
In: “1997 IEEEInternationalSymposiumonAdvancedResearch in
AsynchronousCircuitsandSystems”(“Async97” Symposium),Eindhoven,The

Netherlands

SpeculativeCompletion for the Design
of High-PerformanceAsynchronousDynamic Adders

StevenM. Nowick
�

Dept.of CS
ColumbiaUniv.
NY, NY 10027

nowick@cs.columbia.edu

KennethY. Yun
�

Dept.of ECE
UC SanDiego

La Jolla,CA 92093
kyy@paradise.ucsd.edu

PeterA. Beerel
�

EE-SystemsDept.
USC

LosAngeles,CA 90089
pabeerel@eiger.usc.edu

AyoobE. Dooply
Dept.of ECE
UC SanDiego

La Jolla,CA 92093
adooply@ucsd.edu

Abstract

This paper presentsan in-depth case study in high-
performanceasynchronousadderdesign.A recentmethod,
called“speculativecompletion”,is used.Thismethoduses
single-rail bundleddatapathsbut alsoallowsearlycomple-
tion. Five new dynamicdesignsare presentedfor Brent-
KungandCarry-Bypassadders. Furthermore, two new ar-
chitecturesare introduced,which target (i) small number
addition, and (ii) hybrid operation. Initial SPICEsimu-
lation and statisticalanalysisshowperformanceimprove-
mentsup to 19%onrandominputsand14%onactualpro-
gramsfor 32-bit adders, andup to 29%on randominputs
for 64-bitadders,overcomparablesynchronousdesigns.

1 Intr oduction
Asynchronousdesignis enjoying a resurgence,with a

many recenttechnicalandpracticaladvances[1]. In princi-
ple,asynchronoussystemspromiseseveraladvantagesover
synchronoussystems:(i) low power, sinceanasynchronous
componentcomputesonly whennecessary;(ii) high per-
formance, sinceglobalclock distribution andsynchroniza-
tion canbeavoided;and(iii) scalabilityandeaseof design,
sincetherearenoglobaltiming constraints.

�
This researchwasfundedin part by an NSF CAREERAward MIP-

9501880andby anAlfred P. SloanResearchFellowship.�
Thiswork is fundedin partby aNSFCAREERAwardMIP-9625034,

agift from theIntel Corporation,andaHellmanFacultyFellowship.�
This researchwasfundedin part by an NSF CAREERAward MIP-

9502386,agift from theIntel Corporation,anda researchseedgrantfrom
theJamesH. ZumbergeFacultyResearchandInnovationFundat USC.

Thepromiseof high-performancedatapathsis especially
attractive. In principle,a numberof componentshavedata-
dependentbehavior: fastoperationon certaininputs,and
slower operationon otherinputs. Therefore,following the
RISCphilosophyof “making thecommoncasefast”,asyn-
chronousdatapathshave the potential to outperformsyn-
chronousdesignsonaverageinputs.

In practice,though,thispotentialis oftendifficult to real-
ize. Existingmethodsfor asynchronousdatapathdesigncan
incur significant performanceoverhead,undercuttingthe
potentialbenefits.Thegoalof this paperis to designhigh-
performanceasynchronousdatapathcomponents,whichare
fasterthansynchronousdesignsandyethavelow areaover-
head.

A numberof approacheshave beenproposedto design
asynchronousdatapathcomponents. Most fall into one
of two categories,dependingon how completionis deter-
mined:bundleddataandcompletiondetection.

A bundleddata designusesa worst-casemodeldelay,
designedto exceedthe longestpath through the subsys-
tem[6, 1]. This delaymaybean inverterchainor a repli-
catedportion of the critical path. This methodhasbeen
widely used[4, 3, 2, 5]. Themainadvantageis thata stan-
dardsynchronous(i.e., non-hazard-free)single-rail imple-
mentationmaybeused,soimplementationsareeasyto de-
sign, andhave low power andlimited area. However, the
key disadvantageis that completionis fixed to worst-case
computation, regardlessof actualdatainputs.�

A completiondetectionmethod[1, 7] detectswhencom-

�
Unlike synchronousdesign,though,delaymarginsmaybesomewhat

tighter, sincetiming constraintsarelocalized.

putationis actually completed. The datapathis typically
implementedin dual-rail, whereeachbit is mappedto a
pair of wires,which encodeboth the valueandvalidity of
thedata.Differentencodingschemeshave beenused,such
as4-phaseRZand2-phaseLEDR(see[1]), andthemethods
have beenappliedto a numberof designs[8, 7]. In princi-
ple, this approachhastheadvantagethatthedatapathitself
indicateswhencomputationis actuallycompleted.Thekey
disadvantage,in many applications,is thatacompletionde-
tectionnetworkis usuallyrequired,addingseveralgatede-
lays betweencompletionand its detection. Furthermore,
the increasedwiring andswitchingactivity often result in
muchgreaterareaandpower consumption.An alternative
scheme,current-sensingcompletiondetection, avoids the
detectionnetwork [9], but requiresspecialcurrentsensors
andstill requiresanumberof gatedelaysof overhead.

In recentwork [12], we introduceda new methodfor
designingasynchronousdatapathcomponents,calledspec-
ulative completion. The methodhasmany advantagesof
thebundleddataapproach,suchasthe useof a single-rail
synchronousdatapath.Unlikebundleddata,though,several
differentmatcheddelaysareused:a worst-casemodelde-
lay, andoneor morespeculativedelays.Therefore,a com-
ponentcanoperateatseveralpossiblespeeds.A speculative
delay allows early completion,and is disabledfor worst-
casedata. However, unlike completiondetectionmethods,
earlycompletiondetectionoccursin parallelwith thedatap-
athcomputation,notaftercomputationis complete.There-
fore,completionoverheadis minimal.

As an initial casestudy, we presenteda designfor an
asynchronousBrent-Kungadder[12]. Thisstudywasquite
limited: only onegate-level designwaspresented.In addi-
tion, thoughcarefulgate-levelanalysiswasincluded,wein-
cludednoSPICEsimulations.Our focuswasonly onstatic
CMOSdesign,andoneparticularcomponentof our design
(“modifiedsumgeneration”)wascomplex.

Thecontributionof this paperis a detailedcasestudyof
the designof high-performanceasynchronousadders,us-
ing speculative completion. The focus is on dynamicim-
plementations.DetailedSPICEsimulationsare provided
for 5 designs,includingbothBrent-KungandCarry-Bypass
adders.

We first show thattheuseof dynamiclogic cansimplify
thedesignof speculativeadders.Both2-speedand3-speed
designsarepresented,for 32-and64-bitaddition.

We then introducetwo new variantarchitectures.The
first is designedto handleaddition of small numbers, and
allows very earlycompletion.Small-numberadditionis an
importantspecialcase,whicharisesin two commonproces-
sor applications:(i) sign-extendedaddition,and (ii) non-
randominput distributions. Sign-extensionof an operand
commonlyoccursin processorsduring branchtarget ad-
dresscalculation(for conditionalbranches)and effective

addresscalculation (for memory data transfers). Non-
randominput distributions occur when running code se-
quencesfor actualprograms.In thiscase,operandsmaybe
statisticallyskewed towardssmall numbers.We introduce
thearchitecture,andapplyit to Brent-Kungadders.

Thesecondarchitectureis a hybrid design, which com-
binesspeculativecompletion(for earlycases)with comple-
tion sensing(for othercases).Thegoalis to avoid comple-
tion sensingoverheadfor earlycases,but obtainthebenefit
of variablecompletionsensingfor slower cases.We intro-
ducethehybrid architecture,andapply it to a carry-bypass
adder.

Finally, SPICEanalysisanddetailedexperimentalper-
formanceevaluationsof the addersarepresented,assum-
ing bothrandomandnon-randominput distributions.Non-
randominput distributions were obtainedfrom an ARM
simulator, evaluatedover a small set of programs(e.g.,
espresso)andbenchmarks(e.g., dhrystone).Initial results
indicateperformanceimprovementsrangingup to 19%on
randominputs, and 14% on experimentalinputs, for 32-
bit addition,and29%onrandominputsfor 64-bit addition,
overcomparablesynchronousadders.

