynchronous state ma-
chines [2]. The first solved an optimal critical race-free assign-
ment problem, but ignored hazard issues. The second solved a
combined hazard-free/critical race-free assignment problem lim-
ited to single-input change (SIC) asynchronous state machines. In
this paper, we generalize this work, and solve a combined hazard-
free/critical race-free assignment problem for a class of multiple-
input change (MIC) state machines, called burst-mode [9, 17, 8].

Analogous to a paradigm successfully used for the optimal
state assignment of synchronous machines, such as KISS [7], the
problem is formulated as an input encoding problem. In partic-
ular, we solve the combined problem by formulating a symbolic
hazard-free minimization problem for asynchronous synthesis.
In this formulation, a symbolic logic specification, where states
are represented as a multiple-valued variable, is first minimized
to obtain a minimal multi-valued two-level representation. As in
KISS, we assume each output and symbolic next-state is treated
as a binary output function, where the co-domain has only the
values 0 and 1. Unlike KISS, however, we introduce an exact
hazard-free multi-valued logic minimization procedure.

After symbolic minimization, a constrained encoding step is
performed. Encoding constraints in the form of dichotomies [14,
12] are introduced, which must be satisfied in the context of MIC
asynchronous state machines. These constraints are related to
the critical race-free constraints introduced by Tracey [14] and
the face-embedding constraints introduced by De Micheli [7], but
subsume both.

Finally, encoding constraints are solved using exact and
heuristic techniques (our previous work used only exact tech-
niques [2]). The exact procedure makes use of an existing tool, di-
chot [12], and the heuristic procedure uses the simulated annealing
mode of nova [16]. For the heuristic problem, we propose a novel
partitioning of constraints into compulsory and non-compulsory
constraints; a weighted annealing algorithm is used to ensure that
compulsory constraints are solved.

A key contribution of our method is that it produces exactly
minimal hazard-free (two-level) output logic, over all possible
critical race-free assignments. This result is significant since the
latency of an asynchronous machine is determined by its output
logic: there are no clock or latches. For next-state logic, our
approach leads only to an approximate solution. However, in
practice, high quality solutions are produced for next-state logic
as well, ranging up to 17% overall improvement. We believe
this is the first general method for the optimal state assignment of
hazard-free MIC asynchronous state machines.

2 BACKGROUND

2.1 Optimal State Assignment for Synchronous Machines
In KISS [7], De Micheli formulated the optimal state assignment
problem as an input encoding problem. The goal is to find a binary
encoding of symbolic inputs to ensure an optimal sum-of-products
implementation. The algorithm has three steps:

1. Generate a minimal symbolic cover
2. Generate a set of encoding constraints
3. Solve these constraints to produce a state assignment

The first step is symbolic logic minimization. The next-state
function is effectively treated as a set of functions, one for each
possible next-state value, since no information is yet available as
to the relation of the various next-state values to one another. As
a result, the symbolic minimization problem can be formulated as
a multi-output multiple-valued-input minimization problem and
solved using espresso-mv [11]. A minimal symbolic cover is
formed, consisting of a set of symbolic implicants. Each implicant
has four parts: binary inputs, symbolic present state, symbolic
next state, and binary outputs. Present and next state can be
represented using either symbolic or positional-cube notation.

A key goal in this approach is to ensure the correctness of
the symbolic cover after it is instantiated with binary state codes.
To understand the problem, consider the state table of Figure 1,
having 2 inputs, 4 symbolic states, and 1 output, and the given
2-variable state assignment. A minimal symbolic cover for the
output consists of 2 symbolic implicants: � 1 � <0* � D � > and
� 2 � <*1 � B,C � >. 1 Implicant � 1 contains a single symbolic
state, � , and therefore can be instantiated as binary product
<0* 11>. However, implicant � 2 contains a pair of symbolic
states, � and � , forming a state group. The smallest single bi-
nary cube, or group face, which contains the given codes for �
and � is the supercube of the two codes: 	
	 . In this case, the
resulting binary product, <*1 **>, is invalid, since it also con-
tains an OFF-set minterm <11 00> corresponding to symbolic
minterm <11 � A � >.

inputs
00 01 11 10 state codes

A A,0 A,0 D,0 A,0 00
B B,0 B,1 B,1 A,0 01
C A,0 B,1 C,1 C,0 10
D D,1 D,1 D,0 C,0 11

Figure 1: Example state table with state assignment

To avoid this problem, in the second step, face embedding con-
straints are imposed:

For each symbolic implicant � , with state group �
� , the corre-
sponding group face must not intersect the code of any state � not
in � � . [7]

The above encoding constraints can be described using di-
chotomies [1, 14]. Given a set of states � , a dichotomy is a
bipartition ��������� of a subset � of states of � . In a given state as-
signment, a binary state variable �
� covers the dichotomy ���������
if � � � 0 for every state in � and � � � 1 for every state in �

1For simplicity, we consider only single-output implicants in this ex-
ample, though in general the method produces multiple-output implicants.

(or vice-versa) [15, 14]. For the given problem, a set of n-to-1
dichotomies is formed, i.e., between each state group �
� (contain-
ing � states) and each single disjoint state ���� ��� . In the above
example, dichotomies � ��� ; !"� and � ��� ; �#� are generated to
prevent invalid state assignments with respect to the output imple-
mentation. Exact dichotomy solvers have been developed which
produce minimum-length assignments [1, 12].

