Fast Heuristic and Exact Algorithms for Two-Level
Hazard-Free Logic Minimization

Michael Theobald and Steven M. Nowick

Abstract— None of the available minimizers for 2-level hazard-free
logic minimization can synthesize very large circuits. This limitation
has forced researchers to resort to manual and automated circuit par-
titioning techniques.

This paper introduces two new 2-level hazard-free logic minimiz-
ers: ESPRESSO-HF, a heuristic method which is loosely based on
ESPrESSO-1I, and IMPYMIN, an ezact method based on implicit data
structures. Both minimizers can solve all currently-available exam-
ples, which range up to 32 inputs and 33 outputs. These include
examples that have never been solved before. For the more difficult
examples that can be solved by other minimizers, our methods are
several orders of magnitude faster.

As by-products of these algorithms, we also present two additional
results. First, we propose a fast new method to check if a hazard-free
covering problem can feasibly be solved. Second, we introduce a novel
reformulation of the 2-level hazard-free logic minimization problem,
by capturing hazard-freedom constraints within a synchronous func-
tion through the addition of new variables.

I. INTRODUCTION

Asynchronous design has been the focus of much recent
research activity [10]. In fact, asynchronous design has
been applied to several large-scale control- and datapath
circuits and microprocessors [14], [22], [15], [23], [35], [39],
1201, [2].

A number of methods have been developed for the design
of asynchronous controllers. Much of the recent work has
focused on Petri Net-based methods [18], [1], [16], [5], [40],
[6], [7] and burst-mode methods [27], [9], [25], [43], [17], [31],
[13]. These two classes of design methods differ in funda-
mental aspects: the delay model, and how the circuit inter-
acts with its environment [10]. Petri Net-based methods
typically synthesize circuits to work correctly regardless of
gate delays (speed-independent delay model), and the en-
vironment is allowed to respond to the circuit’s outputs
without timing constraints (input/output mode). In con-
trast, burst-mode methods synthesize combinational logic
to work correctly regardless of gate and wire delays, but the
correct sequential operation depends on timing constraints.
In this case, the environment must wait for a circuit to
stabilize before responding with new inputs (fundamental
mode).

The focus of this paper is on fundamental-mode asyn-
chronous circuits, such as burst-mode machines. Burst-
mode methods have recently been applied to several large
and realistic design examples, including a low-power in-
frared communications chip [19], a second-level cache-
controller [26], a SCSI controller [41], a differential equation
solver [42], and an instruction length decoder [4].

This work was supported by NSF under Grant no. MIP-9501880
and by an Alfred P. Sloan Research Fellowship. The presented work
is an extended version of two recent conference papers [37], [36] .

Michael Theobald and Steven M. Nowick are with the Department
of Computer Science, Columbia University, New York, NY 10027.
Email: {theobald,nowick}@cs.columbia.edu.

An important challenge for any asynchronous synthesis
method is the development of optimized CAD tools. In syn-
chronous design, CAD packages have been critical to the
advancement of modern digital design. In asynchronous
design, however, a key constraint is to provide hazard-free
logic, i.e. to guarantee the absence of glitches [38]. Much
progress has been made in developing hazard-free synthe-
sis methods, including tools for exact two-level hazard-free
logic minimization [29], optimal state assignment [12], [31],
synthesis-for-testability [28] and low-power logic synthesis
[24]. However, these tools have been limited in handling
large-scale designs.

In particular, hazard-free 2-level logic minimization is a
bottleneck in most asynchronous CAD packages. While
the currently used Quine-McCluskey-like exact hazard-free
minimization algorithm, HFMIN [12], has been effective on
small- and medium-sized examples, and is used in several
existing CAD packages [27], [9], [25], [43], [17], [13], it has
been unable to produce solutions for several large design
problems [17], [31]. This limitation has been a major reason
for researchers to invent and apply manual as well as au-
tomated techniques for partitioning circuits before hazard-
free logic minimization can be performed [17].

Contributions of This Paper

This paper introduces two very efficient 2-level logic
minimizers for hazard-free multi-output minimization:
EsPrESsO-HF and IMPYMIN.

EsprESSO-HF is an algorithm to solve the heuristic
hazard-free two-level logic minimization problem. The
method is heuristic solely in terms of the cardinality of
solution. In all cases, it guarantees a hazard-free solu-
tion. The algorithm is based on EspPrREsso-1I [30], [11],
but with a number of significant modifications to handle
hazard-freedom constraints. It is the first heuristic method
based on ESPRESSO-II to solve the hazard-free minimiza-
tion problem. ESPRESSO-HF also includes a new and much
more efficient algorithm to check for existence of a hazard-
free solution, without generating all prime implicants.

IMPYMIN is an algorithm to solve the exact hazard-
free two-level logic minimization problem. The algorithm
uses an implicit approach which makes use of data struc-
tures such as BDDs [3] and zero-suppressed BDDs [21].
The algorithm is based on a novel theoretical approach to
hazard-free two-level logic minimization. We reformulate
the generation of dynamic-hazard-free prime implicants as
a synchronous prime implicant generation problem. This
is achieved by incorporating hazard-freedom constraints
within a synchronous function by adding new variables.
This technique allows to use an existing method for fast im-
plicit generation of prime implicants. Moreover, our novel

approach can be nicely incorporated into a very efficient
implicit minimizer for hazard-free logic. In particular, the
approach makes it possible to use the implicit set covering
solver of SCHERZO [8], the state-of-the-art minimization
method for synchronous two-level logic, as a black box.

Both EsPrRESsO-HF and IMPYMIN can solve all currently
available examples, which range up to 32 inputs and 33 out-
puts. These include examples that have never been pre-
viously solved. For examples that can be solved by the
currently fastest minimizer HFMIN, our two minimizers are
typically several orders of magnitude faster. In particular,
IMPYMIN can find a minimum-size cover for all benchmark
examples in less than 813 seconds, and ESPRESSO-HF can
find very good covers — at most 3% larger than a minimum-
size cover — in less than 105 seconds.

EsprESsO-HF and IMPYMIN are somewhat orthogonal.
On the one hand ESpPrRESSO-HF is typically faster than
IMPYMIN. On the other hand, IMPYMIN computes a cover
of minimum size, whereas ESPRESSO-HF' is not guaranteed
to find a minimum cover but typically does find a cover of
very good quality.

Paper Organization

Section 2 gives background on circuit models, hazards
and hazard-free minimization. Section 3 describes the
EsPrREsSsO-HF' algorithm for heuristic hazard-free mini-
mization. Section 4 introduces a new approach to hazard-
free minimization where hazard-freedom constraints are
captured by a constructed synchronous function, leading
to a new method for computing dynamic-hazard-free prime
implicants. Based on the results of Section 4, Section 5
introduces our new implicit method for exact hazard-free
minimization, called IMPYMIN. Section 6 presents experi-
mental results and compares our approaches with related
work, and Section 7 gives conclusions.

II. BACKGROUND

The material of this section focuses on hazards and
hazard-free logic minimization, and is taken from [12] and
[29]. For simplicity, we focus on single-output functions. A
generalization of these definitions to multi-output functions
is straightforward, and is described in [12].

A. Circuit Model

This paper considers combinational circuits having arbi-
trary finite gate and wire delays (an unbounded wire de-
lay model [29]). A pure delay model is assumed as well
(see [38]).

B. Multiple-Input Changes

Definition II.1: Let A and B be two minterms. The
transition cube, [A, B], from A to B has start point
A and end point B, and contains all minterms that can
be reached during a transition from A to B. More for-
mally, [A, B] is the uniquely defined smallest cube that
contains A and B: supercube(A,B). An input transition

or multiple-input change from input state (minterm) A
to B is described by transition cube [A, BJ.

A multiple-input change specifies what variables change
value and what the corresponding starting and ending val-
ues are. Input variables are assumed to change simultane-
ously. (Equivalently, since inputs may be skewed arbitrar-
ily by wire delays, inputs can be assumed to change mono-
tonically in any order and at any time.) Once a multiple-
input change occurs, no further input changes may occur
until the circuit has stabilized. In this paper, we consider
only transitions where f is fully defined; that is, for every
X € [A,B], f(X) e {0,1}.

C. Function Hazards

A function f which does not change monotonically dur-
ing an input transition is said to have a function hazard
in the transition.

Definition I11.2: A function f contains a static function
hazard for the input transition from A to C' if and only
if: (1) f(A) = f(C), and (2) there exists some input state
B € [A,C] such that f(A) # f(B).

Definition 11.3: A function f contains a dynamic func-

tion hazard for the input transition from A to D if and
only if: (1) f(A) # f(D); and (2) there exist a pair of input
states, B and C, such that (a) B € [4, D] and C € [B, D],
and (b)f(B) = f(D) and f(4) = (C).
If a transition has a function hazard, no implementation
of the function is guaranteed to avoid a glitch during the
transition, assuming arbitrary gate and wire delays [29],
[38]. Therefore, we consider only transitions which are free
of function hazards !.

D. Logic Hazards

If f is free of function hazards for a transition from input
A to B, an implementation may still have hazards due to
possible delays in the logic realization.

Definition II.4: A circuit implementing function f con-

tains a static (dynamic) logic hazard for the input
transition from minterm A to minterm B if and only if:
(1) £(A) = J(B) (J(4) # f(B)), and (2) for some assign-
ment of delays to gates and wires, the circuit’s output is
not monotonic during the transition interval.
That is, a static logic hazard occurs if f(A) = f(B) =1 (0),
but the circuit’s output makes an unexpected 1 — 0 — 1
(0 — 1 — 0) transition. A dynamic logic hazard occurs if
f(A) =1 and f(B) =0 (f(4A) = 0 and f(B) = 1), but
the circuit’s output makes an unexpected 1 - 0 — 1 — 0
(0 - 1—0— 1) transition.

E. Conditions for a Hazard-Free Transition

We now review conditions to ensure that a sum-of-
products implementation, F', is hazard-free for a given in-
put transition (for details, see [29]). Assume that [A, B] is
the transition cube corresponding to a function-hazard-free

LSequential synthesis methods, which use hazard-free minimization
as a substep, typically include constraints in their algorithms to insure
that no transitions with function hazards are generated [27], [43].

transition from input state A to B for a function f. We
say that f has a f(A) — f(B) transition in cube [A, B].

Lemma IL1.5: If f has a 0 — 0 transition in cube [A, B,
then the implementation is free of logic hazards for the
input change from A to B.

Lemma I1.6: Tf f has a 1 — 1 transition in cube [A, B],
then the implementation is free of logic hazards for the
input change from A to B if and only if [A, B] is contained
in some cube of cover F (i.e., some product must hold its
value at 1 throughout the transition).

The conditions for the 0 — 1 and 1 — 0 cases are symmet-
ric. Without loss of generality, we consider only a 1 — 0
transition 2.

Lemma I1.7: Tf f has a 1 — 0 transition in cube [A, B],
then the implementation is free of logic hazards for the
input change from A to B if and only if every cube ¢ € F
intersecting [A, B] also contains A (i.e., no product may
glitch in the middle of a 1 —0 transition).

Lemma I1.8: If f has a1 — 0 transition from input state
A to B which is hazard-free in the implementation, then,
for every input state X € [A, B] where f(X) = 1, the
transition subcube [A, X] is contained in some cube of cover
F (i.e., every 1 — 1 sub-transition must be free of logic
hazards).

1 — 1 transitions and 0 — 0 transitions are called static
transitions. 1 — 0 transitions and 0 — 1 transitions are
called dynamic transitions.

