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ABSTRACT
We propose a lightweight parallel multicast targeting an
asynchronous NoC with a variant Mesh-of-Trees topology.
A novel strategy, local speculation, is introduced, where
a subset of switches are speculative and always broad-
cast. These switches are surrounded by non-speculative
switches, which throttle any redundant packets, restrict-
ing these packets to small regions. Speculative switches
have simplified designs, thereby improving network per-
formance. A hybrid network architecture is proposed to
mix the speculative and non-speculative switches. For mul-
ticast benchmarks, significant performance improvements
with small power savings are obtained by the new approach
over a tree-based non-speculative approach. Interestingly,
similar improvements are also shown for unicast. Finally,
another benefit is to reduce the address field size in multi-
cast packets.

1. INTRODUCTION
In today’s many-core era, on-chip networks have major

impact on system-level power and performance. Networks-
on-chip (NoCs) have been an active area of research for the
last decade [1], [2]. Most of the NoC research has been de-
voted to improving performance, power and fault-tolerance
for unicast (i.e. one-to-one) traffic. However, in recent
years, multicast (i.e. one-to-many) has also seen growing
interest, with several optimization strategies [3].
In multicast, the same packet is sent from a source to an

arbitrary subset of destinations. Multicast is widely-used
in various parallel computing applications: for example, in
cache coherency protocols to send write invalidates to mul-
tiple processors, in shared-operand networks for operand
delivery, and in multi-threaded applications for barrier syn-
chronization [4]. Each of these applications cause significant
multicast traffic in NoCs. For example, for the Token cache
coherence protocol, 52.4% of injected traffic is multicast [5].
There is also a growing interest in supporting multicast in

NoCs using emerging technologies, such as wireless [6] and
photonic [7]. Other emerging areas include large-scale neu-
romorphic chip multiprocessors [8] and the use of CDMA to
handle multicast [9]. Both these approaches support multi-
cast in application-specific asynchronous NoCs.
Asynchronous NoCs are at the core of designing mod-

ern globally-asynchronous locally-synchronous (GALS) sys-
tems [10]. Asynchronous NoCs eliminate the need for a
global clock and are therefore free from associated over-
heads: clock skew, clock tree switching power and com-
plex clock gating circuitry. Several recent examples have
shown significant power and area reductions, compared to
the synchronous NoCs, while achieving similar or better
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latency and throughput [11], [12], [13]. There is also a
recent surge in industrial uptake of asynchronous NoCs:
(i) IBM’s TrueNorth neuromorphic chip integrates 4096
neurosynaptic cores, modeling 1 million neurons and 256
million synapses using a fully-asynchronous NoC [14], and
(ii) STMicroelectronics’ advanced GALS many-core system,
called STHORM, that uses a fully-asynchronous NoC to
connect 4 clusters, each with 16 synchronous processors [10].

Related work. There has been much research on han-
dling multicast in synchronous NoCs [15], [16], [4], [5],[17].
These approaches are classified into two categories: se-
rial multicast (“path-based”) and parallel multicast (“tree-
based”). In path-based, a multicast packet is serially routed
from the source to a first destination, from where it is routed
to the next sequential destination, and so on [15], [16]. This
approach is simple, but not very scalable in terms of latency
for large number of destinations. More widely-used is the
tree-based approach, where a multicast packet is first routed
from the source on a single common path towards all the
destinations and is only replicated when the common path
ends [4], [5], [17].

The tree-based approach achieves high-performance mul-
ticast, but can still have significant cost overheads. For
example, earlier tree-based approaches required an expen-
sive set-up phase, to configure paths taken by a multicast
packet, using separate unicast packets [4], which adds to
network latency, congestion and power. Other approaches
avoid set-up, and simply encode all destination addresses
inside the multicast packet [5]. However, this approach low-
ers coding efficiency and requires complex decoding logic at
every switch, extra virtual channels, and turn prohibitions,
thus degrading network latency. More recent work claims to
achieve full chip broadcast in just 2 cycles for an 8x8 mesh
[17]; multicast is performed using a combination of full chip
broadcast and dropping of packets, aiming to optimize for a
“dense” multicast. However, this approach can lead to con-
siderable power overheads for multicasts to a small number
of destinations.