Thecasestudiesin this paperaremeantto demonstrate
theviability of this approachfor high-performancedesign.
It is importanttonotethatspeculativecompletionis notlim-
ited to Brent-Kung or Carry-Bypassadders.It canbe ap-
plied to otheradders,aswell asmultipliersandothercom-
ponentswhichexhibit data-dependentoperation.

2 Background: Speculative Completion
Thissectionreviewsthebasicspeculativecompletionar-

chitecture,aspresentedin [12].

2.1 BasicAr chitecture
A standardsingle-railbundleddatapathis shown in Fig-

ure1(a).Thefunctionblockcanbeimplementedusingsyn-
chronous(i.e., non-hazard-free)single-rail logic. A single
modeldelay is used,with input �
	�� andoutput
���� . This
delay receivesa request,��	�� , whendatainputsarevalid,
andwill producean
���� only afterthefunctionoutputsare
valid. Thismatcheddelaymustbeslower thanthefunction
blockunderall physicalconditionsandall datainputs.

Figure 1(b) shows the basicarchitectureof our specu-
lative completiondatapath. Thereare threekey features.
First, we usemultiple model delays: one for worst-case
andthe remainingonesfor speculative completion.These
speculative delaysallow differentspeedsof early comple-
tion. For example, in a ripple-carryadder, an “average-
case”delay might be usedif adderinputs result in short
carry chains;a “best-case”delaymight be usedif thereis
nocarrychain(e.g., if anoperandis 0).

Second,anabort detectionnetwork is associatedwith
eachspeculativedelay. Thenetwork determinesif thecore-
spondingspeculative completionmust be aborted,due to

Function
Block
(C/L)

1

0
�

Abort logic

Done
1

0
�

Abort logic

Abort2

Abort1

Medium matched delay

Short matched delay

req

req

Worst−case matched delay
�

req

Worst−case matched delay

req

Function
Block
(C/L)

Done

(a) Block diagram of standard bundled datapath

(b) Block diagram of speculative completion datapath

Figure 1. Comparison of (a) standar d bundled
datapath, and (b) speculative completion dat-
apath

worst-casedata. Abort detectionis computedin parallel
with datapathcomputation.Theabortsignalis allowed to
glitch. Theonly timing requirementis thatit becomestable
andvalid fasterthanthespeculativedelay.

Interestingly, theabortdetectionnetwork doesnot need
todetecttheexactconditionsfor abort.Instead,thenetwork
can be simplified, to safelyapproximatethe abort condi-
tions. In particular, theabortdetectionnetwork mustdetect
all worst-casedata,whereabort is required. However, it
mayalsoabortfor some“best-case”inputs,whereabortis
unnecessary. The only impactof an unnecessaryabort is
to producea latecompletionsignal.Safeapproximationof
abortconditionscanbeusedto simplify theabortdetection
logic.

Thethird feature,modified result logic, is notvisible in
Figure1(b). With speculativecompletion,earlycompletion
is allowedwhenresultscanbeproducedearly. In practice,
though,somedatapathsdonotallow earlygenerationof re-

sults. For example,in certainadderdesigns(seebelow),
even if all carriesare computedearly, thesecarriesmust
passthroughseveral levels of logic beforeproducingthe
correctsum. Therefore,bypasslogic is required,to allow
the sumto be generatedusingtheseearly carries. Further
detailsappearin thenext subsection.

2.2 A Preliminary Gate-LevelStudy: Brent-Kung
Adder

We now review ourpreviouscasestudy[12]: thedesign
of Brent-Kung 32-bit binary lookaheadcarry (BLC) adder
using speculative completion. The designwas gate-level
only; nosimulationswerepresented.Thefocusof thestudy
wasonstaticimplementations.
2.2.1 BLC Adder Design
A parallel 32-bit carry-lookaheadadder of Brent and
Kung[10, 11] is shown in Figure2. This adderusesa bit-
wise,or binary, lookaheadcarry(BLC) method.In aCMOS
implementationof this adder, the stackdepthof eachgate
is 2, andthe gatefanoutload is usually2. The designis
amenableto regularlayout.

The 32-bit adderproducesall propagate(�) andgener-
ate (�) signalsin Level-0 andproducesa sumin Level-6.
Thecritical pathfrom input to outputis therefore7 gatede-
lays.BetweenLevel-0andLevel-6,theaddercomputesthe
cumulative � and � valuesin parallel for eachof the 32
bit slices.Specifically, Level-1computesall 2-bit � and �
values(where ������ � � � � �"! � and ����#� � �%$ � �%� � �"! �),
Level-2computesall 4-bit values(where �'&� � ���� � ����"! &
and � & � � � �� $ � �� � � ��(! &), andso on. In Level-6, the)
th sumbit, * � , is computedastheXOR of propagatebit � �

(taken from Level-0), andthefinal generatebit (or “carry-
out”) �'+�"! � of theprecedingstage(takenfrom Level-5).

2.2.2 SpeculativeAdder Design
Thespeculativeadderusesthesamebasicdatapath,butwith
severalmodifications.We review thethreecomponents.

Completion Network
Figure3 showsa blockdiagramof ourspeculativecomple-
tion network. For simplicity, inverterchainsareusedfor
modeldelays,but replicatedportionsof thecritical pathcan
beusedinstead.In this figure,eachinverterdelayroughly
correspondsto the delay of one level in the BLC adder.
Therearetwo modeldelaypaths.Theworst-casedelaypath
has7gatedelays.Thespeculativedelaypathhasonly5 gate
delays,andappliesto caseswhereall final generatevalues
areavailablein Level-3(i.e., no usefulcomputationoccurs
in Level-4andLevel-5).

Abort DetectionNetwork
Thekey componentof thedesignis theabortdetectionnet-
work, which generatesthe abortsignal. By early comple-
tion, we meanthat all final generatesignalsareavailable
in Level-3: no furtherchangesoccuron generatesignalsin

3
,

LEVEL:

p’/g’
generation

sum
generation

32

SUM

32
-

32
-A

B

KEY:
: :

pi

gi

Pi’
.
Gi’
/

pj gj (j < i)

pi’

gi’

pj’ gj’ (j < i)

Gi
/
Pi
.

:
ai
bi
0 gi’

pi’ai
bi
0

:
pi (pi’)

gi (gi’) gi’ (gi)

pi’ (pi)::
gi−1

sumi

(pi* from level−0)
1pi*

0
2

1 2
3

4
4

5
6
5

:
:

:
:

st
ag

e
(b

it
#)

28
29
30
31

0
1
2
3

Figure 2. 32-bit Brent-K ung Adder

completion network (matched delays)

abort

req

abort detection
 network

B

A

32

32

ADDER
32

SUM

/done
6

req

1

0

Figure 3. Bloc k Diagram: adder with specula-
tive completion

Level-4or Level-5. By latecompletion,wemeanthatsome
final generatesignalis not availablein Level-3: it is com-
putedin Level-4 or Level-5 (i.e., differs from its Level-3
value).

In [12], a necessarycondition for late completionwas
presented:

Condition 2.1. Latecompletioncanonly occur if there
existsa run of 8 consecutiveLevel-0propagatesignals. 7
Theresultis justifiedasfollows.At the 8 th level,agenerate
functionof the

)
th stageis computedas: �:9� � � 9 ! �� $

� 9 ! �� � 9 ! �; , where< �)>=@? 9 ! � (ignoringthealternat-
ing inversionsin theactualimplementation).Clearly, �:9� is
thesameasthegenerateof theprecedinglevel, � 9 ! �� if the
propagateterm, � 9 ! �� , is 0. For thegivendetection,8 �BA ,
so each Level-4 generate signal is the sameas the corre-
spondingLevel-3generatesignalif each Level-3propagate
signalis 0. EachLevel-3propagatesignalis effectively the
productof arunof 8 consecutiveLevel-0propagatesignals.
Sucha conditionis calledan8-p run. Therefore,the goal
of theabortdetectionnetwork is to detectany 8-p run,and
abortif oneoccurs.