F. Required and Privileged Cubes

The cube [A, B] in Lemma I1.6 and the mazimal sub-
cubes [A, X] in Lemma II.8 are called required cubes. Each
required cube must be contained in some cube of cover F
to ensure a hazard-free implementation. More formally:

Definition I1.9: Given a function f, and a set, T, of spec-

ified function-hazard-free input transitions of f, every cube
[A,B] € T corresponding to a 1 — 1 transition, and ev-
ery maximal subcube [A4, X] C [A, B] where f is 1 and
[A,B] € T is a 1 — 0 transition, is called a required
cube.
Lemma I1.7 constrains the products which may be included
in a cover F. Each 1 — 0 transition cube is called a priv-
ileged cube, since no product ¢ in the cover may intersect
it unless ¢ also contains its start point. If a product inter-
sects a privileged cube but does not contain its start point,
it 4llegally intersects the privileged cube and may not be
included in the cover. More formally:

Definition II.10: Given a function f, and a set, T, of
specified function-hazard-free input transitions of f, every
cube [A, B] € T corresponding to a 1 — 0 transition is
called a privileged cube.

Finally, we define a useful special case. A privileged
cube is called trivial, if the function is only 1 at the start
point and is 0 for all other minterms included in the tran-
sition cube. In this case, any product that intersects such
a privileged cube always covers the start point. All trivial

2A 0 — 1 transition from A to B has the same hazards as a 1 — 0
transition from B to A.

privileged cubes can safely be removed from consideration
without loss of information.

G. Hazard-Free Covers

A hazard-free cover of function f is a cover (i.e., set of
implicants) of f whose AND-OR implementation is hazard-
free for a given set, T, of specified input transitions. (It is
assumed below that the function is defined for all specified
transitions; the function is undefined for all other input
states.)

Theorem I1.11 (Hazard-Free Covering [29])

A sum-of-products F' is a hazard-free cover for function f
for the set T of specified input transitions if and only if:
(a.) No product of F' intersects the OFF-set of f;

(b.) Each required cube of f is contained in some product
of F; and

(c.) No product of F intersects any (non-trivial) privileged
cube illegally.

Theorem I1.11(a) and (c¢) determine the implicants which
may appear in a hazard-free cover of a function f, called
dynamic-hazard-free (dhf-) implicants.

Definition 11.12: A dhf-implicant is an implicant

which does not intersect any privileged cube of f illegally.
A dhf-prime implicant is a dhf-implicant contained in
no other dhf-implicant. An essential dhf-prime impli-
cant is a dhf-prime implicant which contains a required
cube contained in no other dhf-prime implicant.
Theorem II.11(b) defines the covering requirement for a
hazard-free cover of f: every required cube of f must be cov-
ered, that is, contained in some cube of the cover. Thus,
the two-level hazard-free logic minimization prob-
lem is to find a minimum cost cover of a function using
only dhf-prime implicants where every required cube is cov-
ered.

The difference between two-level hazard-free logic min-
imization and the well-know classic two-level logic mini-
mization problem (e.g. solved by Quine-McCluskey al-
gorithm) is that, in the hazard-free case, dhf-prime im-
plicants replace prime implicants as the covering objects,
and required cubes replace minterms as the objects-to-be-
covered.

In general, the covering conditions of Theorem II.11 may
not be satisfiable for an arbitrary Boolean function and set
of transitions [38], [29]. This case occurs if conditions (b)
and (c) cannot be satisfied simultaneously.

A hazard-free minimization example is shown in Fig-
ure 1. There are four specified transitions. ¢; isa 1 — 1
transition; it gives rise to one required cube (see part (a)).
to is a 0 — 0 transition; it gives rise neither to required
cubes nor privileged cubes. t3 and t4 are 1 — 0 transi-
tions. Each of the two gives rise to two required cubes
(see (a)) and one privileged cube (see (b)). A minimum
hazard-free cover is shown in part (¢). Each required cube
is covered, and no product in the cover illegally intersects
any privileged cube. In contrast, the cover in part (d)
is not hazard-free since priv-cube-1 is intersected illegally
(highlighted minterm) by product zoz4. In particular, this
product may lead to a glitch during transition ts.

01
00 ,’ N / \
1 1 1 | \
|] I |
s | a (AN i il
i i i i
oL | / ! N oLt Y it \
0 1 '\ 1/| 11 0 1 v 1 1 t1
e __] NS i s _ s\ 7

(a) req-set cubes
x1x2
X3 x4

rarve T
LD
o

1 K) . 11
10 &J ° 0 10 / 0 0

(d) Minimal non—hazar d—free cover (4 products)

(c) Minimal hazard-free cover (5 products)

Fig. 1. Two-Level Hazard-Free Minimization Example: (a) shows
the set of required cubes (shaded), and the set of transition cubes
(dotted); (b) shows the set of privileged cubes (shaded); (c) shows
a minimal hazard-free cover; (d) shows a minimum-cost cover that
is not hazard-free, since it contains a logic hazard.

H. Ezact Hazard-Free Minimization Algorithms

A single-output exact hazard-free minimizer has been
developed by Nowick and Dill [29]. It has recently been
extended to hazard-free multi-valued minimization® by
Fuhrer, Lin and Nowick [12]. The latter method, called
HFMIN, has been the fastest minimizer for exact hazard-
free minimization.

HFMIN makes use of ESPRESSO-II to generate all prime
implicants, then transforms them into dhf-prime impli-
cants, and finally employs ESPRESSO-11's MINCOV to solve
the resulting unate covering problem. Each of the algo-
rithms used in the above three steps is critical, i.e. has a
worst-case run-time that is exponential. As a result, HFMIN
cannot solve several of the more difficult examples.

Very recently, Rutten [33], [32] has proposed an alter-
native exact method. However, his method has yet to be
evaluated on difficult examples, e.g. on those that can-
not be easily solved by HFMIN (see Section VI-C for more
details).

IT1I. HEURISTIC HAZARD-FREE MINIMIZATION:
EspPrEsso-HF

A. Overview

The goal of heuristic hazard-free minimization is to find
a very good (but not necessarily exactly minimum) solution
to the hazard-free covering problem. The basic minimiza-
tion strategy of ESPRESSO-HF for hazard-free minimiza-
tion is similar to the one used by EsprESSO-II. However,

31t is well-known that multi-output minimization can be regarded
as a special case of multi-valued minimization [30].

we use additional constraints to ensure that the resulting
cover is hazard-free, and the algorithms are significantly
different.

One key distinction is in the use of the unate recursive
paradigm in ESPRESSO-II, i.e. to decompose operations re-
cursively leading to efficiently solvable sub-operations on
unate functions. To the best knowledge of the authors,
the unate recursive paradigm cannot be applied directly to
EsPRESsO-II-like heuristic hazard-free minimization. (In
[33], [32], a unate recursive method was proposed, but only
for use in the dhf-prime generation step for exact hazard-
free minimization; see Section VI-C.) The intuitive rea-
son for this is that the operators in ESPRESSO-II manip-
ulate covers. For example, the “many” ON-set minterms
(objects-to-be-covered) can typically be stored compactly
and manipulated efficiently as an ON-set cover of “a few”
cubes. In contrast, required cubes cannot be combined into
larger cubes without loss of information, which means that
the basis for the unate recursive paradigm, i.e. the concept
of covers, becomes obsolete.

We therefore follow the basic steps of ESPRESSO-11, mod-
ified to incorporate hazard-freedom constraints, but with-
out the use of unate recursive algorithms. However, be-
cause of the constraints and granularity of the hazard-
free minimization problem, high-quality results are still ob-
tained even for large examples.

In this subsection, we describe the basic steps of the al-
gorithm, concentrating on the new constraints that must
be incorporated to guarantee a cover to be hazard-free. We
then describe the individual steps in detail in later subsec-
tions.

As in ESPRESSO-II, the size of the cover is never in-
creased in size. In addition, after an initial phase, the cover
always represents a valid solution, i.e. a cover of f that is
also hazard-free. Pseudocode for the algorithm is shown in
Figure 2.

The first step of ESPRESSO-HF is to read in PLA files
specifying a Boolean function, f, and a set of specified
function-hazard-free transitions, 7. These inputs are used
to generate the set of required cubes @, the set of privileged
cubes P and their corresponding start points S, and the
OFF-set R. Generation of these sets is immediate from
the earlier lemmas (see also [29]) .

The set @ can be regarded both as an initial cover F' of
the function, and as a set of objects to be covered. Unlike
EspPrESSO-I1, however, the given initial cover) does notin
general represent a valid solution: while @ is a cover of f, it
is not necessarily hazard-free. Therefore, processing begins
by first expanding each required cube into the uniquely
defined minimum dhf-implicant covering it, or the detection
that this is impossible, denoted by “undefined”. The latter
case indicates that the hazard-free minimization problem
has no solution (see Section III-J). Otherwise, the result
is an initial hazard-free cover, F', and set of objects to be
covered, Q7.

4The algorithm does not need an explicit cover for the don’t-care
set because the operations only require the OFF-set to check if a cube
is valid.

Espresso-HF (f,T)

Q@ = generate_set_of_required-cubes(f,T)

P = generate_set_of_privileged-cubes(f,T)

S = generate_set_of_start-points(f,T')

R = OFF-set(f)

Qf = {Supercubedhff(Q)\q €Q}

If “undefined” € Q7 then no solution is possible; exit
Minimize Qf with respect to single cube containment
F=qf

(F, E) = expand_and_compute_essentials(F’)

Remove all cubes from Qf that are already covered by E
F=F-F
F = irredundant(F')

¢1 = |F
F = reduce(F)
F = expand(F)
F = irredundant(F’)
while (|F| < ¢1)
F = last_gasp(F)
while (|F| < ¢2)
F=FUEFE
F = make_dhf_prime(F")

Fig. 2. The ESPRESSO-HF algorithm.

The next step is to identify essential dhf-implicants, us-
ing a modified EXPAND step. This algorithm uses a novel
approach to identifying equivalence classes of implicants,
each of which is treated as a single implicant. Essential
implicants, as well as all required cubes covered by them,
are then removed from F and Q7, respectively, resulting in
a smaller problem to be solved by the main loop. Before
the main loop, the current cover is also made irredundant.

Next, as in ESPRESSO-II, ESPRESSO-HF applies the
three operators REDUCE, EXPAND, and IRREDUN-
DANT to the current cover until no further improvement
in the size of the cover is possible. Since the result may be a
local minimum, the operator LAST_GASP is then applied
to find a better solution using a different method. EX-
PAND uses new hazard-free notions of essential parts and
feasible expansion. The other steps differ from ESPRESSO-
II as well.

At the end, there is an additional step to make the re-
sulting implicants dhf-prime, MAKE_DHF_PRIME, since
it is desirable to obtain a cover that consists of dhf-prime
implicants. The motivation for this step will be made clear
in the sequel.

In addition to the steps shown in Figure 2, our implemen-
tation has several optional pre- and postprocessing steps.

B. Dhf-Canonicalization of Initial Cover

In EsprEssoO-II, the initial cover of a function is pro-
vided by its ON-set, FON. This cover is a seed solution,
which is iteratively improved by the algorithm. By analogy,
in ESPRESSO-HF, the initial cover is provided by the set of
required cubes, Q. However, unlike ESPRESSO-II, our ini-
tial specification does not in general represent a solution:
though @ is a cover, it is not necessarily hazard-free. There-
fore, processing begins by expanding each required cube
into the uniquely defined minimum dhf-implicant contain-

x1 x2

xgk 00 0 1 10
\

1 /.1 |t
|
T
I
1
1

[
,'
oA T

/ \
1

o 1,,: 1.\ L
e St |
\\0]
1
ul 6’ A\ ,
o |
b

L 1=t 1 0

Fig. 3. Canonicalization Example

ing it. This expansion represents a canonicalization step,
transforming a potentially hazardous initial cover) into a
hazard-free initial cover Q.

