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Abstract—Asynchronous interconnect technology leveraging
transition signaling bundled-data is gaining momentum as a
promising solution for the chip-level connectivity of GALS (Glob-
ally Asynchronous Locally Synchronous) integrated systems.
However, the scope of most previous bundled-data network-on-
chip (NoC) validations is limited to NoC switches in isolation.
Studies with a broader scope admittedly end up in unstable results
because of the incompleteness or low-maturity of the synthesis
flow for asynchronous NoCs. By investing in the development
of a predictable and hierarchical composition tool flow of NoC
switches, this paper aims at major depth and insight in the
comparative assessment of a complete bundled-data NoC with
a competitive synchronous counterpart, when targeting an ultra-
low power technology library.

I. INTRODUCTION

Despite its appealing properties, asynchronous communi-
cation is far from pervasive in real-life Globally Asynchronous
Locally Synchronous (GALS) systems. One reason is the
lack of mature electronic design automation support for asyn-
chronous circuits. This is largely due to a disconnect in the
timing models employed for clocked and asynchronous design.

Another reason is associated with the common choice
for the asynchronous communication protocol. Quasi-delay
insensitive (QDI) design is typically used, since it is more
robust to process and environmental variations, but also re-
sults in more complex circuits and less energy-efficient data
encodings over networks-on-chip (NoC) links. This has raised
the interest in bundled-data (single-rail) encodings, which use
N lines to represent N-bit of information and two additional
handshake lines indicating data validity and acceptance. This
encoding typically results in simpler circuits, but has a relative
timing constraint between control (validity) and data lines. This
requirement further stresses the role of the computer-aided
design (CAD) tool flow for convergence.

Recently, the superior energy savings of asynchronous
NoC switches leveraging transition signaling (i.e., 2-phase)
bundled-data over their synchronous counterparts have been
validated based on hardness of experimental evidence [8],
[17]. In particular, for the first time an asynchronous bundled-
data router has been compared to an industrial synchronous
competitor already fabricated in several commercial products,
using a realistic advanced 14nm FinFET library [3]. The
comparison shows significant area, latency and power savings
for the asynchronous router even though several synthesis steps
are still performed manually.

This trend is thus encouraging researchers to more sys-
tematically address the CAD challenge, especially by inte-
grating and adopting mainstream industrial CAD tools where
appropriate. This work is driven by the following guidelines:
(i) generality of the approach for different asynchronous
design styles [15]; (ii) overcoming a hard-macro approach
to asynchronous design to keep up with modern flexibility
requirements [1], [5], [7], [9], [17], [19]; (iii) development of
timing validation methodologies for timing-driven logic and
physical synthesis [12], [14], [16], [20], [24]. However, CAD

tool flow improvements are most of the time still validated
on simple designs (e.g., linear pipelines) that cannot capture
the intricacy of real-life ones. In the best case, more complex
designs are addressed (e.g., a fast fourier transform engine),
but they are handled as monolithic flat entities due to the lack
of consistent hierarchial design flows.

When restricting the scope to asynchronous NoCs, the
main implication of the poor maturity of current synthesis tool
flows is that the assessment of transition signaling bundled-data
NoCs is typically performed only at the level of individual
switching elements. However, switch-level and network-level
validations of an interconnect technology do not necessarily
bring the same conclusions about its quality metrics. First,
switches need to be synthesized from the ground up for their
compositional use in a hierarchical design in order to obtain
predictable performance. This is typically accomplished by
oversizing the driving strength of their input and output gates,
which may offset area and power benefits characterized on the
switch in isolation. Second, switch cycle time may be degraded
when cascading it with a link, especially for asynchronous
designs, since switch performance is often characterized in
isolation through assumptions on the handshaking delay of
connected modules. In the presence of the actual parasitic
effects, more aggressive retiming may be needed to preserve
cycle time, which degrades latency. While this may not be
an issue in high-performance technology libraries, when low-
power libraries for embedded system design are considered the
latency implications may be significant.

In very few cases, the scope of literature is extended
to the entire network, but the poor control on hierarchical
composition steps of the network leads to admittedly unstable
results in some cases. For instance, although [19] significantly
improves upon state-of-the-art for the wide scope and cross-
layer analysis when comparing synchronous vs. asynchronous
NoCs, it reports unclear performance drops as large as 30%
between static timing analyis and functional simulation for a
design point under test, and post-layout operating speeds well
below 500 MHz (not entirely explained by the 130nm old
technology node) in all cases. Without carefully addressing
and tackling the details of both circuit design and use of CAD
tools, it is not possible to provide the necessary knowledge and
insight that is needed to assess asynchronous interconnects of
industrial scale and quality.

