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Abstract

This paper presents the architecture and design of
a high-performance asynchronous Huffman decoder for
compressed-code embedded processors. In such processors,
embedded programs are stored in compressed form in in-
struction ROM, then are decompressed on demand during
instruction cache refill. The Huffman decoder is used as a
code decompression engine.

The circuit is non-pipelined, and is implemented as an
iterative self-timed ring. It achieves a high-speed decode rate
with very low area overhead. Simulations using Lsim show
an average throughput of 32 bits/25 ns on the output side
(or 163 MBytes/sec, or 1303 Mbit/sec), corresponding to
about 889 Mbit/sec on the input side. The area of the de-
sign is extremely small: under 1 mm? in a 0.8 micron full-
custom layout.

The decoder is estimated to have higher throughput than
any comparable synchronous Huffman decoder (after nor-
malizing for feature size and voltage), yet is much smaller
than synchronous designs. Its performance is also 83%
faster than a recently published asynchronous Huffman de-
coder using the same technology.

1 Introduction

Embedded systems are now widely used in many con-
sumer products, such as automobiles and portable electron-
ics. These systems typically include a microprocessor which
is embedded inside a commercial product, and which ex-
ecutes an application program determined by the system
designer. Such systems are often limited by constraints on
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size, weight, power consumption and price. Therefore, a
key challenge in designing cost-effective and high-volume
embedded systems is to reduce the chip area of the system.

A novel approach to designing compact embedded sys-
tems has been proposed, called a compressed code ar-
chitecture [24, 12]. In this approach, instructions are
stored in compressed form in memory, then are decom-
pressed when brought into the cache. As a result, a signifi-
cant reduction in instruction memory size may be obtained.
Using a Huffman encoding scheme, a compression ratio of
73% was reported for the MIPS instruction set.

The key component of this architecture is a hardware
instruction decompression circuit. The design of this
circuit is a highly-constrained problem. In particular, the
circuitry must be very fast (since it is on the critical path
during cache refill) but also very small (otherwise the sav-
ings in instruction memory will be lost to the area increase
due to the decompression circuit).

Very recently, we introduced the first prototype design
for such an asynchronous decompression circuit [1]. Instruc-
tions are compressed in memory, using a Huffman encod-
ing scheme [10]. Huffman codes are variable-length, where
the shortest codes are assigned to the most frequent sym-
bols. In principle, a Huffman decoder is an excellent match
for asynchronous design: an asynchronous decoder can be
highly-optimized for common, rather than rare, codes, and
thus obtain improved average-case performance. In con-
trast, performance of a synchronous design may be limited,
due to a worst-case fixed clock rate, or the design may have
a large area overhead to handle worst-case computation ef-
ficiently.

Recently, a number of asynchronous chips have been suc-
cessfully designed and/or fabricated, both for microproces-
sors and DSPs [21, 11, 14, 15, 16, 26], including embedded
processors [6, 7, 8]. Several of these designs have demon-
strated the benefits of asynchronous design for average-case
operation.



In this paper, we propose a new architecture an imple-
mentation of an asynchronous Huffman decoder. The de-
sign uses an entirely new organization, and is 83% faster
than our earlier design [1], using the same 0.8y CMOS
technology, with no increase in area. The circuit is non-
pipelined, and is implemented as an iterative self-timed
ring. It is largely implemented using dynamic domino dual-
rail logic. It achieves a high-speed decode rate with very
low area overhead.

Simulations using Lsim show an average throughput of
32 bits/25 ns on the output side, or 163 MBytes/sec (or
1303 Mbit/sec). This corresponds to a throughput rate of
about 889 Mbit/sec on the input side. The area of the de-
sign is extremely small: under 1 mm? in a 0.8 micron full-
custom layout. The decoder is estimated to have higher
throughput than any comparable synchronous Huffman de-
coder (after normalizing for feature size and voltage), yet
is 5-10 times smaller than most synchronous designs.

The paper is organized as follows. Section 2 gives
background on compressed code processors, and discusses
related work on Huffman decoders. Section 3 gives an
overview of the functional operation of the decoder. Sec-
tion 4 presents details of the architecture and the imple-
mentation of its components. Simulation results are pre-
sented in Section 5, which also discusses some remaining
bottlenecks in the new design. Section 6 compares our new
design with our previous asynchronous decoder design, and
Section 7 presents conclusions.

2 Background
2.1 Compressed-Cod&EmbeddedProcessors

An embedded system is loosely defined as one which in-
corporates microprocessors, or microcontrollers, yet is not
itself a general-purpose computer [24, 12, 13]. Embedded
systems are extremely widespread, including: controllers
for automobiles, airplanes, portable consumer electronics,
etc. These systems typically include a microprocessor, or
microcontroller, which executes a stored program deter-
mined by the system designer. The instruction memory
is either integrated on-chip, or is external [13, 25].

Practical embedded systems are often limited by con-
straints on size, weight, power consumption and price. In
particular, for low-cost and high-volume systems, the cost
of the entire system is often closely tied to the total area
of the chip(s). In such systems, a significant percentage of
the area may be devoted to the instruction ROM, storing
the program code [13]. Therefore, techniques to reduce the
size of the instruction ROM are of critical importance.

Recently, Wolfe et al. introduced a useful approach to
designing compact embedded systems, called a compressed-
code architecture [24, 12]. In this approach, embedded pro-
grams are stored in memory in compressed format, then
are decompressed in the instruction cache, and executed in
standard format. This solution results in reduced memory
size, with only a minimal impact on processor performance.

