A Low-Overhead Asynchronous
Interconnection Network for
GALS Chip Multiprocessors

Michael N. Horak, University of Maryland
Steven M. Nowick, Columbia University
Matthew Carlberg, UC Berkeley

Uzi Vishkin, University of Maryland

NIVERSITY

Challenges for Designing Networks-on-Chip

* Power Consumption

— Will exceed future power budgets by a factor of 10x [1]
— Global clocks: consume large fraction of overall power

e Performance Bottlenecks

— Large network latencies cause performance degradation

* |[ncreased Desigher Resources

— Many techniques are incompatible with current CAD tools

— Difficulties integrating heterogeneous modules
* Chips partitioned into multiple timing domains

[1] J.D. Owens, W.J. Dally, R. Ho, D.N. Jayasimha, S.W. Keckler, and L.-S. Peh.
Research challenges for on-chip interconnection networks. /EEE Micro, 27(5):96-108, 2007.

Potential Advantages of Asynchronous Design

LOWer Power
— No clock power consumed: without clock gating

— |dle components inherently consume low power

Greater Flexibility/Modularity

— No clock distribution
— Easier integration between multiple timing domains
— Supports reusable components

Lower System Latency
— End-to-end traffic without clock synchronization

More Resilient to On-Chip Variations

— Correct operation depends on localized timing constraints

Mixed-Timing (GALS) System

o Globally: Asynchronous,
Locally Synchronous [2]

[2] D. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis, Stanford Univ., 1984.

Mixed-Timing (GALS) System

* Globally: Asynchronous,
Locally Synchronous [2]

e Asynchronous Network
— Clockless network fabric

[2] D. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis, Stanford Univ., 1984.

Mixed-Timing (GALS) System

* Globally: Asynchronous,
Locally Synchronous [2]

e Asynchronous Network
— Clockless network fabric

e Synchronous Terminals
— Different unrelated clocks

[2] D. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis, Stanford Univ., 1984.

Mixed-Timing (GALS) System

Globally Asynchronous,
Locally Synchronous [2]

Asynchronous Network
— Clockless network fabric

Synchronous Terminals
— Different unrelated clocks

Mixed-Timing Interfaces

— Provide robust communication
between Sync and Async domains

[2] D. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis, Stanford Univ., 1984.

Advances in GALS Networks-on-Chip

e Commercial Designs

— Fulcrum Microsystems (now Intel’s Switch & Router Division [SRD])
(A. Lines. IEEE Micro Magazine [2004])
* FocalPoint chips: high-performance Ethernet routing

— SI|IStIX, Inc. (J. Bainbridge, S. Furber. IEEE Micro Magazine [2002])
« CHAIN™ works tool suite: heterogeneous SOCs

e Recent Work

— ASVI’lCh rFronous Network-on—Chip (ANOC) (Beigne, Clermidy, Vivet et al. Async-05)
* Wormhole packet-switched NoC with low-latency service

MANGO Clockless Network-on-Chip (7. Bjerregaard. DATE-05)
» Offers quality-of-service (QoS) guarantees

RasP On-Chip Network (s. Hollis, S.W. Moore. ICCD-06)
e Utilizes high-speed pulse-based signaling
SpiNNaker Project (Khan, Lester, Plana, Furber et al. ICNN-08)
* Massively-parallel neural simulation

GALS NOCs: Typical Current Targets

Low- to IMloderate-Performance Embedded Systems
— 200-500 MHz
— High system latency

“Four-Phase Return-to-Zero~ Protocols
— Two round-trips/link per transaction

“Delay-Insensitive Data” Encoding (dual-rail, 1-of-4)
— Lower coding efficiency than single-rail

Complex-Functionality Router Nodes
— 5-port routers with layered services (QoS, etc.)
— High latency/high area

Custom Circuit Techniques:
— Pulse-based signaling, low-swing signalling
— Dynamic logic, specialized cells

Outline

* Target GALS Network Design

Target GALS Network Design

— Medium- to High-Performance

Target GALS Network Design

* Shared-IMlemory Chip Multiprocessors

e “Heterochronous Timing [3]

— Most general GALS timing model
— Support multiple synchronous domains with unrelated clocking
— Promotes reuse of Intellectual Property (IP) modules

[3] D. Messerschmitt, “Synchronization in Digital System Design”,
|IEEE Journal on Selected Areas in Communications, October 1990

Target GALS Network Design

* Shared-IViemory Chip Multiprocessors
e “Heterochronous Timing

* Jransition Signaling (Two-Phase)

— Most existing GALS NOCs use “four-phase handshaking”
* 2 roundtrip link communications per transaction

— Benefits of Two-Phase:
* 1 roundtrip link communication per transaction

* improved throughput, power....