The third step is to find a state assignment satisfying these
encoding constraints. A final step, after state assignment, is
to produce a binary logic implementation. Typically, espresso
or espresso-exact are used, since the resulting cover may have
smaller cardinality than the symbolic cover (see [7]).

2.2 Burst-Mode Asynchronous State Machines
In this subsection, we give an overview of burst-mode machines,
a class of multiple-input change asynchronous state machines.

Burst-Mode Specifications
An asynchronous state machine allowing multiple-input changes
can be specified by a form of state diagram, called a burst-mode
specification [9] (see example in Figure 2). A burst-mode spec-
ification contains a finite number of states, a number of labelled
arcs connecting pairs of states, and a distinguished start state (ini-
tial wire values are either specified or assumed 0). Burst-mode
specifications, and variants, have been used for several recent
asynchronous design methods [9, 17, 8].Arcs are labelled with
possible transitions, taking the system from one state to another.
Each transition consists of a non-empty set of input changes (an
input burst) and a set of output changes (an output burst). Note
that every input burst must be non-empty; if no inputs change, the
system is stable.

In a given state, when all the inputs in some input burst have
changed value, the system generates the corresponding output
burst and moves to a new state. Inputs in a given input burst
may arrive in any order and at arbitrary times. However, once an
input burst is complete, no further input changes may occur until
the resulting output changes have occurred (see next subsection
for details). There are two further restrictions on specifications.
First, no input burst in a given state can be a subset of another,
since otherwise the behavior may be ambiguous. This restriction
is called the maximal set property. Second, a given state is always
entered with the same set of input values; that is, each state has a
unique entry point.

Target Implementation
A burst-mode specification can be realized as a Huffman machine,
as shown in Figure 3. The machine consists of combinational logic
with primary inputs, primary outputs and fed-back state variables
[15]. State is stored on the feedback loops, which may have
attached delay elements.

The machine behaves as follows. Initially, the machine is
stable in some state. Inputs in a specified input burst may then
change value in any order and at any time. Throughout this input
burst, the machine outputs and state remain unchanged. When the
input burst is complete, the outputs change value monotonically
as specified. A state change may also occur concurrently with the
output change. In this case, the machine will be driven to a new
stable state. Only a single feedback cycle occurs. Alternatively,
no state change may occur. In either case, no further inputs
may arrive until the machine is stable. That is, the machine
operates in fundamental mode [15]. When the machine is stable,
the cycle is complete and the machine is ready to receive new
inputs. Throughout the entire cycle, outputs and state variables
must be glitch-free.

A
$

B

C
%

D

E

F

Initial values:
&
 abc = 000
 yz = 01

c+ /
 z−

a+ c− /
 z+

c+ /
 y+

a− /
 y−

b− c+ /
'
 z+

a+ b+ /
 y+ z−

c− /
 −−

Figure 2: Example burst-mode specification.

Combinational
Logic

i1

i2

o1

o2

s1

s2

Delay
Elements

Figure 3: Block diagram of Huffman machine.

3 PROBLEM STATEMENT

We can now define the synthesis problem:

Problem: Optimal Hazard-Free/Critical Race-Free As-
signment for Burst-Mode (MIC) Asynchronous State
Machines. Find a critical race-free assignment for a burst-
mode flow table having a hazard-free sum-of-products im-
plementation of minimal cost.

Our synthesis method follows the 3 basic steps of the KISS
algorithm, but with modifications. In the first step, it formulates
a hazard-free symbolic covering problem. In the second step,
modified encoding constraints are generated. These constraints
are not the union of the KISS and Tracey constraints, but sub-
sume both. After solving these encoding constraints in step 3, a
binary hazard-free minimizer is used to find a hazard-free logic
implementation.

4 MULTIPLE-VALUED FUNCTIONS AND HAZARDS

For the following, we assume basic familiarity with the terminol-
ogy of multi-valued logic minimization (see [11]).

4.1 Circuit Model
This paper considers combinational circuits having arbitrary finite
gate and wire delays (unbounded wire delay model [10]).A pure
delay model is assumed (see [15]).

4.2 Multiple-Valued Multiple-Input Changes
In this section, we generalize the notions of multiple-input changes
and transition cubes from the binary domain [10] to the multiple-
valued domain.

Definition 4.1 (Multiple-valued transition cube) A multiple-
valued transition cube is a cube with a start point and an end
point. Let ! and � be two minterms in a multiple-valued space � .
The multiple-valued transition cube, denoted as (!)���+* , from !
to � has start point ! and end point � and contains all minterms
that can be reached during a transition from ! to � . More for-
mally, if ! and � are described by products, with i-th literals

!),.-0/� and �1,.20/� , respectively, then the i-th literal for the product

of � � (!����+* is the literal �+,.- /�3 ,.2 /� .

Definition 4.2 (Multiple-valued open transition cube) The
(multiple-valued) open transition cube (!������ from ! to �
is defined as: (!����+*546�7�8� .

Definition 4.3 (Multiple-valued input transition) A (multiple-
valued) input transition or (multiple-valued) multiple-input
change from input state ! to � is described by transition cube
(!)���+* .
An intermediate state 9 � (!)�:�+* is potentially reachable during
the input transition from ! to � if for all variables 9 � , the corre-
sponding literal 9#� is either equal to !;� or �<� . A multiple-input
change specifies what variables are permitted to change value and
what the corresponding starting and ending values are. Input vari-
ables are assumed to change simultaneously. (Equivalently, since
inputs may be skewed arbitrarily by wire delays, inputs can be
assumed to change monotonically in any order and at any time.)
Once a multiple-input change occurs, no further input changes
may occur until the circuit has stabilized. An input transition
occurs during a transition interval, =�>�?@=8?@=�A , where inputs
change at time =:> and the circuit returns to a steady state at time
= A .