Although almost all of the above multicast research tar-
gets a mesh topology, another viable option is to use tree-
based topologies such as Mesh-of-Trees (MoT). For some
applications, MoT has been shown to achieve higher perfor-
mance compared to mesh topologies [18]. A variant of the
traditional MoT topology has been proposed that achieves
higher saturation throughput with lower contention com-
pared to the original MoT topology [19]. Variant MoTs have
been recently used for core-to-cache connections in high per-
formance shared memory parallel processors [20].

Contributions. Given the overheads in recent syn-
chronous multicast approaches, there is a need for more
cost-effective multicast solutions. The focus of this pa-
per is on asynchronous NoCs, driven by their potential for
lightweight design, and the growing interest in their use
for large-scale system integration. However, despite much
recent activity in this area, there are no general-purpose
asynchronous NoCs with multicast capability. The goal of
this work is to achieve lightweight and power-performance
efficient multicast using asynchronous NoCs. We propose
multiple solutions to support efficient multicast, in asyn-
chronous NoCs, using a new routing strategy and network
architectures.



The first contribution is a lightweight tree-based parallel
multicast using an asynchronous NoC. The target topol-
ogy is MoT. To the best of our knowledge, this is the
first general-purpose asynchronous NoC to support multi-
cast. This solution, although simple, is not very efficient
in terms of performance. Further enhancements are there-
fore proposed for performance, while still maintaining de-
sign simplicity.
The second contribution is a novel strategy called local

speculation that achieves high-performance parallel multi-
cast. In local speculation, a packet (unicast or multicast)
is always broadcast at a fixed subset of speculative switches
in the network. To restrict the distance traveled by any
redundant packets to small “local” regions, these packets
are throttled by neighboring non-speculative switches. This
localized approach limits the penalties of speculation, by
terminating redundant packets early, resulting in minimal
impact on congestion and power. Speculative switches are
built for speed, as they do not do any route computation
or output channel allocation. Non-speculative switches per-
form throttling with almost no hardware overhead. Interest-
ingly, local speculation improves network performance not
only for multicast, but also for unicast. In addition, the
simple, ’sub-cycle’ operation for local broadcast and low-
overhead throttling, not discretized to clock cycles, make
the new paradigm a good match for asynchronous design.
As a third contribution, local speculation leads to a new

hybrid network architecture that mixes speculative and non-
speculative switches. This is the first time a hybrid NoC has
been used to support multicast (cf. [4], [5], [17]). Moreover,
unlike previous unicast work that uses speculation within a
router for early VC allocation [1], this work uses speculation
at the network-level to support efficient multicast.
As a fourth contribution, two more architectures are in-

troduced besides hybrid, with extreme degrees of specula-
tion for an exhaustive design space exploration. The first
does not use any speculation, which is the same as our first
tree-based multicast solution. In contrast, the second is an
almost fully speculative architecture.
Finally, as a fifth contribution, protocol optimizations are

introduced, to further improve the power and performance
of speculative and non-speculative nodes. These optimiza-
tions are performed only for multi-flit packets, and are trig-
gered by the header flit. For speculative switches, once the
header is processed, the switch can revert to non-speculative
mode for body and tail flits, thereby saving power. For
non-speculative switches, once the header is processed, the
channel remains allocated for the current packet, with no re-
peated route computation, thereby improving throughput.
The above new techniques have been incorporated into

new networks and extensive experiments are performed. For
multicast benchmarks, the new simple tree-based parallel
multicast network achieves 39.1-74.1% lower latency, with
only small power overheads, than a unicast-based serial mul-
ticast approach. The hybrid network with local speculation
provides additional 17.8-21.4% latency improvements, and
small power reductions, over our simple tree-based solution.
We also consider an extreme case of an almost fully specu-
lative network, which has the best performance but incurs
10.8-13.4% power overheads over the hybrid solution. In-
terestingly, similar results are also seen for unicast traffic.

2. BACKGROUND
This section presents background on asynchronous com-

munication, a variant MoT topology, and a baseline asyn-
chronous NoC, which form the foundation of the new work.
Asynchronous communication. A handshaking pro-

tocol defines the channel communication between an asyn-
chronous sender and receiver, using request/acknowledge
wires. A two-phase (NRZ) protocol has only 2 events
per transaction (toggle on req followed by toggle on
ack) [21], while a four-phase (RZ) protocol has 4 total events
(req/ack initially zero, with rising then falling req/ack tran-

Figure 1: 4x4 MoT network architecture

Figure 2: Baseline fanout node
sitions) [12], [14]. This paper uses two-phase, as it has
only a single roundtrip channel communication per trans-
action, whereas four-phase has two roundtrip communica-
tions, since the former leads to better throughput. High-
performance, synchronous style single-rail bundled data is
used for data encoding in this paper [21], [13], [11], rather
than delay-insensitive encoding [12], [14], [10].