Ezxample. Consider the function f in the Karnaugh map
of Figure 3. A set T of specified multiple-input transi-
tions is indicated by arrows. There are two 1 — 0 transi-
tions, each corresponding to a privileged cube: pl = T3
(start point plstare = T122T3T4) and p2 = x124 (start point
D2start = T1Z2T3x4). The initial cover is given by the set @
of required cubes: {T1T3T4, T122T3, T1T3, T1T3T4, T1T2Tyg,
XoT3T4, T2x3T4}. This cover is hazardous. In particular,
consider the required cube r = zsx3x4, corresponding to
the 1 — 1 transition from zjz2z32z4 = 0111 to 1111. Re-
quired cube r illegally intersects privileged cube p2, since
it intersects p2 but does not contain p2g4.¢. To avoid ille-
gal intersection, » must be expanded to the smallest cube
which also contains p2gqre: V) = supercube({r, p2start })-
However, this new cube r(!) = 2,24 now illegally intersects
privileged cube p1, since it does not contain plgsq+. There-
fore, cube () in turn must be expanded to the smallest
cube containing plsere: 72 = supercube({r(), plgiart}).
The resulting expanded cube, r® = z,, has no illegal in-
tersections and is therefore a dhf-implicant. O

In this example, 7(?) is a hazard-free expansion of r,
called a canonical required cube; it can therefore re-
place r in the initial cover. (Note that such a canonical-
ization is feasible if and only if the hazard-free covering
problem has a solution; see Section I11-J.)

It is easy to see that each required cube has a unique cor-
responding canonical required cube. Suppose there were
two distinct minimal dhf-implicants, ¢; and g3, which con-
tain some required cube r. In this case, we now show that
we can construct a dhf-implicant which is smaller than ei-
ther cube: the intersection of g1 and g2, q12 = ¢1 - ¢o.
Clearly, implicant ¢12 contains r. Furthermore, if g1o were
not a dhf-implicant, then it would intersect some privi-
leged cube p illegally, i.e. intersect p but not contain its
start point psiar:- However, this would mean that both
original implicants, ¢; and g3, intersected p, but at least
one of them (say ¢1) did not contain pgsier¢. As a result,
g1 would not be a dhf-implicant, since it would illegally
intersect p, thus contradicting our assumption. Therefore,
q12 is a dhf-implicant which contains r, and so ¢; and ¢»

supercubegp s (set of cubes

C={c1,.--,cn})
r = supercube({c1,...,cn})
while (r intersects some privileged cube p; illegally)
r = supercube({r,s;}) where s; is the start point of p;
if r intersects the OFF-set then return “undefined” else return r

Fig. 4. Supercubegpy computation

could not have been minimal. In sum, each required cube
has a unique corresponding canonical required cube, which
contains it.

Based on the above discussion, an initial set @ of re-
quired cubes is replaced by the corresponding set Qf of
canonical required cubes. This set is then minimized with
respect to single-cube containment. Q7 is a valid hazard-
free cover of the function to be minimized, and is used as
an initial cover for the minimization process. Interestingly,
Q7 has a second role as well: it is used to simplify the
covering problem. In particular, Qf defines a new covering
problem: each cube of Qf (not Q) must be contained in
some dhf-implicant. It is straightforward to show that the
two covering problems are equivalent, i.e. a dhf-implicant
p contains a required cube r in @Q if and only if p also con-
tains the corresponding canonical required cube of 7 in Q7.
To see this, suppose that p contained r but did not contain
the canonical required cube of r. In this case, p could not
be a dhf-implicant, since it must illegally intersect at least
one of those privileged cubes that caused r to be expanded
into its canonical required cube.

In the above example, any dhf-implicant which contains
required cube r = zox3x4 must also contain canonical re-
quired cube 7® = z,. Therefore, the hazard-free min-
imization problem is unchanged, but canonical required
cubes are used. An advantage of using Q' is that it may
have smaller size than @, i.e. being a more efficient rep-
resentation of the problem. Also, since the cubes in Qf
are in general larger than the corresponding ones in @), the
EXPAND operation may be sped up.

To conclude, the new set of canonical required cubes Qf
replaces the original set of required cubes @ as both (i)
the initial cover, and (ii) the set of objects to be covered.
Henceforth, the term “set of required cubes” will be used
to refer to set Q7.

We formalize the notion of canonicalization below.

Definition II1.1: The dhf-supercube of a set of cubes
C with respect to function f and transitions 7', indicated as
supercube(%’fT) (C), is the smallest dhf-implicant containing

the cubes of C.

The superscript (f,T) is omitted when it is clear from
the context. supercubeqns(C) is computed by the simple
algorithm shown in Figure 4.

The canonical required cube of a required cube r can
now be defined as the dhf-supercube of the set C' = {r}.
The computation of dhf-supercubes for larger sets will be
needed to implement some of the operators presented in
the sequel.

Expand_cube(cube a, req-set Q7 priv-set P, cover-set F, OFF-set R)

Fo=F—a
Qa:Qf
P, =P
R, =R

free_entries =complement_pos_cube_notation(a)
while (Fo # @)

update(a, free_entries, Fu, Qa, Pa, Ra)

o = {c € Fa|supercubegnf({a, c}) is defined }

Let ¢ be the best candidate in Fy

a = supercubegp s ({a, cp})

F, = single-cube-contain{ F, U{a}} — {a}
while (Qq # ©)

update(a, free_entries, Fa, Qa, Pa, Ra)

Qa = {q € Qa|supercubegns({a, q}) is defined }
Let ¢p be the best candidate in Qg

a = supercubegn f({a, qv})
Qo = single-cube-contain{Qq U {a}} — {a}

Fig. 5. Expand (for a cube a)

C. Ezpand

In EsPRESSO-II, the goal of EXPAND is to enlarge each
implicant of the current cover in turn into a prime impli-
cant. As an implicant is expanded, it may contain other
implicants of the cover which can be removed, hence the
cover cardinality is reduced. If the current implicant can-
not be expanded to contain another implicant completely,
then, as a secondary goal, the implicant is expanded to
overlap as many other implicants of the current cover as
possible.

In EsPrRESSO-HF', the primary goal is similar: to expand
a dhf-implicant of the current cover to contain as many
other dhf-implicants of the cover as possible. However, EX-
PAND in ESPRESSO-HF has two major differences. First,
unlike ESPRESSO-II, expansion in some literal (i.e., “rais-
ing of entries”) may ¢mply that other expansions be per-
formed. That is, raising of entries is now a binate prob-
lem, not a unate problem. In addition, ESPRESSO-HF’s
EXPAND uses a different strategy for its secondary goal.
By the Hazard-Free Covering Theorem, each required cube
needs to be contained in some cube of the cover. Therefore,
as a secondary goal, an implicant is expanded to contain
as many required cubes as possible.

We now describe the implementation of EXPAND in
EsPrESsO-HF. Pseudocode for the expansion of a single
cube is shown in Figure 5.

C.1 Determination of Essential Parts and Update of Local
Sets

As in ESPRESSO-II, free entries are maintained, to ac-
celerate the expansion [30]. Free entries indicate which
literals of an implicant are candidates for removal, during
the expansion process.

To explain this concept in a unified way, the current
implicant and its free entries are represented in positional
cube notation [30]. As an example, z1T3x4 is represented
in positional cube notation as 01 10 11 01, i.e. where literal
x;(Z7) is encoded as 01 (10). Thus, each literal in x17T3z4
has a corresponding 0 in the positional cube notation, and
changing, or raising, the 0 to 1 corresponds to removing

this literal from the implicant.

Initially, a free entry is assigned a 1 (0) if the current im-
plicant to be expanded, a, has a 0 (1) in the corresponding
position. For the above example, the free entries are: 10
01 00 10. An overexpanded cube is defined as the cube a
where all its free entries have been raised simultaneously.

As in [30], an essential part is one which can never,
or always, be raised. However, our definition of essential
parts is different from ESPRESSO-1I, since a hazard-free
cover must be maintained. We determine essential parts in
procedure update, described below.

First, we determine which entries can never be raised
and remove them from free_entries. This is achieved by
searching for any cube in the OFF-set R that has distance
1 from @, in this entry, using the same approach as in
Espresso-I1.

Next, we determine which parts can always be raised,
raise them and remove them from free_entries. This step
differs from EsSPRESSO-II. In ESPRESSO-II, a part can al-
ways be raised if it is 0 in all cubes of the OFF-set, R.
That is, it is guaranteed that the expanded cube will never
intersect the OFF-set. In contrast, in ESPRESsO-HF, we
must ensure that an implicant is also hazard-free: it can-
not intersect the OFF-set, nor can it illegally intersect a
privileged cube. Unlike ESPRESSO-II, this is achieved by
searching for any column that (i) has only Os in R and
(ii) where, for each privileged cube p in P having a 1 in
this a column, the corresponding start point pgstq.+ will be
contained by the expanded cube a.

Ezample. Figure 1(a) indicates the set of required cubes,
which forms an initial hazard-free cover. Consider the
cube zozzzy (11010101, in positional cube notation). As
in ESPRESSO-II, the O-entries for literals ZTo and T, can
never be raised, since the cube would intersect the OFF-
set. However, after updating the free entries, ESPRESSO-11
indicates that literal T3 can always be raised, since the re-
sulting cube will never intersect the OFF-set. In contrast,
in ESPRESSO-HF, raising T3 results in an illegal intersec-
tion with privileged cube T1Z3, so it cannot “always be
raised”. O

Since hazard-free minimization is somewhat more con-
strained, the expansion of a cube a can be accelerated by
the following new operations on 2 local sets: P,, R,. These
sets are associated with cube a, and P, (R,,) is initially as-
signed the set of privileged (OFF-set) cubes. Both sets are
updated as expansion proceeds (in procedure update). (1)
Remove privileged cubes from P, where the corresponding
start point is already covered by a (since no further check-
ing for illegal intersection is required). (2) Move privileged
cubes from set P, to the local OFF-set R, if the over-
expanded cube does not include the corresponding start
points (since a can never be expanded to include these start
points, therefore one must avoid intersection with these
privileged cubes entirely). (3) Move privileged cubes from
P, to the local OFF-set R, where supercubegps({a, start
point}) intersects the OFF-set (a can never be expanded
to include these start points, therefore one must avoid in-
tersection with the cubes entirely).

C.2 Detection of Feasibly Covered Cubes of F

In ESPRESSO-II, a cube in F' is expanded through a
supercube operation. A cube d in F is said to be feasi-
bly covered by a if supercube({a,d}) is an implicant. In
EsprESSO-HF, this definition needs to be modified to in-
sure hazard-free covering, after expansion of cube a.

Definition 111.2: A cube d in F is dhf-feasibly covered

by a if supercubeqnf({a,d}) is defined.
This definition insures that the resulting expanded cube,
supercubeqns({a,d}), is (i) an implicant (does not inter-
sect OFF-set), and (ii) is also a dhf-implicant (does not
intersect any privileged cube illegally). Effectively, this
definition canonicalizes the resulting supercube to produce
a dhf-implicant. That is, supercubeqns({a,d}) may prop-
erly contain supercube({a,d}), since the former may be ex-
panded through a series of implications in order to reach
the minimum dhf-implicant which contains both a and d.
Using this definition, the following is an algorithm to find
dhf-feasibly covered cubes of F'.

While there are cubes in F' that are dhf-feasibly covered
by cube a, iterate the following:

Replace a by supercubeqn ({a,d}), where d is a dhf-feasibly
covered cube such that the resulting cube will cover as
many cubes of the cover as possible. Covered cubes are
then removed, using the “single-cube-containment” opera-
tor, thus reducing the cover cardinality. Determine essen-
tial parts and update local sets (see above).