The goal of this paper is to bridge this gap in terms of
evaluation and insight. It aims at fundamentally increasing
the level of accuracy of network-level assessment frameworks
for bundled-data NoCs by synergistically optimizing
the switch architecture, the vertical and the horizontal
synthesis methodologies for predictable and high-performance
hierarchical NoC design. In more detail, the paper pursues a
twofold objective:
(a) It aims at extending a cross-layer synthesis tool flow for
bundled-data NoC switches, based on mainstream industrial
tools, for a complete bottom-up hierarchical NoC design. The
methodology is fine-tuned to avoid switch overdesign, and to
preserve performance and energy efficiency when composing



NoC switches together into the topology as a whole.
(b) Leveraging this hierarchical synthesis methodology, the
goal is to accurately contrast a 2-phase bundled-data NoC
with its synchronous counterpart with similar architecture and
synthesis flow, whenever possible, and with layout awareness.
The synchronous NoC is itself assembled in a hierarchical
way, thus capturing the different criticalities between
hierarchical synchronous and asynchronous NoC design. As a
result, for the first time this paper assesses bundled-data NoC
performance and power on a 40nm low-power technology
in relative terms with respect to a carefully optimized
synchronous counterpart. To our knowledge, this paper sets
a unique new advance in the apple-to-apple comparison
between synchronous and bundled-data asynchronous NoCs.

The paper confirms that bundled-data NoC technology is
more area-efficient than the synchronous one (-10% for a
4x4 2D mesh topology), unlike QDI solutions for which the
opposite holds (up to 3x in [11]). For reasonable packet sizes
(e.g., 20 32-bit flits), our analysis demonstrates a much better
zero-load latency (-36%) and network saturation throughput
(+33%). In contrast, latency becomes comparable with overly
short packets (e.g., 3 flits) because of the asynchronous control
overhead, which also leads to a steeper latency degradation
after network saturation. Finally, asynchronous interconnects
turn out to be a power efficient technology: 15% less power
with short packets. However, the aggressive pipelining of
the asynchronous switch architecture to make it robust for
hierarchical composition into the whole topology (an effect
that could not be seen in switch-level analyses) causes a
power break-even point for long packets: the asynchronous
NoC consumes up to 40x less power at low injection rates,
and roughly 7% more power at the saturation point of the
synchronous variant.

This paper is structured as follows. After reviewing pre-
vious work (Section II), switch architectures under test are
described in Section III. Section IV presents the synthesis tool
flow, while sections V and VI report link and network synthesis
results, respectively. Finally, conclusions are drawn in Section
VII.

II. RELATED WORK

Several NoC designs have been proposed in the literature,
using delay-insensitive communication [2], [6], [11]. Their
validation shows that their timing robustness comes at a
significant price with respect to synchronous NoCs, especially
in terms of area and energy-per-bit.

There is a growing consensus in the field moving towards
bundled-data encoding schemes. The architecture in [7] uses a
4-phase protocol in the switch, potentially resulting in simple
circuits, and a 2-phase protocol on the link, which requires
half the time-of-flight wire delays as 4-phase protocols. More
recently, researchers have tried to extend the 2-phase protocol
to the switch as well [8], [17], while revolving around a fast
Mousetrap controller for the latter [18]. The design trade-offs
spanned by bundled-data are not just design style-specific, but
depend to a large extent on the specific choices for the design
at hand. There is in any case agreement on the superior energy
efficiency of bundled-data NoCs. This conclusion is definitely
supported by the validation of bundled-data technology in an
industrial environment on an advanced 14nm FinFET library
[3]. Other works move away from use of the Mousetrap
controllers while retaining 2-phase bundled-data handshaking,
like the time-division multiplexed switch in [23], which uses
Click elements.

Bundled-data NoC design requires the explicit management
of absolute as well as relative timing constraints, which is hard

to achieve with conventional EDA tools that come with a built-
in synchronous mind-set. This section reviews previous work
on the synthesis of bundled-data circuits.

Many proposed synthesis flows target the validation of
relative timing constraints during both logic and/or physical
synthesis [12], [14], [16], [20], [24]. However, they are often
quite narrow in scope and validated on relatively simple
designs, hence failing to capture the complexity of a real NoC.

More comprehensive methodologies have been proposed
though. The flow in [15] consists of fully characterizing the
asynchronous handshake clocking circuits as design templates
that replace the clock tree in a traditional clock design. How-
ever, less emphasis is given to the physical design challenges,
and validation is performed again on simple designs. A synthe-
sis flow for domain-specific NoCs is proposed in [7], which op-
timizes the network topology and routers’ physical placement
on the floorplan based on the communication requirements.
The flow gains visibility up to the floorplanning layer, and is
validated by means of power and area physical models, not
by actual place & route on an industrial technology library.
The flow in [17] starts from a low-level asynchronous RTL
description and delivers asynchronous NoC router layouts. The
limitation is that it does not cover hierarchical design, where
switches are assembled into a top-level NoC topology. This
extension is one of the main goals of this paper.

The challenges of asynchronous design automation typi-
cally limit accurate comparisons between bundled-data asyn-
chronous NoCs and their synchronous counterparts to indi-
vidual switching elements. When a network-wide scope is
targeted, the missing gaps in current CAD flows make com-
parative results not entirely trustworthy. The work in [19] sets
a promising path for thorough asynchronous NoC assessment,
due to the wide range of explored implementation options, and
to the network-level analysis. Nonetheless, the lack of tight
control over physical design issues leads to the poor post-
layout performance of the synchronous switches, and to the
tight coupling between the cycle time of the link and that of
the input buffer in the asynchronous switch. As a result, the
paper is not able to provide a convincing take-away message.