In more detail, Wolfe proposed that a program be com-
pressed at development time, and stored in instruction

memory. Compression is performed on small fixed-size pro-
gram blocks (1 byte each).! At runtime, on demand, the
cache refill engine locates the compressed cache line in in-
struction memory, decompresses it, and writes it into the
instruction cache. Note that decompression is required only
on a cache miss; at all other times, the processor simply exe-
cutes normal uncompressed instructions, which are already
present in the cache.
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Figure 1. Block diagram of compressed-code
architecture

A simple block diagram of a compressed code architec-
ture is shown in Figure 1. The LAT (line address table)
serves as a form of page table for the compressed cache
lines, indicating the actual location of each compressed line
in instruction memory. The CLB (cache lookaside buffer)
serves as a form of TLB for the line address table; it caches
the most recently accessed LAT entries, to speed up cache
line refill. The overheads of LAT and CLB are very small
(see [12] for details).

This compression scheme allows a substantial reduc-
tion in the size of instruction memory. Using a Huff-
man encoding scheme for instructions, experiments indi-
cate that a compression ratio of 76% (i.e., compressed pro-
gram size/uncompressed program size) can be obtained for
MIPS processors on typical applications [12]. This ratio
includes the small overheads required to detect and align
variable-length compressed cache lines in instruction mem-
ory. This reduction in program size can translate into lower
cost, weight and power consumption for the entire embed-
ded system. It can also allow the addition of extra program
features without increasing the budget for memory size. Fi-
nally, compression can result in lower system power, since
fewer bus cycles are required to fetch compressed instruc-
tions.

Related Work. Several alternative approaches have
been proposed for code compression in embedded proces-
sors, each with some limitations.

A modified instruction set, called Thumb [19], was re-
cently introduced for the ARM processor core, which in-

L An alternative scheme, of compressing the entire program as
a whole, is impractical for any realistic decompression hardware.



cludes new 16-bit instructions taken from the standard 32-
bit ARM instruction set. The goal is to reduce instruction
bandwidth for embedded applications. However, while this
approach allows for increased code density, it requires a
commitment to a specialized instruction set, with an en-
tirely new set of supporting software tools (e.g., compiler,
assembler, linker, etc.). In contrast, Wolfe’s decompres-
sion approach is quite general: it can be used to compress
instructions in any existing instruction set, without modi-
fication.

Liao, Devadas and Keutzer [13] propose software and
hardware approaches to code compression, using dictio-
nary lookup with “mini-subroutines”. However, while this
method is promising, it is orthogonal to Wolfe’s approach:
hardware compression can be used in addition to their
approach. Furthermore, their optimization is limited to
finding exact matches of entire instructions (i.e., same op-
code and operands); in contrast, Wolfe’s method looks for
matches at a finer granularity (byte-level). Finally, their
method may adversely interact with existing code optimiza-
tion techniques (see [13]), while Wolfe’s method can be used
with any existing code optimizer.

Finally, a method by Yoshida et al. [25] compacts in-
struction memory using a logarithmic-based compression
scheme, along with a ROM-based decompression table.
However, while significant compression can be obtained
for small programs, the ROM table itself may be over
270 KBytes for large examples, rendering the approach im-
practical.

2.2 RelatedWork: Huffman Decoders

Our design is estimated to have better performance and
area than existing synchronous Huffman decoders [18, 9, 4,
17]. Most of these decoders are targeted for digital video ap-
plications, and focus on the MPEG-2 VLD decoder for the
DCT coefficient table. The Huffman code used in MPEG-2
has 114 code words, varying in length from 1 to 16 bits,
where one of the codes is an escape sequence followed by
fixed length code, extending the maximum code length to
28 bits. The structure of the code is quite simple, and the
code length can be easily derived from the number of lead-
ing zeros. The complexity of this code is therefore simpler
than our MIPS-based code which has 256 code words.

For example, the decoder by Park et al. [17] has an area
is 3.5 mm? in a 0.65 CMOS process, compared with only
0.75 mm? for our design in a 0.8y process. While the au-
thors claim a peak performance of 680 Mbit/sec, this is
based on the decoding of 17-bit codewords at 40 MHz.
Since the worst possible 114 symbol Huffman code has an
average symbol length of 7 bits,? and a more typical code
would have an average symbol length of no more than 5

2Given a set of 114 symbols, the corresponding Huffman code
depends on the assumed frequency of the symbols. In the worst
case, all symbols have the same frequency, therefore all codes
are 7 bits: the weighted mean code length (dynamic average) is
7 bits and the maximum code length is 7 bits. For details on
Huffman codes, see [10].

bits, a more realistic sustained performance is in the 200—
250 Mbit/sec range.

One of the fastest designs is a recent Toshiba chip [5],
using 0.5p nFets, which was clocked at 200 MHz output
rate. The design uses aggressive but area-expensive cricuit
techniques like differential amplifying logic, which we have
not used. The 28k-transistor VLD macro occupies about
5 mm? in a 0.8y process (0.5 nFETS are used), and oper-
ates at 3.3 V. In contrast, our design uses 6100 transistors
in a total area of 0.75 mm?. After scaling to our conditions
(5 V and 0.8y process), their normalized rate is estimated
at 150 MHz.® In comparison, our asynchronous design has
a rate of 163 MByte/sec.: our design is faster, and is also
roughly 5 times smaller.