C.3 Detection of Feasibly Covered Cubes of Qf

Once cube a can no longer be feasibly expanded to cover

any other cube, d, of F', we still continue to expand it.
This is motivated by the Hazard-Free Covering Theorem,
which states that each required cube needs to be contained
in some cube of the cover. Therefore, as a secondary goal,
cube a is expanded to contain as many required cubes as
possible. The strategy used in this sub-step is similar to
the one used in the preceding one, i.e. while there are cubes
in Q' that are dhf-feasibly covered by cube a, iterate the
following;:
Replace a by supercubeqns({a,q}), where q is a dhf-feasibly
covered required cube such that the resulting cube will cover
as many required cubes not already contained in a as pos-
sible. Covered required cubes are then removed, using the
“single-cube-containment” operator. Determine essential
parts and update local sets (see above).

C.4 Constraints on Hazard-Free Expansion

In ESPRESSO-1I, an implicant is expanded until no fur-
ther expansion is possible, i.e. until the implicant is prime.
Two steps are used: (i) expansion to overlap a maximum
number of cubes still covered by the overexpanded cube;
and (ii) raising of entries to find the largest prime impli-
cant covering the cube.

In EsPrEsso-HF, however, we do not implement these
remaining EXPAND steps, based on the following obser-
vation. The result of our EXPAND steps (cf. III-C.2 and

x1x2
x3 A 00 01 11 10

au N o Y

011 o 141 0

N 1! 7 |

K T

| !]

1] I

o (@1 ! 1@l o !

— B A 7
REST
z z
o 0= 0 1

Fig. 6. Essential Example

ITI-C.3) guarantees that a dhf-implicant can never be fur-
ther expanded to contain additional required cubes. There-
fore, by the Hazard-Free Covering Theorem, no additional
objects (required cubes) can possibly be covered through
further expansion. In contrast, in ESPRESSO-II, expan-
sion steps (i) and (ii) may result in covering of additional
ON-set minterms. Because of this distinction, the benefit
of further expansion is mitigated. Therefore, in general,
our EXPAND algorithm makes no attempt to transform
dhf-implicants into dhf-prime implicants. However, since
expansion to dhf-primes is important for literal reduction
and testability, it is included as a final post-processing step:
MAKE_DHF_PRIME (see Figure 2).

D. Essentials

Essential prime implicants are prime implicants that
need to be included in any cover of prime implicants.
Therefore, it is desirable to identify them as soon as possi-
ble to make the resulting problem size smaller. On the one
hand, we know of no efficient solution for identifying the
essential dhf-primes using the unate recursion paradigm
of ESPRESSO-II. On the other hand, the hazard-free min-
imization problem is highly constrained by the notion of
covering of required cubes, allowing a powerful new method
to classify essentials as equivalence classes.

Ezample. Consider Figure 6. The required cube, r =
Tox3xy4, is covered by precisely two dhf-prime implicants:
pl = xox4 and p2 = x3x4, which cover no other required
cubes. Neither pl nor p2 is an essential dhf-prime, since r
is covered by both. And yet, clearly, either pl or p2 (not
both) must be included in any cover of dhf-primes. Also, if
we assume the standard cost function of cover cardinality,
pl and p2 are of equal cost. O

Definition II1.3: Two dhf-prime implicants are equiv-
alent if they cover the same set of required cubes. An
equivalence class of dhf-prime implicants is maximal if it
covers a set of required cubes which is not covered by any
other equivalence class. A maximal equivalence class of
dhf-prime implicants is essential if they cover at least one
required cube which is not covered by any other maximal
equivalence class.

In the above example, the set {zax4, z324} of dhf-primes
is an equivalence class, since both dhf-primes cover the
same set of required cubes {zaz3z4}. In fact, the class
is an essential equivalence class, since it is the only equiv-
alence class that covers the required cube zox3x4.

EspPRESSO-II computes essentials after an initial EX-
PAND and IRREDUNDANT. In contrast, ESPRESso-HF
computes essentials as part of a modified EXPAND-step.
The algorithm is outlined as follows:

The algorithm starts with the initial hazard-free cover,
Q7, of required cubes. To simplify the presentation, as-
sume that one seed cube is selected and expanded greedily,
using EXPAND, to a dhf-implicant p. This implicant is
characterized by the set, QP, of required cubes which it
contains. Dhf-implicant p thus corresponds to the equiv-
alence class of dhf-primes that cover Q. Since EXPAND
guarantees that p covers a maximal number of required
cubes, this equivalence class is also maximal. Moreover,
this class is an essential equivalence class if QP contains
some required cube, ¢f, which cannot be expanded into
any other maximal equivalence class.

To check if ¢/ can be expanded into a different max-
imal equivalence class, a simple pairwise check is used:
for each required cube sf not covered by p, determine if
supercubeqn ({q’, s'}) is feasible. If no such feasible ex-
pansion exists for ¢f, ¢/ is called a distinguished re-
quired cube, and therefore the equivalence class corre-
sponding to p is essential. Otherwise, the process is re-
peated for every required cube ¢f contained in QP. If
p corresponds to an essential equivalence class, then p is
removed from the cover. In addition, all required cubes
covered by p are removed, since it is ensured that they
will be covered. This step can result in “secondary essen-
tial” equivalence classes. In fact, due to the removal of
required cubes, more dhf-prime implicants become equiva-
lent to each other. As a consequence, further equivalence
classes may become essential.

The procedure iterates until all essentials are identified.

The above discussion seems to imply that the essentials
step is more or less quadratic in the number of required
cubes, i.e. very inefficient. However, by making use of
techniques similar to the ones described in the EXPAND
section I1I-C, e.g. by using an overexpanded cube, the num-
ber of necessary supercubegy, p-calls can be reduced dramat-
ically. Therefore, in practice, essentials can be identified
efficiently and the problem size is usually significantly re-
duced (see Section VT).

E. Reduce

The goal of the REDUCE operator is to set up a cover
that is likely to be made smaller by the following EXPAND
step. To achieve this goal, each cube c in a cover F' is max-
imally reduced in turn to a cube ¢, such that the resulting
set of cubes, {F — ¢} U ¢ is still a cover.

EspPrRESSO-II uses the unate recursive paradigm to maxi-
mally reduce each cube. Since ESPRESSO-HF is a required-
cube covering algorithm, there is no obvious way to use this
paradigm. Fortunately, the hazard-free problem is more

constrained, making it possible to use an efficient enumer-
ative approach based on required cubes.

Our REDUCE algorithm is as follows. The algorithm
reduces each cube c in the cover in order. In particular, a
cube cis reduced to the smallest dhf-implicant ¢ that covers
all required cubes that are uniquely covered by ¢ (i.e. con-

tained in no other cube of the cover F'). That is, if r1,...,7;
is the set of required cubes that are uniquely covered by c,
then c is replaced by é = supercubeqn¢({ri,...,m}).

Note that the outcome of this algorithm depends on the
order in which the cubes ¢ of the cover F are processed.
Suppose ¢; is reduced before ¢;, and that c¢; and ¢; cover
some required cube r but no other cube of F' covers r. If
c; is reduced to a cube ¢; that does not cover r, then c;
cannot be reduced to a cube that does not cover 7.

F. Irredundant

EspPRrRESSO-II uses the unate recursive paradigm to find
an irredundant cover. However, in our case, we cannot
employ the same algorithm, since a “redundant cover” (ac-
cording to covering of minterms) may in fact be irredun-
dant with respect to covering of required cubes.

Therefore, as in REDUCE;, our approach is required-cube
based. Considering the Hazard-Free Covering Theorem, it
is straightforward that IRREDUNDANT can be reduced to
a covering problem of the cubes in Qf by the cubes in F.
That is, the problem reduces to a minimum-covering prob-
lem of (i) required cubes, using (ii) dhf-implicants in the
current cover. In practice, the number of required cubes
and cover cubes usually make the covering problem man-
ageable. ESPRESSO-II’s MINCOV can be used to solve this
covering problem exactly, or heuristically (using its heuris-
tic option).

G. Last Gasp

The inner loop of ESPRESSO-HF may lead to a subopti-
mal local minimum. The goal of LAST_GASP is to use a
different approach to attempt to reduce the cover size. In
EsPrESSO-II, each cube ¢ € F' is independently reduced
to the smallest cube containing all minterms not covered
by any other cube of F'. In contrast, ESPRESSO-HF com-
putes, for each ¢ € F', the smallest dhf-implicant containing
all required cubes that are not covered by any other cube
in F.

As in ESPRESSO-II, cubes that can actually be reduced
by this process are added to an initially empty set G. Each
such g € G is then expanded in turn with the goal to cover
at least one other cube of G, using the supercubegn¢ op-
erator, and, if achieved, the expanded cube is added to F.
Finally, the IRREDUNDANT operator is applied to F’ with
the hope to escape the above-mentioned local minimum.

H. Make-dhf-prime

The cover being constructed so far does not necessarily
consist of dhf-primes. It is usually desirable to expand each
dhf-implicant of the cover to make it dhf-prime as a last
step. This can be achieved by a modified EXPAND step.

A simple greedy algorithm will expand an implicant ¢ to a
dhf-prime: While dhf-feasible, raise a single entry of c.

I. Pre- and postprocessing steps

EsprESSO-HF includes optional pre- and postprocess-
ing steps. In particular, the efficiency of ESPRESSO-HF
depends very much on the size of the ON-set and OFF-set
covers that are given to it. Thus, ESPRESSO-HF' includes
an optional preprocessing step which uses ESPRESsO-II to
find covers of smaller size for the initial ON-set and OFF-
set °. EsPRESsO-HF also includes a postprocessing step to
reduce the literal count of a cover, similar to ESPRESSO-11"s
MAKE_SPARSE.

J. FExistence of a hazard-free solution

As indicated earlier, for certain Boolean functions and
sets of transitions, no hazard-free cover exists [29]. The cur-
rently used exact hazard-free minimization method HFMIN
is only able to decide if a hazard-free solution exists after
generating all dhf-prime implicants. A hazard-free solution
does not exist if and only if the dhf-prime implicant table
includes at least one required cube not covered by any dhf-
prime implicant. However, since the generation of all dhf-
primes may very well be infeasible © for even medium-sized
examples, it is important to find an alternative approach.

We now introduce a new theorem to check for the exis-
tence of a hazard-free solution, without the need to gener-
ate all dhf-prime implicants. This theorem leads directly
to a fast and simple algorithm that is incorporated into
Espresso-HF.

Theorem II1.4: Given a function f and a set, T, of spec-
ified function-hazard-free input transitions of f, a solution
of the two-level hazard-free logic minimization problem ex-
ists if and only if supercubeqns(q) is defined for each re-
quired cube gq.

The proof is immediate from the discussion in Section III-
B.

Ezample. Consider the Boolean function in Figure 7,
with four specified input transitions. To check for existence
of a hazard-free solution, we compute supercubeqn¢(q)
for each required cube ¢. Except for xizsx4, it holds
that ¢ = supercubeqns(q) since no privileged cube is
intersected illegally. To compute supercubegps(xi1z224),
note that privileged cube z3 is intersected illegally,
i.e. supercubeqns(xixaws) = supercubeqns(xaxs). Since
Toxy now intersects privileged cube T;T3, we get
supercubeqp f(x12224) = supercubeg f(x2) leading directly
to the fact that supercubegnf(z1z2z4) does not exist be-
cause x intersects the OFF-set. Thus, a hazard-free cover
does not exist for this example. O

50N-set and OFF-set are necessary to form the initial set of re-
quired cubes, Q. More importantly, the OFF-set is used to check if
a cube expansion is valid, see Figure 4.

6This refers to “explicit representations”; we will show later that
“implicit representations” very often are feasible.

10

x1x2
X3 x4 00 o1 11 10

AT T ST T
el (T VR I 11
' il 1
T T
| 1! I
o1 | / 1! \. I
| 0 1 | 1 1
e __ e B O T 1
ulaT i
I 1e\ 1 0
! |
; T
]

I
0 1 1 0o ™o/
\\‘__ ____________ 7

Fig. 7. Existence Example

IV. A NOVEL APPROACH TO INCORPORATING
HAZARD-FREEDOM CONSTRAINTS WITHIN A
SYNCHRONOUS FUNCTION

After having discussed the heuristic hazard-free mini-
mization problem in the previous section, we will now shift
our discussion to the exact hazard-free minimization prob-
lem.