Definition 4.4 (Static and dynamic transitions) An input tran-
sition from input state ! to � for a multiple-valued function B is
a static transition if BC�D!;� � BC� ��� ; it is a dynamic transition if
BC�D!;�E�� BC� �)� .
In this paper, we consider only static and dynamic transitions
where B is fully defined; that is, for every 9 � (!)�F�"* , BC�D9G� �
� 0 � 1 � .

4.3 Multiple-Valued Function Hazards
A function B which does not change monotonically during an
input transition is said to have a function hazard in the transition.

Definition 4.5 (Static function hazard) A multiple-valued func-
tion B contains a static function hazard for the input transition
from ! to � if and only if: (1) BH�D!"� � BC� �;� , and (2) there exists
some input state � � (!)���I* such that BC�D!;�E�� BC� �)� .
Definition 4.6 (Dynamic function hazard) A multiple-valued
function B contains a dynamic function hazard for the input tran-
sition from ! to � if and only if: (1) BC�D!"�E�� BH� �#� ; and (2) there
exist a pair of input states, � and � , such that (a) � � (!����)*
and � � (J�8�:�K* , and (b) BC� ��� � BC� �#� and BC�D!;� � BC� �;� .

If a transition has a function hazard, no multiple-valued imple-
mentation of the function is guaranteed to avoid a glitch during
the transition, assuming arbitrary gate and wire delays. Therefore,
we consider only transitions which are free of function hazards
(cf. [10]).

4.4 Multiple-Valued Logic Hazards
If B is free of function hazards for a transition from input !
to � , an implementation may still have hazards due to possi-
ble delays in the logic realization. Here, we extend notions of
static and dynamic logic hazards to multiple-valued functions.
To do so, we will provide these definitions in terms of an ab-
stract multiple-valued sum-of-products implementation. That
is, each multiple-valued product term in the multiple-valued cover
is implemented as a single multiple-valued AND gate. The circuit
output is implemented as a Boolean OR gate that combines the
AND gates.

Definition 4.7 (Static (Dynamic) logic hazard) A
multiple-valued cover circuit implementing multiple-valued func-
tion B contains a static (dynamic) logic hazard for the input
transition from minterm ! to minterm � if and only if: (1)
BC�D!;� � BC� �)� (BC�D!;�G�� BC� �)�), and (2) for some assignment
of delays, the circuit’s output is not monotonic during the transi-
tion interval.

That is, a static logic hazard occurs if BH�D!"� � BC� �)� � 1 (0), but
the circuit’s output makes an unexpected 1 L 0 L 1 (0 L 1 L
0) transition. A dynamic logic hazard occurs if BC�D!;� � 1 and
BC� �)� � 0 (BC�D!;� � 0 and BH� ��� � 1), but the circuit’s output
makes an unexpected 1 L 0 L 1 L 0 (0 L 1 L 0 L 1)
transition.

4.5 Problem Abstraction
The hazard-free multiple-valued minimization problem can now
be stated as follows. Given a multiple-valued function B , and
a set, � , of specified function-hazard-free multiple-valued (static
and dynamic) input transitions of B , find a minimal-cost multiple-
valued cover of B that is free of logic hazards for every specified
input transition = � � .

5 SYMBOLIC HAZARD-FREE MINIMIZATION

In this section, we present an exact minimization algorithm for
producing a hazard-free multiple-valued cover. While the stan-
dard multiple-valued minimization problem without considera-
tions for hazards has been adequately addressed before [11], the
corresponding problem in the context of asynchronous synthe-
sis and hazard-free synthesis has not yet been addressed. We
first state the conditions that the cover must satisfy in order to
ensure hazard-freeness. These conditions will lead to a notion
of multiple-valued dynamic-hazard-free (DHF-) prime impli-
cants. Using these prime implicants, a constrained covering step
must be solved to select a hazard-free cover. These issues are
addressed in the sequel.

5.1 Conditions for a Hazard-Free Transition
We now describe conditions to ensure that a sum-of-products
implementation is hazard-free for a given input transition. Assume
that (!)�:�"* is the transition cube corresponding to a function-
hazard-free transition from input state ! to � for a multi-valued
combinational function B . In the following discussion, we assume
that � is any multi-valued cover of B . The following lemmas
present necessary and sufficient conditions to ensure that a multi-
valued AND-OR implementation of B has no logic hazards for
the given transition. The following results are extensions from
the binary case [10].

Lemma 5.1 If B has a 0 L 0 transition in cube (!)�:�+* , then the
implementation is free of logic hazards for the input change from
! to � .

Lemma 5.2 If B has a 1 L 1 transition in cube (!����"* , then the
implementation is free of logic hazards for the input change from
! to � if and only if (!����+* is contained in some cube of cover � .

The conditions for the 0 L 1 and 1 L 0 cases are symmetric.
Without loss of generality, we consider only a dynamic 1 L 0
transition, where B (A)=1 and B (B)=0. (A 0 L 1 transition from
! to � has the same hazards as a 1 L 0 transition from � to ! .)