3 Huffman Decoder: Functional
Overview
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Figure 2. Decoder overview

A simple high-level diagram of the Huffman decoder is
shown in Figure 2. Input data is fetched from memory
using a simple 4-phase asynchronous handshaking proto-
col [3]. This data consists of a single compressed cache line,
loaded 32-bits at a time. The compressed line itself contains
a sequence of variable-length input symbols, each of which
is a Huffman code for 1 byte of an instruction. The decoder
then parses each individual input symbol and translates it
into the corresponding output symbol (1 byte). As out-
put, the uncompressed cache line is delivered to the instruc-
tion cache using a 4-phase protocol. Existing logic within
the processor generates memory addresses. The cache refill
logic counts the 32-bit data words produced by the decoder,
and it resets the decoder after 8 words have been produced,
which correspond to an entire uncompressed cache line.

3However, since the chip includes both VLD and IDCT
blocks, it is unclear whether the speed is limited by the VLD
critical path.
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Figure 3. Functional block diagram of decoder

A functional block diagram is shown in Figure 3, indi-
cating the flow of basic operations. The Input Buffer holds
the current input data, which is supplied to the decoder.
The Alignment Network (discussed shortly) holds the cur-
rent aligned version of the buffer, corresponding to the start
of the current symbol.

In each decode cycle, two operations occur in parallel.
(i) Symbol Decoding: Using a lookup table, the aligned cur-
rent input symbol is translated into an output symbol. This
table is implemented by an optimized Code ROM. (ii) Up-
dating Input Stream: The decoder determines the length
of the current symbol and shifts the inputs appropriately,
to prepare the next input symbol. A Match/Length unit
is used to compute the length of the current symbol. This
length is used to compute the shift amount, in order to re-
tire the current symbol from the input stream. To reduce
hardware overhead, a 2-step shift is used. The Shift Unit
shifts the Input Buffer an integral number of bytes: 0, 1
or 2. Since a residual misalignment (1-7 bits) may still oc-
cur, the Alignment Unit, serving as a small barrel shifter,
adjusts the Input Buffer by the remaining bit offset. The
previous alignment Offset is saved, and added to the cur-
rent symbol length, to compute the final shift amount; it is
fed to both the Shift Unit (0, 1 or 2 byte shift) and the and
the Alignment Network (0-7 bit shift).

Details of the management of the input and output
buffers and their interaction with the overall system, such
as requesting the next input word, signaling a completed
output word, and indicating decode completion, have been
described in [1], and will not be discussed further here.

4 Huffman Decoder: Architecture and
Implementation

This section presents an overview of the new decoder
architecture, as well as details on the implementation of its
components.

4.1 Overview
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Figure 4. Structural block diagram: self-timed
ring architecture

A structural diagram of the new decoder architecture is
shown in Figure 4. The decoder is organized in the form of
a self-timed ring. These rings have been studied in depth,
and applied to a number of designs such as a high-speed
self-timed divider chip [22, 23]. In particular, Williams in-
troduced a novel zero-overhead design style for self-timed
rings, where control operations (e.g., precharging in a dy-
namic implementation) are done in background mode while
other stages are computing. Therefore, a token can effec-
tively propagate through each logic stage with no control
overhead. Such structures have been extended to multi-
rings as well [20]. Zero-overhead rings have been highly
effective for the implementation of iterative computations,
where latency is paramount.

Therefore, the core of our new architecture is a self-timed
ring, generalized to allow parallel computation threads. As
shown in Figure 4, most of the stages are dynamic (shown
in white); the remainder are static (shaded gray). Most of
the dynamic circuits are implemented in precharged domino
dual-rail logic. The dotted lines in the figure represent
handshaking communication, <.e., synchronization between
stages, and will be discussed later.

There are 2 main goals of the architecture:
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1. balanced stages: The goal is to reasonably balance
stage delays, so that control overhead can be nearly
eliminated during computation. However, a pre-
cise balance is not possible, since a few stages have
highly-variable data-dependent delays (e.g., Match,
Pre-Shift, Shift).

2. optimal scheduling: The goal is to have as much par-
allel computation as possible, and to schedule compu-
tations as early as possible, to improve total latency.

Below is a short overview of the new architecture (refer
to Figure 4). There are basically 3 parallel computation
threads: (i) Align through Sum; (ii) Length through Shift;
and (iii) Align through Merge (to Output Buffer).

e Align through Sum has 5 stages. The Match/Length

Unit of Figure 3 is implemented as two stages: Match
and Length. Match produces a 1-hot output, indicat-
ing the match class to which the current input symbol
belongs. A symbol may belong in one of several classes
of Huffman codes. A Length ROM then translates this
class into the actual token length.
The Adder of Figure 3 is divided into a Carry stage
followed by a Sum generation stage. Once the sum is
computed, it is passed as select bits to the Align stage,
indicating the new 0-7 bit shift, and is also passed to
the Offset stage. Offset is a dynamic identity function
(i.e., buffer), which acts like a register; it stores the
current offset for the next computation.

e Length through Shift. This thread implements byte-
shift operations: 0, 1, or 2 byte shifts. Init-Shift is
used only for an initial load, at the start of decoding.
While the functional diagram in Figure 3 suggests that
shift occurs after add is complete, our actual archi-
tecture uses two optimizations. First, in some cases,
the upper bit from Length ROM immediately indicates
that a 1-byte shift is needed (Pre-Shift). Second, any
additional 1-byte shift is indicated by Carry: there is
no need to wait until Sum is computed.

o Align through Merge. In this thread, the current input
symbol is decoded and written into the Output Buffer.
The Code ROM of Figure 3 is now implemented by
3 stages: Decode, ROM, and Merge. These stages
implement a compact lookup table, which uses a 2-
way decoding process. Each match class (indicated

by Match stage) provides a unique enable signal to a
corresponding portion of the Decode stage. However,
simultaneously with the processing of the Match stage,
the aligned input data itself is forwarded to the ROM
decoders, to identify one potential word line to enable
for each match class. When the match signal finally
arrives, it enables the last stage of exactly one ROM
decoder, and the ROM generates the correct output
symbol.