— Challenge of Two-Phase: designing lightweight implementations
* Most existing 2-phase designs use:

— complex slow registers: double latch, double-edge-triggered, capture/pass
» [Seitz/Su “Mosaic” 93, Brunvand 91, Sutherland 89]

— custom circuit components

Target GALS Network Design

Shared-IViemory: Chip Multiprocessors
“Heterochronous Timing

Transition (Two-Phase) Signaling
Single-Rail Bundled Data

— Most existing GALS NOCs use “delay-insensitive” link encodings
* provide great timing-robustness ==> cost = poor coding efficiency

e examples: dual-rail, 1-of-4

— “Single-Rail Bundled Data” benefits:
* re-use synchronous datapaths: 1 wire/bit + added “request”

e excellent coding efficiency

— Challenge: requires matched delay for “request” signal
 1-sided timing constraint: “request’ must arrive after data stable

Target GALS Network Design
Shared-IViemory: Chip Multiprocessors

“Heterochronous Timing

Transition (Two-Phase) Signaling
Single-Rail Bundled Data

High Performance

— Low System-Level Latency

* minimize end-to-end delay under light to moderate traffic

— High Sustained Throughput
* maximize steady-state throughput under heavy traffic

Target GALS Network Design

Shared-IViemory: Chip Multiprocessors
“Heterochronous Timing

Transition (Two-Phase) Signaling
Single-Rail Bundled Data
High Performance

Standard Cell Methodology

— Use existing standard cell libraries

* only exception: analog arbiter circuit

— Challenge: timing analysis using existing tools

Target GALS Network Design

Shared-IViemory: Chip Multiprocessors
“Heterochronous Timing

Transition (Two-Phase) Signaling
Single-Rail Bundled Data

High Performance

Standard Cell Methodology
Fine-Grained Network Topology

— Lightweight network nodes
* Jow-functionality low-radix router components
» avoids 5-port router with North/South/East/West/Local ports

Outline

* Background: XMT Processor / MoT Network
— eXplicit Multi-Threading (XMT) Architecture
— Mesh-of-Trees (MoT) Network Topology
— Synchronous Router Nodes

XMT Parallel Architecture

XIMITr = “eXplicit Multi-Threading ™ (1997-present) [4]
— Led by Prof. Uzi Vishkin at University of Maryland, College Park

Based on Parallel Random Access Model (PRAIVI)
— Largest body of parallel algorithmic theory

Ease of Programmability
— XMT-C language + optimizing compiler
— Single-Program Multiple-Data (SPMD) programming methodology

Demonstrated to Provide Significant Speedups

— Performs well on irregular computations (BFS, ray-tracing)
— 100x speedup for VHDL circuit simulations compared to serial [5]

[4] D. Naishlos, J. Nuzman, C.-W. Tseng and U. Vishkin, “Towards a first vertical prototyping of an
extremely fine-grained parallel programming approach”, SPAA 2001

[5] P. Gu and U. Vishkin, “Case study of gate-level logic simulation on an extremely fine-grained chip
multiprocessor”, Journal of Embedded Computing, April 2006

XMT Parallel Architecture

* Processing Clusters prefmwnwnt
__

— Group of simple pipelined cores,
cluster | | cluster cluster
e.g. 16 Thread Control Units (TCU) .I.I.