Variant Mesh-of-Trees topology. The architecture of
a 4x4 variant MoT network is shown in Figure 1. It con-
tains two binary trees: a fanout tree composed of routing
(i.e. fanout) nodes, and a fanin tree composed of arbitra-
tion (i.e. fanin) nodes [10], [19]. The trees are mirror copies:
fanout network from a source root to leaves, and the fanin
network from leaves to a destination root. This topology
provides two key advantages: (a) hop count from source to
destination is always a small constant, log(n), leading to
low latency, and (b) each distinct source-destination pair
has a unique path through the network, which can mini-
mize network contention significantly. However, the lack of
path diversity can be a potential performance bottleneck
for some adversarial cases, where traffic is extremely unbal-
anced. Overall, though, recent results demonstrate signifi-
cant benefits for saturation throughput [20], [19], [21].

The system shown in Figure 1 will require multi-
cast support to implement cache-coherence such as using
invalidation-based snoopy protocol, where multicast traffic
goes from processors to caches, or caches to processors [4].

Baseline asynchronous network. An efficient asyn-
chronous NoC implementation of this variant MoT topology
was recently introduced [21]. The target is an 8x8 network.
The approach can only support unicast traffic. As shown in
Figure 1, a fanout node receives packets on one input chan-
nel and forwards them to one of two output channels, based
on the destination address. In contrast, a fanin node re-
ceives packets on two input channels, performs arbitration,
and forwards the winning packet on the single output chan-
nel. Source routing is used [2], where each packet header
contains the address fields of every fanout node on its path.
In this case, each such address field is only 1-bit wide.

In this paper, the above network will be significantly en-
hanced to support multicast operation. Only fanout nodes
will be modified; existing fanin nodes are directly reused. In
particular, fanout nodes are responsible for all routing, so
must support distribution of multiple packet copies; hence
they must be instrumented with new addressing and repli-



Figure 3: New fanout network architectures: (a)-(c) full range
for 8x8 MoT, (d) One possible hybrid network for 16x16 MoT

cation capability. In contrast, even with multicast, the ex-
isting fanin network will still direct all packets to their desti-
nations. Hence, this paper focuses only on the fanout nodes.
The micro-architecture of a baseline fanout node is shown

in Figure 2. There are 5 main components: Input Channel
Monitor, Address Storage Unit, two Output Port Modules,
and Ack Module. The Input Channel Monitor detects the
arrival of each flit of a packet. The Address Storage Unit
stores the address of the header flit, which it holds until
after arrival of the tail flit. The two Output Port modules,
which are normally opaque, manage routing and flow control
of each output channel. Finally, the Ack Module observes
when either output channel transmits a flit, in unicast traf-
fic, then completes handshaking on the input channel.
The fanout node has relatively simple operation [21].

When a packet arrives on the input channel, the header
is directed to inputs of both Output Port Modules. The
Input Channel Monitor detects the arrival of the flit, en-
abling storing of its address in the Address Storage Unit.
The monitoring flit-detect also partially-enables both Out-
put Modules; the one receiving the correct address is then
activated, and the flit is sent out on that output channel
along with a toggled Reqout. This signal enables two con-
current operations: closing of the Output Port Module (for
data protection) and enabling of the Ack Module to gen-
erate the acknowledge on the input channel. Finally, the
downstream node acknowledges (toggles the Ackin signal),
completing the handshaking on the output channel. Similar
operation occurs for the remaining body and tail flits.

3. PROPOSED APPROACH: OVERVIEW
This section introduces multiple solutions to achieve ef-

ficient parallel multicast, using new routing strategy and
network architectures. Protocol optimizations of the new
fanout nodes and five new networks based on these archi-
tectures and optimizations are also presented.
Simple tree-based multicast. The first contribution

is a simple tree-based parallel multicast, applied for the first
time to a general-purpose asynchronous NoC. Routing of a
unicast packet is the same as in the baseline network. The
fanout network architecture, in Figure 3(a), has all non-
speculative nodes. New fanout nodes are designed to handle
parallel replication, as described in Section 4(b).
Source routing is used to encode the address for every