All 3 threads are joined at a single synchronization point:
the Align stage. More precisely, the third thread (Align
through Merge) must complete before Shift can complete,
then the remaining two threads are joined at the Align
stage.

The remainder of this section gives details on the imple-
mentation of the stages. Note that some of the stages are
the same as in the previous prototype [1]; others are new.
However, the overall architecture, scheduling, and inter-
stage synchronization schemes are new. We will present
both new and old stages (old in less detail) for coherence.
A final comparison of the new architecture with the earlier
prototype appears in Section 5.

4.2 Inter-StageSynchronization

To synchronize between stages in the ring, we use an
adaptation of a scheme called PSO by Williams [22], as
shown in Figure 5. In PSO, precharged dual-rail function
blocks are organized into a ring. Each function block has a
completion detector, which controls the previous stage. As
an example, once F»> has evaluated, completion of evalua-
tion is detected, which then enables Fi to precharge. Once
F> precharges, completion of precharge is detected, which
then releases precharge of F;.

Thus, the configuration enforces two synchronization re-
quirements: (i) stage F; precharges only after F;; has eval-
uated; (ii) stage F; can evaluate a new token (precharge
deasserted) only after Fj;1 has finished precharging. An
additional requirement — that F; is done precharging be-
fore Fii1 begins precharging — must be insured by delay
assumptions. This scheme has been effectively used in zero-
overhead implementations, where each stage is ready to
evaluate as soon as data arrives.

For the new architecture, we use a modified version
of PS0, as shown in Figure 6. A precharged matched
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delay, instead of a completion network, is used in most
stages of our design. The figure shows the matched de-
lay in “Next Stage”; the delay matches the worst-case path
through the function block, and indicates to the previous
stage when the block is done.

Also, we include a global enable signal. When de-
asserted, this signal resets all dynamic stages to the
precharge state (e.g., between decoder requests).

In Figure 4, inter-stage synchronization is indicated by
dotted arrows.

4.3 Huffman Encodingand Match

We use a variant of Huffman encoding, introduced in [1],
to optimize the decoder implementation. On the one hand,
the length of each Huffman code is precisely determined by
the frequency distribution of the original input alphabet.
On the other hand, the actual binary code assigned to each
input symbol is flexible, as long as the prefix property and
the code length requirement are maintained.

We therefore cluster Huffman codes into match classes.
All codes in a given match class have the same length, but
there may be more than one match class for each length.
All codes in each class are assigned the same unique binary
prefix; they differ only in a small number of suffix bits,
used to enumerate the different members of the class. For
example, in Table 7, there is a single match class, 0, of
2-bit codes, containing 1 member: code 00; there are no
enumerating bits. For 5-bit codes, there is a single match
class, 1, which contains 4 distinct codes; the enumerating
bits are indicated by two dots. Each code has the same
prefix: 010 (a —, indicates a don’t-care, assuming a match
higher in the table did not occur). The remaining 2-bit
suffix is used to enumerate the codes in the class: 01000,
01001, 01010, 01011.

The benefit of using clustered Huffman codes, parti-
tioned into a moderate number of match classes and each
with a few enumerating bits, is to simplify the implementa-
tion of 2 stages: Match and ROM Decode. Given that we

class | bit pattern length

0 | 00 2
1| 0-0.. 5
210 .. 6
3 | -000.
4 | -00 . 7
5 | -0-00
6 | -0-0-0
7 | -0-0--0
8| -0 ..... 8
9 | --00.

10 | --0-00

11 | -0 ..... 9

12 | ---00

13 | ---0-0

14 | ---0--00

15 | ---0--0-0

16 | -—-0 .... 10

17 | ———-0.....

18 | —-—--- 00000

19 | ——-— 0..... 11

20 | —————- 00

21 | ————-- 0-00

22 | -=—----0-0-0

23 | —————- 0 .... 12

24 | -———-—- 0

25 | ———————- 0...

26 | ——————-— 0... 13

N 0

28 | ————m————- 0

29 | ————m———-——— 0

30 . 14

Figure 7. Match Classes

are encoding each byte of instruction into a Huffman code,
the requisite 256 codes can be partitioned into 31 distinct
classes, shown in Table 7, along with their qualifying bit
patterns. The matching process starts from the top and
examines each bit pattern until a match is found.

The Match Logic in Figure 8 performs the matching task.
Each block represents the 4-transistor circuit shown on the
bottom. Both phases of the single input bit, b; (output of
the Align stage), are used at each level of the match tree.
The row of cells labeled b5, for example, is connected to the
two phases of the input bit 5. The single decode_in input
signal is driven by a sequence of prior stages that represents
a value of the preceding bits.