— Each TCU executes to completion

llltf.‘fOOIlllt?Ctlon netwi Ol‘k
with little to no synchronization

— “|0S” = independence-of-order
semantics: ho WAW/WAR/RAW

data hazards between threads

XMT Parallel Architecture

* Processing Clusters refmmnwnt

— Groups of simple pipelined cores, __
e.g. 16 Thread Control Units (TCU)

— Each TCU executes to completion

with little or no synchronization

 Distributed Caches

— Shared global L1 data cache I

— No cache coherence problem

XMT Parallel Architecture

* Processing Clusters URF f sum unit

— Groups of simple pipelined cores,
e.g. 16 Thread Control Units (TCU) °h“°’te
— Each TCU executes to completion

with little to no synchronization

e Distributed Caches
— Shared global L1 data cache
— No cache coherence problem

* NOC Challenge: high bandwidth/low power requirements
— Many concurrent memory requests (load/store)
— Short packets: 1-2 flits/dynamically-varying traffic
— Low latency: required for system performance

Proposed XM Parallel Architecture:
with GALS Interconnection Network

$;

preﬁx sum unit

RF
- I
(i

GALS Network

Mesh-of-Trees Network Topology

Routing Arbitration

e \/ariant of classic Mol

e N fan-out trees

— Routing only

— Root at source terminals

* N fan-in trees
— Arbitration only

— Root at destination terminals

Mesh-of-Trees Network Topology

High Throughput
— Unique routing paths (source/sink)
— Avoids interference penalties

Fixed Path Length
— Logarithmic depth

Distributed Low-Radix Routing
— Limited functionality nodes

— Wormhole deterministic routing

Shown to Perform Well for CMPs
— Provides very high sustained throughput [6]

— High saturation throughput: ~91%

[6] A.O. Balkan, G. Qu, U. Vishkin, “Mesh-of-Trees and alternative interconnection networks for single-
chip parallelism”, IEEE Transactions on Very Large Scale Integration Systems, April 2009

Synchronous Routing Primitive
ranoutcomporent [
— 1 Input, 2 Outputs ‘-i-' - ‘

— Synchronous Flow Control B
* Back-pressure mechanism write

. . Control |o |
e Signal to previous stage when
new data can be accepted
* Based on " Latency-Insensitive Design’ [Carloni et al., TCAD 01]

— 2-Register FIFO: BO, B1

— Allows 1 flit/cycle in steady-state
* Accept new data and forward stored data concurrently

— Cost: 1 extra auxiliary register (flipflop-based)

[7] A.O. Balkan, G. Qu, U. Vishkin. “A Mesh-of-Trees Interconnection Network for Single-Chip Parallel
Processing”, |EEE ASAP Symposium (2006)

Synchronous Arbitration Primitive

e Fan-In Component [7] ' ‘ —
— 2 Inputs, 1 Output .

s B10 cdl
— Synchronous Flow Control | F

e Based on " Latency-Insensitive Design”
— 2-Stage FIFOs at each input port

— When empty, latency = 1 cycle

— When stalled, latency = 2+ cycles
* Depends on back-pressure and synchronous arbitration

— Cost: total of 4 registers (flip-flop based)

[7} A.O. Balkan, G. Qu, U. Vishkin. “A Mesh-of-Trees Interconnection Network for Single-Chip Parallel
Processing”, |EEE ASAP Symposium (2006)

Outline

* Asynchronous Network Primitives
— Routing primitive (Fan-out)
— Arbitration primitive (Fan-in)
— Mixed-timing interfaces

New Routing Primitive

New Routing Primitive

Handshaking Signals (Request / Acknowledge)

New Routing Primitive

ﬁ
Req

B(oolean) _>’

Data_In *

Binary Routing Signal

New Routing Primitive

ﬁ
_ ACkO

ﬁ
Req

B(00/681), el

Data_ln »’ —
_ ACk1

Data Channels

Routing Primitive

Data_In

Latch Control O

ol

Toggle 0

| Latch Controller

Req — Ack — i ReqAck Reql Acki
11 :

S p—
q_l | | AckO0

8—p>o—1—]

Normally Opaque

Latch Registers \

Data_In

Routing Primitive

-~
| Data and B signal |

' arrive (B=0)

Data_In

-~
| Data and B signal |

I . -
arrive (B=0) from next stage

Data_In

New Arbitration Primitive

Reqo ﬁ

AckO0
Data0
Ack_In
Data_Out
Ack1
Data1

New Arbitration Primitive

Handshaking Signals (Request / Acknowledge)