The industrial work in [22] is an exception. It presents
both advanced architecture (e.g., communication channel pre-
allocation) and advanced implementation (22 nm tri-gate
CMOS technology). However, many circuits are designed with
a full-custom methodology, and there are very few details on
good synthesis practice and on the tool flow in general.

This paper moves from the awareness that effective elec-
tronic design automation support is a pre-requisite for the con-
crete evaluation of new technologies. Therefore, it provides the
first comprehensive, flexible and realistic full NoC study with
2-phase bundled-data, by describing a complete hierarchical
synthesis tool flow on an advanced low-power technology.

III. SWITCH ARCHITECTURES UNDER TEST

All the switches compared in this paper use wormhole
switching, dimension-order routing and have 32-bit flit width.
All the output buffers have six slots, while minimum storage
requirements at input buffers are different, as explained next.

A. Synchronous Switch
The synchronous switch design implements the consol-

idated xpipes-Lite architecture from [21]. Its flow control
protocol (stall/go) poses a requirement of minimum 2 slots
on retiming stages: one default slot and one backup slot in
case of stall assertion by the downstream node in order not to
drop the flit in flight from the upstream node. xpipes takes a
single cycle to traverse the switch (input-to-output port), and
an additional cycle to transmit the data through the link.
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Fig. 1. Proposed asynchronous switch design.

B. Asynchronous Switch
Figure 1 shows the conceptual scheme of the proposed

5-ported asynchronous switch, inspired by [17]. This is the
basic building block to design a 2D-mesh topology. It relies on
Mousetrap stages, which build a low-overhead asynchronous
pipeline providing high-throughput operation [18]. Starting
from the input port interface on the left, the information is
first stored into a Mousetrap stage. Then the INPUT PORT
MODULE, which includes the routing logic, calculates the
target output port and broadcasts data to output multiplexers.
Interestingly, both 4-phase and 2-phase signaling are combined
to connect input and output ports. A 4-phase 1-hot encoded
signal generated by the routing logic is used to select the output
port, while request and acknowledgement for flit-level trans-
mission are propagated using a 2-phase protocol. Matching
units are in charge of aligning the request phase at the input
port with the corresponding phase at the connected output port.
In the OUTPUT PORT MODULE, all the requesting input
ports are arbitrated to exclusively allocate the port and drive
the crossbar multiplexers. Requests are propagated from the
input ports in a 2-phase fashion and blocked by a barrier of
latches until the input port completes the allocation of that
specific output port. The selected data is then stored into
another Mousetrap stage. The data pass through a low-latency
asynchronous CIRCULAR BUFFER stage before reaching an
additional Mousetrap stage placed before the link interface.

With respect to the original architecture presented in [17],
this paper aims at a novel high-performance buffering scheme
to make switch performance more predictable when under-
going the top-level hierarchical design process. In fact, we
intentionally inserted two retiming stages, one before and
one after the circular FIFO. The former aims at sustaining
throughput by acknowledging the input port as soon as data
is safely stored in the associated Mousetrap; the latter aims
at decoupling cycle time of the output buffer from that of
the link, thus targeting minimum performance drops when
switches and links are composed together. In fact, since link
delay is involved twice in the link cycle time, it is not obvious
at all to preserve throughput of isolated switches even for short
links. Also, due to the internal circular FIFO control logic, the
time required to generate an acknowledgement at the crossbar
interface due to transition on the input request (or the time
required to generate a request at the link interface due to a
transition on the acknowledgement) increases linearly with the
buffer size. For a 6-slot circular FIFO, it is about 300 ps in
the target 40nm technology. Therefore, interposed Mousetrap

stages are necessary to enable the use of moderately large
buffer sizes.

IV. DESIGN FLOW

We synthesized both a synchronous and an asynchronous
4x4 2D-mesh NoC by means of mainstream CAD tools in
the context of a fully automated design methodology. Logic
and physical synthesis are performed with Synopsys Design
Compiler and IC Compiler, respectively. All designs have
been placed and routed targeting a low-power 40nm industrial
technology library. To simplify the top-level network assembly,
we followed a hierarchical bottom-up design approach for both
synchronous and asynchronous NoCs. In a typical bottom-
up hierarchical design flow, all the macro blockages are
completely synthesized in separate processes. Without lack
of generality, in our case we synthesized only a single 5-
port switch macro with four directional ports (East, North,
West and South) plus a local port on the North-West corner to
interface it with the local core. During top-level NoC design,
the same macro is replicated several times, and unused ports at
the boundaries of the mesh are left unconnected. In this paper,
the inter-switch link length was set to 1mm. This is compatible
with the tile size of ultra-low power parallel accelerators for
embedded computing, when scaled to the same technology
node [13]. Other link lengths are left for future work.