The outputs of the circuit are its leaves, which are la-
beled by number (0-30). Each output corresponds to a
unique match class, and is a decode_out0 or decode_outl
signal from the indicated stage. Each such output (n) is
inverted, to produce the final match signal (m(n)) (as sug-
gested by the inverter at top). In some cases, several out-
puts are connected in a wire-or circuit to indicate a length
class. Since only one class is detected, the circuit’s output
is 1-hot, and therefore any of the 31 outputs going low in-
dicates completion to the following stages. Note that this
circuit is constructed such that the shortest, and thus most
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Figure 8. Class Matching Logic

common, codes are matched using the fewest levels of logic;
therefore, the average response time is much faster than the
worst-case.

Note that a deep N-channel stack is used, to detect
matches with the longest codes. To improve perfor-
mance, the bottom three transistors in the stack are some-
what widened (2-4x). While worst-case detection is very
slow (nearly 3.5 ns), average-case detection is much faster
(roughly 1.5 ns).

The completion generation for the Match stage is a
challenge: because of the highly data-dependent operating
speed, it is not practical to use a fixed matched delay. On
the other hand, generation of a true completion signal, us-
ing a completion detection tree, would have excessive over-
head (combining 31 distinct outputs). Our solution is to
defer completion generation for Match to the subsequent
stage: Length ROM (see below).

4.4 Length ROM and Adder

Figure 9 gives greater detail on the implementation of
several components, for the following subsections.
Length ROM. A small Length ROM translates the Match
outputs into the 4-bit binary length of the current input
symbol. The inputs to the ROM are the 31-wire one-hot
outputs of Match. Each input corresponds to one match
class, and serves as a word line in the ROM. The ROM
then produces a 4-bit dual-rail output (8 wires), which is
the length of the input symbol. As an optimization, the

b3

b2

bl

b0

P/K/G Generation unit of the subsequent adder is merged
directly into the Length ROM, to form a single stage, which
we call Length.

The ROM also has a 9th output which is a matched

delay. This output is an extra bit line, enabled by ev-
ery input, which is used to generate a completion signal.
As indicated earlier, it is difficult to build a simple done
signal for the preceding stage, Match, which has 31 out-
puts. Therefore, we use this 9th output of Length ROM
as a simply-implemented, and deferred, “done” signal for
Match. In addition, a second, delayed version of this 9th
output is used as the done signal for the entire Length stage,
including P/K/G Generation.
Adder. A small carry-lookahead adder is used, to compute
the total shift amount. The adder is broken into 3 stages:
P/K/G Generation (merged into the Length stage), Carry
Generation, and Sum.* Each of these stages corresponds
to a Williams-style pipeline stage as in Figure 5. Dual-
rail signals are indicated by thick lines; individual wires are
indicated by thin lines.

The P/K/G Generation unit takes two 3-bit operands:
the current bit-offset of the Alignment network (stored in
Offset) and the length of the current input symbol (indi-
cated by Length ROM). Each of the operands is dual-rail.
The unit computes whether each bit is a propagate, Kkill, or
generate bit; the result is a 1-hot code for each bit, using 3
wires.

The Carry stage computes the final dual-rail carries,
which are used to generate the final sum. The stage trans-
forms the three-wire P/K/G inputs into propagate bit (P%)
and carry-in bit (cin) outputs. Each Pi output is dual-rail,
as is each cin output. The two rails of each Pi output are
generated by ORing K+G inputs (no propagate) and by
passing the P input (propagate), respectively. The dual-
rail outputs of the Carry stage are fed to the Sum stage.
The upper carryout bit (rightmost output of Carry stage)
is used to control the Shift stage and will be discussed later.

The Sum stage computes the final 3-bit sum, which is
the new offset (0-7 bits) for the Alignment Network. Any
larger shift, of 1- or 2-bytes, is implemented by the Shift
stages.

4.5 Shift and Align

In each iteration, an input symbol is both decoded and
retired from the input stream. To retire the input, the Input
Buffer must be shifted by the length of the current symbol,
which is computed by the Length ROM. To simplify the
hardware, we use a 2-step shift process: shift and align.
Shift. The Shift Unit shifts the Input Buffer an integer
number of bytes: 0, 1 or 2. Since a residual misalignment
(1-7 bits) may still occur, the Alignment Unit, serving as
a small barrel shifter, adjusts the Input Buffer by the re-
maining bit offset. The new shift amount is computed by
adding the current offset in the Offset stage (indicating cur-
rent bit alignment of the Align stage) to the current input

4Note: to simplify the topology of Figure 9, the msb is shown
on the right-side, and the Isb on the left side.
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Figure 9. Detailed block diagram (partial): self-timed ring architecture

symbol length (provided by Length ROM). In our imple-
mentation, the maximum shift amount is 21 bits: given a
maximum-length 14-bit Huffman code and a 7-bit current
Offset.

Figure 10 shows the new shift control, which incorpo-
rates 3 stages: Init-Shift, Pre-Shift and Shift. Init-Shift is
used only for an initial load, at the start of a new decode
request (see [1]).

As an optimization, a Pre-Shift stage is used to imple-
ment an early byte-shift. In particular, whenever the cur-
rent (Huffman-encoded) input symbol has a length of 8 bits
or greater, at least 1 byte-shift is required. In this case, the
upper bit (13) from Length ROM itself indicates that a 1-
byte shift is needed, i.e., the new token length is at least
8.

The Shift stage is used to implement a normal byte-shift,
once the current Offset has been added to the new symbol
length. As an optimization, this byte-shift is requested by
an upper carryout from the Carry stage: there is no need
to wait until Sum is computed.