For efficiency, this condition is further safelyapproxi-

mated,to producesimplernetworks. As anexample,con-
siderthe product � � ��CD��E:��F . This productcovers, or
detects,the8-p run from ��G to � �IH . If therun occurs,then
� �KJ . However, if therun doesnot occur, then � mayor
maynot besetto L . Theuseof � simplifiesdetection,and
detectionis “safelyapproximate”:� is never L whenan8-p
runoccurs.

In general,a productcoversasetof 8-p runs.For exam-
ple, � coversthe 8-p runsfrom J =NM

through O = JQP . To
designan abort detectionnetwork, productsare selected,
eachof whichdetectsa setof 8-p runs.Theabortdetection
network is constructedoutof asumof suchproductswhich,
together, coverall possible8-p runs. If any 8-p run occurs,
thenetwork will detectit.

A numberof differentabortdetectionnetworks canbe
used. Eachimplementationusesa differentsafeapproxi-
mationto exactabortdetection.

3-Literal Products. Eachproductcontainsa run of 3
p-signals(in Level-0). Thenetwork contains5 products;it
is given by equation: � + ��CQ��E $ � �R� � �S& � � G $ � � E�� � FQ� �ST $� & G � &RU � &V+ $ � &RT � G H � G � . Product� + ��CQ��E coversthe8-pruns
from stage: 0 through7, 1 through8, W�W�W , 5 through12.
That is, if any of theserunsoccurs,this productwill be1.
Similarly, theremainingfour productscover theotherruns.

4-Literal Products. Each product containsa run of
4 p-signals; there are 5 products. The sum-of-products
equationis: � U � + ��CQ��E $ � T � �SH � �R� � �S& $ � �IU � �S+ � � CQ� � E $� �IT � &RH � &�� � &R& $ � &VU � &R+ � & CQ� & E . Eachproductcoversfewer
8-p runsthanin thepreceding3-literal productimplemen-
tation,thoughthesametotal numberof productsis used.

5-Literal Products. Eachproductcontainsa run of 5
p-signals;thereare7 products.Thesum-of-productsequa-
tion is: ��GQ� U � + � C � E $ � E � F � T � �IH � �R� $ � �V� � �I& � � G�� �IU � �I+ $� �I+ � � C � � E � � F � �ST $ � �IT � &VH � &X� � &V& � & G $ � & GQ� &RU � &V+ � & C � & E $� & E � & F � &VT ��G H ��G � . Note that in this case,adjacentproducts
overlap;thatis, they havea literal in common.

Alternative augmentedabort networkscanbedesigned,
whichuse“kill” signalsaswell (see [12]).

Theabortdetectionnetwork is allowedto have hazards.
The only requirementis that it producea stableandvalid
result fasterthan the speculative delay. Becausethis net-
work is critical, thedesignermustoptimizeits performance
to meetthis timing requirement.

Modified SumGeneration
The final componentof the designis sumgeneration. In
a basicBrent-Kungadder, evenif all carriesarecomputed
early, an early sumcannotbe generated(seeFigure4(a)).
The problemis that eachsumbit, *VY[Z � , usesa generate
signalonly from Level-5: *VY\Z � � � �^] �'+�"! � . Therefore,
bypasslogic is needed,to allow the sumto usea Level-3
generatesignal: � G �"! � .

A gate-level solutionis shown in Figure4(b). The sig-
nalsareorderedfor fastcompletionusing � G �"! � andslower

/late−en

Cearly
`

Clate

Cearly

sumipi*

__
pi*

(a) Original Sum Generation

sumi

Clate

(b) Modified Sum Generation

KEY:
__
pi* is from Level−0

i−1Clate is G from Level−5

i−1Cearly is G from Level−3

__
pi*

Figure 4. Sum Generation for Brent-K ung
Adder

completion(with additionaloverhead)using � + �(! � . The
late-ensignalsaredescribedin moredetail in [12]. Basi-
cally, a late-enablesignalis theoutputof anabortdetection
product,which coversthis sumbit. Eachlate-ensignalis
broadcastto thesumbitswhich it covers.

This solution is fairly complex. Onereasonis that, in
a static CMOS implementation,internal nodesare never
reset,so their stateis in generalunknown. During early
completion,onceLevel-3 � signalsarevalid andstable,the
goalis to usethemfor earlysumgeneration.Unfortunately,
the valuesof Level-5 � signalsareunknown at this point.
Therefore,complex sumgenerationlogic is needed,to in-
surethat a valid early sum is produced,using Level-3 �
signals,regardlessof thevaluesonLevel-5 � signals.

3 BasicDynamic Brent-Kung Adders
We now introduce the first class of new speculative

designs: basic dynamic implementationsof Brent-Kung
adders. Dynamic logic allows two key improvements:
(i) greatlysimplified sumgeneration;(ii) fastabortdetec-
tion logic. We presentdesignsfor (i) 32+32bit addition,
using1 speculative delay(i.e., 2-speed),and(ii) 64+64bit
addition,using2 speculativedelays(i.e., 3-speed).

3.1 BasicDynamic P/G Cell.

A basicdynamiccell is shown in Figure5. The cell is
usedfor � �ba � � generationin Level-1 throughLevel-5. The
staticimplementationalternatedbetween� � a � � and � � a � �
in adjacentlevels. In contrast,thedynamicimplementation
usesinverters,soit produces� a � ateachlevel. Theinitial
Level-0 � � a � � valuesareproducedusingdynamicXOR and
AND gates,respectively (notshown).

3.2 Dynamic Adder Design: Overview.

Completion Network.
A matchedcompletionnetwork for a32+32bit dynamic

Brent-Kung addercan easily be built. Figure 6 shows

prech

Pi
n−1

Gj
n−1

G
n−1
i

Gi
n

P n−1
j

i
n

P

ip
is

Gi −1
N
c

Figure 5. Basic dynamic cell: Brent-K ung
adder

prech

prech

Done late

Done early

Pdummy1

P
d

dummy2

Gi
n

i
n

P
d

Pi
n−1

G
n−1
i

P n−1
j

Gj
n−1

Gi
n

i
n

PPi
n−1

G
e n−1

i

P n−1
j

Gj
n−1

Gi
n

i
n

PPi
n−1

G
e n−1

i

P n−1
j

Gj
n−1

Gi
n

i
n

P
d

Pi
n−1

G
n−1
i

P n−1
j

Gj
n−1

Gi
n

i
n

PPi
n−1

G
e n−1

i

P n−1
j

Gj
n−1

Gi
n

i
n

P
d

Pi
n−1

G
n−1
i

P n−1
j

Gj
n−1

Gi
n

i
n

PPi
n−1

G
e n−1

i

P n−1
j

Gj
n−1

Gi
n

i
n

P
d

Pi
n−1

G
n−1
i

P n−1
j

Gj
n−1

Gi
n

i
n

P
d

Pi
n−1

G
n−1
i

P n−1
j

Gj
n−1

Gi
n

i
n

PPi
n−1

G
e n−1

i

P n−1
j

Gj
n−1

Figure 6. Basic completion netw ork: Brent-
Kung adder

two matcheddelaypaths: (i) a speculative path,assuming
Level-3 � signalsareusedfor sum,producingfhgR8i	Qjbk�lVmon ;
and (ii) the default path, assumingLevel-5 � signalsare
usedfor sum,producingfpgR8i	�mqk�rsj .

Thematcheddelaypathsconsistof replicatedbasiccells
for � a � generation.At the left, initial signals, �utQv�wxw n �
and � tQv�wxw n & aresetto 1 in Level-0. As a result, in each
subsequentlevel, the � � outputbecomes1, in turn. In the
final stagein eachpath(Level-3 in speculative, Level-5 in
default),the � ; inputsaretiedto 1,and � � inputsaretiedto
0, producinga final � � outputof 1 only after input � � �yJ
arrives. Thesesignalsareeachfed into anXOR, to match
thesumgenerationlogic. Finally, theresulting fpgR8i	�jzk�lRmqn
and fpgR8i	�mqk�rsj signalsare fed into a MUX (not shown in
the figure) which is controlledby the abortdetectionnet-
work. The resultingcompletionnetwork contributeslittle
areaoverheadto theentireadder.