A. Entry Level and NoC Compilation
A complete NoC design framework has been developed and

used to generate a 4x4 2D-mesh NoC starting from a graphical
description (standard svg format) of the NoC architecture.
An in-house made NoC compiler automatically generates the
Verilog entry level netlist for the NoC (top-level), while switch
macros are synthesized separately and then imported during the
top-level layout synthesis to exploit the bottom-up approach.
Fig. 2-Left shows the entry level svg file for a 4x4 NoC.

Link entities are explicitly parameterizable to infer the
desired number of link pipeline stages. As an option, the
compiler can automatically insert the correct number of stages
given the specification in the graphical user interface of the
link length and of the characteristic link delay in ps/mm in the
target technology.

Core entities are associated with floorplanning obstructions
on top of which routing is forbidden, which will host the real
layout of computation tiles. Core entities are also explicitly
parameterizable, in order to specify the network coordinates for
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Fig. 2. Design framework, from graphical specification to Post-Place & Route.

algorithmic dimension-order routing, or to populate the routing
tables at network interfaces in case source-based routing is
used. Spatial coordinates related with the switch locations and
the core blockages are automatically imported from the svg file
and used to configure the Synopsys IC tool to automatically
drive the floorplanning process.

The proposed framework is flexible, and can specify both
regular topologies as well as irregular ones, in addition to
selecting different routing mechanisms. In this paper, we
will exercise only the 2D-mesh specification and compilation
capabilities of the framework, combined with an algorithmic
XY routing. We leave the unexplored configuration space for
future work.

B. Synchronous Design Flow
In a bottom-up hierarchical synthesis flow for synchronous

designs, switch macros are typically synthesized with overly
tight constraints at their boundaries (i.e., slow signal transition
times at input pins and high load capacitances projected for
output pins). This is a conservative procedure which results
in the oversizing of switch ports, so to potentially reduce the
effort for timing and power closure during top-level hierarchi-
cal system design. In fact, in case of poor matching between
projected pin loads and real ones, the maximum performance
derived from characterizing NoC switches in isolation is
largely wasted during top-level NoC design. At the same time,
the poor control on signal slope can lead few cells at switch-
link interfaces to dissipate a huge amount of static power due
to the short-circuit current between power and ground rails.
From another viewpoint, synthesizing the switches with overly
tight constraints gives up the achievement of high-performance
from the ground up (i.e., large cells or long buffer chains can
better drive loads or restore signal integrity, but give rise to
relevant propagation delays themselves).

Overall, final NoC layout quality metrics are closely related
to the details of this hierarchical design step. Previous technical
reports for NoC synthesis on similar low-power technologies
[25] impose such conservative design constraints (e.g., output
loads set to 100x the input capacitance of the biggest inverter
in library, 0.4ns input transition time). However, those designs
were targeting relatively slow operating speeds (below 500
MHz). This paper instead aims at maximizing performance on
top of a low-power technology, hence the methodology was
fine-tuned to reclaim every single MHz.

Thus, we performed an early design space exploration
targeting different output loads. We forced the switch to drive a
load capacitance equal to the input load of small-size (driving
strength x5), average-size (x60), large-size (x200) buffers. We
also tried to drive capacitances equal to 5/10/50/100x the input
load of the biggest inverter in the library for the sake of
comparison with common practice. When the constraint is

overstated, the synthesis tool adds long buffer chains at switch
output ports to virtually drive high output loads.

For each case, we hierarchically composed synthesized
switches in a small setup including two switches and one
connecting link. Link length for layout design was set to 1mm.
We finally collected timing reports, and chose the solution
that provides the maximum final performance, which was the
average-size (x60) buffer.

In addition, we noticed more predictable performance (i.e.,
less deviation between switch in isolation and hierarchical 2-
switch design) when fencing a layer of average-size buffers
close to the switch output interface during top-level floorplan-
ning.

On the other hand, signal integrity at the receiving
switch input port is enforced by giving high priority to the
max transition time constraint. This way the synthesis tool
provides additional buffers along the link only if needed, and
the switches preserve their own optimal performance.

Before running the top-level clock tree synthesis (CTS)
we make the synthesis tool aware of the switch macro clock
timing model by using the set clock tree exception command.
In particular, macro clock pins are modelled as float pins,
meaning that during the CTS the tool will consider the delay
(specified by the user) from those clock pins to the leaf cells
within the macros. Minimum and maximum rising time is first
extracted using the get timing path command and then used as
a parameter of the set clock tree exception command. Once
the clock tree is synthesized, it is marked with the dont touch
attribute, then placement and routing is performed on the rest
of the design.

C. Asynchronous Design Flow
The proposed asynchronous design flow is detailed in Fig.

3, which extends the baseline flow in [17] for hierarchical
design. It can be subdivided into a first-stage design flow for
switch macros (from step #1 to #10), and a second-stage top-
level design flow for the network as a whole (from step #11
to #15).