Interestingly, if a 1-byte shift is required, it may be ini-
tiated either by Pre-Shift or Shift, depending on the cur-
rent input and offset. However, whenever a 2-byte shift
is required, a 1-byte shift is always initiated by Pre-Shift;
therefore, the Shift stage only needs to initiate a 1-byte
shift, in all cases.

Figure 10 shows a more detailed implementation of the
shift controller; it integrates the Init-Shift, Pre-Shift, and
Shift blocks into one circuit. Each shift block consists of two
separate gates. One generates the “up” signal (u0, ul, and
u2), and the other generates the “down” signal (d0, d1, d2).

The “u” and “d” signals are then merged into in_clk (input
buffer clock), through a simple clock generation network,
which is used to clock a 1-byte shift in the Input Buffer. A
delayed version of the asserted in_clk is also fedback as an
input through an RS latch, which in turn drives in_clk low.
The RS latch is used to eliminate potential hazards.

Each of the 6 gates evaluates only after appropriate con-
ditions have been met. For example, during a pre-shift, the
“Pre-Shift” gate will set ul high as soon as 13 goes high
(from Length ROM). This, in turn, will drive in_clk high
and thereby drive clk_up high. The next gate, once it sees
that both ul and clk_up are high, sets d1 high, which in turn
sets in_clk low, and thus completes the pre-shift operation.

Each gate may evaluate under several different condi-
tions, and the whole shift unit is thus able to support all
possible combinations of shift and pre-shift requests.

The last stage also serves as a synchronization point of
the shift and ROM threads: shift_done will not go high until
symbol decode completes (as indicated by code_done).
Align. The Align stage effectively implements 3 stages of 2-
1 multiplexers in hazard-free precharged domino logic. The
stage has been described in [1]. The 3 select bits, from the
Sum stage, indicate the desired shift amount (0-7 bits). An
important new feature of the Align stage, in the self-timed
ring, is that it is the unique synchronization point. That
is, Align initiates a new cycle; it can proceed only when all
3 parallel threads are completed: (i) sum generation, and
(ii) shift (which in turn depends on symbol decode: Code
ROM + Merge).

Align is implemented as one complex precharged dy-
namic gate. The Sum output bits (thread (i)) are dual-rail,
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Figure 10. Shift Control: Init-Shift, Pre-Shift, and Shift

so Align will not evaluate until they arrive. A transistor
controlled by the shift_done signal (thread (ii)) is added to
the pulldown stacks, in addition to the usual enable transis-
tor controlled by the phi0 clock, so Align will not evaluate
until shift_done is high.

4.6 CodeROM: Generating Output Symbols

Once a Huffman code has been mapped to a particular
class, the actual fixed-length output symbol must be gen-
erated. A Code ROM is used to perform the translation.
It is implemented by 3 stages: Decode, ROM, and Merge.
These stages implement a compact lookup table, using a
2-way decoding process.

The basic idea is to use an optimization: decode the 0 to
5 enumerating bits within a class in parallel with the class
matching process, and then use the class matching bit as
an enable signal to the decoder. Note that, even though
input symbols range up to 14 bits in length, our approach
avoids a full decode into 2'* word lines. Our ROM decoder
generates only the required 256 word lines, through careful
use of match classes and enumerating bits extracted from
our variant Huffman encodings.

The decoders use dynamic logic and are activated by
transitions on the b(i) inputs from the Alignment Net-
work (starting with the least significant output bit, b(0))
and the m(7) inputs from the Match Logic. As a further
optimization, the decoder logic is shared between similar
classes. Figure 11 shows the whole decoding structure of
the ROM, along with an example for classes 26, 27, and
28. The shaded boxes represent decoders which produce
pair of ROM word lines. The total number of decoders is
145, only 16% more than the minimum of 125 (which occurs
with maximum sharing), but 60% fewer than 240 without
sharing any decoders.

One decoder output will be enabled and will drive one
word line of a 9-bit wide ROM. This ROM contains the 8-bit

output value and a completion bit that is slower than any
other ROM value. As a performance optimization, there
are actually 3 ROM arrays that have their outputs merged
by additional logic outside the ROM.

5 Results

The new Huffman decoder has been designed and laid
out using the Mentor Graphics design suite and the MOSIS
CMOSX 0.8u process using 3 metal layers. The layout is
all custom and contains about 6100 transistors, and it con-
tains no standard cells, except for a few inverters, NAND
gates, and registers. The total area is 0.75 mm?, which
corresponds to an area of at most 3 Kbytes of instruction
ROM.

5.1 Simulation Results

The performance of the design has been measured
through circuit simulation using Lsim (Mentor Graphics).
Since we are primarily interested in the throughput of the
decoder, we measured the cycle time for decoding each sym-
bol. In practice, the decoder operation also includes other
operations, such as loading of new bytes of data into the
Input Buffer from instruction memory, as the buffer emp-
ties, but we assume that the external program memory is
not the bottleneck. We also assume that the Output Buffer
is read by the environment before it is required for the next
symbol.

Simulations using Lsim, using a CMOSX 0.8y4 process,
show an average throughput of 32 bits/25 ns on the out-
put side, which is equivalent to 163 MBytes/sec, or 1303
Mbit/sec. This speed corresponds to about 889 Mbit/sec
on the input side.

