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Challenges for Designing Networks-on-Chip

* Power Consumption

— Will exceed future power budgets by a factor of 10x [1]
— Global clocks: consume large fraction of overall power

e Performance Bottlenecks

— Large network latencies cause performance degradation

* |[ncreased Desigher Resources

— Many techniques are incompatible with current CAD tools

— Difficulties integrating heterogeneous modules
* Chips partitioned into multiple timing domains

[1] J.D. Owens, W.J. Dally, R. Ho, D.N. Jayasimha, S.W. Keckler, and L.-S. Peh.
Research challenges for on-chip interconnection networks. /EEE Micro, 27(5):96-108, 2007.




Potential Advantages of Asynchronous Design

LOWer Power
— No clock power consumed: without clock gating

— |dle components inherently consume low power

Greater Flexibility/Modularity

— No clock distribution
— Easier integration between multiple timing domains
— Supports reusable components

Lower System Latency
— End-to-end traffic without clock synchronization

More Resilient to On-Chip Variations

— Correct operation depends on localized timing constraints




Mixed-Timing (GALS) System

o Globally: Asynchronous,
Locally Synchronous [2]

[2] D. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis, Stanford Univ., 1984.




Mixed-Timing (GALS) System

* Globally: Asynchronous,
Locally Synchronous [2]

e Asynchronous Network
— Clockless network fabric

[2] D. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis, Stanford Univ., 1984.




Mixed-Timing (GALS) System

* Globally: Asynchronous,
Locally Synchronous [2]

e Asynchronous Network
— Clockless network fabric

e Synchronous Terminals
— Different unrelated clocks

[2] D. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis, Stanford Univ., 1984.




Mixed-Timing (GALS) System

Globally Asynchronous,
Locally Synchronous [2]

Asynchronous Network
— Clockless network fabric

Synchronous Terminals
— Different unrelated clocks

Mixed-Timing Interfaces

— Provide robust communication
between Sync and Async domains

[2] D. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis, Stanford Univ., 1984.




Advances in GALS Networks-on-Chip

e Commercial Designs

— Fulcrum Microsystems (now Intel’s Switch & Router Division [SRD])
(A. Lines. IEEE Micro Magazine [2004])
* FocalPoint chips: high-performance Ethernet routing

— SI|IStIX, Inc. (J. Bainbridge, S. Furber. IEEE Micro Magazine [2002])
« CHAIN™ works tool suite: heterogeneous SOCs

e Recent Work

— ASVI’lCh rFronous Network-on—Chip (ANOC) (Beigne, Clermidy, Vivet et al. Async-05)
* Wormhole packet-switched NoC with low-latency service

MANGO Clockless Network-on-Chip (7. Bjerregaard. DATE-05)
» Offers quality-of-service (QoS) guarantees

RasP On-Chip Network (s. Hollis, S.W. Moore. ICCD-06)
e Utilizes high-speed pulse-based signaling
SpiNNaker Project (Khan, Lester, Plana, Furber et al. ICNN-08)
* Massively-parallel neural simulation




GALS NOCs: Typical Current Targets

Low- to IMloderate-Performance Embedded Systems
— 200-500 MHz
— High system latency

“Four-Phase Return-to-Zero~ Protocols
— Two round-trips/link per transaction

“Delay-Insensitive Data” Encoding (dual-rail, 1-of-4)
— Lower coding efficiency than single-rail

Complex-Functionality Router Nodes
— 5-port routers with layered services (QoS, etc.)
— High latency/high area

Custom Circuit Techniques:
— Pulse-based signaling, low-swing signalling
— Dynamic logic, specialized cells




Outline

* Target GALS Network Design




Target GALS Network Design

— Medium- to High-Performance




Target GALS Network Design

* Shared-IMlemory Chip Multiprocessors

e “Heterochronous Timing [3]

— Most general GALS timing model
— Support multiple synchronous domains with unrelated clocking
— Promotes reuse of Intellectual Property (IP) modules

[3] D. Messerschmitt, “Synchronization in Digital System Design”,
|IEEE Journal on Selected Areas in Communications, October 1990




Target GALS Network Design

* Shared-IViemory Chip Multiprocessors
e “Heterochronous Timing

* Jransition Signaling (Two-Phase)

— Most existing GALS NOCs use “four-phase handshaking”
* 2 roundtrip link communications per transaction

— Benefits of Two-Phase:
* 1 roundtrip link communication per transaction

* improved throughput, power....