Our target technology library does not include asyn-
chronous special cells (i.e. MullerC elements and mutexes),
hence we used the standard-cell equivalent implementations
for them. Besides this, other asynchronous circuits require a
very low-level specification. In order to enable this, while still
allowing a technology-independent specification, we use the
generic GTECH Synopsys library. By using GTECH speci-
fication, the asynchronous designer has full control over the
gate-level logic function. Such hybrid Verilog-GTECH RTL
specification is fully synthesizable, and can be mapped on any
technology library.

After reading the entry-level netlist (#1), logic manipula-
tions are prevented by setting appropriate compile directives



Bundling constraint 
violated??

TARGET 
STD-CELL 
LIBRARY

GTECH
GENERIC
LIBRARY

SWITCH MACRO 
MODEL

if (min_delay fix required)

LAYOUT STEPS
(IC Compiler)

SYNTHESIS STEPS
(Design Compiler)

----------------------------------------
LEGEND

----------------------------------------

if (min_delay fix required)

GRAPHICAL NoC SPECIFICATION

COMPILER

YESNO

NETWORK TOP LEVEL 
MODEL 

ILM AND FRAM
MODELS

NETLIST AND TIMING 
MODELS FOR SIMULATION

POST PROCESSING AND SIMULATION

----------------------------------------

SWITCH 
MACRO

DESIGN FLOW

TOP LEVEL NoC
DESIGN FLOW

FL
O

O
R

P
LA

N
C

O
N

ST
R

A
IN

TS
: s

w
it

ch
es

 a
n

d
 c

o
re

s 
lo

ca
ti

o
n

s,
 r

o
u

ti
n

g 
re

st
ri

ct
io

n
s

STEP #5a: 
APPLY RELATIVE TIMING 

CONSTRAINTS

STEP #7: 
IMPORT POST-SYNTHESYS

NETLIST

STEP #1: 
DESIGN ENTRY 
(RTL+ GTECH)

STEP #2: 
COMPILE DIRECTIVES TO FIX 

THE LOGIC FUNCTION 

STEP #3: 
MAX DELAY CONSTRAINTS

STEP #4: 
TECHNOLOGY MAPPING

STEP #5: 
TIMING ANALYSIS – CHECK 

FOR RACE CONDITIONS

STEP #8: 
MAX DELAY CONSTRAINTS

STEP #9: 
FLOORPLANNING, 

PLACEMENT, ROUTING

STEP #6: 
GATE LEVEL 

NETLIST GENERATION

STEP #10a: 
APPLY RELATIVE TIMING 

CONSTRAINTS

STEP #10: 
TIMING ANALYSIS – CHECK 

FOR RACE CONDITIONS

STEP #11: 
TOP-LEVEL NoC 

SYNTHESIS

STEP #12: 
IMPORT MACRO 

MODELS. SET MAX 

DELAY ON ACK AND 
DATA PATHS

STEP #13: 
TOP LEVEL 

FLOORPLANNING, 

PLACEMENT, ROUTING

STEP #14a: 
SET MIN DELAY ON THE 

VIOLATING PATHS

STEP #14b:
MANUAL BUFFER 

INSERTION ON 
STRONGLY VIOLATING 

REQUEST PATHS

STEP #14: 
LINK LEVEL RELATIVE 

TIMING CHECK

STEP #14c: 
INCREMENTAL 

PLACEMENT AND 
ROUTING 

OPTIMIZATIONS

STEP #15: 
EXTRACTION

Fig. 3. Complete asynchronous design framework with detailed design flow
procedures.

(#2): only gate sizing and buffer insertion options are enabled.
The design is then constrained for max. performance (#3)
by enforcing the set max delay command to all the timing
paths in the design. After a first technology mapping run (#4),
relative timing constraints are then checked (#5). The delay
of the paths that have to be matched (data) can be extracted
from the mapped netlist using the get timing path command.
The delay is then assigned to the path to be delayed (request)
using set min delay (#5a). To upper bound the request delay, a
max delay that is slightly larger than the min delay is enforced
on this path too. This procedure is iterated until all the bundling
constraints are met with a safety margin of +10% with respect
to the data-path delay1 (#4 ↔ #5). A similar procedure holds
for the layout flow with IC compiler: timing constraints are
iteratively checked until the margin between request and data
lines is met (#9 ↔ #10).

As for the synchronous design, we performed an early
design space exploration on the asynchronous switch macro
in order to make it robust for top-level composability. Inter-
estingly, we achieved high performance predictability without
instantiating a layer of buffers between switches and links,
but by simply moving the last Mousetrap pipeline stage (the

1Validation of the bundled-data timing margin through on-chip variation
analysis is left for future work.
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Fig. 4. Contrasting incremental optimization and one-shot optimization
during top-level relative timing fix.

one after the output buffer in Fig.1) out of the switch macro,
and exposing it as a top-level macroblock. At the same
time, we set an output load on switch output pins equal to
input capacitance of a latch input pin. During the top-level
floorplanning procedure, this Mousetrap stage will be fenced
close to the associated output port, as depicted in Fig.2-Right.