Abort DetectionNetwork.
A dynamic implementationof an abort detectionnet-

work is shown in Figure7. Thisparticularnetwork is the4-
literal/5-productnetworkdescribedin theprevioussection.
A similar implementationcanbeusedfor othernetworks.

prech

P
{

4

P
{

5 P
{

10

P
{

11

P
{

12

P
{

6

P
{

7

P
{

9 P
{

14

P
{

15

P
{

16

P
{

17

P
{

19

P
{

20

P
{

21

P
{

22

P
{

24

P
{

25

P
{

26

P
{

27

abort

prech

prech

Figure 7. A dynamic abor t detection netw ork:
Brent-K ung adder

Thenetwork hasonly 2 levelsof logic (ignoringinvert-
ers),andpull-down stackdepthis 2. Thenetwork is small,
fast and hasa low abort rate. The network allows early
completion(i.e., no abort)on 72% of randominputs. As
shown in Section6, even a more complex abort network
(a 5-literal/7-productnetwork) easilymeetsthe timing re-
quirements(determinesabortin lessthan1ns,muchfaster
thanthespeculativedelaypath).
Modified SumGeneration.

Gi −1
3
|

Gi −1
5
}

ip
is

prech

Gi −1
6
~

ip
is

prech

Gi −1
3
|

Gi −1
4
�

(a) Modified Sum Generation: 2−speed adder
�

(b) Modified Sum Generation: 3−speed adder
�

Figure 8. Dynamic modified-sum generation:
Brent-K ung adder

Dynamiclogic allows a greatlysimplifieddesignof the
sumlogic. In thestaticdesignof theprevioussection,mod-
ified sumlogic wascomplicated.Theproblemwasthat in-
ternal nodesare not resetand, therefore,their stateis in
generalunknown. Therefore,complex modifiedsumgener-
ationlogic wasneeded,to producea valid earlysumresult.
In addition,late-enablesignalshadto bedistributedto the
differentsummodules.

In contrast,with dynamiclogic,all nodesareresetduring
theprechargephase,sovaluesof internalnodesareknown.

Thenew dynamicimplementationfor modifiedsumlogic is
shown in Figure8(a). The

)
th sumis givenby: * � � � �]� � G �"! � $ �'+�"! �

� W Here, � G �"! � is theearly(Level-3)carryout
fromthe

)X= J stage,�'+�(! � is thelate(Level-5)carryoutfrom
the

)�= J stage,and � � is the
)
th Level-0 propagatebit. No

late-ensignalneedto bedistributed.
This schemeproducesa correctsum in every case. If

completionis late (i.e., abortoccurs),theneither(i) �'+�(! �
and � G �"! � are both 1, (ii) �'+�(! � and � G �(! � are both 0, or
(iii) �'+�"! � is 1 and � G �"! � is 0. Theremainingcase,�'+�(! � is 0
and � G �"! � is 1, cannotoccur, since � + �"! � is a positive unate
functionof � G �"! � . In all cases,�'+�(! � $ � G �"! � � �'+�"! � , so
thecorrectlatesumis produced.If completionis early(i.e.,
no abortoccurs),thencase(iii) cannotoccur, otherwisean
abort would have occurred. If � G �(! � ��J , then �'+�"! � $� G �(! � �BJ asdesired,regardlessof whether �'+�"! � hashad
time to be set to 1. Similarly, if � G �(! � � L , then �'+�"! � $� G �(! � � L .

Theaboveschemeextendsnaturallywhentherearemul-
tiple speculative delays:eachappropriateearly � signalis
fed into theORgate,asshown in Figure8(b).

3.3 Adder Examples.
In the Resultssection,we will considertwo basicdy-

namicBrent-Kungadders.
32+32 BK Adder (2-speed). Level-0 is � a � generation,
Level-1 throughLevel-5 is � a � generation,and Level-6
is sumgeneration.The 5-literal/7-productabortnetwork,
describedabove, is used. The adderoperatesat 2 speeds.
Thereis onespeculative path,which allows earlycomple-
tion afterLevel-3 � signalshave beenusedfor sumgener-
ation.
64+64 BK Adder (3-speed). Level-0 is � a � generation,
Level-1 throughLevel-6 is � a � generation,andLevel-7 is
sumgeneration.In thiscase,theadderoperatesat3 speeds.
Thereare two speculative delay paths,allowing (i) very
early completionafter Level-3 � signalshave beenused
for sumgeneration,or (ii) earlycompletionafterLevel-4 �
signalshavebeenusedfor sumgeneration.

The very early abort detection network detects all
8-p runs using 12 products, each with 4 literals:
� U � + ��CQ��E $ � T � �SH � �R� � �I& $ � �SU � �S+ � � CQ� � E $ � �ST � &RH � &�� � &R& $� &RU � &R+ � & C�� & E $ � &VT � G H � G � � G & $ � G U � G + � G C�� G E $
� G T � URH � U�� � UR& $ � URU � UV+ � U CQ� U E $
� URT � +RH � +�� � +R& $ � +RU � +V+ � + CQ� + E $ � +VT ��C H ��C � ��C & . The early
abort detection network detectsall 16-p runs using 6
products,eachwith 8 literals: ��FQ� T � �IH � �R� � �I& � � G � �IU � �S+ $� � EQ� � FQ� �ST � &RH � &�� � &R& � & G � &VU $ � & CQ� & E�� & FQ� &VT � G H � G � � G & � GRG $� G + � G CQ� G E�� G FQ� G T � URH � UX� � UV& $ � URU � UV+ � U CQ� U E�� U FQ� URT � +VH � +X� $� + GQ� +RU � +V+ � + C � + E � + F � +RT � C H .
4 Handling Small Numbers

We now introducetwo variantarchitectures,to handle
additionof smallnumbers.

Small-numberadditionis animportantspecialcase,aris-
ing in several processorapplications.By a small number,
wemeananumberwith smallmagnitude,eitherpositiveor
negative.Our focuswill beonadditions,� $�� , whereone
particularoperand(say �) is, or maybe,small. In contrast,
� maybelarge.

Thegoalof this work is to allow veryearly completion
when handlingsmall numbers. Specifically, for a 32+32
bit Brent-Kungadder, our goal is to produceanearlysum
usingLevel-2 � signals. In contrast,thebasicdynamic32-
bit Brent-Kungadderin the previoussectionusedLevel-3
� signalsfor earlysum.

Small-numberadditionoccursin two commonapplica-
tions: (i) sign-extensionand(ii) non-randominput distri-
butions. Sign-extensionof an operand,from, say, 16- to
32-bits,oftenoccursin RISCprocessorsduringbranchtar-
getaddresscalculation(for conditionalbranches)andeffec-
tive addresscalculation(for memorydatatransfers).Non-
randominput distributionsoccur in actualcodesequences
for real programs. In particular, even in ALU add opera-
tions,without sign-extension,actualoperandsmay be sta-
tistically skewedtowardssmallnumbers(seealso [13]).

In eachcase,very early completionis often possible,
sincecarry chainsareoftenshort. However, therearetwo
majorproblemsin applyinga basicspeculativearchitecture
for thesecases.First, abortdetectionlogic becomesquite
complex, sincemany shortcarry chainsmustbe detected.
At thesametime,abortdetectionlogic mustbeevenfaster,
sincea veryearlyspeculativedelayis used.

We now describetwo variantsof the speculative archi-
tecture,to handlesign-extensionandnon-randominputs.

4.1 Sign-Extension
Thefirst designis a 32+32bit Brent-Kungadder, where

the secondoperand,� , is a 16-bit sign-extendedinteger.
Thegoalis to allow veryearlycompletion,i.e., usingLevel-
2 � signalsfor thesum.

Considertwo operands,� �
 G �
 G H W�W�W�
 �
 H and � �� G �
� G H W�W�W

�
�
�
H , where � is sign-extended16-bit number;

thatis,
� G � �

� G H � W�W�W � �
� C �

�
�S+ . We shallreferto bitsJQ� to PuJ astheupperbits, andto bits L to JQA asthe lower

bits. Sincetheupperbits of � areidentical(all 0 or all 1),
abortdetectioncanbegreatlysimplified.