— Challenge of Two-Phase: designing lightweight implementations
* Most existing 2-phase designs use:

— complex slow registers: double latch, double-edge-triggered, capture/pass
» [Seitz/Su “Mosaic” 93, Brunvand 91, Sutherland 89]

— custom circuit components




Target GALS Network Design

Shared-IViemory: Chip Multiprocessors
“Heterochronous  Timing

Transition (Two-Phase) Signaling
Single-Rail Bundled Data

— Most existing GALS NOCs use “delay-insensitive” link encodings
* provide great timing-robustness ==> cost = poor coding efficiency

e examples: dual-rail, 1-of-4

— “Single-Rail Bundled Data” benefits:
* re-use synchronous datapaths: 1 wire/bit + added “request”

e excellent coding efficiency

— Challenge: requires matched delay for “request” signal
 1-sided timing constraint: “request’ must arrive after data stable




Target GALS Network Design
Shared-IViemory: Chip Multiprocessors

“Heterochronous  Timing

Transition (Two-Phase) Signaling
Single-Rail Bundled Data

High Performance

— Low System-Level Latency

* minimize end-to-end delay under light to moderate traffic

— High Sustained Throughput
* maximize steady-state throughput under heavy traffic




Target GALS Network Design

Shared-IViemory: Chip Multiprocessors
“Heterochronous  Timing

Transition (Two-Phase) Signaling
Single-Rail Bundled Data
High Performance

Standard Cell Methodology

— Use existing standard cell libraries

* only exception: analog arbiter circuit

— Challenge: timing analysis using existing tools




Target GALS Network Design

Shared-IViemory: Chip Multiprocessors
“Heterochronous  Timing

Transition (Two-Phase) Signaling
Single-Rail Bundled Data

High Performance

Standard Cell Methodology
Fine-Grained Network Topology

— Lightweight network nodes
* Jow-functionality low-radix router components
» avoids 5-port router with North/South/East/West/Local ports




Outline

* Background: XMT Processor / MoT Network
— eXplicit Multi-Threading (XMT) Architecture
— Mesh-of-Trees (MoT) Network Topology
— Synchronous Router Nodes




XMT Parallel Architecture

XIMITr = “eXplicit Multi-Threading ™ (1997-present) [4]
— Led by Prof. Uzi Vishkin at University of Maryland, College Park

Based on Parallel Random Access Model (PRAIVI)
— Largest body of parallel algorithmic theory

Ease of Programmability
— XMT-C language + optimizing compiler
— Single-Program Multiple-Data (SPMD) programming methodology

Demonstrated to Provide Significant Speedups

— Performs well on irregular computations (BFS, ray-tracing)
— 100x speedup for VHDL circuit simulations compared to serial [5]

[4] D. Naishlos, J. Nuzman, C.-W. Tseng and U. Vishkin, “Towards a first vertical prototyping of an
extremely fine-grained parallel programming approach”, SPAA 2001

[5] P. Gu and U. Vishkin, “Case study of gate-level logic simulation on an extremely fine-grained chip
multiprocessor”, Journal of Embedded Computing, April 2006




XMT Parallel Architecture

* Processing Clusters prefmwnwnt
__

— Group of simple pipelined cores,
cluster | | cluster cluster
e.g. 16 Thread Control Units (TCU) .I.I.

