Achieving Lightweight Multicast in Asynchronous Networks-on-Chip Using Local Speculation

Kshitij Bhardwaj Steven M. Nowick Dept. of Computer Science Columbia University

2016 ACM/IEEE Design Automation Conference (DAC), Austin, TX

Motivation for Networks-on-Chip

- Future of computing is many-core
 - 8 to 22 cores widely available: Intel 22-core Xeon-E5 2699 series
 - Expected progression: <u>hundreds or thousands of cores</u>
- NoC separates communication and computation
 - Improves <u>scalability</u>
 - global interconnects have high latency and power consumption (e.g. buses and point-to-point wiring)
 - Increases <u>performance/energy efficiency</u>
 - share wiring resources between parallel data flows
 - Facilitates design reuse
 - optimized IPs can simply plug in \implies considerably decrease design efforts
- Key challenge for NoCs = support for new traffic patterns
 - Support communication patterns for <u>advanced parallel architectures</u>
 - Compatibility with <u>emerging technologies for NoCs</u>:
 - wireless, photonics, CDMA

Multicast (1-to-Many) Communication

- Sending packets from one source to multiple destinations
- Widely-used in parallel computing: 3 key applications
 - Cache coherence: sending write-invalidates to multiple sharers
 - For Token Coherence protocol, 52.4 % of injected traffic is multicast
 - Shared-operand networks: operand delivery to multiple processors
 - Multi-threaded applications: for barrier synchronization
 - [Jerger/Lipasti et al., "Virtual circuit tree multicasting: a case for on-chip hardware multicast support," ISCA-08]
- Additional applications: multicast in emerging technologies
 - Wireless: mixed wire + millimeter-wave (or surface-wave)
 - Nano-photonics: support for energy-efficient optical broadcast
 - Large-scale neuromorphic CMPs: multicast between 1000s of neurons
- Key challenge for NoCs: performance/energy-efficient multicast

Asynchronous Design: Potential Advantages

Lower power

- No clock power
- Energy-proportional computing: on-demand operation
- Less overall power than deeply clock-gated sync counterpart
- Comparison with synchronous NoC router [in 40 nm technology]
 - 71% area reduction
 - 39% lower latency, comparable throughput
 - 44% lower energy/flit
 - [Ghiribaldi/Bertozzi/Nowick, "A transition-signaling bundled data NoC switch architecture for cost-effective GALS multicore systems," DATE-13]

Industrial uptake of asynchronous NoCs IBM's TrueNorth neuromorphic chip

- 5.4 billion transistors, fully-asynchronous chip, consuming only 63 mW
- 4096 neurosynaptic asynchronous cores modeling 1 million neurons
- connected using <u>fully-asynchronous NoC</u>

- [Merolla et al,. "A million-spiking neuron integrated circuit with a scalable communication network and interface," Science (Aug. 2014), COVER STORY]

Related Work: Techniques for Multicast

1) Path-based serial multicast [Ebrahimi/Daneshtalab/Tenhunen IEEE TC-14]

- Packet routed to first destination, from there to next, and so on
- <u>Expensive</u> if large number of destinations latency overheads

2) Tree-based parallel multicast: high-performance, widely-used

- First route packet on a <u>common path</u> from source to all destinations
 - When common path ends, replicate packet and diverge
- Earlier works set up tree in advance using multiple unicasts [Jerger/Lipasti ISCA-08]
- Recent works do not use unicast-based set up: <u>tree constructed dynamically</u>

- [Krishna/Reinhardt MICRO-11]

Major Contributions

- 1) First general-purpose asynchronous NoC to support multicast
 - Initial solution: uses simple tree-based parallel multicast
- 2) Novel strategy called *Local Speculation* for parallel multicast
 - <u>Always broadcast</u> at subset of very fast speculative routers
 - Neighboring non-speculative routers:
 - Quickly throttle misrouted packets from speculative nodes
 - Correctly route the other packets based on source-routing address
 - <u>New multicast protocol</u> is relaxed variant of tree-based multicast
- 3) New hybrid network architecture
 - Mixes speculative and non-speculative routers
 - 17.8-21.4% improvement in network latency
 - over basic non-hybrid tree-based solution

4) Additional contributions:

- Two more architectures with extreme degrees of speculation:
 - no speculation and full (global) speculation
- Router-level protocol optimizations for multi-flit packets
 - Further improve power and performance

Variant Mesh-of-Trees Topology

- Variant MoT: contains two binary trees
 - Fanout tree: 1-to-2 routing nodes
 - Fanin tree: 2-to-1 arbitration nodes
- Recently used for core-to-cache network
 - In shared memory parallel processors
- Several advantages of variant MoT:
 - Small hop count from source to destination
 - constant: log (n)
 - Unique path from source to destination
 - Minimize network contention
 - Challenge: lack of path diversity Can be bottleneck for unbalanced traffic
 - But overall, significant benefits for improved saturation throughput

- [Horak/Nowick et al. "A low-overhead asynchronous interconnection network for GALS chip multiprocessor," TCAD-11] [Balkan/Vishkin et al. "Layout-accurate design and implementation of a highthroughput interconnection network for single-chip parallel processing,"HOTI-07]

[Rahimi/Benini et al. "A fully-synthesizable single-cycle interconnection network for shared-L1 processor clusters," DATE-11]