Our basicstrategy is to usepartial abort detection: we
detectabort conditionsonly in the lower bits (roughly).
However, theproblemwith thisapproachis thatlongcarries
in upperbitsarestill possible!Thisproblemis addressedin
thesequel.

CompleteAbort Detection.
A completeabort detectionnetworkcould be used,to de-
tect all long carries. To allow very early completion,us-
ing Level-2 � signals,it is sufficient to checkfor any 4-
p run, i.e., run of 4 consecutive Level-0 propagatesignals,

� � W�W�W�� �q� G . If no 4-p runoccurs,thenno latecompletionis
necessary, asa corollaryof Condition2.1.

A completeabortdetectionnetwork mustdetectevery4-
p run, from L = P to

?�M�= PuJ . For example,using3-literal
products:product� � � & ��G detectstwo 4-p runs, L = P andJ = A ; ��GQ� U � + detectstwo 4-pruns,

?i= � andP = O ; etc.The
resultingnetwork has15products,anddetectsall 4-p runs.

Partial Abort Detection.
A betteralternative is to usea partial abort detectionnet-
work. Thenetwork is muchsimpler;it only detectsthe4-p
runsfrom L = P through JQ� = J M . The implementationis
shown in Figure9.

To prove that this partial network is sufficent, two
casesmustbe considered,dependingon whetherthesign-
extendedoperand,� , is positiveor negative.
CaseI: B Is Positive.

In this case,the key observation is that eachupperbit,)
(
) ��J�� W�W�W P[J), is eithera propagate(p) bit (i.e., � � �

 ��] � � ��J) or a kill (k) bit (i.e., � � �
 � � � � ��J). No
uppergenerate(g) bit (i.e., � � �
 � � � �) canoccur, sincebits�
�S+
= � G � areall 0.

Wenow show thatonly4-prunsupto JQ� = J M needto be
detected.Considertherun, J�� = J M . This is acrossoverrun:
it is thelowest4-prunthatcontainsonly sign-extensionbits
of � . In thiscase,bits JQ� = J M canhaveonly � or � values.

SupposeJQ� = J M is a4-p run(i.e., containsall � values).
In this case,an abort is required,sincea long carry chain
(length � 4) throughbit JQ� may occur, resultingin a late
sum.

Alternatively, supposeJ�� = J M is not a 4-p run. In this
case,nocarrychainis possiblein thehigherbits. In partic-
ular, somebit <�� J�� W�W�W J M is not a propagate(�) bit, so it
mustbea kill (�) bit. This bit, < , effectively kills any carry
into the next bit, J�� . As a result,no carry out will occur
in anyhigherbit, sincethesebits areeither � or � , andnot
� . Therefore,no carrychainoccursin theupperbits,sono
higher4-p runs(J O = JQ� W�W�W ?�M�= PuJ) needto bedetected.
Thepartialabortdetectionnetwork cansafelybeused.
CaseII: B Is Negative.

In this case,thekey observationis thateachupperbit,
)

(
) ��JQ� W�W�W PuJ), is now eithera propagatebit or a generate

bit. No upperkill bit canoccur, sincebits
�
�S+
= � G � areall

1.
Thiscaseis dualto thepositivecase,but thereis asubtle

difference:long carry chainscannow be generated in the
upperbits! For example,suppose
 &RH is 1, and bits
 &X�
through
 & F areall 0. Bit

? L is a generatebit (since
�
&RH is

1), while bits
? J =�?�M arepropagatebits formingan8-p run

(since
�
&X�
= �

& F areall 1). Therefore,acarrychainof length
8 occurs,generatedin bit

? L . Thesecarrychainscancause
late changesin the uppersumbits. Our goal is to avoid
detectingtheselongupper-bit carrychains,yetstill produce
acorrectearlysum.

Wenow provethatonly 4-prunsupto JQ� = J M needto be
detected.Again,considerthecrossoverrun, J�� = J M . Here,
bits JQ� = J M canhaveonly � or � values.

SupposeJQ� = J M is a 4-p run (i.e., all � values).In this
case,anabortis required,sincea long carrychaininto bitJQ� may, or may not, occur. The abort is required,since
thevalueof *VY\Z �ST cannotsafelybe resolvedduringearly
completion:it dependsonwhetherthecarryinto JQ� actually
occurs.

Alternatively, supposeJQ� = J M is nota4-prun. Weshow
thateveryhigherbit now hasa carryout.In this case,some
bit <�� JQ� W�W�W J M is not a propagate(�) bit, so it mustbea
generate(�) bit. This bit, < , effectively generatesa carry
into thenext bit, JQ� . Sinceeachupperbit is either � or � ,
this carry initiatesa carrychain,insuringthatevery higher
bit,

)�� < (whether� or �) producesacarryout.
As anexample,suppose< ��J�� , theupperbits

? P and
?�M

are� , andtheremainingbits J M�=�?�?
,
? A =�? � and

? � = P[J
areall � . Here, J�� is � , initiating a carrychain,of length5,
throughthep-runfrom J�� =>?�?

, andinsuringa carryoutof
eachof thesebits. Theremaining� bits,

? P and
?�M

, already
initiate carry chainsinto p-runs

? A =N? � and
? � = PuJ , re-

spectively. Therefore,everyupperbit producesa carryout.
In this case,long carry chainsin upperbits canoccur.

And yet, this conditionof “all-carryouts” in upperbits can
be usedto insurea correctearly sum,in spiteof the long
carrychains.

Modified Upper SumGeneration.
Thesolutionis to modify theuppersumbits. We first show
that, for eachupperbit

)
,
 � is the correct *VY[Z � for early

completion,and� �] �'+�"! � is thecorrect*VY\Z � for latecom-
pletion.This resultis justifiedbelow.

In CaseI (� is positive), if thereis no abort,weshowed
thatthereis nocarryoutfromany upperbit

)
,
) � J M . There-

fore,anupperbit sum, *VY[Z � ,)�� J M , is:
� �] ��
����� gRY\¡ �"! � � � �] L � � � �
 �] � � �
 �] L �
 � .
In CaseII (� is negative),if thereis noabort,weshowed

that thereis alwaysa carryoutfrom every upperbit
)
,
) �J M . In thiscase,anupperbit sum, *VY[Z � ,)�� J M , is:

� �] ��
����¢ gRY[¡ �(! � � � �] J�� � � �
 �] � � �
 �] J��

 �] L �
 � .
In eachcase,if there is no abort, the

)
th uppersum bit

is *bY[Z � �
 � W This resultholds, regardlessof long carry
chainsin theupperbits (in CaseII).

Basedon this result, modifiedsumlogic for the upper
sumbits *VY\Z � ,) � JQ� , mustbedesigned.Figure10shows
ournew implementation.Eachupperbit is implementedas:
*VY\Z � � � �£] � �'+�(! � $

�
�I+ ¤

�
. Here, ¤ is the
 � gR��¡ signal,

and
�
�S+ is thesignbit of the16-bit operand.& TheAND of

¥
A fasteralternative is to useproduct,¦ �(§ ¦ �(¨ ¦ �"© ¦ �(ª , asthe « signal.

This productdetectsthe cross-over run, ¬"­:®�¬"¯ , andcansafelyreplace°�±�²´³´µ , for thesign-extensioncase.However, timing constraintswereeas-
ily metusing°�±�²´³Rµ as« .

prech
abort

P5

prech

P1

P2

P3

P3

P4

P5

P6

P7

P7

P8

P9

P15

P16

P17

P13

P14

P15

P11

P12

P13P11

P10

P9

Figure 9. Partial Abor t Detection for Sign-Extension: Brent-K ung Adder

Gi −1
5

ip
is

prech

15b Z

Figure 10. Modified Upper Sum Bit for Sign-Extension (bit i=19-31): Brent-K ung Adder

signals ¤ and
�
�I+ is broadcastto eachof theseuppersum

bits. If thereis no abort,theseuppersumbits generatethe
correctresult,
 � , quickly, even in CaseII (� is negative)
wheretheremaybelongcarrychainsin theupperbits.