New Arbitration Primitive

Ack.In
‘ Data_Out

Data Channels

Flow Control Unit Latch Controller
— Primitive

Ack1 "

AckOT—

8-
H—

Mux_SeIect

Datapath

Flow Control Unit Latch Controller
— Primitive

Ack1 "

AckOT—

Mutual Exclusion
Element (Mutex)

8-
H—

Datapath

Flow Control Unit Latch Controller
— Primitive

Ack1 "

AckOT—

N B

Mux_SeIect

Request Protection
Latches
(Normally Opaque)

Datapath

Flow Control Unit

p—
o

Latch Controller
Primitive

Ack1 "

AckOT—

Data + Request Latch Redister

(only one bank of latches req

7}ed)

Datapath

Ack_In

Data_ Out

Flow:Control Unit

Latch Controller
Primitive
Ack1 a ’
ACKOI_E\)
Acknowledgment Protectlolﬂ Latches

‘ (normally z‘ramsparelJ t
Ack_In

?*
L6 |

Mux_SeIect

Datapath

Flow Control Unit Latch Controller
Primitive

pr—
°
[

8-
H—

Mux_SeIect

New data arrives,
followed by Request.

L2 is initially opaque. Datapath

Flow Control Unit Latch Controller
— Primitive

. —
—

Mux_SeIect

New data arrives,
followed by Request.

L2 is initially opaque. Datapath

Flow Control Unit

Latch Controller
Primitive

pr—
°
1

e
®

m

New data arrives,

followed by Request.
L2 is initially opaque.

—l_»,

Mux_SeIect

Datapath

from hext stage

Bl

Wormhole Routing Capability

* Goal: support transmission of multi-flit packets

— example: XMT “store packets” = 2 flits (address + data)

e Solution: add 1 extra glue bit” to each flit
— Glue bit =1 2 not last flit in packet

— Enhanced arbitration primitive: bias mutex decision

» “winner-take-all” strategy [Dally/Towles]

* header flit takes over mutex: glue =1

 |ast flit releases mutex: glue=0

Enhanced Flow Control Unit ! Latch Controller
| Primitive

—
[J
o

Ack1’

AckO*

|

Glue1i
1

?

|
.
|
|
7 L6 |
|
]
|

I Mux_Select

glueO bit
Data0

Data1

Datapath

Linear Pipeline Primitive

ﬁ
Req
Ack —

Pata *

- Can be inserted for buffering: to improve system-level throughput
- Basis for design of new fan-in/fan-out primitives

[8] M. Singh and S.M. Nowick. “MOUSETRAP: High-Speed Transition-Signaling Asynchronous Pipelines,”
IEEE Transactions on VLSI Systems, vol. 15:11, pp. 1256-1269 (Nov. 2007)

Linear Pipeline Primitive

—
Req

Ack —

Pata *

Handshaking Signals (Request and Acknowledgment)

Linear Pipeline Primitive

Data Channels

Mixed-Timing Interfaces

o Use Existing Synchronizing EIFOs [9]

(with'small' modifications)

— Supports arbitrary “heterochronous’ timing domains
— No modification to existing components

* Modular Design

— Reusable Put and Get components (either Async or Sync)
— Each FIFO is array of identical cells

* Supports Low-Power Operation
— Circular FIFO: data does not move

[9] T. Chelcea and S. Nowick, “Robust Interfaces for Mixed-Timing Systems”,
IEEE Transactions on Very Large Scale Integration Systems, August 2004

Outline

 Experimental Results

Evaluation IViethodology

* Direct Comparison with Synchronous Mol Network
— |dentical Technology: IBM 90nm CMOS process

— |dentical Functionality: Same routing and arbitration primitives

— |dentical Topology: 8-terminal networks with same floorplan

* Evaluate at Multiple Levels of Integration
— |solated Asynchronous Primitives (post-layout)

— 8-Terminal Asynchronous Network (pre-layout with wire estimates,
-- interconnection of laid-out router primitives)

— 8-Terminal GALS Network

— XMT Architecture Co-Simulation on Parallel Kernels

Tool Flow

o Implemented in IBIV 90nm technology.