We begin by presenting, in this section, a novel technique
which recasts the dhf-prime implicant generation problem
into a prime generation problem for a new synchronous
function, with extra inputs. Based on this approach, we
present a new implicit method for exact 2-level hazard-free
logic minimization in Section V.

A. Overview and Intuition

We first give a simple overview of our entire method. De-
tails and formal definitions are provided in the remaining
sections. Our approach is to recast the generation of dhf-
prime implicants of an asynchronous function (f,7') into
the generation of prime implicants of a synchronous func-
tion g. Here, hazard-freedom constraints are incorporated
into the function g by adding extra inputs. (The exact def-
inition of g is given in IV-B.) An overview of the method
is best illustrated by a simple example.

Ezxample. Consider Figure 8. The Karnaugh map in
part A represents a function (f,T) defined over the set of
3 variables {z1,z2,23}. The shaded area corresponds to
the only non-trivial privileged cube of f (the second priv-
ileged cube [101,100] is trivial, cf. Section II-F). We now
define a new synchronous function g, shown in part B. g is
obtained from f by adding a single new variable z;. That
is, g is defined over 4 variables: {z1,x2, x3,21}. In general,
to generate g, one new z-variable is added for each non-
trivial privileged cube. Next, the prime implicants of the
synchronous function g are computed (shown in part B as
ovals). Finally, we use a simple filtering procedure to filter
out those prime implicants that correspond to those in f
which intersect the privileged cube illegally. The remain-
ing prime implicants of g are shown in part C. We then
“delete” the zi-dimension from the prime implicants, and
obtain the entire set of dhf-prime implicants of (f,T) (part
D). O

x1 x1
x2x3 0 1 X2 X3 0 1
00 0 e1t= 0 00 0ot 0
? A ? A
Y {]
o1 0 1 01 0

&7

~ \\
u| [/ Y 1)
\]
10| \1 0, |\ 1 0
N 7
-l

1 10

o1

9 [
1 E : 0 0 1)
t
10 \i/ 0 I 0 o 10 0
|
|
I

Fig. 8. Example for recasting prime generation. A) shows the func-
tion (f,T) whose dhf-primes are to be computed. B) shows the
auxiliary synchronous function g and its primes. C) shows primes
of g that do not intersect illegally. D) shows the final dhf-primes
of f, after deleting the z; variable.

o -te o
(=}
N
Q
5
o -l-e o
o

Our approach is motivated by the fact that dhf-prime-
implicants are more constrained than prime implicants of
the same function. While prime implicants are maxi-
mal implicants that do not intersect the OFF-set of the
given function, dhf-prime-implicants, in addition, must also
not intersect privileged cubes illegally. This means that
there are two different kinds of constraints for dhf-prime-
implicants: “maximality” constraints and “avoidance of il-
legal intersections” constraints. Our idea is to unify these
two types of constraints, i.e. to transform the avoidance
constraints into maximality constraints so that dhf-primes
can be generated in a uniform way. Intuitively, this uni-
fication can be achieved by adding auxiliary variables, i.e.
by lifting the problem into a higher-dimensional Boolean
space.

In summary, the big picture is as follows. The defini-
tion of g ensures that all dhf-prime implicants of f (dhf-
Prime(f,T)) can be easily obtained from the set of prime
implicants of g (Prime(g)). While Prime(g) may also in-
clude certain products which are non-hazard-free, these are
filtered out easily, using a post-processing step.

B. The auxiliary synchronous function g

We now explain how the synchronous function g is de-
rived. For simplicity, assume for now that f is a single-
output function.

Suppose f is defined over the set of wvariables
{z1,...,zn}, and that the set of transitions T gives rise
to the set of non-trivial privileged cubes PRIV (f,T) =
{p1,...,m}. The idea is to define a function g over

{z1,...,@n, 21,...21}; that is, one new wvariable is added
per privileged cube. Formally, g is defined as follows:

g(xla"'axnazla"'azl):f' H (Z_l""le)
1<i<l

Function g is the product of f and some function which
depends on the new inputs. The intuition behind the def-
inition of ¢ is that, in the z; = 0 half of the domain, ¢ is
defined as f, while in the z; = 1 half of the domain, g is
defined as f but with the i-th privileged cube p; “filled in”
with all 0’s (i.e., p; is “masked out”).

Ezxample. As an example, Figure 8A shows a Boolean
function (f,T) with privileged cube z2 (highlighted in
gray). Figure 2B shows the corresponding new function
g, with added variable z;. In the z; = 0 half, function g
is identical to f. In the z; = 1 half, g is identical to f
except that g is 0 throughout the entire cube z;x9, which
corresponds to the privileged cube in the original function
f. In particular, function g is defined as g = f - (zZ1 + P1),
where p; = z5. O

C. Prime tmplicants of function g

To understand the role of function g, we consider its
prime implicants Prime(g).

We start by considering a function (f,7") that has only
one privileged cube p;. Let ¢ be any implicant of the func-
tion g that is contained in the z; = 0 plane of g. Since
the z; = 0 plane is defined as f, g also corresponds to an
implicant of f. Now, consider the expansion of ¢ into the
z1 = 1 plane of function g. There are 2 possibilities: either
(i) ¢ can expand into z; = 1 plane, or (ii) ¢ cannot expand
into the z; = 1 plane. In case (i), expansion of ¢ into the
z1 = 1 plane means that g is identical to f in the expanded
region. Therefore, ¢ does not intersect privileged cube p; in
the original function f (if it did, g would have all 0’s in p;
in the z; = 1 plane, and expansion would be impossible).
In case (ii), expansion into the z; = 1 plane is impossible.
In this case, ¢ must intersect p; in function f (g has all 0’s
in py).

In summary, ¢ may or may not be able to expand from
z1 = 0 into z; = 1 planes. Expansion can occur precisely if
q does not intersect the privileged cube p; in the original
function, since function g is identically defined as f in both
planes “outside” the privileged cube. Expansion cannot
occur if ¢ intersects the privileged cube p1, because in the
z1 = 1 plane, the privileged cube is filled in entirely with
0’s.

Ezample. Consider the minterm ¢ = Ziz1T2z3 of g in
Figure 8B, which corresponds to the minterm z,Z3x3 of f.
q can be expanded into the z; = 1 plane into the prime
implicant of g: z1T2x3 (shaded oval). Intuitively, the ex-
pansion is possible since ¢; does not intersect the privileged
cube, i.e. the cube Zixs, which corresponds to the privi-
leged cube x5 of the original function f. However, the
implicant g2 = Zyz123 (oval with thick dark border) of g
cannot be expanded into the z; = 1 plane: it intersects the
privileged cube, and therefore the corresponding region in

11

the z; = 1 plane is filled with 0’s. Note that prime gener-
ation is an expansion process until no further expansion is
possible. O

Let us now consider the general case, i.e. where (f,T)
may have more than one privileged cube. We show that
the support variables of each prime of g precisely define
which privileged cubes are intersected by the corresponding
implicant in f.

Let ¢ be any prime implicant of g:

q:xil"'xiﬁzjl"'zj*

l

Here, z;, is a positive or negative z-literal 7. However, Zj
can only be a negative z-literal. The reason is that g is a
negative unate function in z-variables (by the definition of
g), and therefore prime implicants of g will never include
positive z-literals. We indicate by ¢” the restriction of g
to the z-literals, i.e. ¢ = x;, ---x;,. Note that ¢* is an
implicant of f by the definition of g.

We show that the presence, or absence, of Z; literals in
prime implicant ¢, indicates which privileged cubes are in-
tersected by ¢”. If q includes literal Z;, then ¢ intersects
privileged cube p; in function f. To see this, note that since
q is prime, clearly ¢ cannot be expanded into the z; = 1
plane. As a result, as explained above, ¢* must intersect
privileged cube p; in the original function f. On the other
hand, if ¢ does not include Z;, then ¢” does not intersect
p;. Intuitively, the primes, Prime(g), are maximal in two
senses: they are maximally expanded in f, or maximally
non-intersecting of privileged cubes, in some combination,
which is explicitly indicated by the set of support of the
primes.

In sum, the key observation is that the set of support of
a prime implicant q of g immediately indicates which privi-
leged cubes are intersected by the corresponding implicant
q” in f. This observation will be critical in obtaining the
final set of dhf-prime implicants of f, dhf-Prime(f,T).

D. Transforming Prime(qg) into dhf-Prime(f,T)

Once Prime(g) is computed, dhf-Prime(f,T) can be
directly computed. The key insight for this computation
is that the prime implicants of Prime(g) fall into 3 classes
with respect to a specific privileged cube p;. Each prime
q is distinguished based on if and how it intersects the
privileged cube p; in f, i.e. based on the intersection of ¢”
with p;:

e Class 1: Prime implicants ¢ that do not intersect the
privileged cube, i.e. ¢* does not intersect p;.

e Class 2: Prime implicants ¢ that intersect the privileged
cube legally, i.e. ¢" intersects p; and contains its start
point.

e Class 3: Prime implicants ¢ that intersect the privileged
cube illegally, i.e. ¢” intersects p; but does not contain the
start point.

Prime implicants ¢ that fall into Classes 2 and 3 (i.e. ¢*
intersects some privileged cube) can be immediately iden-
tified by the observation of the previous subsection. Those

"Note that ¢ may not depend on all of the x-variables.

12

which fall into Class 3 can then be identified, and removed,
using a simple containment check (i.e. determine if ¢* con-
tains the start point of each intersected privileged cube).

The set dhf-Prime(f,T) can therefore be computed as
follows. Start with Prime(g). Filter out all prime impli-
cants that fall in Class 3 with respect to the first privileged
cube. Then, filter out all prime implicants that fall in Class
3 with respect to the second privileged cube, and so on. Fi-
nally, we obtain a set such that each of its elements is a
valid dhf-implicant of (f,T') if restricted to the z-variables.
The reason is that, first, all primes of g are implicants of f if
restricted to z-variables, and second, the filtering removed
any element that intersected any privileged cube illegally.
Therefore, the set only includes dhf-implicants. In fact, it
also contains all dhf-prime-implicants of (f,7). This will
be proved in the next subsection.

Ezample. Figure 8B shows function ¢ and its prime
implicants, Pmme(g) = {le_2I3, z_lxlccg, Z_ll‘g.’Eg, ElTlIQ}.
Part C shows the result of filtering out primes that illegally
intersect regions corresponding to privileged cubes in f. In
this case, Ziz1xz (oval with thick dark border) falls into
Class 3 with respect to pp: it is deleted since it has a z1-
literal, i.e. intersects the region corresponding to privileged
cube p; and, in addition, does not contain the start point
Z1ZT172x3. However, z1T2x3 (shaded oval) falls into Class
1: it is not deleted since it does not have a zi-literal and
therefore does not intersect the region corresponding to the
privileged cube p;. The remaining two primes Zyxoxrs and
Z1ZT1x2 fall into Class 2: they intersect the region corre-
sponding to p; and also contain the start point. Part D
shows the result of step 3 which deletes the z-literals in
each cube. We obtain {z1Z3z3, zox3, Tixe }, which is dhf-
Prime(f,T). Note that the introduction of the z;-variable
ensures that the dhf-implicant of f, z1T2z3, which is not
a prime implicant of f, since it is contained by the prime
implicant, x1x3, is nevertheless generated. O

E. Formal characterization of dhf-Prime(f,T) in terms of
function g

In this subsection, based on above discussion, we present
the main result of this section: a new formal charac-
terization of dhf-Prime(f,T). We use the following
notations. ¢,, and gz denote the positive and nega-
tive cofactors of ¢ with respect to variable z;, respec-
tively. RemZ denotes an operator on a set of cubes
which removes all z-literals of each cube. As an example,
RemZ ({x17221, 117372, T1732123}) = {7172, 7173}.8 The
SCC-operator on a set of cubes (single-cube-containment)
removes those cubes contained in other cubes.