Lemma 5.3 If B has a 1 L 0 transition in cube (!����"* , then the
implementation is free of logic hazards for the input change from
! to � if and only if every cube M � � intersecting (!)�:�"* also
contains ! .

Lemma 5.2 requires that in a 1 L 1 transition, some product
holds its value at 1 throughout the transition. Lemma 5.3 ensures
that no product will glitch in the middle of a 1 L 0 transition:
all products change value monotonically during the transition. In
each case, the implementation will be free of hazards for the given
transition.

An immediate consequence of Lemma 5.3 is that, if a dynamic
transition is free of logic hazards, then every static sub-transition
will be free of logic hazards as well:

Lemma 5.4 If B has a 1 L 0 transition from input state ! to �
which is hazard-free in the implementation, then, for every input
state 9 � (!)�:��� where BC�D9G� � 1, the transition subcube (!���9�*
is contained in some cube of cover � .

Lemma 5.5 If B has a 1 L 0 transition from input state ! to �
which is hazard-free in the implementation, then for every input
state 9 � (!������ where BC�D9G� � 1, the static 1 L 1 transition
from input state ! to 9 is free of logic hazards.

Lemmas 5.2 and 5.4 are used to define the covering requirement
for a hazard-free transition. The cube (!)�:�+* in Lemma 5.2 and the
maximal subcubes (!)�:9�* in Lemma 5.4 are called required cubes.
These cubes define the ON-set of the function in a transition. Each
required cube must be contained in some cube of cover � to ensure
a hazard-free implementation. This property can be more formally
stated as follows.

Definition 5.1 (Required cube) Given a multiple-valued func-
tion B , and a set, � , of specified function-hazard-free multiple-
valued input transitions of B , every cube (!)���+* � � correspond-
ing to a static 1 L 1 transition, and every maximal subcube
(!)��9�*KNO(!)�F�"* where B is 1 and (!)�F�"* � � is a dynamic
1 L 0 transition, is called a required cube.

Lemma 5.3 constrains the cubes which may be included in a
cover � . Each 1 L 0 transition cube is called a privileged cube,
since no cube M in the cover may intersect it unless M contains its
start point. If a cube intersects a privileged cube but does not
contain its start point, it illegally intersects the privileged cube
and may not be included in the cover. This property can be more
formally stated as follows.

Definition 5.2 (Privileged cube) Given a multiple-valued func-
tion B , and a set, � , of specified function-hazard-free multiple-
valued input transitions of B , every cube (!)���+* � � correspond-
ing to a dynamic 1 L 0 transition is called a privileged cube.

5.2 Hazard-Free Covers
A hazard-free cover of function B is a cover of B whose multi-
valued AND-OR implementation is hazard-free for a given set
of specified input transitions. The following theorem describes
all hazard-free covers for function B for a set of multiple-input
transitions. (It is assumed below that the function is defined for all
specified transitions; the function is undefined for all other input
states.)

Theorem 5.1 (Hazard-free covering) A sum-of-products � is a
hazard-free cover for function B for all specified input transitions
if and only if:
(a.) No cube of � intersects the OFF-set of B ;
(b.) Each required cube of B is contained in some cube of � ; and
(c.) No cube of � intersects any privileged cube illegally.

Conditions (a) and (c) in Theorem 5.1 determine the implicants
which may appear in a hazard-free cover of a Boolean func-
tion B . Condition (b) determines the covering requirement for
these implicants in a hazard-free cover. Therefore, Theorem 5.1
precisely characterizes the covering problem for hazard-free two-
level logic.

In general, the covering conditions of Theorem 5.1 may not be
satisfiable for an arbitrary Boolean function and set of transitions
(cf. [15, 10]). This case occurs if conditions (b) and (c) cannot be
satisfied simultaneously.

5.3 Exact Hazard-Free Multiple-Valued Minimization
Many exact logic minimization algorithms, such as Espresso-MV-
Exact [11], are based on the Quine-McCluskey algorithm [5].
The Espresso-MV-Exact algorithm solves the two-level multiple-
valued minimization problem in three steps:

1. Generate multiple-valued prime implicants;
2. Construct prime implicant table;
3. Generate minimum cover of this table.

Here, we extend an existing exact hazard-free two-level min-
imizer [10] to multi-valued functions. Theorem 5.1(a) and (c)
determine the implicants which may appear in a hazard-free cover
of a multiple-valued function B . Such implicants will be called
multiple-valued dynamic-hazard-free (DHF-) implicants. They
are defined as follows:

Definition 5.3 (Multiple-valued DHF-implicants) A multiple-
valued DHF-implicant is an implicant which does not intersect
any privileged cube of B illegally. A multiple-valued DHF-prime
implicant is a multiple-valued DHF-implicant contained in no
other multiple-valued DHF-implicant. An essential multiple-
valued DHF-prime implicant is a multiple-valued DHF-prime
implicant which contains a required cube contained in no other
multiple-valued DHF-prime implicant.

By Theorem 5.1(c), only multiple-valued DHF-implicants
may appear in a hazard-free cover. Theorem 5.1(b) determines
the covering requirement for a hazard-free cover of B : every
required cube of B must be covered, that is, contained in some
cube of the cover. Thus, the two-level hazard-free logic minimiza-
tion problem is to find a minimum cost cover of a function using
only multiple-valued DHF-prime implicants where every required
cube is covered.