— Placed and routed with Cadence SOC Encounter
— Simulated as gate-level Verilog with extracted delays

e Standard Cell Methodology
— ARM 90nm Standard Cells (IBM CMOSSSF)

* Exception: Mutual Exclusion Element
— Designed using transistor models from IBM 90nm PDK
— Simulated in Cadence Spectre
— Measured delays to calibrate Verilog behavioral model

Routing Primitive Comparison:
Area and Power

Energy/. |Leakage
Packet Power,

(2) (L)
Asynchronous 0.37 0.56
Synchronous 2.06 1.82

e Area:

— 64% less area: result of lightweight data storage
2 flip-flop registers + extra MUX/DEMUX (sync) vs. 2 latch registers (async)

 MUX/DEMUX overhead (sync)

* Energy/Packet (1 flit):

— Steady-state measurement on random traffic

Routing Primitive Comparison:
Latency and Throughput

Component Type [Latency | Maximum Throughput (GEPS)
(), Single | Random | Alternating
Asynchronous 546 1.07 1.34 1.70
Synchronous 516 1.93 1.93 1.93

e Synchronous: Using Max Clock Rate (1.93 GHz)

* [atency:
— 546 ps (async) vs. 516 ps (sync)

* Max Throughput (Giga-flits/sec):
55% of sync max. (no concurrency)

70% of sync max.
88% of sync Max. (most concurrency)

|:> ... expect significant future improvements by inserting small # of FIFO stag&s

Arbitration Primitive Comparison:
Area and Power

Energy/’ | Leakage
Component Type Packet | Power

() (L)
Asynchronous 0.33 0.50
Synchronous 3.53 4.13

e Area:
— 84% less area

— Due to low-overhead data storage
* 4 flip-flop registers (sync) vs. 1 latch register (async)

* Energy/Packet (1 flit):

— Measured steady-state packets arriving at both input ports

Arbitration Primitive Comparison:
Latency and Throughput

Component Type [Latency | Max. Throughput (GEPS)
(), Single Both Ports

Asynchronous 489 1.08 2.04
Synchronous 474 2.09 2.09

* Synchronous: Using Max Clock Rate (2.09 GHz)
* [atency:

— 489 ps (async) vs. 474 ps (sync)
* Max. Throughput (Giga-flits/sec):

— 51% of synchronous max.
— 98% of synchronous max.

I:> ... expect significant future improvements by inserting small # of FIFO stages

S-Terminal Network Evaluation

* Head-on-Head Comparison with Sync Network

* Projected Network Layout

— Pre-layout async network

— Uses post-layout primitives, treated as hard IP macros, with
assigned wire delays

— Extrapolate wire delays based on ASIC floorplan of Sync MoT

* Experimental Setup

— Evaluate performance under uniformly random input traffic
— 32-bit flits

Projected 8-Terminal Network Layout

o Based on Eloorplan of:Synchronous Vel Tiest ASIC
— Designed/fabricated at UMD in March 2007 [10]

* Network divided into 4 partitions (PO,P1,P2,P3)

— Fan-In Trees exist entirely within one partition
— Fan-Out Trees distributed among partitions

e Asynchronous Projection Methodology
— Treat asynchronous primitives are hard IP macros

 all routing, arbitration primitives have same timing
— Evenly distribute groups of primitives
— Assign inter-primitive wire delays based on position
» delays on wires assigned based on technology specifications

[10] A.O. Balkan, M.N. Horak, G. Qu, U. Vishkin. “Layout-accurate design and implementation of a high-
throughput interconnection network for single-chip parallel processing”, Hot Interconnects, August 2007

Projected 8-Terminal Network Layout

Example
Fan-Out Tree

K

Ak ’
159 ¢ e

A

138.16 um

Current CAD Tool Flows: Sync vs. Async

o Synchronous Synthesis:
— Automatic place/route optimizations
— Includes cell resizing / repeater insertion

e Asynchronous Synthesis:

— Limited optimization: hard macros + regular manual placement

— No cell resizing / repeater insertion
—) ... much potential for future performance improvement

e Currently Do Not Define Necessary Timing Constraints
— No automatic path-length matching
— Necessary to enforce bundling constraint

Async Network Performance Comparison:
400 MHz Sync vs. Async

| === Synchronous (400 MHz) | Sync Max.