Theorem 1V.1: Given (f,T). Let PRIV (f,T)
{p1,...,p1} be the set of non-trivial privileged cubes ?, and
START(f,T) = {s1,--.,s1} be the set of corresponding
start points. Define

8RemZ can formally be expressed by existential
quantification =~ over z-variables, i.e. RemZ(P) =
{ze{r1,T1,22, T2, ., o, Tn}" |2 €{21, %1, 22,22, 21, 21} 102 € P}

91In the theorem, P; denotes the complement function of p;. Exam-
ple: p1 = x122%4. Then, Py = x122T4 =7T1 + T2 + 4.

g(X1y ey Ty 21y ey 21)

Then the set dhf-Prime(f,T) can be expressed as follows:

SCC’(

Intuition: RemZ (Prime(g,,)) includes implicants
of f that do not intersect the privileged cube p;.
{qg € RemZ (Prime (gz;)) |¢ 2 s;} includes implicants of f
that legally intersect p;, i.e. contain the corresponding
start point s;. The [ensures that only those implicants
remain that are legal with respect to all privileged cubes,
i.e. that are dhf-implicants. The SCC removes implicants
contained in other implicants to yield the final set of dhf-
prime-implicants.

Proof: “C” (any product in dhf—Prime(f,T) is also
contained in (1)):
Let ¢ € dhf-Prime(f,T), then ¢ does not intersect any
privileged cube illegally, i.e. for each privileged cube it
holds that ¢ either contains the corresponding start point
or does not intersect the privileged cube at all.

Suppose ¢ intersects legally pi1,...,p;, and g does not
intersect p;, ;,...,pi - i.e. ¢ is an implicant of Diy1s--- Dl
-, then ¢z1 -+ -Z; is an implicant of g.

qz1-- -7 is a prime implicant of g because:

(i) Removing (any) Z; results in a cube which is not an
implicant of Z; + p;, and hence not an implicant of g.

(i) Removing (any) positive or negative z; literal (of q)
results in a cube such that its restriction to the z-literals,
(new 1s not a dhf-prime implicant. Thus gne. either inter-
sects the OFF-set of f, or intersects for some 7 privileged
cube p;, i € {l+1,...,1} and is therefore no longer an
implicant of Z; +P;. In either case gnew is not an implicant
of g.

Thus, for each 4, ¢ is by construction in at least one of
RemZ (Prime(gs,)) or {qg € RemZ (Prime (9z)) |¢ 2 si}).
Therefore, g is contained in the intersection of those [sets.
Also, g cannot be filtered out by the SCC-operator since by
construction all cubes contained in (1) are dhf-implicants.
Thus, ¢ is contained in (1).

“D” (any product contained in (1) is also contained in
dhf-Prime(f)):

Let ¢ ¢ dhf-Prime(f,T). We show that ¢ is not contained
in (1).

Case (i): ¢ is a dhf-implicant that is strictly contained in
some dhf-prime implicant. Then g is filtered out because
of the SCC-operator and therefore not contained in (1).

Case (ii): ¢ is not a dhf-implicant. By construction all
cubes contained in (1) are dhf-implicants: the intersection
ensures that each cube is valid with respect to all privileged
cubes, i.e. the cube either does not intersect or contains
the startpoint. Thus, ¢ cannot be contained in (1). [|

N

1<i<l

{ RemZ (Prime (gs,))

U{q € RemZ (Prime(gz)) |q¢ 2 si}} (1)

F. Multi-output Case

For simplicity of presentation only, it was assumed that
f is asingle-output function. However, it is well-known [34]
that multi-output logic minimization can be reduced to
single-output minimization. Based on this theorem, the
above characterization carries over in a straightforward way
to multi-output functions. All examples given later in the
experimental results section are multi-output functions.

V. EXACT HAZARD-FREE MINIMIZATION: IMPYMIN

Based on the ideas of the previous section, we are now
able to present a new exact implicit minimization algorithm
for multi-output 2-level hazard-free logic.

A. Implicit 2-Level Logic Minimization: SCHERZO

We first briefly review the state-of-the-art synchronous
exact two-level logic minimization algorithm, called
SCHERZzO [8], which forms a basis of our new hazard-free
implicit minimization method.

SCHERZO has two significant differences from classic min-

imization algorithms like the well-known Quine-McCluskey
algorithm:
o SCHERZO uses data structures like BDDs [3] and ZB-
DDs [21] to represent Boolean functions and sets of prod-
ucts very efficiently. Thus, the complexity of the minimiza-
tion problem is shifted, and the cost of the cyclic core com-
putation !° is now independent of the number of products
(e.g. the number of prime implicants) that are manipulated.
e SCHERZO includes new algorithms that operate on these
data structures. The motivation is that the logic minimiza-
tion problem can be considered as a set covering problem
over a lattice. More specifically, both the covering objects,
P, and the objects-to-be-covered, (), are subsets of the lat-
tice P of all Boolean products (over the set of literals).
A new cyclic core computation algorithm uses then two
endomorphisms 7p and 7g, which operate on @ and P re-
spectively, to capture dominance relations and to compute
the fixpoint C, which can be shown to be isomorphic to the
cyclic core.

Algorithm: SCHERZO
Input: Boolean function f.
Output: All minimum 2-level

implementations of f.

1. Compute the ZBDD PU"*) of Prime(f) (the set of all
prime implicants of f, or covering objects). Here, f is given
as a BDD.

2. Compute the ZBDD QU™ of the set of ON-set
minterms of f, (i.e., the objects to be covered).

3. Solve the implicit set covering problem

(QUnit) p(init) C) (Note that “C” replaces “€”, usually
used to describe the relation between the two sorts of ob-
jects of a covering problem, since our set covering problem
is considered over a lattice, as explained above.)

10A set covering problem can be reduced in size by repeated elim-
ination of essential elements and application of dominance relations.
The remaining set covering problem (if any) is called the cyclic core.

13

B. Implicit 2-Level Hazard-fee Logic Minimization:
IMPYMIN

Nowick/Dill reduced 2-level hazard-free logic minimiza-
tion to a unate covering problem (see Section II) where
each required cube must be covered by at least one dhf-
prime implicant. As with synchronous logic minimization
in SCHERZO, hazard-free logic minimization can also be
considered over the lattice of the set of products (over the
set of literals). The major difference from synchronous two-
level logic minimization is the setting up of the covering
problem. In particular, a method is needed that computes
the set dhf-Prime(f,T) efficiently, preferably in an implicit
manner. To do so, we use the new characterization of dhf-
Prime(f,T) of Section IV. Our algorithm is as follows.

Algorithm: IMPYMIN
Input: Boolean function f,

set of input transitions 7.
Output: All minimum hazard-free 2-level

implementations of (f,T).

1. Compute the ZBDD P of dhf-Prime(f,T).

2. Compute the ZBDD QU™ of REQ(f,T) (set of re-
quired cubes of (f,T)).

3. Solve the implicit unate set covering problem

<Q(init)7 P(init), g>

We now explain each of the steps in detail.

B.1 Computation of the ZBDD of dhf-Prime(f,T)

Suppose that f is given as a BDD (if f is given as a set
of cubes, we first compute its BDD). From the BDD repre-
senting f, we can easily compute a BDD for the auxiliary
synchronous function g, and then the ZBDD of Prime(g)
using an existing recursive algorithm [8]. From the ZBDD
of Prime(g), we can then compute the final ZBDD of dh f-
Prime(f,T) using Theorem IV.1. Tt remains to show that
the necessary operations, Prime(g,,), Prime(gz), RemZ,
and SCC, for these steps, can be implemented efficiently
on ZBDDs:

o Computing Prime(g,,): Assuming that positive and neg-
ative literal nodes of the same variable are always adja-
cent in the ZBDD, we only need to traverse the ZBDD of
Prime(g). We replace each node labeled with a z; vari-
able by the result of the following operation. We compute
the set union of the two successors corresponding to those
products that include positive literal z; and to those prod-
ucts that do not depend on z;. The resulting ZBDD may
actually include non-primes, i.e. cubes contained in other
cubes. However, these cubes are filtered out by SCC (see
below).

o Computing the ZBDD of Prime(gz;): Analogously.

o Computing the ZBDD of RemZ: RemZ deletes all z-
literals in the ZBDD. We traverse the ZBDD, and at each
zi- or Z;-literal, we replace the corresponding node with the
ZBDD corresponding to the union of the two successors.

e SCC (Single-Cube Containment): The last task, the ap-
plication of the SC'C-operator, which removes cubes con-
tained in other cubes, is actually not performed in this step,
since it is automatically handled in Step 3 of the algorithm.

14

To summarize, based on Theorem IV.1 we can compute
the covering objects, dh f-Prime(f,T), in an implicit man-
ner.

B.2 Computation of the ZBDD of REQ(f,T)

From the set of input transitions, T', the set of required
cubes can easily be computed (see [29]). This set can then
be stored as a ZBDD.

B.3 Solving the Implicit Covering Problem

The implicit set covering problem (Q(®), P(init) C) can
be solved analogously to Step 3 of SCHERZO, i.e. passed
directly to the unate set covering solver of SCHERZO.

C. A Note on the Efficiency of IMPYMIN

IMPYMIN appends z-variables in dhf-prime generation
during the construction of the synchronous function g. It
is worth pointing out that the algorithm does not become
unattractive even in cases where many z-variables are nec-
essary. Such cases typically arise when there are many
dynamic transitions, and hence many privileged cubes. In
practice, the addition of many z-variables does not neces-
sarily imply that the BDD for g will be much larger than
the BDD for f (see Subsection VI-D).

Experimental results also indicate that IMPYMIN has sig-
nificantly better runtime than existing asynchronous meth-
ods on large examples. It also performs hazard-free logic
minimization nearly as efficiently as synchronous logic min-
imization for many examples. One reason is that the new
characterization of the set of dhf-prime implicants, pre-
sented in Section IV, makes it possible to use state-of-the-
art synchronous techniques for implicit prime generation
and implicit set covering solving (see Subsection VI-D for
a detailed discussion).

VI. EXPERIMENTAL RESULTS AND COMPARISON WITH
RELATED WORK

Prototype versions of our two new minimizers ESPRESSO-
HF!! and IMPYMIN were run on several well-known bench-
mark circuits [12], [37] on an ULTRA-SPARC 140 work-
station (Memory: 89 MB real/ 230 MB virtual).

A. Comparison of exact minimizers: IMPYMIN vs. HFMIN

The table in Figure 9 compares our new exact minimizer
IMPYMIN with the currently fastest available exact mini-
mizer, HFMIN, by Fuhrer et al. [12].

For smaller problems, HFMIN is faster. It should be
noted, though, that our implementation is not yet op-
timized '2. However, the bottleneck of HFMIN becomes

11Our implementation is not a simple modification of the ESPRESSO-
11 code. We do not re-use any ESPRESSO-11 code. The reason is that
while we use the same set of main operators - EXPAND, REDUCE,
IRREDUNDANT - the algorithms that implement these operators,
as explained in detail in Section 3, are actually very different from
Espresso-11.