— Each TCU executes to completion

llltf.‘fOOIlllt?Ctlon netwi Ol‘k
with little to no synchronization

— “|0S” = independence-of-order
semantics: ho WAW/WAR/RAW

data hazards between threads




XMT Parallel Architecture

* Processing Clusters refmmnwnt

— Groups of simple pipelined cores, __
e.g. 16 Thread Control Units (TCU)

— Each TCU executes to completion

with little or no synchronization

 Distributed Caches

— Shared global L1 data cache I

— No cache coherence problem




XMT Parallel Architecture

* Processing Clusters URF f sum unit

— Groups of simple pipelined cores,
e.g. 16 Thread Control Units (TCU) °h“°’te
— Each TCU executes to completion

with little to no synchronization

e Distributed Caches
— Shared global L1 data cache
— No cache coherence problem

* NOC Challenge: high bandwidth/low power requirements
— Many concurrent memory requests (load/store)
— Short packets: 1-2 flits/dynamically-varying traffic
— Low latency: required for system performance




Proposed XM Parallel Architecture:
with GALS Interconnection Network

$;

preﬁx sum unit

RF
- I
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GALS Network




Mesh-of-Trees Network Topology

Routing Arbitration

e \/ariant of classic Mol

e N fan-out trees

— Routing only

— Root at source terminals

* N fan-in trees
— Arbitration only

— Root at destination terminals




Mesh-of-Trees Network Topology

High Throughput
— Unique routing paths (source/sink)
— Avoids interference penalties

Fixed Path Length
— Logarithmic depth

Distributed Low-Radix Routing
— Limited functionality nodes

— Wormhole deterministic routing

Shown to Perform Well for CMPs
— Provides very high sustained throughput [6]

— High saturation throughput: ~91%

[6] A.O. Balkan, G. Qu, U. Vishkin, “Mesh-of-Trees and alternative interconnection networks for single-
chip parallelism”, IEEE Transactions on Very Large Scale Integration Systems, April 2009




Synchronous Routing Primitive
ranoutcomporent [
— 1 Input, 2 Outputs ‘-i-' - ‘

— Synchronous Flow Control B
* Back-pressure mechanism write

. . Control |o |
e Signal to previous stage when
new data can be accepted
* Based on " Latency-Insensitive Design’ [Carloni et al., TCAD 01]

— 2-Register FIFO: BO, B1

— Allows 1 flit/cycle in steady-state
* Accept new data and forward stored data concurrently

— Cost: 1 extra auxiliary register (flipflop-based)

[7] A.O. Balkan, G. Qu, U. Vishkin. “A Mesh-of-Trees Interconnection Network for Single-Chip Parallel
Processing”, |EEE ASAP Symposium (2006)




Synchronous Arbitration Primitive

e Fan-In Component [7] ' ‘ —
— 2 Inputs, 1 Output .

s B10 cdl
— Synchronous Flow Control | F

e Based on " Latency-Insensitive Design”
— 2-Stage FIFOs at each input port

— When empty, latency = 1 cycle

— When stalled, latency = 2+ cycles
* Depends on back-pressure and synchronous arbitration

— Cost: total of 4 registers (flip-flop based)

[7} A.O. Balkan, G. Qu, U. Vishkin. “A Mesh-of-Trees Interconnection Network for Single-Chip Parallel
Processing”, |EEE ASAP Symposium (2006)




Outline

* Asynchronous Network Primitives
— Routing primitive (Fan-out)
— Arbitration primitive (Fan-in)
— Mixed-timing interfaces




New Routing Primitive




New Routing Primitive

Handshaking Signals (Request / Acknowledge)




New Routing Primitive

ﬁ
Req

B(oolean) _>’

Data_In *

Binary Routing Signal




New Routing Primitive
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Routing Primitive

Data_In




Latch Control O
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Routing Primitive

-~
| Data and B signal |

' arrive (B=0)

Data_In
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| Data and B signal |
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New Arbitration Primitive

Reqo ﬁ

AckO0
Data0
Ack_In
Data_Out
Ack1
Data1




New Arbitration Primitive

Handshaking Signals (Request / Acknowledge)




New Arbitration Primitive

Ack.In
‘ Data_Out

Data Channels




Flow Control Unit Latch Controller
— Primitive

Ack1 "