—&— Synchronous (800 MHz) - ;
Comparable | —A— Synchronous (136 GHZ:I : A Acrts = |npUt Rate
=G Asynchronous : 102.4 Gbps

throughput
for entire
range of Sync

100 150 200 250
Input Traffic Rate {(Gbps)

Sync has
at least 4.3x
igher latenc
for all Sync

Input rates

I
()

Latency (ns)

150 200 250
nput Traffic Rate (Gbps

Note: sync max. input rate limited by clock frequency

Async Network Performance Comparison:

Comparable
throughput
for entire
range of Sync

Sync has
>1.7X

higher latency
for input rates
up to 73%
of Sync max.
(150 Gbps)

Note: sync max. input rate limited by clock frequency

Latency (ns

300 | —A— Synchronous (1.36 GHz)

300 IVIHz Sync vs. Async

| —&— Synchronous (400 MHz)
m= == Synchronous (800 MHz)

=G Asynchronous

0 50 100 150 200 250 300
Input Traffic Rate {(Gbps)

0 50 100 150 200 250
Input Traffic Rate (Gbps

Sync Max.
Input Rate:
204.8 Gbps

Async Network Performance Comparison:

Comparable
throughput
for rates
up to
55% of
Sync max.
(190 Gbps)

Lower latency
for input
rates up to
43% of
Sync max.
(150 Gbps)

Note: sync max. input rate limited by clock frequency

1.36 GHz Sync vs. Async

| —&— Synchronous (400 MHz)
—&— Synchronous (800 MHz)
[| === Synchronous (1.36 GHz)

=G Asynchronous

0 50 100 150 200 250 300
Input Traffic Rate {(Gbps)

0 50 100 150 200 250
Input Traffic Rate (Gbps

Sync Max.
Input Rate:
348.2 Gbps

GALS Network Performance Comparison

Experimental Setup

— Create terminals to generate traffic and record measurements
— Terminals generate uniformly random input traffic

Results Normalized to Clock Rate

Throughput units (normalized): flits per cycle per port
Latency units (normalized): # clock cycles
Sync network results: always same relative to clock cycles

Async network results: vary with clock rate

GALS Network Performance Comparison:

Comparable

throughput
for all
traffic rates

Sync has
52% higher

latency
up to 80%

input traffic

N
[

Latency (cycles)

400 MHz GALS vs. Sync

| —&— 600 MHz Mixed
|| —A&— 800 MHz Mixed

e 400 MHz Mixed

== Synchronous Only

A

0.2 0.4 0.6 0.8
Input Traffic Rate (flits per cycle per port)

| —&— 800 MHz Mixed

—&— 400 MHz Mixed
—&— 600 MHz Mixed

~—8-— Synchronous Only

—
o
1

?v.ﬁ.

0.2 0.4
Input Traffic Rate (flits

GALS Network Performance Comparison:
600 VIHz GALS vs. Sync

—e— 400‘MH2 Mixed
Comparable 8| o 600 MHz Mixed
|| —A&— 800 MHz Mixed
throughDUt || ==&== Synchronous Only
up to 65% -

input traffic

0.2 0.4 0.6 0.8
Input Traffic Rate (flits per cycle per port)

—&— 400 MHz Mixed
—&— 600 MHz Mixed
| —&— 800 MHz Mixed

N
[

~—8-— Synchronous Only

0.2 0.4
Input Traffic Rate

up to 60% '
input traffic

—
o
1

Latency (cycles)

GALS Network Performance Comparison:

300 IVIHz GALS vs. Sync

—&— 400 MHZ Mixed ,_,.ﬁCa’“
Comparable §s, *°|| —o— 600 MHz Mixed el
Lo 00 MHz Mixed ~ < <
0.6} R
throughDUt === Synchronous Only plr— Bt

o

up to 52%
input traffic

fr

0.2 0.4 .
Input Traffic Rate (flits per cycle per port)