fanout node on each path to the destination(s). The address
at each fanout node must encode 3 symbols: top route,
bottom route or both. Therefore, 2-bit encoding is used for
the address field of each fanout node.
This basic tree-based multicast is simple but not efficient

in terms of latency and throughput. The new fanout nodes
are slow due to expensive route computation and channel al-
location protocols, required to handle a more complex set of
transmission modes. Another limitation is that the source
routing, as described above, leads to low packet coding effi-
ciency, which does not scale with larger network sizes.
Local speculation-based multicast. A new strategy,

local speculation, is introduced for high-performance par-
allel multicast. In local speculation, a subset of fanout
nodes are speculative and always broadcast a multicast
(or unicast) packet. These nodes are surrounded by non-

Figure 4: Unicast/multicast simulations: hybrid network

speculative nodes that always send packets on the right
path(s) and throttle any redundant packets from the spec-
ulative nodes, restricting these packets to small “local” re-
gions. A hybrid network architecture is introduced to mix
these two types of fanout nodes. Figure 3(b) shows one pos-
sible hybrid fanout network for an 8x8 MoT. The detailed
design of a speculative node is presented in Section 4(a).

The hybrid network also improves packet coding efficiency
using a simplified source routing, which does not encode
the addressing for the speculative nodes on the path to the
destination(s). This simplification is a direct consequence
of the simplicity of speculative nodes that always broadcast
and therefore do not require any addressing. As a result,
only a subset of fanout nodes (i.e. non-speculative ones)
require address fields in the packet header.

The operation of the hybrid fanout network is illustrated
using two simulations: for unicast and multicast.

Figure 4(a) shows the routing of a unicast packet in an
8x8 MoT network. The packet is first broadcast by the spec-
ulative root node, sending one copy on the right path and
the other on the wrong path. The copy on the wrong path
is throttled in the top sub-tree by non-speculative node 2.
The copy on the right path is forwarded by non-speculative
nodes 3 and 7 through their bottom output ports, based on
actual addressing, towards D8.

Figure 4(b) shows the routing of a multicast packet. Simi-
lar to unicast, the speculative root node broadcasts, sending
copies on the right and wrong paths. The latter is throt-
tled in the bottom sub-tree by non-speculative node 3. As
non-speculative nodes can also broadcast, the copy on the
right path is broadcast by node 2 on both output channels.
One copy is correctly routed to D1 by node 4 through its
top output port, while the other is correctly routed to D2
and D3 by another broadcast at node 5.

So far, two architectural design points have been cov-
ered, non-speculative and hybrid, as shown in Figures 3(a)
and (b). To complete the design space, a third extreme
point is introduced, an almost fully speculative architec-
ture. As shown in Figure 3(c), only the last level must
be non-speculative, since the fanin network cannot throttle
any misrouted packets. Such global speculation can achieve
high performance, but suffers from major power overheads
due to the large distances traveled by misrouted packets.

While the focus of the discussion of the above contribu-
tions and the evaluations in this paper is on 8x8 MoT, it
is interesting to consider future directions of larger-sized
networks. The hybrid architecture for the larger networks
has more degrees of freedom to mix the speculative and
non-speculative nodes and therefore a wider design space.
Figure 3(d) shows one possible hybrid fanout network for a
16x16 MoT, out of a family of many possibilities.

Protocol optimizations. The above speculative and
non-speculative nodes are efficient, but also suffer from over-
heads, which are minimized for multi-flit packets using pro-
tocol optimizations triggered by the header. Speculative
nodes can create redundant copies and therefore lead to ex-
tra switching power. Non-speculative nodes have complex
route computation and channel allocation logic.

Extra power due to speculative nodes is minimized by re-
verting to the non-speculative mode for body flits of pack-



Figure 5: Unoptimized fanout nodes: (a) speculative, (b) non-
speculative
ets intended for only one direction. Routing of the header
is used by the node to close the output port on the wrong
path before the trailing body flits arrive. Therefore, no re-
dundant copies are created for these body flits. Arrival of
tail flit is used by the node to return to always broadcast
state. These optimized nodes are called as power-optimized
speculative nodes, and are described in Section 4(c).
Latency and throughput of non-speculative nodes is opti-