Baseline Asynchronous NoC

New approach builds on recent async NoC: supports <u>only unicast</u>

- [Horak/Nowick et al. "A low-overhead asynchronous interconnection network for GALS chip multiprocessor," TCAD-11]

- Comparison with synchronous 8x8 MoT network
 - Network latency: 1.7x lower (vs. 800 MHz synchronous)
 - Node-level metrics: significantly lower area, energy/packet than 1GHz sync
- Key design decisions: async communication + packet addressing
 - Uses 2-phase handshaking protocol instead of 4-phase
 - Only 1 round trip communication per data transfer
 - Data encoding: single-rail bundled data encoding
 - High coding efficiency and low area/power
 - Source routing: header contains address for every fanout node on its path
 - Allows simple fanout node
- Due to lack of multicast support
 - Multicast packet <u>serially routed</u> using multiple unicasts
- Our focus only on fanout nodes
 - Only fanout nodes will be modified to support parallel multicast
 - Enhancements to support parallel replication, new multicast addressing
 - No changes needed to fanin nodes for multicast: use baseline ones

7

Overview of Proposed Approach

Local Speculation: Basic Idea

Goal of research

- High-performance parallel multicast: improve latency/throughput
- Basic strategy = speculation
 - Fixed subset of fanout nodes are always speculative
 - Speculative nodes always broadcast every packet
 - *Lightweight, very fast:* no route computation or channel allocation steps
 - <u>Novel approach</u>: does not follow classic speculation
 - Hybrid network: non-speculative nodes <u>surround</u> speculative
 - Non-speculative nodes: always route based on address
 - Support <u>parallel replication</u> capability for multicast
 - <u>Throttle</u> any redundant copies received from speculative nodes
 - Redundant copies restricted to small *local* regions
- Net effect:
 - High performance due to speculation
 - Minimum power overhead due to local restriction

New Hybrid Network Architecture

Local Speculation: Multicast Operation

- <u>Simplified</u> source routing:
 - Only encode non-speculative nodes on paths to destinations
 - *No addressing* for speculative nodes: improves packet coding efficiency

Node-Level Protocol Optimizations

Optimize power and performance for <u>multi-flit packets</u>

- 1) <u>Speculative nodes</u> extra power due to redundant copies
 - **Optimize power** switch to non-speculative mode for body flits
 - After header: no need for speculation as correct route known

Speculative for head

<u>Switch</u> to non-speculative for body going to one port

2) Non-speculative nodes – slow, compute route + allocate channel per flit

- Optimize latency/throughput using channel pre-allocation
- Routing of head used to pre-allocate correct output channel(s) for body/tail
- Body/tail fast forwarded after arrival

Experimental Results

Experimental Setup

- Compare 5 new parallel multicast networks with serial Baseline
 - **BasicNonSpeculative:** tree-based multicast/unoptimized fanout nodes
 - **BasicHybridSpeculative:** local speculation/unoptimized fanout nodes
 - **OptNonSpeculative:** tree-based multicast/optimized fanout nodes
 - **OptHybridSpeculative:** local speculation/optimized fanout nodes
 - **OptAllSpeculative:** full (global) speculation/optimized fanout nodes
- Six 8x8 MoT networks: one for each configuration
 - Technology-mapped pre-layout implementation using structural Verilog
 - Implemented using FreePDK Nangate 45 nm technology
- Six synthetic benchmarks
 - 3 unicast: Uniform Random (UR), Bit Permutation, and Hotspot
 - 3 multicast:
 - *Multicast5/10* 5% or 10% of injected packets are multicast
 - *Multicast_static:* 3 sources perform multicast, remaining: UR unicast

Network Latency

- Latency measured at 25% saturation load of respective network
- Significant improvements for new hybrid networks over tree-based and Baseline

Network Power

- Power measured at 25% saturation load of Baseline
- Optimized network with local speculation (*OptHybridSpeculative*) has <u>minimal</u> <u>overhead</u> vs. *Baseline*

Different Degrees of Speculation: Effect on Network Power

- Power measured at 25% saturation load of Baseline
- Fully-speculative network (OptAllSpeculative) incurs significant overhead due to global speculation

Optimized network with *local speculation* (*OptHybridSpeculative*) has **almost the same power** as *non-speculative network* However, fully-speculative network (*OptAllSpeculative*) incurs 14.7-22.9% extra power over non-speculative network

Conclusions and Future Work

- New parallel multicast approaches for asynchronous NoCs
 - First general-purpose asynchronous NoC to support multicast
 - New routing strategy called *Local Speculation* for parallel multicast
 - Fixed high-speed speculative switches: *always broadcast*
 - Extremely simple and fast
 - Non-speculative switches: rapidly throttle incorrect traffic locally
 - Redundant copies restricted to neighboring *local regions*
 - New hybrid network architecture
 - Mixes speculative and non-speculative switches
- Experimental design-space exploration
 - New basic tree-based parallel multicast network achieves:
 - 39.1-74.1% latency reduction over unicast-based serial multicast baseline
 - Incurs only small power overheads over serial multicast baseline
 - Additionally, new local speculation based hybrid network achieves:
 - 17.8-21.4% latency improvements over our basic tree-based solution
 - Small power reductions over our basic tree-based approach
- Future Work
 - Extend approach to larger MoTs, 2D-mesh topology, synchronous NoCs