The final NoC layout flow starts with a top-level synthesis
(#11), where only top-level connections between switches are
specified, while switch macros are treated as black boxes. The
synthesized top-level netlist and the committed switch macro
models are imported and linked in the Synopsys IC Compiler
environment (#12). Max delay constraints are applied on data
channels and acknowledgements only, in order to get the best
performance. Once floorplanning, placement and routing are
terminated (#13), we start the procedure to fix the relative
timing constraints (#14). In most cases setting min delay
constraints (#14a) is not enough to achieve design convergence,
even if we give high priority to the min delay optimizations.
When this is the case, we help timing closure by means of an
engineering change order (ECO): we insert a buffer cell on the
request net and we place it with the place eco cell command
(#14b). This procedure is iterated through incremental place-
ment and routing optimizations (#14c) until all the bundling
constraints are met with a safety margin of +10%. A script
automatically masters the ECO iterations and leads to timing
closure.

In this methodology, we initially forced the place & route
tool to resolve all relative timing constraints with a margin of
10% with respect to the datapath delay (one-shot optimization).
We later found out that this procedure often ends up in
exceedingly high relative timing margins, despite the upper
bound we enforce on it, which penalize NoC performance.
Therefore, we fine-tuned the methodology to gradually meet
the target: at first we set a 0% margin, then 5%, and finally
10%. Every intermediate target is met by means of the iterative
ECO procedure. Fig. 4 shows 1-hop header latencies measured
on all the 24 bidirectional links of a 4x4 2D-mesh with tile size
of 1mm. Clearly, incremental optimization improves header
latency up to 6% with respect to one-shot optimization. There-
fore, we used incremental optimization for the experimental
results.

D. Post-Processing and Simulation
To connect the switch local port with the associated Core

interface we placed a “dummy macro” in the position where
the Core interface is expected to be. For this purpose we
use a macro model of a simple circular buffer. As depicted
in detail in Fig. 2-Right, this trick ensures a correct and
consistent routing of the connections with the local Core, while
in the rest of the Core area, placement and routing operations
are prohibited. During the netlist post-processing, the entities
of the dummy buffers are replaced with behavioural traffic
generators.

E. Assumptions on Injection/Ejection Interfaces
Assuming local synchronous cores, the traffic generators

should also take into account the clock domain crossing
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issue. In this work, we leverage ideal synchronizers at injec-
tion/ejection interfaces. As a result, this paper accounts for the
lower bound on the latency difference that can be experienced
by the synchronous vs. the asynchronous NoCs, so that we
keep the focus on inherent network performance and not on
the distinctive features of the clock domain crossing interfaces
at hand.

At the injection interface, an infinite FIFO buffer is
assumed, with 1GHz injector cores. When the network is
faster than the core (which is the typical case), the ideal
synchronization latency depends on the relative misalignment
between the rising clock edges. Instead, when cores inject into
an asynchronous NoC, then ideally the FIFO crossing latency
is equal to just the req/ack cycle delay to transmit the flit to
the downstream switch. Intuitively, synch-to-asynch converters
do not have to perform the complementary asynch-to-synch
conversion that a dual-clock FIFO would perform.

At the ejection interface, we simply assume that as soon
as a flit is written onto the receiver FIFO (with a synchronous
write or with an asynchronous handshake), the flit is ejected,
and its timestamp taken for latency calculations. We do not
model synchronous ejectors, since their ejection rate would
artificially limit the performance of the NoCs under test.
Hence, we are interested in extracting peak NoC performance.

V. PREPARING FOR NOC SYNTHESIS

A. Fine-Tuning Link Design

Before synthesizing the NoC as a whole, we had to decide
the degree of link pipelining (if any) over the target 1-mm
links. For this purpose, we instantiated two switches, and laid
out the connecting link for different lengths.

1) Synchronous Design: Fig. 5-Bottom contrasts the global
critical path of the mini-experimental setup against the link
critical path. Starting from 3mm and beyond, the critical path
lies on the link. At 1mm (target of this paper), the link timing

path has a margin of about 300ps. However, such timing
margin might be nullified or artificially extended by a negative
or positive skew in the top-level CTS, respectively. Therefore,
in the same figure, the effect of ± 50 ps and ± 100 ps (roughly
10% of the clock cycle) top-level clock skew are pointed out
as well.

Instead of performing post-Place & Route optimizations
to exploit this margin for area/power relaxations, we decided
to maintain it and use it to relax the skew constraints on the
top-level clock tree. This is an interesting degree of freedom
to help convergence of the most critical synthesis step for a
synchronous NoC, that is, its top-level clock tree. In practice,
timing margins can be retrieved on NoC links, while at the
same time relaxing global skew constraints. As a result, as
the link length increases, the designer must trade between
timing robustness and latency overhead caused by the insertion
of an additional pipeline stage on the link. Since the skew
constraint becomes more and more critical as the die size
increases, we conclude that a pipeline stage is required for
link lengths greater than 2.5mm with the target technology in
order to restore a good margin and simplify the CTS process.
As depicted in Fig. 5-Bottom, the additional pipeline stage is
capable to link two switches up to 4.5mm without incurring
in throughput losses. As far as this paper is concerned, no
pipeline stage is needed for 1-mm links.