To seethat this uppersumlogic is correct,considerthe
two cases.In CaseI, � is positive, so

�
�S+ is 0. Therefore,

*bY[Z � � � �] � � + �(! � $ L � � � �] � + �(! � . For earlycomple-
tion, thereareno uppercarries,so �'+�"! � remainsat 0, and
*bY[Z � � � �] L � � � �
 �] � � �
 �] L �
 � . For late
completion,*VY[Z � � � �] �'+�"! � , asdesired.In CaseII, �
is negative, so

�
�I+ is 1. For early completion, ¤ � L , so

*bY[Z � � � �] � �'+�(! � $
�
�S+ ¤

� � � �] � �'+�(! � $ J
� � � �] Ji�

� � �
 �] � � �
 �] J��
 � . For latecompletion,¤ �¶J , so
*bY[Z � � � �] � �'+�(! � $

�
�I+ ¤

� � � �] � �'+�(! � $ L
� � � �] �'+�"! � W

In bothcases,the logic producesthecorrectsum:
 � if no
abort,otherwise� �] � + �(! � .

As shown in Section6, the partial abortdetectionnet-
work andmodifieduppersumlogic easilymeetall timing
constraints.They allow veryfastcompletion,usingLevel-2
� signals.

4.2 Case2: Non-RandomInput Distributions.
Our seconddesign is a 32+32 bit Brent-Kung adder

wherethesecondoperand,� , is frequentlysmall. Thiscase
arisesin practice,wherea 32+32bit adderreceivesnon-
randominput distributions, e.g., when running programs
wheretheinputsareskewedto smallnumbers.

This caseis moregeneralthanCase1, since � maynot
alwaysbeasign-extended16-bitnumber. Again,thegoalis
to allow very earlycompletion,afterLevel-2 (not Level-3)
� signalsareproduced.

Our solution is a simple modificationof our approach
for sign-extension.Wesimplycheckif operand� is asign-
extendednumber. If it is, very earlycompletionis used(if

thereis no abort),asbefore.If not, thedefault latecomple-
tion is used(usingLevel-5 � signalsto producethesum).

Two hardwaremodificationsareneeded,over theCase1
design. First, a *) ��8i	V·¸¡�	V8i¹Xº detectionnetwork is added,
to check if � is a sign-extendednumber. This network
consistsof two subnetworks, Y[���u	V� H and Y\���[V� � . Out-
put Y\���[V� H is the NOR of bits

�
�I+
= � G � , anddetermines

if thesebits areall 0; if so, � is a sign-extendedpositive
number. Output Y[���u	V� � is theAND of bits

�
�S+
= � G � , and

determinesif thesebitsareall 1; if so, � is asign-extended
negative number. Operand� is a sign-extendednumberif
*) ��8i	V·¸¡�	V8i¹ º � Y\���[V� H $ Y[���[V� � �¶J .

Second,*) ��8i	V·¸¡�	V8i¹Xº is usedto augmenttheabortde-
tection network. In particular, the term *) ��8i	V·¸¡�	V8i¹Xº �
Y\���[V� H � Y\���[V� � is ORedwith the original abortnetwork.
The new abort detectionnetwork is shown in Figure 11.
An abort occurs if a 4-p run is detectedin the lower
bits (as before), or if � is not a sign-extendednumber
(*) ��8i	b·\¡�	V8i¹�º � L). The ideais that, if � is not a sign-
extendednumber, we conservatively abort,sincea 4-p run
mayoccurin theupperbits,andwill notbedetected.

Therearenochangesto uppersumbits; thesameimple-
mentationsareusedasin signextension(seeFigure10).

5 Hybrid Carry-BypassAdder
This sectionillustrateshow the abortdetectionscheme

canbeefficiently combinedwith existing completionsens-
ing strategies.Ourgoalis to avoid completionsensingover-
headfor fastcases,but obtainthebenefitof variablecom-
pletionsensingfor slowercases.

We target a dynamic32-bit asynchronouscarry-bypass
adder(CBA), illustratedin Figure 12(a) [15]. The adder
containseight4-bit dual-railManchestercarrygroupsthat
generatedual-rail carry signals, as illustrated in Figure

prech
abort

P5

prech

P1

P2

P3

P3

P4

P5

P6

P7

P7

P8

P9

P15

P16

P17

P13

P14

P15

P11

P12

P13P11

P10

P9

Upper1

Upper0

Figure 11. Partial Abor t Detection for Small Number s: Brent-K ung Adder

12(b). For bit
)
, either �R»� or �V¼� rising signifiesthat the

carry generationis completed.Becausethe carry bits can
completein any order, the completionsensinglogic must
detectwhenall 32carrybitsarecompleted.Thus,thecom-
pletionsensinglogic consistsof a32-bitOR-ANDnetwork.

Figure12(c)illustratesour implementationconsistingof
a treeof dominologic gatesthatwe optimizedto minimize
the worst-casedelay. Specifically, the delay from � G � to
thedonesignalgoesthroughtwo fast2-inputdominoAND
gates,while thedelayfrom othercarrysignalssuchas � � go
throughupto threeadditionaldominogates.

Thesumlogic is fasterthanthefastestcompletionsens-
ing delayandthusis guaranteedto completebeforedone+
is generated.In fact,done+occursup to 1 nsafterthe last
sumbit changes,representingsignificantdelayoverhead.

In order to reducecompletion sensingoverhead,we
combinethe completionsensinglogic with a speculative
completionscheme,as illustrated in Figure 13. Here, a
matchedaverage-casedelayline, qualifiedwith the output
of an abort network, is ORedwith the existing variable-
delaycompletionsensingnetwork. Whenanearlycaseoc-
curs,bothinputsto theORgatewill rise,but thefirst to rise
causesdone+, signifying completion. Sincethe matched
delayline is fast,wecanoftensave a significantfractionof
the completionsensingoverhead.For the non-earlycases
(abort = 1), only the completionsensingnetwork rising
causesdone+.

A statisticalanalysisby Garsideet al. [14] guidedour
choiceof abortdetectionnetworks. He observed that real
dataoftenexhibits a two-humpedcarry-chainlengthdistri-
bution, one hump neara carry-chainlength of 5 andone
muchcloserto theworst-case.Sincetheoriginaladderwas
alreadydesignedto minimizeworst-casedelay, wechoseto
targettheabortnetwork towardsadditionshaving veryshort
carry-chains.

As illustratedin Figure14, theabortdetectionnetwork
consistsof a group of eight 4-p product terms. The up-
per7 termsform themainportionof thedetectionnetwork,
whereeach4-ptermbridgesconsecutive4-bit groups.(The
role of the bottom8th term will be discussedshortly.) To
avoid charge-sharingproblems,these4-bit productsareim-

plementedin two levelsof dominogates.Essentially, these
productsdetectwhen the maximumeffective carry-chain
delayconsistsof 5 consecutive carry propagatesor more,
assumingthatall carrydelaysareequalandthat thecarry-
bypassdelayequalsa carrydelay. In reality, however, the
carry bypassdelayand the carry propagatebetween4-bit
groups,referredto as inter-group propagate, are signifi-
cantly larger thanthe otherscarry propagatedelays. Con-
sequently, usingthis4-pnetwork theaverage-casematched
delaymustbelargerthan:

½ PGdelay+ 1 carrybypass+ 1 carrypropagate+ sum
delayand

½ PGdelay+ 3 carrypropagates+ 1 inter-grouppropa-
gate+ sumdelay.

Notice that in the both equations,the generationof the
group propagatesignal doesnot appear. This is because
it is usuallynot in the critical path, i.e., it is stableby the
time thecarrymustbebypassed.This, however, is not the
casefor the group propagateof the first 4-bit group. To
addressthis problem,we could make the matcheddelay
longerto accountfor this delay. However, this makesthe
hybrid schemeineffective in reducingaverage-casedelay.
Thus,instead,we abortif this caseis detectedusingan8th
productterm,consistingof � J � � ? � � P � � A .
6 Results

We completedthe transistor-level design of the four
addersin 0.5 micronHP CMOS14TBthree-metalprocess.
ThissectiondescribesourSPICEanalysisto determinevar-
iouscritical delays,aswell asstatisticalanalysisto obtaina
measureof average-caseperformance.