mized using channel pre-allocation. Routing of the header
is used to reserve the correct output channel(s) for the re-
mainder of the packet (body/tail flits). These flits are then
fast forwarded through the output channel(s) after their ar-
rival, optimizing latency of these flits and improving overall
network latency and throughput. These optimized nodes
are called as performance-optimized non-speculative nodes,
and are described in Section 4(d).
Target parallel multicast networks. The above par-

allel multicast approaches are incorporated into five network
configurations, representing three distinct points in the de-
sign space of speculative architectures: (i) non-speculative,
(ii) hybrid, and (iii) almost fully speculative. The goal is
to explore the tradeoffs associated with varying degrees of
speculation and protocol optimizations.
In particular, the paper targets two non-speculative net-

works (BasicNonSpeculative, OptNonSpeculative),
two hybrid networks (BasicHybridSpeculative, OptHy-
bridSpeculative), and one extreme case of a nearly fully
speculative network, with non-speculative nodes only at its
leaves (OptAllSpeculative). To support the design of
these networks, four distinct fanout nodes are introduced.

4. PROPOSED FANOUT NODE DESIGNS
This section presents the design and operation of the new

fanout nodes, which are the main building blocks of the new
parallel multicast networks. The basic new networks are
composed of the unoptimized fanout nodes, and the more
advanced new networks are composed of the power- and
performance-optimized fanout nodes, discussed in turn.
(a) Unoptimized speculative fanout node.
Structure. The node’s micro-architecture is shown in Fig-

ure 5(a). There are three main differences from the baseline
fanout: (i) drastically simplified design, due to elimination
of the Input Channel Monitor and Address Storage Unit; (ii)
new normally-transparent Output Port Modules; and (iii)
a new Ack Module. The node does no route computation,
therefore an Address Storage Unit is not needed. In addi-
tion, since the node simply broadcasts every flit arriving on
the input channel, Output Port Modules are also consider-
ably simplified and now only do flow control with normally-
transparent data registers. Finally, the Ack Module now
completes handshaking on the input channel only after a
flit is sent on both output channels, hence a C-element is
used [12], as opposed to an XOR gate in baseline.
Operation. This node has a very simple operation, which

is the same for any type of packet and its flits: always
broadcast. A packet on the input channel can be a correctly
routed unicast, or multicast going to either or both outputs,
or any misrouted packet from previous node. When a flit

arrives on the input channel, it is directed to both output
channels, along with the generation of Reqouts. These Re-
qouts perform two concurrent operations: close the Output
Port Modules for data protection, and enable Ack Module
to generate Ack. Finally, when the downstream nodes toggle
Ackin(s), handshaking is complete on the output channel(s).

(b) Unoptimized non-speculative fanout node.
Structure. The micro-architecture of the new node is

shown in Figure 5(b). Overall, the structure is similar to the
baseline fanout with identical key components. However, all
these units are now more complex, to support parallel repli-
cation for multicast and throttling of any misrouted packets.
As illustrated in Section 3, these nodes use a 2-bit source
routing address to support multicast. The address is passed
through the Input Channel Monitor, both as routing infor-
mation for the Output Port Modules and also to notify the
Ack Module of any misrouted packets on the input chan-
nel. The Ack Module observes the output channels and
the input channel. Handshaking is completed on the input
channel for three cases: if a flit is sent out on exactly one
of the output channels, or both output channels, or if it is
a misrouted flit. The Ack Module also notifies the Output
Port Module(s) control unit, when a flit has been sent on
the corresponding output channel(s).

Operation. Three packet types can arrive on a node’s in-
put channel: unicast, multicast (going to one or two output
ports), and a misrouted packet from the previous node.

In case of a unicast packet, the header is first directed to
both Output Port Modules. The Input Channel Monitor
detects the flit arrival, enables storing of the address and
also partly enables both Output Port Modules. Depending
on the address, the monitor generates the top-route/bot-
route routing signals to enable the correct Output Port
Module(s). Generation of Reqout leads to three concurrent
operations: closing the Output Port Module for data protec-
tion, enabling Ack Module to generate Req0/1 sent control
signals, and completing handshaking on the input channel.
Req0/1 sent signals identify to the Output Port Modules if
the flit on the input channel is new or stale; they disable
the Output Port Module, right after a flit is sent out on the
output channel, hence avoiding any potential resampling.
Similar operations occur for body/tail flits.