The modified hazard-free multiple-valued minimization algo-
rithm is as follows:

1. Generate multiple-valued DHF-prime implicants;
2. Construct multiple-valued DHF-prime implicant table;
3. Generate minimum cover of this table.

These steps are detailed below.

5.4 Generation of Multiple-Valued DHF-Prime Implicants
Multiple-valued DHF-prime implicants for function B are gener-
ated in two steps. The new algorithm follows the approach de-
scribed in [10], but extended to multiple-valued functions. First,
multiple-valued prime implicants of B are generated from the
required cubes (which defines the on-set) and the off-set, using
existing algorithms [11]. Second, these prime implicants are
transformed into multiple-valued DHF-prime implicants by itera-
tive refinement. The new algorithm, MVI-PI-to-DHF-PI, checks
each implicant � for illegal intersection with any multiple-valued
privileged cube, P . If such an intersection occurs, the implicant is
reduced in all possible ways to avoid intersection. In particular,
� is replaced by the set �:� 1 �RQRQSQR�D�UTU� of maximal subcubes of �
which do not intersect P (i.e., V5W � � 1 �RQRQRQR�F�H�X� �U�ZY[P �]\).
Note that, in the multi-valued framework, reduction is uniformly
performed across both input and output spaces. The reduced im-
plicants may have remaining, or new, illegal intersections with
other privileged cubes. The process continues until only dhf-
implicants remain. Non-prime dhf-implicants are removed by a
check for single-cube containment.

5.5 Generation of DHF-Prime Implicant Table
A multiple-valued DHF-prime implicant table is constructed for
the given function. The rows of the table are labelled with the
multiple-valued DHF-prime implicants. The columns are labelled
with the required cubes, which must be covered. The table sets
up the two-level hazard-free logic minimization problem.

5.6 Generation of a Minimum Cover
The multiple-valued DHF-prime implicant table describes a stan-
dard unate covering problem. It is solved using an existing algo-
rithm, minimum-cover [11].

5.7 Handling Multiple-Output Minimization
As in Espresso-MV-Exact [11], multiple-output functions are han-
dled by making the output parts into a single ^ -valued MV vari-
able, where ^ is the number of outputs. The transformation
is straightforward and is described in [11]. Using this transfor-
mation, the symbolic hazard-free multiple-valued minimization
procedure can be used to minimize multiple-output functions.

6 CONSTRAINED ENCODING

We now consider the constrained encoding problem that must be
solved to produce a correct binary logic implementation for an
asynchronous flow table.

6.1 Encoding Constraints
In this step, encoding constraints are generated based on the sym-
bolic cover. These constraints ensure that the cover will be cor-
rectly instantiated.

The face embedding constraints used by KISS for synchronous
machines are insufficient for asynchronous machines for two rea-
sons: (1) they do not consider the transient behavior of an asyn-
chronous state machine, and (2) they do not consider hazard-free
logic requirements. Therefore, face embedding constraints must
be generalized. We consider these two problems in turn.

A new condition concerns the functional correctness of the
output and next-state implementations in the presence of state
transitions. During a transition of 2 or more state variables, tran-
sient points in the total input state space are reached which do not
correspond to any valid encoded state. The possibility arises that
the group face for some symbolic product term implementing a
binary output may intersect such a transient point, thus inadver-
tently turning on the product term during the state transition. If

the intended value of that output during the state transition is 0,
the output function will be incorrectly implemented.

Example. Consider a binary output symbolic implicant
<I1 � S0,S1,S2� > for some output function _ . Suppose there
is a state transition S3 L S4 in input column I1 during which
_ should be held at 0. Assume the following state assignment:

S0 0000
S1 1000
S2 1100
S3 0110
S4 0101

Using this assignment, the corresponding binary implicant is
<I1 **00>. As a result, during the S3 L S4 transition, the
state variables can reach the transient value 0100 which would
turn on the given implicant, incorrectly forcing the output value
to 1. This problem occurs even though the face embedding con-
straints for state group �.� 0 �S� 1 ��� 2 � are satisfied. `

A similar problem occurs for the next-state function. This case
requires a trivial generalization of the condition: if the value of the
symbolic function (i.e. the destination state) during the transition
differs from that which the product term implements, the machine
will be incorrectly realized.

The proposed solution is to add dichotomy constraints to avoid
problems resulting from such state transitions. Unlike the face
embedding constraints, these dichotomies are n-to-2: between
(i) a state group of an symbolic product (e.g., �7� 0 ��� 1 �S� 2 � in
the preceding example) and (ii) a pair of states defining a state
transition (e.g., �.� 3 �S� 4 �). The resulting generalized embedding
constraint, (�7� 0 �S� 1 ��� 2 � , �7� 3 �7� 4 �), ensures that the output will
be correctly implemented after instantiation.

The above discussion only addresses constraints derived from
a symbolic cover. It does not consider critical race-free encoding
constraints. In Section 7, however, it will be shown that the above
constraints in fact subsume all Tracey constraints, and therefore
ensure a critical race-free assignment.

In summary, asynchronous designs differ from synchronous de-
signs, since state changes may pass through intermediary states.
While face embedding constraints ensure that an implicant does
not intersect an OFF-set minterm, generalized constraints are
needed for asynchronous machines to ensure that an implicant
does not intersect a set of OFF-set minterms that may be traversed
during a state change.