In more detail, simulations were obtained by decoding a
real encoded program, using a 150 Kbyte sample. To sim-
ulate the performance, the critical path was divided into
several smaller critical paths. The delay of each smaller
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critical path was parametrized depending on the a partic-
ular input data. Each path was measured; the Adder was
not on the critical path. In case of a shift, the critical path
goes through the shifting network, all the way to shift-done.
This delay can be parametrized depending on the number
of shifts. In case of no shift, the delay from the end of
Length to shift-done is fixed — due to control overhead. The
final delays were then obtained by a software-simulating de-
coding process. For each cycle, the program computes the
circuit conditions, determines the critical path and adds
up the paramerized delays. This process gives cycle times
accurate to about 0.1 ns.

Results on the sample input stream are shown in Fig-
ure 12. Decode cycles for individual input symbols ranged
from 4.50 ns to 14.37 ns. There are two large peaks around
4.5 ns and 6.3 ns. The mean cycle time is 6.14 ns is 134%
faster than the worst-case cycle time. This cycle time cor-
responds to a throughput rate of 32 bits/25 ns on the out-
put side, which is equivalent to 163 MBytes/sec, or 1303
Mbit/sec. Since the average input symbol length is 5.46
bits for the test sample, this represents performance in ex-
cess of 889 Mbit/sec on the input side.

As indicated in Section 2, this performance is estimated
as faster than other comparable synchronous Huffman de-
coders, after normalizing for technology and voltage. At
the same time, the area of the design is 5-10 times smaller
than most synchronous designs.

Figure 13 shows the distribution of decoding cycle times
for 32-bit instructions. This represents the rate at which 32-
bit instructions can be delivered to the instruction cache or
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Figure 12. Distrib ution of cycle times for de-
coding individual symbols

directly to the processor.

Finally, Figure 14 shows the distribution of decode times
for full 32-byte cache lines.

All of these histograms indicate a wide range of data-
dependent cycle times, where the asynchronous decoder
operates at a mean rate which is significantly better than
worst-case.
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5.2 AreaEvaluation

As indicated, our design is significantly smaller than
most comparable synchronous designs. In particular, our
architecture avoids special optimizations for rare large
shifts; instead, these are implemented as two separate 1-
byte shifts in sequence. As a result, only a small shifter
(in Align stage) and small adder are needed. Further-
more, since only 1-byte shifts are performed at any time,
no MUXes are required to select one of several byte-shift
amounts. Thus, we obtain a considerable savings in hard-
ware by not optimizing for worst-case codes.

Admittedly, some of the area benefits of our design are
due to a number of low-level optimizations, which would not
appear in some commercial designs which use off-the-shelf
parts. In fact, our earlier design [1] can be directly modified
to handle a global synchronous clock, instead of an asyn-
chronous clocking signal. That is, our architecture might be
usable as a synchronous implementation, with comparable
area (under 1 mm?). However, a synchronous version would
have significantly worse performance (approximately 14 ns
per cycle), since a worst-case clock would be required, so
no advantage could be obtained from data-dependent vari-
ations (see Figure 12). °

In sum, our architecture is an excellent match for asyn-
chronous design, providing low area, while at the same time
providing opportunities to obtain a significant performance
benefit due to data-dependent variation.

5A recent approach has been proposed, called telescopic
ungts [2], which allows variable-speed synchronous operation.
The idea is to complete operation in 1 cycle for typical data,
but in 2 cycles for worst-case data. While this approach might
be used here for a synchronous Huffman decoder, we expect that
the overhead of set-up, hold, decision logic, managing precharge
for both scenarios, etc., at a high rate (6.14 ns typical cycle time),
would be quite difficult.
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5.3 SampleSimulation

It is also useful to consider the waveforms for an actual
simulation, shown in Figure 15. The clocking, or precharge,
signal for each stage is denoted phi-i, which is also a com-
pletion signal of a later stage (see dotted arrows in Fig-
ure 4). Signal phi0 is the Align clock (completion signal
from Length ROM, which is used as the completion signal
of Match stage; see Section 4.3); phil is the Match clock
(delayed completion signal from Length ROM); phi2 is the
Length clock (completion signal from Carry stage); phi3 is
the Carry clock (completion signal from Sum stage); and
phi/ is the Sum clock (completion signal from Align stage).
Signal in_clk is generated by the shifter, to implement a byte
shift, and shift_done is the corresponding shift completion
signal. Signal code_done indicates Code ROM completion
(from Merge stage).

Initially, all phi-¢ are 1, indicating precharge released
(ready to evaluate), and the Offset is 0. For the simulation,
the first Huffman code has a length of 7 bits. Next, in_clk
is asserted (26 ns), indicating a byte shift (this is a final
initialization step to set up the Input Buffer, before steady-
state processing). The falling sequence of phi4, followed by
phi0 through phi3 signals, indicates completion of stages
Align through Sum. At this point, a new Offset value (7)
is produced. There is no shift; therefore, the first cycle is
complete.

Note the zero-overhead operation: once Sum is com-
plete (phi3 is 0) and Shift is done (shift_done is 1), the
next iteration can begin. At this point, Align has just re-
leased precharge (phi0 high) so there is essentially no over-
head. Also note how the Code ROM and Merge completion
signal (code_done high) enables the shift completion sig-
nal (shift_done is 1), illustrating another synchronization of
threads (see Figure 4).

In the second cycle, the new input symbol has length
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Figure 15. Waveforms from one decoder simulation

2. As a result, there is a 1-byte shift and a 1-bit new Off-
set (7+ 2 =19). The in_clk cycle (starting at 38 ns) indi-
cates the 1-byte shift operation. Note the highly-variable
code_done waveform, which indicates the data-dependent
generation and writing of individual byte output symbols
into the Output Buffer.