2) Asynchronous Design: We run several link layouts from
0.5mm to 6.5mm with a different number of Mousetrap stages.
Results are illustrated in Fig. 5-Top. It turns out that a pipeline
stage is required each 1.5mm to avoid throughput losses. To
further motivate the new pipeline organization proposed in
this paper, we included an experiment called “no Mousetrap”
in the same figure. This design refers to a pair of switches
with no “output” Mousetrap interposed between the switch
circular FIFO and the link. As expected, the performance
penalty is quite severe also for overly short links. This setup
likely reflects the link design style in [19], where no link
retiming is inferred, and explains the poor performance of
the asynchronous NoC in that paper. As far as this paper is
concerned, the simple decoupling Mousetrap between output
buffer and link is enough for 1-mm links.

VI. EXPERIMENTAL RESULTS

Three 4x4 2D-mesh NoCs were synthesized with 1-mm
links: the synchronous one, the baseline asynchronous one
without any Mousetrap stage on the link, and the proposed
NoC with one decoupling Mousetrap between switch and link.

A. Design Closure

The synchronous NoC achieves timing closure at 1 GHz,
which matches the performance of the switches in isolation: the
critical path in fact stays inside the switch. Top-level CTS con-
vergence was achieved with a skew constraint of 14%, which
is compatible with an average link timing margin of 30%. For
the asynchronous NoC, a layout quality metric is given by the
homogeneity of link performance, since each link has its own
”virtual” clock speed. Cycle times on a link basis are illustrated
in Fig.4, using incremental optimization of relative timing
constraints. Considering all links, the deviation from the mean
value is lower than 8%, thus proving that the presented flow
does a good performance equalization job despite the implicit
timing representation as a clock frequency is not available, and
all timing constraints have to be explicitely managed. Finally,
the asynchronous NoC saves roughly 10% area: 210855 µm2

vs. 234141 µm2, with a breakdown dominated by switches
and different contributions of link area for the different design
styles (see Table I).



Area Breakdown
Technology Total Switches

[%]
Top-Level
[%]

CTS
[%]

Total Area
[µm2]

Async 92.8 7.2 – 210855
Sync 97.9 1.9 0.2 234142

TABLE I. NOC AREA ANALYSIS.
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Fig. 6. Load curves for NoCs under test.

B. Performance Analysis
We analyzed each one of the designs under test under

uniform traffic with long and short packets (without lack of
generality, 20 flits and 3 flits, respectively). In Fig. 6, load
curves are compared. The asynchronous design without any
Mousetrap stage always reports a worst performance than the
proposed asynchronous design.

Contrasting synchronous and proposed asynchronous
NoCs, a minimum latency difference is observed for short
packets and low injection rates. This is due to the fact that
asynchronous performance is dominated by the header latency.
The asynchronous header latency to traverse one switch is
in general higher than the synchronous latency, given that
asynchronous control logic is usually more complex to ensure
glitch-free operation, and is further penalized by the safety
margin that we impose on all the relative timing constraints
(10% of the matching data path delay). Ultimately, the asynch.
NoC requires about 1500ps to traverse the switch from input
to output, and 1000ps to traverse the link. In contrast, the
synchronous design takes two cycles at 1000ps each to cover
the same distance. As explained in Sec. V, for 1mm designs
the synchronous critical path lies on the switch, while the slack
margin on the link is useful to simplify the constraints on the
top-level clock tree. Another contribution to the asynchronous
latency comes from the non-negligible propagation delay ex-
perienced by latches in ultra-low power technology libraries,
where retiming is not as inexpensive as is generally believed.

Short packets also imply that NoC switches arbitrate quite
frequently. Given that header processing is critical for the asyn-
chronous NoC performance, the synchronous NoC outperforms
the asynchronous counterpart when short packets and high
injection rates are considered.

Body flit latency is dominated by the cycle time (in the
sense that these flits are interleaved by an amount of time
equal to the cycle time). However, in their cycle time there is
no arbitration, which has been already performed by the head
flit. Therefore, once an asynchronous header flit allocates the
switch internal path through the arbiter, many tail flits can take
advantage of that, and rapidly flow through the network at high
data rates.

Given that asynchronous cycle time for body flits is much
lower than the synchronous one (roughly 870ps), the longer the
packet size the larger the asynchronous performance improve-
ment. This is a typical asynchronous benefit which can not

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600 700 800 900 1000

To
ta
l	P
ow

er
	[m

W
]

Flit	Injection	Rate	[MFlit*Port/sec]
Async	w/o	Mousetrap	- 3	Flits Async	w	Mousetrap	- 3	Flits Sync	- 3	Flits
Async	w/o	Mousetrap	- 20	Flits Async	w	Mousetrap	- 20	Flits Sync	- 20	Flits

Fig. 7. NoCs power consumption.

be exploited by synchronous designs, where the latency/cycle-
time for header and payload flits are the same (aligned to the
worst-case). This explains the better zero-load latency (-36%)
and saturation bandwidth (+33%) of the asynchronous NoC
for long packets.