The second difference between the original face embedding
constraints and asynchronous constraints concerns the need to
avoid logic hazards. In KISS, face embedding constraints ensure
that an implicant does not intersect the OFF-set. However, in
asynchronous synthesis, a non-prime DHF-prime implicant may
not illegally intersect a privileged cube as well. Encoding con-
straints must be added to ensure that, if a symbolic implicant has
no illegal intersections, the encoded implicant will not either.

For the given class of burst-mode machines, though, such
hazard-free constraints are degenerate. As indicated earlier, in
a burst-mode flow table, dynamic transitions only occur during
input bursts: that is, within a given state. Therefore, each privi-
leged cube has a singleton state group. If a DHF-prime implicant
has state group �.� 0 ��� 1 �S� 2 � and it must avoid intersection with
a privileged cube in state � 3, a simple n-to-1 dichotomy must
be generated. However, such a dichotomy is already generated
as a face-embedding constraint. Therefore, no further constraints
need to be generated for this class of machines to avoid dynamic
hazards.

Constraint Generation Algorithm
In addition to the KISS face embedding constraints, we use the
following algorithm:

for each implicant � in the symbolic cover �
for each state transition =Z�

if � intersects the input column of =Z�
if some output a that � implements has value 0 during =��

generate dichotomy � stategroup(�); states(=) � �X�
�
�

This algorithm generates n-to-2 dichotomies, where = is a state
transition from an unstable to a stable state.

6.2 Solving Constraints and Hazard-Free Logic Minimization
Since all constraints are described as dichotomies, they can be
solved using a dichotomy solver. The resulting constraints ensure
that products can be safely instantiated with respect to both stable
and transient points in the symbolic flow table.

Constraints are solved using two methods: exact solution (us-
ing dichot [12]) and heuristic solution (using nova’s simulated
annealing mode [16]). The goal of the heuristic method is to solve
as many constraints as possible given a fixed code-length.

However, a problem arises in the straightforward application of
the heuristic method. Unlike synchronous applications, a heuristic
solution of our asynchronousconstraints may result in an incorrect
implementation. In particular, as a bare minimum, we require that
every state assignment be critical race-free. These critical race-
free constraints are described by dichotomies,which are subsumed
by our optimality constraints (see Section 7). Since a partial
constraint solver may not satisfy all dichotomies, the resulting
state assignment may have critical races.

Our solution is to partition dichotomies into two classes: com-
pulsory and non-compulsory . Critical race-free constraints are
compulsory, and must be satisfied. Remaining constraints are
concerned with logic optimality; these are non-compulsory, or
optional. Different weights are assigned to the dichotomies in the
two classes, to ensure that all compulsory constraints are satisfied.
In practice, such an approach has worked well on a number of
examples. 2

Finally, once a state assignment is produced, the symbolic ma-
chine is instantiated with the resulting encoding. The result-
ing binary-valued function is then passed through a multi-output
binary-valued hazard-free logic minimizer to produce a final ma-
chine implementation.

7 THEORETICAL RESULTS

We now sketch the basic theoretical results for our synthesis al-
gorithm. First, we define a “pseudo-canonical” state assignment,
roughly analogous to the use of a “canonical” 1-hot assignment in
KISS. We then formally define the instantiated asynchronous ma-
chine specification (encoded flow table) and binary implementa-
tion (cover) under this assignment. Second, we summarize results
on the correctness and cardinality of the binary cover. Finally, we
present results on the optimality of the binary cover.

7.1 Machine Instantiation
Pseudo-Canonical State Assignment
In [7], DeMicheli indicates that, for synchronous machines, any
symbolic minimized cover can be assigned a 1-hot canonical en-
coding. The result is a 1 L 1 mapping of symbolic to binary

2It is possible that a solution will not satisfy all compulsory constraints.
If this occurs, the weights can be modified, the run can be repeated to
randomly explore another portion of the solution space, or the code length
limit can be raised.

implicants, yielding a canonical cover whose cardinality is iden-
tical to that of the symbolic cover. For asynchronous machines,
however, a 1-hot encoding is not in general critical race-free [15];
furthermore, it will not generally satisfy the encoding constraints
of Section 6. As a simple alternative, to demonstrate theoretical re-
sults, we propose the following: solve the encoding constraints to
produce an assignment. 3 This assignment will be called pseudo-
canonical for the given machine.

Symbolic Machine Instantiation
An encoding defines a mapping from a symbolic machine speci-
fication to an equivalent binary one. There are two components
of an asynchronous machine specification: its functional spec-
ification and a set of specified transitions. For the functional
specification, it is assumed that both ON-set and OFF-set are ex-
plicitly defined. The transitions are mapped in the obvious way:
each symbolic startpoint (endpoint) b WD�C�c��d7ef�7e7�U=�g maps to the
binary startpoint (endpoint) b WD�H�SMRaXhie
�j�Ud7e7�fe7�U=���g .

We can view the functional specification as a set of ON-
set and OFF-set cubes. Each symbolic product � (a 4-tuple
b WD�H�k�Ud7e7�fe7�U=l�S�5e7m
=l�:a
no=�g), maps onto a binary product ˜� , as fol-
lows:

� : WD� �Ud7e7�7ef�U= �5e7m
= a
no=p p p p
˜� : WD� �7n
�Ue7d7MRnUq�e
� MRa
hie7�
�j�Ud7e7�7ef�U=:��� MRa
hie
� �5e7m
=�� a
no=

For example, under the state assignment � 0 � 000, � 1 �
011, � 2 � 100, and � 3 � 101, the symbolic product
<011| � S0,S2 � S2 |100> is mapped to the binary product
<011|-00 100|100>.