The remaining input symbols in the simulation have bit
lengths of 9 and 2, resulting in Offsets of 2 and 4, respec-
tively.

5.4 Bottlenecksin the New Ar chitecture.

While the new architecture achieves a large performance
improvement, simulations also indicate that some bottle-
necks remain.

First, stages are not entirely balanced, so zero-overhead
operation is sometimes violated. As an example, consider
the Sum stage in Figure 15. The stage’s clock is phi4. Sig-
nal phi2 goes low (32 ns), which is the done signal for Carry.
Therefore, some 0.5 ns earlier, the Carry outputs were avail-
able. However, Sum cannot evaluate until its precharge is
released (phi4 goes high). Therefore, the inputs to Sum
must wait for over 0.5 ns, before evaluation begins. Of
course, when long shift operations occur, the balance is un-
avoidably skewed.

Second, the new shift optimizations were not as effective
as we expected. As indicated, both Pre-Shift and Shift are
enabled early (by Length ROM and Carry, respectively).
However, the actual benefit of this optimization is minor.
First, Pre-Shift is only enabled one gate-delay before Shift,
and this benefit is lost by an extra delay for Pre-Shift in
the shift sequencer (see Figure 10). Second, the current

overheads of shifting still dominate.

Therefore, while our architecture achieved a significant
improvement, there are still bottlenecks that merit further
attention.

6 Comparison with a Previous Asyn-
chronous Design

We now compare our new design with an earlier asyn-
chronous decoder design presented in [1]. Both circuits were
designed using the same design tools and technology (0.81);
the earlier design also was fabricated. Both designs have the
same area (0.75 mm?) and the same number of transistors
(6100). However, the new design is 83% faster than the old
design.

Architectural Comparison. Several components in
the two designs have the same basic implementation:
Match; Decode; Code ROM and Merge; and Input and
Output Buffers. The Align stage is similar, but is modified
in the new design to incorporate multiple synchronization
signals.

However, there are a number of significant differences.
First, the current organization into a self-timed ring, op-
erating under local control, is entirely new. Similarly, the
optimized partitioning of shifting into 3 stages, and the
early scheduling of shifts (where Length controls Pre-Shift,
and Carry controls Shift), as well as other aspects of the
schedule, are new. Also, the design of the shift sequencer
circuit is entirely new, as is the design of Offset as a dy-
namic stage. Finally, our new design uses a 3-stage carry-
lookahead adder, where P/K/G Generation is folded di-
rectly into the Length ROM bit lines; the goal of splitting
the adder into several stages is facilitate low-overhead op-



eration of the self-timed ring. In contrast, the old design
used a simple ripple-carry adder.

A block diagram of the old asynchronous architecture is
shown in Figure 16. The architecture is organized using a 2-
cycle operation controlled by global synchronization. In the
first cycle, all dynamic blocks are evaluated: Align, Match,
Code ROM, Length ROM and Adder. In the second cycle,
all dynamic blocks are precharged, while static shift oper-
ations occur, if any. Effectively the asynchronous design
generates its own synchronizing global clock, based on the
completion of all the events in each cycle.

Performance Analysis. Figure 17 indicates the break-
down of timing of the stages in the old architecture. Many
stages exhibited a wide-variation in data-dependent opera-
tion. However, the benefits of this variation were lost due to
a large fized overhead: the generation of ®+ and ®— clock-
ing signals. The overhead due to the generation and distri-
bution of these clocking signals was 3.85 ns per iteration.
In addition, in the second cycle, when no shift occurred,
the precharge time also contributed 1.67 ns of fixed over-
head, where no other useful work was performed. Finally,
the ripple-carry adder, under worst-case inputs, provided
extra overhead.

The key contribution of our new architecture is to elimi-
nate these fixed overheads. By structuring the decoder into
an iterative ring, which (i) uses local synchronization be-
tween stages (rather than global synchronization and clock-
ing distribution), and (ii) hides precharge time (using a zero-
overhead approach), these fixed delays were largely elimi-
nated. In the old architecture, individual symbol decode
cycles ranged from 9.23 ns to 19.66 ns, with a mean cy-
cle time of 11.23 ns. In the new architecture, the range is
4.50 ns to 14.37 ns, with a mean of 6.14 ns. These numbers
suggest that we have basically removed a fixed overhead of
roughly 4.5 and 5.5 ns per iteration.

7 Conclusions

We have introduced a new architecture and imple-
mentation for an asynchronous Huffman decoder, for
a compressed-code embedded processors. The decoder
achieves a high-speed decode rate with very low area over-
head. It is estimated to have higher throughput than any
comparable synchronous Huffman decoder (after normaliz-
ing for feature size and voltage), yet is 5-10 times smaller
than most synchronous designs. The performance is also
83% faster than our previous asynchronous Huffman de-
coder using the same technology.

The design illustrates the advantages of self-timed
rings for variable-speed iterative computations. Interest-
ingly, while many high-performance Huffman decoders are
pipelined, pipelining was unnecessary in our case.® The
ring often operates with a near-zero control overhead.

In the future, it would be interesting to explore if greater
benefits could be obtained by pipelining, or if the control

6Note that an iterative ring structure effectively has pipelined
precharges, i.e., they are overlapped with evaluations. Here,
though, we refer to true pipelining of several simultaneous
evaluations.

overhead of pipelining would outweigh any net throughput
improvement.
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