In case of multicast packet, if intended for exactly one di-
rection, a similar protocol to the unicast packet is followed.
For multicast going to both outputs, the Input Channel
Monitor enables both output ports for routing. After Re-
qouts are generated on both output channels, in parallel, the
Ack Module completes handshaking on the input channel.
All internal operations (data protection, no resampling) are
similar to unicast, but now done for both Output Port Mod-
ules. Finally, for a misrouted packet on the input channel,
the Input Channel Monitor detects this packet, and enables
Ack Module to complete handshaking on the input channel.

(c) Optimized speculative fanout node. The idea of
this optimization is to speculate on the header flit, then use
actual address information to switch to a non-speculative
operation for all body flits, thereby saving power.

Structure. There are three main differences from the basic
speculative nodes: (i) the new Input Channel Monitor is
instrumented to detect the arrival of flits, and the tail, on
the input channel, (ii) more complex Output Port Modules,
which can revert to non-speculative mode for body flits, and
(iii) a new Ack Module that generates Ack for two different
cases: body flits which are routed correctly only on one
output channel, all other flits. For the former, Ack is sent
after the flit is routed on exactly one output channel; for the
latter, the protocol is same as the basic speculative nodes.

Operation. Once a header arrives, it is speculatively
routed on both output channels. Its address is used by
the Output Port Modules to identify the correct route (top,
bottom, or both), and to block the incorrect route for all
body flits. These modules return to their default normally



transparent state after the tail arrives. Therefore, the tail
also gets speculatively routed to both output channels.
(d) Optimized non-speculative fanout node. The

basic idea of optimization is to use the header to pre-allocate
the correct output channel(s) for body/tail. These flits are
fast forwarded on their arrival, without route computation
and output channel allocation.
Structure and operation. There is only one key difference

in terms of more simplified Output Port Modules. Based on
the routing of the header, these modules now pre-allocate
the correct channel for trailing body/tail flits. The routing
of the tail is used to release the channel.
5. EXPERIMENTAL RESULTS
This section presents the experimental framework for

evaluation of the new parallel multicast solutions, along
with node and network-level results on area, performance,
power, and addressing overhead.

5.1 Experimental Framework
Experimental case studies. Two distinct case studies

are used to evaluate the proposed parallel multicast solu-
tions: (a) contribution trajectory, and (b) architectural de-
sign space exploration. The contribution trajectory incre-
mentally evaluates the effectiveness of each contribution,
against a serial baseline: parallel multicast, local specu-
lation and a hybrid network, and protocol optimizations.
Architectural design space exploration, on the other hand,
only evaluates the effects of varying degrees of speculation
on the new parallel multicast networks. To isolate the focus,
only optimized networks are targeted, thereby eliminating
any interference from the optimization strategies.
The contribution trajectory compares 4 networks: (i)

Baseline [21], only supporting serial multicast; (ii) Basic-
NonSpeculative, using simple tree-based parallel multicast;
(iii) BasicHybridSpeculative, using local speculation in a hy-
brid network; and (iv) OptHybridSpeculative, similar to the
previous one, but including protocol optimizations.
The architecture design space exploration compares

3 optimized new networks with varying degrees of spec-
ulation: (i) OptNonSpeculative, with no speculation; (ii)
OptHybridSpeculative, with local speculation; and (iii) Op-
tAllSpeculative, with almost full speculation.
Experimental setup. Six different 8x8 MoT networks

are implemented using FreePDK Nangate 45 nm technology.
Designs are technology-mapped and pre-layout. Six types of
nodes are implemented, as building blocks: five fanout and
one fanin. Nodes are mapped to the Nangate standard cell
library in the Cadence Virtuoso tool. Accurate gate-level
models are extracted using the Spectre simulator (typical
process corner), to determine rise/fall times for every I/O
path of each gate. Channel lengths and delays are borrowed
from a synchronous MoT chip [21] and scaled to 45 nm
technology. These extracted models of nodes and channels
are used to implement the networks in structural Verilog.
An asynchronous NoC simulator is used for both unicast

and multicast traffic. It includes a Programming Language
Interface (PLI) to connect a C-based traffic generator and
test environment to the technology-mapped network. A
fixed packet size of 5 flits is used. Injection of headers of
different packets follows an exponential distribution. A pro-
cedure similar to [2] is followed to ensure long warmup and
measurement phases. Two steps are used to measure power:
(i) record and annotate precise switching activity of every
wire in the network over a benchmark run, and (ii) compute
total power using the Synopsys PrimeTime tool.
Benchmarks. Experiments are conducted on six syn-

thetic benchmarks. There are 3 unicast benchmarks [2]:
1) Uniform random, 2) Bit permutation:shuffle, and 3)
Hotspot. There are 3 multicast benchmarks: 4) Multicast5
and 5) Multicast10, where all sources inject multicast traffic
at rates of 5% and 10%, respectively, to random subsets of
destinations, and otherwise do uniform random unicast, and
6) Multicast static, where 3 sources perform only random

multicast, and the others do only uniform random unicast.