AckOT—

8-
H—

Mux_SeIect

Datapath




Flow Control Unit Latch Controller
— Primitive

Ack1 "

AckOT—

Mutual Exclusion
Element (Mutex)

8-
H—

Datapath




Flow Control Unit Latch Controller
— Primitive

Ack1 "

AckOT—

N B

Mux_SeIect

Request Protection
Latches
(Normally Opaque)

Datapath




Flow Control Unit
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Primitive
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Flow:Control Unit

Latch Controller
Primitive
Ack1 a ’
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Flow Control Unit Latch Controller
Primitive

pr—
°
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Mux_SeIect

New data arrives,
followed by Request.

L2 is initially opaque. Datapath




Flow Control Unit Latch Controller
— Primitive

. —
—

Mux_SeIect

New data arrives,
followed by Request.

L2 is initially opaque. Datapath




Flow Control Unit

Latch Controller
Primitive

pr—
°
1

e
®

m

New data arrives,

followed by Request.
L2 is initially opaque.

—l_»,

Mux_SeIect

Datapath

from hext stage

Bl




Wormhole Routing Capability

* Goal: support transmission of multi-flit packets

— example: XMT “store packets” = 2 flits (address + data)

e Solution: add 1 extra glue bit” to each flit
— Glue bit =1 2 not last flit in packet

— Enhanced arbitration primitive: bias mutex decision

» “winner-take-all” strategy [Dally/Towles]

* header flit takes over mutex: glue =1

 |ast flit releases mutex: glue=0




Enhanced Flow Control Unit ! Latch Controller
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Linear Pipeline Primitive

ﬁ
Req
Ack —

Pata *

- Can be inserted for buffering: to improve system-level throughput
- Basis for design of new fan-in/fan-out primitives

[8] M. Singh and S.M. Nowick. “MOUSETRAP: High-Speed Transition-Signaling Asynchronous Pipelines,”
IEEE Transactions on VLSI Systems, vol. 15:11, pp. 1256-1269 (Nov. 2007)




Linear Pipeline Primitive

—
Req

Ack —

Pata *

Handshaking Signals (Request and Acknowledgment)




Linear Pipeline Primitive

Data Channels




Mixed-Timing Interfaces

o Use Existing Synchronizing EIFOs [9]

(with'small' modifications)

— Supports arbitrary “heterochronous’ timing domains
— No modification to existing components

* Modular Design

— Reusable Put and Get components (either Async or Sync)
— Each FIFO is array of identical cells

* Supports Low-Power Operation
— Circular FIFO: data does not move

[9] T. Chelcea and S. Nowick, “Robust Interfaces for Mixed-Timing Systems”,
IEEE Transactions on Very Large Scale Integration Systems, August 2004
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 Experimental Results




Evaluation IViethodology

* Direct Comparison with Synchronous Mol Network
— |dentical Technology: IBM 90nm CMOS process

— |dentical Functionality: Same routing and arbitration primitives

— |dentical Topology: 8-terminal networks with same floorplan

* Evaluate at Multiple Levels of Integration
— |solated Asynchronous Primitives (post-layout)

— 8-Terminal Asynchronous Network (pre-layout with wire estimates,
-- interconnection of laid-out router primitives)

— 8-Terminal GALS Network

— XMT Architecture Co-Simulation on Parallel Kernels




Tool Flow

o Implemented in IBIV 90nm technology.

— Placed and routed with Cadence SOC Encounter
— Simulated as gate-level Verilog with extracted delays

e Standard Cell Methodology
— ARM 90nm Standard Cells (IBM CMOSSSF)

* Exception: Mutual Exclusion Element
— Designed using transistor models from IBM 90nm PDK
— Simulated in Cadence Spectre
— Measured delays to calibrate Verilog behavioral model




Routing Primitive Comparison:
Area and Power

Energy/. |Leakage
Packet Power,

(2) (L)
Asynchronous 0.37 0.56
Synchronous 2.06 1.82

e Area:

— 64% less area: result of lightweight data storage
2 flip-flop registers + extra MUX/DEMUX (sync) vs. 2 latch registers (async)

 MUX/DEMUX overhead (sync)

* Energy/Packet (1 flit):

— Steady-state measurement on random traffic




Routing Primitive Comparison:
Latency and Throughput

Component Type [ Latency | Maximum Throughput (GEPS)
(), Single | Random | Alternating
Asynchronous 546 1.07 1.34 1.70
Synchronous 516 1.93 1.93 1.93

e Synchronous: Using Max Clock Rate (1.93 GHz)

* [atency:
— 546 ps (async) vs. 516 ps (sync)

* Max Throughput (Giga-flits/sec):
55% of sync max. (no concurrency)

70% of sync max.
88% of sync Max. (most concurrency)

|:> ... expect significant future improvements by inserting small # of FIFO stag&s




Arbitration Primitive Comparison:
Area and Power

Energy/’ | Leakage
Component Type Packet | Power

() (L)
Asynchronous 0.33 0.50
Synchronous 3.53 4.13

e Area:
— 84% less area

— Due to low-overhead data storage
* 4 flip-flop registers (sync) vs. 1 latch register (async)

* Energy/Packet (1 flit):

— Measured steady-state packets arriving at both input ports




Arbitration Primitive Comparison:
Latency and Throughput

Component Type [ Latency | Max. Throughput (GEPS)
(), Single Both Ports

Asynchronous 489 1.08 2.04
Synchronous 474 2.09 2.09

* Synchronous: Using Max Clock Rate (2.09 GHz)
* [atency:

— 489 ps (async) vs. 474 ps (sync)
* Max. Throughput (Giga-flits/sec):

— 51% of synchronous max.
— 98% of synchronous max.

I:> ... expect significant future improvements by inserting small # of FIFO stages




S-Terminal Network Evaluation

* Head-on-Head Comparison with Sync Network

* Projected Network Layout

— Pre-layout async network

— Uses post-layout primitives, treated as hard IP macros, with
assigned wire delays

— Extrapolate wire delays based on ASIC floorplan of Sync MoT

* Experimental Setup

— Evaluate performance under uniformly random input traffic
— 32-bit flits




Projected 8-Terminal Network Layout

o Based on Eloorplan of:Synchronous Vel Tiest ASIC
— Designed/fabricated at UMD in March 2007 [10]

* Network divided into 4 partitions (PO,P1,P2,P3)

— Fan-In Trees exist entirely within one partition
— Fan-Out Trees distributed among partitions

e Asynchronous Projection Methodology
— Treat asynchronous primitives are hard IP macros

 all routing, arbitration primitives have same timing
— Evenly distribute groups of primitives
— Assign inter-primitive wire delays based on position
» delays on wires assigned based on technology specifications

[10] A.O. Balkan, M.N. Horak, G. Qu, U. Vishkin. “Layout-accurate design and implementation of a high-
throughput interconnection network for single-chip parallel processing”, Hot Interconnects, August 2007




Projected 8-Terminal Network Layout

Example
Fan-Out Tree

K

Ak ’
159 ¢ e

A

138.16 um




Current CAD Tool Flows: Sync vs. Async

o Synchronous Synthesis:
— Automatic place/route optimizations
— Includes cell resizing / repeater insertion

e Asynchronous Synthesis:

— Limited optimization: hard macros + regular manual placement

— No cell resizing / repeater insertion
—) ... much potential for future performance improvement

e Currently Do Not Define Necessary Timing Constraints
— No automatic path-length matching
— Necessary to enforce bundling constraint




Async Network Performance Comparison:
400 MHz Sync vs. Async

| === Synchronous (400 MHz) | Sync Max.