6.1 SPICE Analysis
We simulatedall designsusing Mentor GraphicsAc-

cusim(SPICE)simulatorat � Lu¾ C with a 3.3V power sup-
ply. For eachof thefour Brent-KungAdders,wesimulated
a few inputcasesandreporttheresultsin Table1.

ColumnAbort indicatesthedelayrequiredfor theabort
network to complete.For the64-bit design,thedelaysfor
bothabortnetworksaregiven.For eachdesign,thecolumns
G2 throughG6 show thedelayof the Donesignal,for the
variousmatcheddelaypaths.For example,G2 indicatesthe

PKG

MCC

Sum

Bypass Bypass Bypass Bypass Bypass Bypass Bypass Bypass

PKG

MCC

Sum

PKG

MCC

Sum

PKG

MCC

Sum

PKG

MCC

Sum

PKG

MCC

Sum

PKG

MCC

Sum

PKG

MCC

Sum

Completion sensing circuit

eval

done

c in cout

(a)

c in

prech

prech

0
¿p p1 p2

À p3
Á

c in

0g g g g1
Â

2
À

3

0k k1
Â k 2

À k3

cout

cout

c0
¿ T

c0
¿ F

c1
T c2

À T c3
T

T

c1
F c2

À F c3
F

F

T

F

(b)
prech

prech

c F
Ã

10
Äc
F
Ã

11
Äc
F
Ã

12
Äc
F
Ã

13
Ä

c T
Å

10
Äc
T
Å

11
Äc
T
Å

12
Äc
T
Å

13
Ä

c T
Å

14

c T
Å

15

c T
16
Äc
T

17
Ä

c F
14

c F
15

c F
Ã

16
Äc
F
Ã

17
Ä

c T
Å

00
Æc
T
Å

01
Æc
T
Å

02
Æc
T
Å

03
Æ

c F
Ã

00
Æc
F
Ã

01
Æc
F
Ã

02
Æc
F
Ã

03
Æ

c T
Å

04

c T
Å

05

c T
06
Æc
T

07
Æ

c F
04

c F
05

c F
Ã

06
Æc
F
Ã

07
Æ

done

(c)

Figure 12. (a) Top-le vel view of 32-bit carr y-bypass adder; (b) dual-rail Manchester carr y-chain; and (c)
two of the four 8-bit groups constituting the domino logic implementation of the completion sensing
tree .

donesignal for very fastcompletion,wheresignalLevel-
2 � signalsareusedto generatethesum.In eachexample,
thesecolumnshaveacheckmarkif theassociateddelayrep-
resentsthedelayof theaddition.Thelastcolumn,Lastbit,
givesthedelayof thelast-changingsumbit. All delaysare
in nano-seconds.

WealsoperformedSPICEanalysisontheHybrid Carry-
BypassAdder andpresenta breakdown of delaysfor var-
ious examplesin Table2. The columnPGK Gen. Delay
provides the delay for generatingthe � � , � � , and � � sig-
nals; it is a constantfor all examples.The columnComp.
Detect., providesthedelaythroughthecompletionsensing
tree.Thisgivesanindicationof thedelayof theadderif no
abortnetworkexisted.ThecolumnMatchedDelaycontains

thedelayof thematcheddelayline; it is essentiallyconstant
for all examples.The columnLastBit identifiesthe delay
of the last sumbit changingalongwith its bit #. The col-
umnDoneprovidestheactualdelayof theadder. The last
column,Savedis the differencebetweenthe actualadder
delay(givenby theDonecolumn)andtheadderassuming
no abortnetwork wereused(givenby theCompletionDe-
tect. column). This givesan indicationof how muchtime
theabortnetwork saved.

6.2 Statistical PerformanceAnalysis
We statisticallyanalyzedthe average-caseperformance

of four of thespeculative-completionadderswe described:
the32-bitBK, the32+16-bitBK, the32-bit+smallBK, and
the32-bitHybrid CBA. For eachof theseaddersweconsid-

prech

c F

c F

c F

c F

done

+
T
Ç

c i
F

c i(
È

)
Éπ

8

15

+
T

c i
F

c i(
È

)
Éπ

24

31

+
T
Ç

c i
F

c i(
È

)
Éπ

16

23

+
T
Ç

c i
F

c i(
È

)
Éπ

0

7

c T
3

c T
2

c T
1

c T
0

3

2

1

0

c F
5

c F
4
Êc T

5

c T
4

c T
7

c T
6 c F

6

c F
7

Matched delay

Abort logic abort

prech

Figure 13. Illustration of the hybrid approach in whic h completion-sensing is combined with a
matc hed delay line using an abor t netw ork.

prech

P
Ë

16

P
Ë

17

P18

P
Ë

19

P
Ë

21

P22

P
Ë

23

P26

P
Ë

27

P
Ë

28

P
Ë

29

abort

prech

P2

P
Ë

3

P
Ë

4

P
Ë

5

P6

P
Ë

7

P
Ë

8

P
Ë

9

P
Ë

24

P
Ë

25

P
Ë

20

P14

P
Ë

15

P
Ë

10

P
Ë

11

P
Ë

12

P
Ë

13

P
Ë

2

P
Ë

3

P
Ë

4
Ì

P1

Figure 14. Dynamic transistor -level implementation of the proposed abor t netw ork.

ered
½ randomdata,whereeachoperandbit has0.5probabil-

ity of being1, and
½ realdata,obtainedby runningbenchmarkprogramson

anARM simulatorin whichwe incorporatedsoftware
performancemodelsof our addersderived from our
SPICEanalysis.

For the random case only, we also considered64-bit
BK adders(the real data was for 32-bit additionsonly).
We comparedour speculative Brent-Kung addersto syn-
chronousBrent-Kungadders,to demonstratetheadvantage
of speculative completion. For our hybrid CBA, however,
wecomparedto anasynchronouscompletion-sensingCBA
without speculative completion,to demonstratethe advan-
tageof thehybridapproach.

Random Data. The analysison randomdataindicates
that speculative completionyields significantperformance

improvements.Onaverage,the64-bitBK speculativeadder
is 29% fasterthan a 64-bit synchronousBK adder. The
32+32-bitBK adderis 19% faster, and the 32+16-bitBK
adderis 8%faster, thana32-bitsynchronousBK adder. The
32-bit resultsaresummarizedin Table3. (TheTableonly
liststhe32-bitadders,sincetheARM simulationswereonly
for 32-bit addition.)

Real Data. We obtainedrealdataby runninganARM
simulatoron four benchmarkprogramsand analyzingall
the additions and subtractionsperformedby the ALU.
Theseoperationsarepartitionedinto threesets. The first
partitionconsistsof branch-targetadditionsin which a 24-
bit sign-extendedoffset is addedto a 32-bit PC address.
The secondpartition consistsof addresscalculationsin
which24-bit sign-extendedoffsetis addedto a32-bitbase-
address.The third partition consistsof arithmetic(ALU)
32-bitadditions.

SPICESimulationof Brent-KungAdders

Last
Example Abort G2 G3 G4 G5 G6 bit

64+64bit BK Adder 1.71 1.88 2.42

7FFFFFFFFFFFFFFF+ 0.86/
0000000000000000 1.09 Í 2.33

00000000000001FF+
0000000000000001 1.01/- Í 1.87

000000000000001F+
0000000000000001 -/- Í 1.64

3FB000000000001F+
0010000000000001 -/- Í 1.68

32+32bit BK Adder 1.63 2.13

00000001+
7FFFFFFF 0.81 Í 2.11

63A9CB2B+
BA26A3D9 - Í 1.55

32+16bit BK Adder 1.41 2.15

0FFB0400+
00000F0D - Í 1.29

0FFF0000+
00000F0D 0.95 Í 0.83

0FFFC000+
00004F0D 0.89 Í 1.88

70F84000+
FFFF880D 0.98 Í 2.08

70FFC000+
FFFF880D - Í 1.09

70FFC000+
FFFF9B77 - Í 1.08

32+small-number
BK Adder 1.41 2.14

0FFB0400h+
80000F0Dh 0.87 Í 1.29

0FFB0400h+
00000F0Dh - Í 1.29

Table 1. SPICE simulation of 0.5 micr on Brent-
Kung Adders at � L ¾ C and 3.3V on various in-
puts.