5.2 Node- and Network-Level Results
(a) Node-level results. Area and latency of the four

new fanout nodes (Section 4) and Baseline fanout were eval-
uated. The unoptimized speculative nodes, due to their sim-
plicity, have significantly lower area and latency (247 µm2,
52 ps) than Baseline (342 µm2, 263 ps). The more complex
unoptimized non-speculative nodes have only small over-
head (406 µm2, 299 ps) over Baseline. The optimized spec-
ulative nodes have moderate cost increases (373 µm2, 120
ps) over unoptimized, but will provide substantial network-
level power savings (see below). Interestingly, the optimized
non-speculative nodes have slightly lower costs (366 µm2,
279 ps) than the unoptimized ones.

(b) Contribution trajectory. This first case study
explores the incremental impact of each key contribution:
parallel multicast, local speculation, and optimizations.

Network latency. Figure 6(a) shows the average network
latency results. We measure latency of each network at
25% of the saturation throughput of that network, up to
the arrival of all headers at destinations. This load is high
enough to show the impact of different benchmarks, while
keeping the network largely uncongested. Moreover, long
warmup and measurement times are used, for example, for
Uniform Random/Multicast static benchmarks, warmup is
320 ns/640 ns, and measurement is 3200 ns/6400 ns with
injection of 2100/4000 flits at each active source.

For multicast benchmarks, the simple tree-based paral-
lel multicast network, BasicNonSpeculative, obtained sig-
nificant benefits over the serial Baseline, from 39.1% (Mul-
ticast5) to 74.1% (Multicast static), highlighting the severe
overheads of the serial multicast approach. The BasicHy-
bridSpeculative and OptHybridSpeculative show further im-
provements of 10.5-14.9% and 17.8-21.4%, respectively, over
the BasicNonSpeculative, illustrating the individual benefits
of hybrid design and optimizations.

For unicast benchmarks, BasicNonSpeculative incurs a
small latency overhead over Baseline: since unicast is serial,
the added node complexity to support parallel multicast be-
comes an overhead. However, the two hybrid networks pro-
vide noticeable benefits over BasicNonSpeculative, following
similar trends as observed with multicast benchmarks. In-
terestingly, these latter results show that local speculation
can significantly accelerate unicast traffic due to very fast
speculative nodes.

Saturation throughput. Table 1 shows saturation through-
put results. For multicast benchmarks, the new simple par-
allel network, BasicNonSpeculative, shows considerable ben-
efits over the serial Baseline, ranging from 14.8% (Multi-
cast5) to 39.5% (Multicast static). The two hybrid net-
works exhibit additional improvements up to 9.5% and
19.7%, respectively, over BasicNonSpeculative, demonstrat-
ing that local speculation, with accelerated packet trans-
mission, provides a higher threshold for saturation.

For unicast benchmarks, results are more complex.
Hotspot is highly-adversarial, with identical throughput for
every network. For Uniform random, theOptHybridSpecula-
tive network showed substantial improvements (28.0%) over
BasicNonSpeculative. For Shuffle, two new networks show
moderate throughput degradation (BasicNonSpeculative,
BasicHybridSpeculative) over the Baseline, while OptHy-
bridSpeculative obtains 32.8% higher throughput than Ba-
sicNonSpeculative and 9.5% higher than Baseline.

Total network power. Table 1 shows power results for 4
benchmarks. An injection rate that is 25% saturation load
measured in Baseline, for a normalized comparison of en-
ergy per packet. Overall, as expected, Baseline has the
lowest power due to its low complexity and serial multi-
cast approach. BasicNonSpeculative has moderate overhead
over Baseline (5.8-11.9%), due to more complex nodes. The
overhead increases significantly for BasicHybridSpeculative
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Figure 6: Network latency at 25% saturation load of respective networks

Schemes/benchmarks
Saturation Throughput (GF/s) Total Network Power (mW)