With the above view, mapping an asynchronous symbolic flow
table to an encoded table, column transitions require special care.
In a symbolic table, a column transition is defined only at its
symbolic startpoint and endpoint. However, in an encoded ta-
ble with a USTT critical race-free assignment, all intermediate
(transient) entries for the transition must be defined as well. This
latter property can easily be guaranteed by constraining the sym-
bolic specification: a single product must be used to specify each
column transition. This constraint ensures that, for each column
transition (i.e., state change), some product will be instantiated
which defines all intermediate states in the encoded transition.

Symbolic Cover Instantiation
Given a symbolic hazard-free cover and a resulting state assign-
ment, symbolic implicants can be instantiated by substituting bi-
nary codes using the mapping described above, yielding a binary
cover � . Note that instantiating a symbolic implicant may produce
an empty binary implicant, if its symbolic next-state is mapped to
the binary 0-vector. Such an implicant can be dropped from the
binary cover.

Unfortunately, the sharing of 1-bits by different state codes
may cause static transitions for next-state to appear in the binary
machine where only dynamic transitions appeared in the symbolic
machine. To avoid hazards, extra terms must be added to the
binary cover: static-1 transitions must each be completely covered
by some implicant, while the symbolic dynamic transitions clearly
would not have been.

Example. To understand the problem, consider an input transi-
tion in a machine with one output:

3In fact, a state assignment which satisfies all possible N-to-1 and
N-to-2 constraints can always be found, for a given number N of states.
However, such an assignment is prohibitively expensive; for simplicity,
we consider a more practical assignment here.

Inputs

S0 , 0 S1 , 1

00 01

S0

No implicant in the symbolic cover covers the entire transition,
since both output and next-state undergo dynamic transitions. In
particular, the next-state function � 0 has a 1 L 0 transition and
the next-state function � 1 has a 0 L 1 transition (as does the
output). However, suppose that � 0 is assigned code 011 and � 1

is assigned 110. In the instantiated machine, the second state bit
will then make a 1 L 1 transition. However, since no symbolic
cube covered the entire transition, no instantiated binary cube will
either, and the second state bit will have a static-1 hazard. `

In sum, a naively instantiated cover will fail to properly im-
plement certain static transitions of the next-state variables. A
solution is to add one product term to the instantiated cover for
each such static-1 transition. For the above transition, the im-
plicant <0- 011 010 0> would be added, where 011 corre-
sponds to state � 0. As a result, the canonical cover may have
greater cardinality than the symbolic cover:

Property 7.1 (Opt-HFCRF Cardinality of Cover) Let r �sr be
the cardinality of the symbolic cover, r �8r be the cardinality of
the binary instantiated cover, and t is the number of unstable
state transitions in the flow table; then r �8r � O ��r �srvuwto� .

Note that this result is a theoretical upper bound only. In
practice, t additional products need not be added. Instead, the
instantiated cover � is passed to a binary hazard-free minimizer
and re-run, to improve results.

By analogy, KISS produces a theoretical upper bound on cardi-
nality based a 1-hot-instantiated cover (although in KISS the upper
bound is the cardinality r �sr of the symbolic cover; no added terms
are required). This 1-hot-instantiated cover in KISS is neither
guaranteed to have minimum number of products nor minimum
code length [7]. In practice, shorter codes are sought, and the
instantiated cover is likewise re-run through a binary minimizer
to improve results [7, 16].

In both KISS and our method, the input encoding formulation
and solution yield only approximations to optimal state assign-
ment. In practice, though, both methods can result in significant
improvements (see Section 8).

7.2 Correctness of Binary Cover
Due to space limitations, proofs are omitted for the following
theorems. In the following, let � be the instantiated cover, derived
using the pseudo-canonical assignment.

Theorem 7.1 Cover � is a correct functional implementation of
the encoded flow table.

Furthermore, our encoding constraints subsume all critical race-
free constraints [14], and the resulting implementation is hazard-
free.
Theorem 7.2 Any state assignment satisfying the encoding con-
straints of Section 6 is critical race-free.

Theorem 7.3 The cover � is hazard-free for every specified input
and state transition.
7.3 Optimality of Binary Cover
A final key result is that our algorithm produces state assign-
ments and hazard-free realizations which are exactly optimal with
respect to output logic (if outputs and next-state are minimized
separately).

Property 7.2 (Opt-HFCRF Optimality of Output Cover) The
binary instantiated output cover xzy (where outputs are minimized
separately from next-state) is exactly minimal.

This result is especially important for asynchronous state ma-
chines. Since asynchronous machines have no clock or latches,
the input-to-output latency is determined by output logic delay.
Our algorithm finds a USTT state assignment which results in a
hazard-free output cover with smallest cardinality over all possi-
ble critical race-free assignments.

8 EXPERIMENTAL RESULTS

A preliminary set of experiments was run on industrial examples
using our optimal encoding and logic minimization algorithms.
Results appear in Figure 4. For each set of runs, the number of
state variables (#b) and number of cubes (#c) in the final cover
are reported. The column labelled optimal lists runs in which all
constraints were solved. A parallel set of runs using a “random”
(but minimal length) critical race-free encoding was done as well,
labelled base-crf, for comparison with the optimal. Finally, a third
set of runs, opt-fixed, was performed (for cases where optimal and
base-crf differed in code length), using a fixed code length and
partial constraint satisfaction. For this set, runs at or near the code
length of the base-crf case were performed; the best of several
iterations is reported.