120ur BDD package is still very inefficient. In particular, it includes
a static (i.e. not a dynamic) hashtable. The hashtable for small exam-
ples is unnecessarily large. In fact, the run-time is completely dom-
inated by initializing the hashtables. If we use an appropriate-sized

HrMIN [FLN] | IMPYMIN

name 1/0 #c time(s) time(s)
cache-ctrl | 20/23 97 impossible 301
dram-ctrl 9/8 22 1 13
pe-send-ifc | 12/10 27 9 16
pscsi-ircv 8/7 12 1 10
pscsi-isend | 11/10 23 3 15
pscsi-pscsi | 16/11 7 1656 105
pscsi-tsend | 11/10 22 3 13
pscsi-tsend-bm | 11/11 23 3 13
sd-control | 18/22 34 172 52
sscsi-isend-bm | 10/9 22 1 11
sscsi-trcv-bm | 10/9 24 1 13
sscsi-tsend-bm | 11/10 20 2 13
stetson-pl | 32/33 60 > 72000 813
stetson-p2 | 18/22 37 151 49
stetson-p3 6/4 7 1 8

Fig. 9. Comparison of exact hazard-free minimizers (#c - number of
cubes in minimum solution, time - run-time in seconds)

clearly visible already for medium-sized examples. For sd-
control and stetson-p2, IMPYMIN is more than three times
faster; for the benchmark pscsi-pscsi more than fifteen
times.

For very large examples, IMPYMIN outperforms HFMIN
by a large factor. While HFMIN cannot solve stetson-pl
within 20 hours, IMPYMIN can solve it in just 813 seconds.
The superiority of implicit techniques becomes very appar-
ent for the benchmark cache-ctrl. While HFMIN gives up
(after many minutes of run-time) because the 230MB of
virtual memory are exceeded, our method can minimize
the benchmark in just 301 seconds.

B. Comparison of our new methods: IMPYMIN ws.

ESPRESSO-HF

Figure 10 compares our two new minimizers ESPRESSO-
HF and IMPYMIN. Besides run-time and size of solu-
tion, the table also reports the number of essentials (for
EsPrESsO-HF) and the number of variables that need to
be added (for IMPYMIN).

The two minimizers are somewhat orthogonal.

On the one hand, IMPYMIN computes a cover of mini-
mum size, whereas ESPRESSO-HF is not guaranteed to find
a minimum cover, but typically does find a cover of very
good quality. In particular, ESPRESSO-HF finds always a
cover that is at most 3% larger than the minimum cover
size. It is worth pointing out that many examples were
very positively influenced by our new notion of essentials.
Quite a few examples can be minimized by just the es-
sentials step, resulting in a guaranteed minimum solution;
e.g. dram-ctrl and pe-send-ifc.

On the other hand, ESPRESSO-HF is typically faster
than IMPYMIN. However, since neither tool has been
highly optimized for speed, we think it is very impor-
tant to analyze the intrinsic advantages and disadvantages
of the two methods. Intuitively, both methods overcome
the three bottlenecks of HFMIN—prime implicant genera-
tion, transformation of prime implicants to dhf-prime im-

hashtable for smaller examples, experiments indicate that IMPYMIN
can solve the small examples as fast as HFMIN.

plicants, and solution of the covering problem—each of
which being solved by an algorithm with exponential worst-
case behavior. However, the way in which ESPRESSO-HF
and IMPYMIN overcome these bottlenecks is very different.
Whereas IMPYMIN uses implicit data structures (but still
follows some of the same basic steps as HFMIN), ESPRESSO-
HF follows a very different approach. Thus, the two meth-
ods are orthogonal in their approach to overcome these
bottlenecks. Moreover, while ESPRESSO-HF is faster than
IMPYMIN on all of our examples, this does not mean that
this is necessarily true for other examples.

In this context, it is important to note that very often the
role data structures like BDDs play in obtaining efficient
implementations of CAD algorithms is misunderstood. Us-
ing BDDs, many CAD problems can now be solved much
faster than before the inception of BDDs. However, the
naive approach of taking an existing CAD algorithm and
augmenting it with BDDs does not necessarily lead to a
good tool (see discussion in [8]). In particular, it is not
easily possible to simply augment ESPRESSO-HF or HFMIN
with BDDs to obtain a high-quality tool. Instead, a new
theoretical formulation was needed on the characterization
of dhf-prime implicants (cf. Section TV-E), on which the
new exact implicit minimizer could be based.

C. Comparison with Rutten’s Work

An interesting alternative approach to our new charac-
terization of dhf-prime implicants (cf. Section IV-E) was
recently proposed by Rutten et al. [33], [32], as part of
an exact hazard-free minimization algorithm. His new al-
gorithm to computing dhf-prime implicants is very differ-
ent from ours. His approach follows a divide-and-conquer
paradigm. In particular, the dhf-prime generation problem
is split into three sub-problems with respect to a splitting
variable. The first (second, third) sub-problem generates
those dhf-prime implicants that have a positive literal (neg-
ative literal, don’t care-literal) for the splitting variable.
The underlying idea why this approach may be efficient
is that it allows to determine illegal intersections of privi-
leged cubes already during the splitting phase (see [33] for
details), which can significantly reduce the recursion tree
and lead fast to terminal cases. In the merging phase of
the divide-and-conquer approach, the solutions to the sub-
problems are then combined.

However, it is worth pointing out that a major difference
of our work to Rutten’s work is that his approach is not
based on implicit representations, while ours is. Further-
more, while Rutten’s work is promising, it has not been
fully evaluated so far. In particular, he only presented run-
times for functions that are significantly smaller than those
that can be handled by our two new methods. To be pre-
cise, on the examples he reports, his own re-implementation
of the existing HFMIN tool never takes more than a few
seconds. Thus, Rutten evaluates his approach (and admit-
tedly shows improvement) only on examples that can al-
ready easily be solved by existing algorithms. In contrast,
as shown in the previous subsection, our new methods are
more powerful, since they can solve examples efficiently

15

that cannot be solved by HFMIN within several hours of
run-time.

D. Comparison of synchronous wvs.
mization

asynchronous mini-

We now compare our two new tools for 2-level hazard-
free minimization, ESPRESSO-HF and IMPYMIN, with the
two corresponding state-of-the-art tools for 2-level non-
hazard-free minimization, ESPRESSO-II and SCHERZO.
The table in Figure 10 compares both run-time and car-
dinality of solution for all four minimizers. In addition,
the table indicates the number of identified essentials for
the two heuristic minimizers, ESPRESSO-II and ESPRESSO-
HF. Finally, for IMPYMIN, it reports the number of added
variables and their impact on BDD size.

The run-time comparison indicates that, although our
tools are not implemented as efficiently as their syn-
chronous counterparts, they are comparably fast. Inter-
estingly, our tools are actually faster than the synchronous
tools for the two largest examples, cache-ctrl and stetson-
pl. For our set of benchmarks, this seems to indicate that
the more constrained asynchronous problem, which is to
minimize a function f without hazards for a set of transi-
tions T', may be easier than the corresponding synchronous
problem, which is to minimize the same function f with-
out any specified input transitions and without hazard-free
constraints.

The comparison in terms of cardinality of solution indi-
cates an increase in the asynchronous case compared with
the synchronous case. In an earlier comparison [29], it was
observed that the logic overhead for the asynchronous case
was never greater than 6%. In contrast, in our table, there
is a large variation in overhead, ranging from 0% (stetson-
p8) to 60% (ssci-trcv-bm). The increase in overhead is due
to the fact that we report on significantly more complex
problems: while [29] only performed single-output mini-
mization, we do multi-output minimization (on many of
the same circuit examples), including for functions ranging
up to 32 inputs and 33 outputs.

However, it is important to note that this table should
not be used to draw general conclusions regarding how
much logic overhead asynchronous designs incur due to
the necessity to avoid hazards. Our benchmark functions
have been generated by asynchronous synthesis methods,
i.e. these functions do not really make much sense in a
synchronous system. On the one hand, functions derived
from asynchronous FSMs must have function-hazard-free
input changes and critical race-free state changes, unlike
those derived from synchronous FSMs. On the other hand,
asynchronous FSMs are typically specified in a more con-
trolled environment, with more don’t cares. A truly fair
comparison on this interesting point is much beyond the
scope of paper.

Figure 10 also compares the number of identified es-
sentials, using both hazard-free and non-hazard-free al-
gorithms. ESPRESSO-HF’s new formulation of essential
equivalence classes typically allows many more essentials to
be identified than in ESPRESSO-II. For example, in cache-

16

ESPRESSO-HF IMPYMIN ESPRESSO-11 SCHERZO
name /0 #c time #e | #c time #v BDDf/g | #c time #e | #c time
cache-ctrl | 20/23 99 105 50 97 301 39 795/1813 89 217 7] 80 756
dram-ctrl 9/8 22 1 22 22 13 6 91/140 19 1 6 18 1
pe-send-ifc 12/10 27 1 27 27 16 5 158/299 20 1 1 20 1
pscsi-ircv 8/7 12 1 12 12 10 3 45/110 10 1 4 10 1
pscsi-isend 11/10 23 1 23 23 15 6 115/264 16 1 1 16 1
pscsi-pscsi 16/11 78 11 55 7 105 23 319/852 66 5 10 63 14
pscsi-tsend | 11/10 22 1 22 22 13 4 113/223 16 1 3 16 1
pscsi-tsend-bm 11/11 23 1 23 23 13 4 112/231 16 1 3 16 1
sd-control 18/22 35 3 23 34 52 0 448 /448 25 2 4 24 14
sscsi-isend-bm 10/9 22 1 22 22 11 3 98/153 15 1 5 15 1
sscsi-trcv-bm 10/9 24 1 21 24 13 5 96,/189 15 1 3 15 1
sscsi-tsend-bm 11/10 20 1 20 20 13 4 123/214 15 1 2 15 1
stetson-pl | 32/33 60 21 34 60 813 9 1463/1933 45 33 1 ? > 72000
stetson-p2 | 18/22 37 2 26 37 49 0 457 /457 25 1 6 25 17
stetson-p3 6/4 7 1 7 7 1 30/41 7 1 6 7 1

Fig. 10. Comparison of the heuristic hazard-free minimizer ESPRESSO-HF', the exact hazard-free minimizer IMPYMIN, the heuristic minimizer
EsPrRESSO-11, and the exact minimizer SCHERZO. (#c - number of cubes in solution, time - run-time in seconds, #e - number of essentials,
#v - number of added variables, BDD f/g - BDD sizes without/with added variables)

ctrl, ESPRESSO-HF identifies 50 essentials (out of an exact
minimum cover of 97 cubes), while ESPRESSO-II identi-
fies only 7 essentials (out of an exact minimum cover of 80
cubes). Thus, EsPRESSO-HF makes positive use of hazard-
freedom constraints to obtain a very strong formulation of
essentials, which has positive impact on both run-time and
quality of solution.

Finally, the table indicates that adding (sometimes
many) variables in IMPYMIN does not lead to an explosion
in terms of BDD size. To incorporate hazard-freedom con-
straints, IMPYMIN (unlike SCHERZO) transforms the BDD
of f into the BDD of auxiliary function g. The table, which
compares the corresponding BDD sizes for the same BDD
package and variable ordering, indicates that adding vari-
ables for this transformation increases the BDD size even
for large examples only by a small factor, which is typically
about 2. Thus, the BDD size of auxiliary function g is not
much larger than the BDD size of f.

VII. CONCLUSIONS

We have presented two new minimization methods
for multi-output 2-level hazard-free logic minimization:
EsprESSO-HF, a heuristic method based on ESPRESSO-
II, and IMPYMIN, an exact method based on implicit data
structures.

Both tools can solve all examples that we have available.
These include several large examples that could not be min-
imized by previous methods 3. In particular both tools
can solve examples that cannot be solved by the currently
fastest minimizer HFMIN. On the more difficult examples
that can be solved by HFMIN, ESPRESSO-HF and IMPYMIN
are typically orders of magnitude faster.

Although ESPRESSO-HF is a heuristic minimizer, it
almost always obtains an exactly minimum-size cover.
EsprESSO-HF also employs a new fast method to check
for the existence of a hazard-free solution, which does not
need to generate all prime implicants.

131n publications on the 3D method (see e.g. [43], [41]), note that
several of these examples appear but only single-output minimization
is performed.