Uniform-
random

Shuffle Hotspot Multi-
cast5

Multi-
cast10

Multicast-
static

Uniform-
random

Hotspot Multi-
cast5

Multi-
cast10

Contribution trajectory
Baseline 1.26 1.48 0.29 1.28 1.28 1.29 12.6 3.8 14.7 17.1
BasicNonSpeculative 1.25 1.22 0.29 1.47 1.63 1.80 14.1 4.2 16.0 18.1
BasicHybridSpeculative 1.42 1.25 0.29 1.61 1.73 1.87 15.6 4.5 17.4 19.4
OptHybridSpeculative 1.60 1.62 0.29 1.76 1.84 1.96 13.9 4.1 15.7 17.6

Architecture design space exploration
OptNonSpeculative 1.52 1.57 0.29 1.72 1.82 1.93 13.1 3.9 15.0 17.0
OptHybridSpeculative 1.60 1.62 0.29 1.76 1.84 1.96 13.9 4.1 15.7 17.6
OptAllSpeculative 1.65 1.70 0.29 1.78 1.84 1.96 16.1 4.6 17.8 19.5

Table 1: Saturation throughput and total network power results

(13.4-23.8% over Baseline), due to creation of redundant
speculative copies. However, using OptHybridSpeculative,
most of this overhead is removed (only 2.9-10.3% over Base-
line): due to elimination of all redundant body flits (spec-
ulative nodes), and reduced switching activity because of
channel pre-allocation (non-speculative nodes).
(c) Architectural design space exploration. This

second case study only includes evaluations of the optimized
designs, while varying the degree of speculation.
Network latency. As shown in Figure 6(b), the hy-

brid network with local speculation (OptHybridSpeculative)
achieves 9.7-11.9% latency improvements (unicast and mul-
ticast) over OptNonSpeculative, showing the effectiveness of
the proposed techniques. The extreme case, OptAllSpecu-
lative, exhibits 8.7-12.0% additional latency improvements
over OptHybridSpeculative (18.5-21.7% over OptNonSpecu-
lative), due to its almost fully speculative architecture (but
will have significant power overheads).
Saturation throughput. For all benchmarks, in Ta-

ble 1, the hybrid approach (OptHybridSpeculative) and ex-
treme speculation (OptAllSpeculative) have nearly identical
throughput to the non-speculative (OptNonSpeculative).
Total network power. Interestingly, even with its signif-

icant performance benefits, the optimized hybrid approach
incurs only minor power overheads of 3.5-6.1% over the non-
speculative approach, since redundant copies are restricted
to small local regions, and a power-oriented optimization is
applied to disable speculation for body flits. In contrast, the
fully-speculative approach (OptAllSpeculative) incurs con-
siderable power overheads (10.8-15.8% over OptHybridSpec-
ulative, 14.7-22.9% over OptNonSpeculative) due to larger
regions of speculation in OptAllSpeculative. It is expected
that with larger MoT networks, these overheads will only
increase, due to wider speculative regions.
(d) Addressing scheme comparisons. As highlighted

earlier, an additional benefit of local speculation is to reduce
the address field size. The serial Baseline has the shortest
address field, using source routing, with a 1-bit address per
fanout node on a unicast path: 3 bits for 8x8 MoT, and 4
bits for 16x16 MoT (not evaluated in this paper). However,
the large performance overheads of these designs make them
impractical for multicast.
Of the three proposed parallel architectures, each using

source routing, address field sizes for an 8x8 MoT are: 14
bits in non-speculative, 12 bits in hybrid, and 8 bits in almost
fully-speculative. For a 16x16 MoT, the benefits of specula-
tion are even greater: 30, 20 and 16 bits, respectively. Effec-
tively, the speculative architectures reduce the total number
of address fields, by only addressing non-speculative nodes.

6. CONCLUSIONS AND FUTURE WORK
The paper presents a new lightweight multicast using

Mesh-of-Trees based asynchronous NoCs. A new strat-
egy, local speculation, is introduced, where fixed specula-
tive switches always broadcast, but redundant packets are
restricted to small regions. A hybrid network architecture is
proposed, mixing speculative and non-speculative switches.
For multicast, the network achieves 17.8-21.4% improve-
ments in network latency with small power reductions over
a tree-based non-speculative approach. The approach is the
first general-purpose multicast for asynchronous NoCs. For
future work, we plan to extend the approach to larger MoT
networks, alternative topologies (e.g. 2D-mesh), as well as
synchronous NoCs.
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