The opt-fixed algorithm achieves results at least as good as the
optimal and base-crf algorithms. As in KISS [7] and NOVA [16],
this phenomenon occurs because input encoding is itself an ap-
proximate formulation. Hence, by using partial constraint satis-
faction with restricted code lengths, a large percentage of optimal-
ity constraints can be satisfied with less overhead in the next-state
implementation.

For all sets of runs, the hazard-free multi-output logic mini-
mization algorithm was used for the binary implementation step.
Improvements ranging up to 17% are observed.

Acknowledgments
The authors thank Giovanni De Micheli for suggesting that we
consider the problem of optimal state assignment of hazard-free
asynchronous machines.

REFERENCES
[1] M.J. Ciesielski, J.J. Shen, and M. Davio. A unified approach to input-output

encoding for fsm state assignment. In DAC-91, June 1991.

[2] R.M. Fuhrer, B. Lin, and S.M. Nowick. Algorithms for the optimal state
assignment of asynchronous state machines. In 1995 Conference on Advanced
Research in VLSI, pages 59–75. IEEE Computer Society Press, 1995.

[3] D.S. Kung. Hazard-non-increasing gate-level optimization algorithms. In
ICCAD-1992.

[4] B. Lin and S. Devadas. Synthesis of hazard-free multilevel logic under
multiple-input changes from binary decision diagrams. IEEE Transactions
on CAD, 14(8):974–985, August 1995.

[5] E.J. McCluskey. Logic Design Principles. Prentice-Hall, 1986.

[6] G. De Micheli. Symbolic design of combinational and sequential logic circuits
implemented by two-level logic macros. IEEE Transactions on CAD, CAD-
5(4):597–616, October 1986.

[7] G. De Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli. Optimal
state assignment for finite state machines. IEEE Transactions on CAD, CAD-
4(3):269–285, July 1985.

[8] S.M. Nowick and B. Coates. Automated design of high-performance unclocked
state machines. In ICCD-1994.

[9] S.M. Nowick and D.L. Dill. Automatic synthesis of locally-clocked asyn-
chronous state machines. In ICCAD-1991.

[10] S.M. Nowick and D.L. Dill. Exact two-level minimization of hazard-free logic
with multiple-input changes. IEEE Transactions on CAD, 14(8):986–997,
August 1995.

[11] R. Rudell and A. Sangiovanni Vincentelli. Multiple valued minimization for
PLA optimization. IEEE Transactions on CAD, CAD-6(5):727–750, Septem-
ber 1987.

opt-fixed optimal base-crf
DESIGN I/S/O #b #c #b #c #b #c

sbuf-read-ctl 3/3/3 2 7 3 9 2 8
sbuf-send-ctl 3/4/3 2 11 4 12 2 11

rf-control 6/6/5 3 13 6 15 3 15
it-control 5/5/7 3 15 6 15 3 15

pe-send-ifc 5/5/3 3 18 7 27 3 21
sd-control 8/13/12 5 29 10 34 4 35
dram-ctrl 7/3/6 - - 2 22 2 22
pscsi-ircv 4/4/3 2 9 4 12 2 10

pscsi-isend 4/6/3 3 17 7 23 3 19
pscsi-trcv 4/4/3 3 9 4 13 2 11

pscsi-trcv-bm 4/4/4 2 12 4 15 2 14
pscsi-tsend 4/7/3 3 18 7 22 3 18

sscsi-isend-bm 5/4/4 2 21 5 22 2 24
sscsi-isend-csm 5/3/4 - - 2 12 2 12

sscsi-trcv-bm 5/4/4 2 18 5 24 2 18
sscsi-trcv-csm 5/3/4 2 12 3 12 2 12
sscsi-tsend-bm 5/5/4 3 17 6 20 3 18

sscsi-tsend-csm 5/4/4 2 14 5 15 2 14
stetson-p1 13/12/14 4 53 19 4 �

4 55
stetson-p2 8/13/12 4 31 10 37 4 36

*Exact logic minimization failed due to insufficient virtual memory
in prime generation.

Figure 4: Experimental Results

[12] A. Saldanha, T. Villa, R.K. Brayton, and A.L. Sangiovanni-Vincentelli. A
framework for satisfying input and output encoding constraints. In DAC-91,
June 1991.

[13] P. Siegel, G. De Micheli, and D. Dill. Technology mapping for generalized
fundamental-modeasynchronous designs. In 30th ACM/IEEE Design Automa-
tion Conference, June 1993.

[14] J.H. Tracey. Internal state assignments for asynchronous sequential machines.
IEEE Transactions on Electronic Computers, EC-15:551–560, August 1966.

[15] S.H. Unger. Asynchronous Sequential Switching Circuits. New York: Wiley-
Interscience, 1969.

[16] T. Villa and A. Sangiovanni-Vincentelli. NOVA: state assignment of finite state
machines for optimal two-level logic implementation. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 9(9):905–924,
September 1990.

[17] K.Y. Yun, D.L. Dill, and S.M. Nowick. Synthesis of 3D asynchronous state
machines. In ICCD-1992.