IMPYMIN performs exact hazard-free logic minimization
nearly as efficiently as synchronous logic minimization by
incorporating state-of-the-art techniques for implicit prime
generation and implicit set covering solving. IMPYMIN is
based on the new idea of incorporating hazard-freedom con-
straints within a synchronous function by adding extra in-
puts. We expect that the proposed technique may very well
be applicable to other hazard-free optimization problems,
too.

Acknowledgment

The authors would like to thank Olivier Coudert for very
helpful discussions and for his immense help with the exper-
iments. The authors would also like to thank the reviewers
for insightful suggestions, Bob Fuhrer for providing his tool
HFMIN, and Montek Singh for interesting discussions.

REFERENCES

[1] Peter A. Beerel. CAD Tools for the Synthesis, Verification,
and Testability of Robust Asynchronous Clircuits. PhD thesis,
Stanford University, 1994.

[2] M. Benes, S.M. Nowick, and A. Wolfe. A fast asynchronous
huffman decoder for compressed-code embedded processors. In
Proc. International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems. IEEE Computer Society Press,
March 1998.

[3] R.E. Bryant. Graph-based algorithms for boolean function ma-
nipulation. IEEE Transactions on Computers, C-35(8):677—691,
August 1986.

[4] Chou, Beerel, Ginosar, Kol, Myers, Rotem, Stevens, and Yun.
Optimizing average-case delay in the technology mapping of
domino dual-rail circuits: A case study of an asynchronous in-
struction length decoding pla. In Proc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems.
IEEE Computer Society Press, March 1998.

[6] Tam-Anh Chu. Synthesis of Self-Timed VLSI Circuits from
Graph-Theoretic Specifications. PhD thesis, MIT Laboratory
for Computer Science, June 1987.

[6] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. Complete state encoding based on the theory of re-
gions. In Proc. International Symposium on Advanced Research
in Asynchronous Clircuits and Systems. IEEE Computer Society
Press, March 1996.

[7] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev.
Petrify: a tool for manipulating concurrent specifications and
synthesis of asynchronous controllers. IEICE Transactions on
Fundamentals of Electronics Communications and Computer
Sciences, E80-D(3):315 325, March 1997.

(8]

(]

(10]

(11]

(12]

(13]

14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

[25]

[26]

27]

(28]

[29]

O. Coudert. Two-level logic minimization: an overview. Inte-
gration, the VLSI journal, 17:97-140, 1994.

A. Davis, B. Coates, and K. Stevens. Automatic synthesis of
fast compact asynchronous control circuits. In S. Furber and
M. Edwards, editors, Asynchronous Design Methodologies, vol-
ume A-28 of IFIP Transactions, pages 193-207. Elsevier Science
Publishers, 1993.

Al Davis and Steven M. Nowick. An introduction to asyn-
chronous circuit design. In Allen Kent and James G. Williams,
editors, Encyclopedia of Computer Science and Technology, vol-
ume 38-Sup23, pages 231-286. Marcel Dekker, Inc., 1998.

R.K. Brayton et al. Logic Minimization Algorithms for VLSI
Synthesis. Kluwer Academic, 1984.

R.M. Fuhrer, B. Lin, and S.M. Nowick. Symbolic hazard-
free minimization and encoding of asynchronous finite state
machines. In 1995 IEEE/ACM International Conference on
Computer-Aided Design. IEEE Computer Society Press, Novem-
ber 1995.

R.M. Fuhrer, S.M. Nowick, M. Theobald, N.K. Jha, and
L. Plana. Minimalist: An environment for the synthesis and
verification of burst-mode asynchronous machines. In Interna-
tional Workshop on Logic Synthesis, 1998.

S.B. Furber, J.D. Garside, S. Temple, J. Liu, P. Day, and N.C.
Paver. Amulet2e: An asynchronous embedded controller. In
Async97 Symposium. ACM, April 1997.

J. Kessels and P. Marston. Design asynchronous standby circuits
for a low-power pager. In Async97 Symposium. ACM, April
1997.

Michael Kishinevsky, Alex Kondratyev, Alexander Taubin, and
Victor Varshavsky. Concurrent Hardware: The Theory and
Practice of Self-Timed Design. Series in Parallel Computing.
John Wiley & Sons, 1994.

P. Kudva, G. Gopalakrishnan, and H. Jacobson. A technique for
synthesizing distributed burst-mode circuits. In Proceedings of
the 33rd Design Automation Conference. ACM, 1996.

Luciano Lavagno and Alberto Sangiovanni-Vincentelli. Algo-
rithms for Synthesis and Testing of Asynchronous Circuits.
Kluwer Academic Publishers, 1993.

A. Marshall, B. Coates, and P. Siegel. The design of an asyn-
chronous communications chip. Design and Test, June 1994.
A.J. Martin, S.M. Burns, T.K. Lee, D. Borkovic, and P.J.
Hazewindus. The design of an asynchronous microprocessor. In
1989 Caltech Conference on Very Large Scale Integration, 1989.
S. Minato. Zero-Suppressed BDDs for set manipulation in com-
binatorial problems. In Proceedings of the 30th Design Automa-
tion Conference. ACM, 1993.

T. Nanya, Y. Ueno, H. Kagotani, M. Kuwako, and A. Takamura.
TITAC: design of a quasi-delay-insensitive microprocessor. I[EEE
Design and Test, 11(2):50-63, Summer 1994.

L.S. Nielsen and J. Sparso. A low-power asynchronous data path
for a fir filter bank. In Proceedings of the International Sympo-
stum on Advanced Research in Asynchronous Clircuits and Sys-
tems (Async96), pages 197-207. IEEE Computer Society Press,
November 1996.

S. M. Nowick and M. Theobald. Synthesis of low-power asyn-
chronous circuits in a specified environment. In Proceedings of
1997 International Symposium on Low Power Electronics and
Design, pages 92-95, 1997.

S.M. Nowick and B. Coates. UCLOCK: automated design of
high-performance unclocked state machines. In IEEE Interna-
tional Conference on Computer Design, pages 434—441, October
1994.

S.M. Nowick, M.E. Dean, D.L. Dill, and M. Horowitz. The de-
sign of a high-performance cache controller: a case study in asyn-
chronous synthesis. In Proceedings of the Twenty-Sizth Annual
Hawaii International Conference on System Sciences, volume I,
pages 419-427. IEEE Computer Society Press, January 1993.
S.M. Nowick and D.L. Dill. Synthesis of asynchronous state
machines using a local clock. In IEEE International Conference
on Computer Design, pages 192-197. IEEE Computer Society
Press, October 1991.

S.M. Nowick, N.K. Jha, and F. Cheng. Synthesis of asynchronous
circuits for stuck-at and robust path delay fault testability. IEEE
Transactions on CAD, CAD-16(12):1514-1521, December 1997.
Steven M. Nowick and David L. Dill. Exact two-level mini-
mization of hazard-free logic with multiple-input changes. IEEE
Transactions on CAD, CAD-14(8):986 997, August 1995.

(30]

(31]

(32]

(33]

(34]

(35]

[36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

17

R. Rudell and A. Sangiovanni Vincentelli. Multiple valued min-
imization for PLA optimization. IEEE Transactions on CAD,
CAD-6(5):727-750, September 1987.

J.W.J.M. Rutten and M.R.C.M. Berkelaar. Improved state as-
signments for burst mode finite state machines. In Proceedings
of the 3rd International Symposium on Advanced Research in
Asynchronous Circuits and Systems, 1997.

J.W.J.M. Rutten, M.R.C.M. Berkelaar, C.A.J. van Eijk, and
M.A.J. Kolsteren. An efficient divide and conquer algorithm
for exact hazard free logic minimization. In Proc. Design, Au-
tomation and Test in Europe (DATE). IEEE Computer Society
Press, February 1998.

J.W.J.M. Rutten and M.A.J. Kolsteren. A divide and conquer
strategy for hazard free 2-level logic synthesis. In International
Workshop on Logic Synthesis, 1997.

T. Sasao. An application of multiple-valued logic to a design of
programmable logic arrays. In Proceedings of Int. Symposium
on Multiple- Valued Logic, 1978.

R.F. Sproull, I.LE. Sutherland, and C.E. Molnar. The counter-
flow pipeline processor architecture. IEEE Design & Test of
Computers, 11(3):48-59, 1994.

M. Theobald and S.M. Nowick. An implicit method for hazard-
free two-level logic minimization. In Proc. International Sym-

posium on Advanced Research in Asynchronous Circuits and
Systems. IEEE Computer Society Press, March 1998.

M. Theobald, S.M. Nowick, and I'. Wu. Espresso-HF: A heuristic
hazard-free minimizer for two-level logic. In Proceedings of the
33rd Design Automation Conference. ACM, 1996.

S.H. Unger. Asynchronous Sequential Switching Circuits. New
York: Wiley-Interscience, 1969.

K. van Berkel, R. Burgess, J. Kessels, M. Roncken, F. Schalij,
and A. Peeters. Asynchronous circuits for low power: A DCC
error corrector. IEEE Design and Test of Computers, 11(2):22—
32, Summer 1994.

Chantal Ykman-Couvreur, Bill Lin, and Hugo de Man. Assassin:
A synthesis system for asynchronous control circuits. Technical
report, IMEC, September 1994. User and Tutorial manual.

K. Yun and D.L. Dill. A high-performance asynchronous SCSI
controller. In IEEE International Conference on Computer De-
sign. IEEE Computer Society Press, October 1995.

Kenneth Y. Yun, Ayoob E. Dooply, Julio Arceo, Peter A.
Beerel, and Vida Vakilotojar. The design and verification of
a high-performance low-control-overhead asynchronous differen-
tial equation solver. In Proc. International Symposium on Ad-
vanced Research in Asynchronous Circuits and Systems. IEEE
Computer Society Press, April 1997.

K.Y. Yun, D.L. Dill; and S.M. Nowick. Synthesis of 3D asyn-
chronous state machines. In IEEE International Conference
on Computer Design, pages 346-350. IEEE Computer Society
Press, October 1992.

Michael Theobald is a Ph.D. student of
Computer Science at Columbia University.
He received the Diplom degree in Com-
puter Science from Johann Wolfgang Goethe-
Universitat, Frankfurt/Main, Germany, in
1994.

His research interests include synchronous and
asynchronous circuits, computer-aided digital
design, logic synthesis, formal verification, effi-
cient algorithms and data structures, and com-
binatorial optimization.

He received the Honorable Mention Award at the 1997 International
Conference on VLSI Design, and was a Best Paper Finalist at the
1998 IEEE Async Symposium.

18

Steven M. Nowick is an Associate Profes-
sor of Computer Science at Columbia Univer-
sity. He received a Ph.D. in Computer Science
from Stanford University in 1993, and a B.A.
from Yale University. His Ph.D. dissertation
introduced an automated synthesis method for
locally-clocked asynchronous state machines,
and he formalized the asynchronous specifica-
tion style called “burst mode”.

His research interests include asynchronous cir-
cuits, computer-aided digital design, low-power
and high-performance digital systems, logic synthesis, and formal ver-
ification of finite-state concurrent systems.

Dr. Nowick received an NSF Faculty Early Career (CAREER) Award
(1995), an Alfred P. Sloan Research Fellowship (1995) and an NSF
Research Initiation Award (RIA) (1993). He received a Best Paper
Award at the 1991 International Conference on Computer Design,
and was a Best Paper Finalist at the 1993 Hawaii International Con-
ference on System Sciences and at the 1998 Async Symposium.

He was Program Committee Co-Chair of IEEE Async-94 Symposium,
and is Program Committee Co-Chair of the upcoming IEEE Async-99
Symposium. He is a member of several international program com-
mittees, including ICCAD, ICCD, ARVLSI, and Async. He is also
Guest Editor of a forthcoming special issue of the journal, “Proceed-
ings of the IEEE”, on asynchronous circuits and systems.