Sincein our benchmarkprogramsthebranch-targetoff-
setcould alwaysbe representedwith lessthan16-bits,we
usedthe branchpartition to analyzeour 32+16-bitadder.
Furthermore,sinceasignificantfractionof addresscalcula-
tions involvednumberswith lessthan16-bits,we usedthe
addresspartition to analyzeour 32+smallBK adder. Table
3 reportstheaverageimprovementsobtainedfor eachdata
partition.

As mentionedearlier, it hasbeenobservedthatrealdata
is often skewed towardsthe worst case,exhibiting longer
averagecarry-chainlengthsthanwould bepredictedusing
randomdata[14]. For this reason,asynchronousaddersof-
ten perform poorer in practicethan a theoreticalanalysis
using randomdatamight expect. However, it is also im-
portantto notethatresultsfrom realdataoftenexhibit sig-
nificantvariancesandcanbea manifestationof theunique
propertiesof an individual benchmark.Thus,whenmak-

SPICESimulationof 32-bitHybrid Carry-BypassAdder

PGK Comp. Matched Abort Last
Example Gen. Detect. Delay Gen. Bit Done Saved

AC6EC2A7+ 1.18/
EEC45692 0.54 1.83 1.59 - 24 1.65 0.18

FFFFFFFF+
00000001 0.54 4.39 1.55 0.93 - 4.52 -0.13

0000001F+ 1.74/
00000001 0.54 2.17 1.52 1.07 5 2.33 -0.16

F8000000+ 1.64/
00000000 0.54 1.88 1.60 - 31 1.66 0.22

01FDFDFC+ 1.69/
00040404 0.54 2.19 1.54 - 9 1.70 0.49

Table 2. SPICE simulation of 0.5 micr on Hy-
brid Carry-Bypass Adder at � Lu¾ C and 3.3V on
various inputs.

ing performancejudgments,we believe that both real and
randomdatashouldbecritically analyzed.

Resultsare presentedin Table 3. The 32+16-bit BK
adderhadthe lowestaveragedelay(8.52%improvement)
andlowestindividualdelay(ondhrystone,13.5%improve-
ment) for branchcalculations. The 32+smallBK adder,
however, performs relatively poorly on addresscalcula-
tions, primarily becausethe percentagefor very fastcom-
pletion is particularly low in the Dhrystonebenchmark.
This suggeststhat, for this application,a three-tieredabort
network ableto completeaftereitherG2or G3maybepre-
ferred. Dueto thelack of time, sucha circuit couldnot be
simulatedusing SPICEand thusa moredetailedanalysis
couldnotbepresented.

We also observed a high variancein the performance
of the CBAs. The hybrid CBA doessurprisinglywell for
addressandbranchcalculations,over a baseasynchronous
CBA, but is often slow whendoing arithmeticadds. Sim-
ulationsshow that the percentimprovementdeliveredby
the abortdetectionnetwork rangedfrom 1.4%(Dhrystone
arithmetic)to 19.84%(Dhrystonebranches).
Acknowledgements

We aregreatly indebtedto the AMULET group at the
University of Manchesterfor insightful discussions,and
wish to thankProf. Jim Garsidefor providing us with an
ARM simulator. We alsothankProf. CharlesZukowski of
ColumbiaUniversity andProf. Al Davis of University of
Utahfor helpfuldiscussions.
References
[1] G. Birtwistle andA. Davis (eds.),AsynchronousDig-

ital Circuit Design, Springer-Verlag (Workshopsin
Computingseries),London1995.

[2] S.B. Furber, P. Day, J.D.Garside,N.C.PaverandJ.V.
Woods,“A MicropipelinedARM”, in Proceedingsof
VLSI93, September1993,pp.5.4.1–5.4.10.

[3] E.Brunvand,“The NSRProcessor”,in Proceedingsof
26thHICSS, vol. I, January1993,pp.428–435.

[4] R.F. Sproull, I.E. SutherlandandC.E. Molnar, “The
Counterflow PipelineProcessorArchitecture”,in De-
signandTestof Computers, vol 11,Fall 1994,pp.48–
59.

[5] K. vanBerkel, R. Burgess,J. Kessels,A. Peeters,M.
Roncken and F. Schalij, “AsynchronousCircuits for
Low Power: a DCC Error Corrector”,in Designand
Testof Computers, vol 11,Summer1994,pp.2–32.

[6] I.E. Sutherland,“Micropipelines”, in Communica-
tionsof theACM, vol. 32,June1989,pp.720–738.

[7] A.J.Martin, “AsynchronousDatapathsandtheDesign
of an AsynchronousAdder”, in Formal Methodsin
SystemDesign, volume1:1,July1992,pp.119–137.

[8] K. Hwang,ComputerArithmetic: Principles,Archi-
tecture andDesign, JohnWiley andSons,Inc.,1979.

[9] M.E. Dean,D.L. Dill andM. Horowitz, “Self-Timed
Logic Using Current-SensingCompletionDetection
(CSCD)”, in in Proceedingsof ICCD, October1991.

[10] R.P. BrentandH.T.Kung,“A RegularLayoutfor Par-
allel Adders”, in IEEE Trans. on Cptrs., vol. C-31,
March1982,pp.260–264.

[11] K. Suzuki,M. YamashinaandT. Nakayama,“A 500
MHz, 32 bit, 0.4 Î m CMOS RISC Processor”,in
IEEEJSSC, vol. 29,December1994,pp.1464–1473.

[12] S.M. Nowick, “Design of a Low-Latency Asyn-
chronousAdder Using Speculative Completion”, in
IEE Proceedings- ComputersandDigital Techniques,
vol. 143,no.5, pp.301-307(September1996).

[13] L.S. Nielsen and J. Sparsoe,“A Low-Power Asyn-
chronousData Path for a FIR Filter Bank”, in Pro-
ceedingsof Async96, March1996,pp.197–207.

[14] J.D. Garside,“A CMOS VLSI implementationof an
asynchronousALU. In S.FurberandM. Edwards,edi-
tors,AsynchronousDesignMethodologies, volumeA-
28of IFIP Transactions, pages181-207.Elsevier Sci-
encePublications,1993.

[15] K. Y. Yun, P. A. Beerel,V. Vakilotojar, A.E. Dooply
andJ. Arceo,“The designandverificationof a high-
performancelow-control-overheadasynchronousdif-
ferentialequationsolver”, in Proceedingsof Async97.

StatisticalPerformanceAnalysisof VariousAdders

32-bit 32+16-bit 32+small 32-bit

DataSetSource BK BK BK CBA

Randomdata

Avg. % Early 80.0 34.4 N/A N/A

Avg. Delay 1.73 1.90 N/A N/A

% Improvement 19 8 N/A N/A

Branch calculationspartition

% Early

Dhrystone 56.90 55.70 N/A 63.60

Espresso 52.80 41.30 N/A 45.50

Compiler1 40.30 30.00 N/A 47.10

Compiler2 8.50 21.50 N/A 7.70

Avg. % Early 39.62 37.12 N/A 40.97

Avg. Delay 1.94 1.88 N/A 2.43

% Impr ovement 5.17 8.52 N/A 11.88

Addresscalculationspartition

% Early

Dhrystone 73.60 N/A 8.40 68.20

Espresso 63.40 N/A 27.50 43.30

Compiler1 45.80 N/A 14.10 41.40

Compiler2 67.00 N/A 26.70 65.20

Avg. % Early 62.45 N/A 19.18 54.53

Avg. Delay 1.83 N/A 2.01 2.18

% Impr ovement 10.96 N/A 2.04 15.50

Arithmetic calculationspartition

% Early

Dhrystone 11.30 N/A N/A 10.00

Espresso 33.30 N/A N/A 31.30

Compiler1 24.10 N/A N/A 22.30

Compiler2 22.40 N/A N/A 20.90

Avg. % 22.77 N/A N/A 21.12

Avg. Delay 2.03 N/A N/A 3.27

% Impr ovement 0.90 N/A N/A 3.25

Table 3. Statistical perf ormance analysis on
random and ARM-sim ulation data.