C. Power Analysis

Fig. 7 shows results for power consumption analysis for
different injection rates and different packet lengths. Power at
low-injection rates is almost null for asynchronous designs,
while the synchronous NoC consumes about 40mW despite
clock-gating is applied. From the plot, the asynchronous NoC
without Mousetrap stages is clearly a trade-off between lower
performance and ultra-low power.

When considering the performance-optimized designs only,
with short packets the synch. and the asynch. NoCs have the
same power variation as a function of injection bandwidth,
but the former consumes roughly 17% more power. The
asynchronous power overhead mainly depends on the pipeline
organization: the asynchronous NoC has 4 sequential elements
per hop on the datapath (three Mousetraps and the circular
buffer, see Fig.1), while the synchronous NoC has only two
(input and output buffers). Nonetheless, power curves of the
synch. and asynch. NoCs have the same slope since the synch.
one is able to make only a partial use of clock gating.

When we consider long packets and low injection rates,
we see that the asynchronous curves have the same slope as
before. This means that for a given injection rate, with the
exception of the arbitration overhead, sending few long packets
or many short packets consumes the same power. On the other
hand, the slope of the synchronous NoC is less steep than
before, since many short packets trigger several switches in the
network, while few long packets leave most of the network in
idle state. In this latter case, the synchronous switch can better
capitalize on the power benefits of clock gating. As a result, as
the injection rate increases, there is a power break-even point
at 65% of the saturation bandwidth of the synchronous NoC.
The power overhead of the asynchronous solution is however
limited to no more than 7% at the synchronous saturation
point. The power gap at higher injection rates is then simply
motivated by the fact that the asynchronous NoC saturates
much later.

Finally, when comparing short and long packet transmis-
sions, the latter have always lower power. This fact is mainly
related with the lower arbitration frequency.



CPU USAGE IN HOURS Incremental
Synch. 

Cumulative
Incremental

Asynch.
Cumulative

Asynch. 
Slowdown

Switch Synthesis Time 0,03 0,03 0,09 0,09 2,49x

Switch Layout Time 0,35 0,38 0,69 0,78 2,03x

Top-level Floorplan 0,02 0,41 0,03 0,81 1,99x

Top-level CTS (Synch. only) 0,27 0,68 0,00 0,81 1,20x

Top-level Placement 0,21 0,89 0,39 1,20 1,35x

Top-level Routing 0,53 1,42 0,77 1,97 1,39x

Relative Timing Constraint Fix (Asynch. only) 0,00 1,42 12,39 14,36 10,10x

Final Extraction 0,09 1,51 0,08 14,44 9,57x

Fig. 8. CPU time required by synchronous and asynchronous synthesis flows.

D. Total Synthesis Time
Fig. 8 shows the CPU time required to synthesize the

synchronous 4x4 NoC and the best performing asynchronous
counterpart. All logic and physical synthesis runs were per-
formed on an 8-core Intel Xeon E5520 (2.27GHz, 12GB
RAM) server machine. The first two lines in Fig. 8 refer
to the switch macro generation flow. This takes 0.38 CPU
hours for the synchronous NoC, and 0.78 hours for the
asynchronous one. Synchronous and asynchronous top-level
layouts take 1.12 hours and 13.66 hours, respectively. For
the asynchronous layout, the relative timing fix procedure is
the most time-consuming operation. It takes more than 12
hours because a lot of timing extractions and optimizations
are iteratively (although automatically) performed on all the
req/data channels until the bundling constraints are satisfied.

VII. CONCLUSIONS
This paper provides a comparison between a 16-node 2-

phase bundled-data NoC and its synchronous counterpart on
top of a low-power 40nm technology library with major depth
and insight, by building on a complete, predictable and efficient
hierarchical synthesis flow for bundled-data NoCs.

From a performance viewpoint, we find that reasonably
long packets are required to capitalize on the better body flit
latency and cycle time of the asynchronous NoC. In fact,
performance of short 3-flit packets depends mainly on the
performance of their head flits, which pay the price of a slightly
longer asynchronous control logic delay than in synchronous
designs. Nonetheless, when packet sizes are custom-tailored
to the realistic cache-line sizes of modern high-end embedded
processors, packets will be at least larger than 8 flits even for
64-bit processors. In these conditions, an asynchronous NoC
already delivers better overall performance.

From a power viewpoint, for low injection rates the
asynchronous NoC is more than 40x more power-efficient
than the synchronous counterpart, thus confirming previous
switch-level evaluations. However, the power gap with the
synchronous NoC tends to be erased as the injection rate
increases. In fact, the pipelined asynchronous NoC is penal-
ized by the larger number of sequential elements on the flit
datapath. This overhead comes in part by the need to make
switches more robust for predictable hierarchical composition.
Nonetheless, at the saturation point of the synchronous NoC,
the power overhead of the asynchronous NoC does not exceed
7%. Finally, the asynchronous NoC yields also 10% less total
area, but takes roughly 10x more time to synthesize for a 4x4
2D-mesh topology.

Directions for future work include a faster convergence of
relative timing constraints and more power-efficient solutions
for performance predictability throughout the synthesis flow.
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