—&— Synchronous (800 MHz) - ;
Comparable | —A— Synchronous (136 GHZ:I : A Acrts = |npUt Rate
=G Asynchronous : 102.4 Gbps

throughput
for entire
range of Sync

100 150 200 250
Input Traffic Rate {(Gbps)

Sync has
at least 4.3x
igher latenc
for all Sync

Input rates

I
()

Latency (ns)

150 200 250
nput Traffic Rate (Gbps

Note: sync max. input rate limited by clock frequency




Async Network Performance Comparison:

Comparable
throughput
for entire
range of Sync

Sync has
>1.7X

higher latency
for input rates
up to 73%
of Sync max.
(150 Gbps)

Note: sync max. input rate limited by clock frequency

Latency (ns

300 | —A— Synchronous (1.36 GHz)

300 IVIHz Sync vs. Async

| —&— Synchronous (400 MHz)
m= == Synchronous (800 MHz)

=G Asynchronous

0 50 100 150 200 250 300
Input Traffic Rate {(Gbps)

0 50 100 150 200 250
Input Traffic Rate (Gbps

Sync Max.
Input Rate:
204.8 Gbps




Async Network Performance Comparison:

Comparable
throughput
for rates
up to
55% of
Sync max.
(190 Gbps)

Lower latency
for input
rates up to
43% of
Sync max.
(150 Gbps)

Note: sync max. input rate limited by clock frequency

1.36 GHz Sync vs. Async

| —&— Synchronous (400 MHz)
—&— Synchronous (800 MHz)
[| === Synchronous (1.36 GHz)

=G Asynchronous

0 50 100 150 200 250 300
Input Traffic Rate {(Gbps)

0 50 100 150 200 250
Input Traffic Rate (Gbps

Sync Max.
Input Rate:
348.2 Gbps




GALS Network Performance Comparison

Experimental Setup

— Create terminals to generate traffic and record measurements
— Terminals generate uniformly random input traffic

Results Normalized to Clock Rate

Throughput units (normalized): flits per cycle per port
Latency units (normalized): # clock cycles
Sync network results: always same relative to clock cycles

Async network results: vary with clock rate




GALS Network Performance Comparison:

Comparable

throughput
for all
traffic rates

Sync has
52% higher

latency
up to 80%

input traffic

N
[

Latency (cycles)

400 MHz GALS vs. Sync

| —&— 600 MHz Mixed
|| —A&— 800 MHz Mixed

e 400 MHz Mixed

== Synchronous Only

A

0.2 0.4 0.6 0.8
Input Traffic Rate (flits per cycle per port)

| —&— 800 MHz Mixed

—&— 400 MHz Mixed
—&— 600 MHz Mixed

~—8-— Synchronous Only

—
o
1

?v.ﬁ.

0.2 0.4
Input Traffic Rate (flits



GALS Network Performance Comparison:
600 VIHz GALS vs. Sync

—e— 400‘MH2 Mixed
Comparable 8| o 600 MHz Mixed
|| —A&— 800 MHz Mixed
throughDUt || ==&== Synchronous Only
up to 65% -

input traffic

0.2 0.4 0.6 0.8
Input Traffic Rate (flits per cycle per port)

—&— 400 MHz Mixed
—&— 600 MHz Mixed
| —&— 800 MHz Mixed

N
[

~—8-— Synchronous Only

0.2 0.4
Input Traffic Rate

up to 60% '
input traffic

—
o
1

Latency (cycles)




GALS Network Performance Comparison:

300 IVIHz GALS vs. Sync

—&— 400 MHZ Mixed ,_,.ﬁCa’“
Comparable §s, *°|| —o— 600 MHz Mixed el
Lo 00 MHz Mixed ~ < <
0.6} R
throughDUt === Synchronous Only plr— Bt

o

up to 52%
input traffic

fr

0.2 0.4 .
Input Traffic Rate (flits per cycle per port)

5 —&— 400 MHz Mixed
o —$— 600 MHz Mixed
Lower latency = 20| —A— 800 MHz Mixed
up to 29% “*é: —8-— Synchronous Only
input traffic, |< 1o} & = = “
comparable |& :
latency "0 0.2 0.4 0.6 08 1
up to 40% Input Traffic Rate (flits per cycle per port

input traffic



XMT Parallel Kernel Simulations

* Goal: Integrate with Synchronous XM Parallel’ Architecture
— XMT Verilog RTL description with GALS network

e XMT Parallel Kernels

— Array Summation (add)
 Compute sum of 3 million elements in array

— Matrix Multiplication (mmul)
 Compute product of two 64 x 64 matrices

— Breadth-First Search (bfs)
 Run XMT BFS algorithm with 100,000 vertices and 1 million edges