5 —&— 400 MHz Mixed
o —$— 600 MHz Mixed
Lower latency = 20| —A— 800 MHz Mixed
up to 29% “*é: —8-— Synchronous Only
input traffic, |< 1o} & = = “
comparable |& :
latency "0 0.2 0.4 0.6 08 1
up to 40% Input Traffic Rate (flits per cycle per port

input traffic

XMT Parallel Kernel Simulations

* Goal: Integrate with Synchronous XM Parallel’ Architecture
— XMT Verilog RTL description with GALS network

e XMT Parallel Kernels

— Array Summation (add)
 Compute sum of 3 million elements in array

— Matrix Multiplication (mmul)
 Compute product of two 64 x 64 matrices

— Breadth-First Search (bfs)
 Run XMT BFS algorithm with 100,000 vertices and 1 million edges

— Array Increment (a_inc)
* Increment all 32k elements of an array

XMT Parallel Kernel Simulations

o XM Processor Configuration
— 8 Processing Clusters (16 TCUs each) = 128 TCU’s total
— 8 Distributed L1 D-Cache Modules (64KB total)

e Simulate GALS XMT at Different Clock Frequencies
— 200, 400, 700 MHz

e Compare Speedups Relative to Synchronous XMT

— Values greater than 1.0 indicate better performance

GALS XMT Performance Comparison

GALS XMT
has similar

performance for
200, 400 MHz

[]200 MHz XMT
| []400 MHz XMT

700 MHz XMT

Only moderate
degradation
at 700 MHz
(a_inc: 37%

decrease)

(Graph arranged in order of increasing network utilization)

Conclusions
o New GALS Network for Chip Vultiprocessors

— Low-overhead network for “heterochronous’ Interfaces

* Design of Two New Asynchronous Router: Cells
— Routing and arbitration circuits

e Overview of Results

— Router Primitives
* 64-84% less area, 82-91% less energy/packet

— System-Level Performance
e Async network comparison with 800 MHz sync network:
— Comparable throughput across all input traffic

— 1.7x lower latency up to 73% max input traffic

* GALS network comparison with 800 MHz sync network:

— Comparable throughput up to 52% max input traffic
— Lower latency up to 29% max input traffic

Future Directions

Architectural Optimization

— Insert linear pipeline stages on long wires to improve throughput
Circuit Optimization

— Improve designs of routing/arbitration primitives

— Mixed-timing FIFO optimizations

Asynchronous Topology Optimization
— Area improvements using hybrid MoT-Butterfly [Balkan et al., DAC-08]

Integrate with Synchronous Physical CAD Tool Flow

— Goal = leverage existing commercial techniques

* Timing constraint specification and synthesis of unclocked timing paths
* Build on automated async flow of [Quinton/Greenstreet/Wilton TVLSI ‘08]
 Optimized placement, routing, gate resizing and repeater insertion

Target Alternative Parallel Architectures/Memory Systems

NIVERSITY

BACKUP SLIDES

Types of Mixed-Timing (GALS) Systems

Pseudochronous
— Same Frequency, Constant Phase Difference

Vlesochronous

— Same Frequency, Undefined Phase Difference
Plesiochronous

— Nearly exact Frequency and Phase Difference

Heterochronous

— Undefined Frequency and Phase Difference

VIOUSETRAP Asynchronous Pipelines

Fast Communication
— Transition signaling (2-phase) handshaking]

Synchronous-Style Channel Encoding

— Single-rail bundled data protocol

Low Latency

— 1 Transparent D Latch delay for empty stage

Minimal-Overhead Latch Controller
= {\\[0): ¥ CF}d=

MIOUSETRAP: A Basic FIFO
(no computation)

Stages communicate using transition-signaling:

Stage N-1 Stage N Stage N+1

MIOUSETRAP: A Basic FIFO
(no computation)

Stages communicate using transition-signaling:

1 transition
per data item!

I

Stage N-1 Stage N Stage N+1

One Data Item

Basic Mixed-Clock FIFO (Sync-Sync)

full < T Full Detector

4

Put

re ut —,
a_p Controller

data_put

data_get

reqg_get
valid_get <+
empty <+—

\ 4

Empty Detector

Controller

Put Get

— Sync-Sync is one of 4 mixed-timing FIFOs

’

— Sync-Async: uses Synchronous Put (top) and Asynchronous Get
— Async-Sync: uses Synchronous Get (bottom) and Asynchronous Put