— Array Increment (a_inc)
* Increment all 32k elements of an array




XMT Parallel Kernel Simulations

o XM Processor Configuration
— 8 Processing Clusters (16 TCUs each) = 128 TCU’s total
— 8 Distributed L1 D-Cache Modules (64KB total)

e Simulate GALS XMT at Different Clock Frequencies
— 200, 400, 700 MHz

e Compare Speedups Relative to Synchronous XMT

— Values greater than 1.0 indicate better performance




GALS XMT Performance Comparison

GALS XMT
has similar

performance for
200, 400 MHz

[ ]200 MHz XMT
| [ ]400 MHz XMT

700 MHz XMT

Only moderate
degradation
at 700 MHz
(a_inc: 37%

decrease)

(Graph arranged in order of increasing network utilization)




Conclusions
o New GALS Network for Chip Vultiprocessors

— Low-overhead network for “heterochronous’ Interfaces

* Design of Two New Asynchronous Router: Cells
— Routing and arbitration circuits

e Overview of Results

— Router Primitives
* 64-84% less area, 82-91% less energy/packet

— System-Level Performance
e Async network comparison with 800 MHz sync network:
— Comparable throughput across all input traffic

— 1.7x lower latency up to 73% max input traffic

* GALS network comparison with 800 MHz sync network:

— Comparable throughput up to 52% max input traffic
— Lower latency up to 29% max input traffic




Future Directions

Architectural Optimization

— Insert linear pipeline stages on long wires to improve throughput
Circuit Optimization

— Improve designs of routing/arbitration primitives

— Mixed-timing FIFO optimizations

Asynchronous Topology Optimization
— Area improvements using hybrid MoT-Butterfly [Balkan et al., DAC-08]

Integrate with Synchronous Physical CAD Tool Flow

— Goal = leverage existing commercial techniques

* Timing constraint specification and synthesis of unclocked timing paths
* Build on automated async flow of [Quinton/Greenstreet/Wilton TVLSI ‘08]
 Optimized placement, routing, gate resizing and repeater insertion

Target Alternative Parallel Architectures/Memory Systems
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BACKUP SLIDES




Types of Mixed-Timing (GALS) Systems

Pseudochronous
— Same Frequency, Constant Phase Difference

Vlesochronous

— Same Frequency, Undefined Phase Difference
Plesiochronous

— Nearly exact Frequency and Phase Difference

Heterochronous

— Undefined Frequency and Phase Difference




VIOUSETRAP Asynchronous Pipelines

Fast Communication
— Transition signaling (2-phase) handshaking]

Synchronous-Style Channel Encoding

— Single-rail bundled data protocol

Low Latency

— 1 Transparent D Latch delay for empty stage

Minimal-Overhead Latch Controller
= {\\[0): ¥ CF}d=




MIOUSETRAP: A Basic FIFO
(no computation)

Stages communicate using transition-signaling:

Stage N-1 Stage N Stage N+1




MIOUSETRAP: A Basic FIFO
(no computation)

Stages communicate using transition-signaling:

1 transition
per data item!

I

Stage N-1 Stage N Stage N+1

One Data Item




Basic Mixed-Clock FIFO (Sync-Sync)

full < T Full Detector

4

Put

re ut —,
a_p Controller

data_put

data_get

reqg_get
valid_get <+
empty <+—

\ 4

Empty Detector

Controller

Put Get

— Sync-Sync is one of 4 mixed-timing FIFOs

’

— Sync-Async: uses Synchronous Put (top) and Asynchronous Get
— Async-Sync: uses Synchronous Get (bottom) and Asynchronous Put




