Achieving Lightweight Multicast in Asynchronous Networks-on-Chip Using Local Speculation

Kshitij Bhardwaj Steven M. Nowick
Dept. of Computer Science
Columbia University

2016 ACM/IEEE Design Automation Conference (DAC), Austin, TX
Motivation for Networks-on-Chip

- Future of computing is many-core
 - 8 to 22 cores widely available: Intel 22-core Xeon-E5 2699 series
 - Expected progression: hundreds or thousands of cores

- NoC separates communication and computation
 - Improves scalability
 - global interconnects have high latency and power consumption
 (e.g. buses and point-to-point wiring)
 - Increases performance/energy efficiency
 - share wiring resources between parallel data flows
 - Facilitates design reuse
 - optimized IPs can simply plug in considerably decrease design efforts

- Key challenge for NoCs = support for new traffic patterns
 - Support communication patterns for advanced parallel architectures
 - Compatibility with emerging technologies for NoCs:
 - wireless, photonics, CDMA
Multicast (1-to-Many) Communication

• Sending packets from one source to multiple destinations

• Widely-used in parallel computing: 3 key applications
 • Cache coherence: sending write-invalidates to multiple sharers
 • For Token Coherence protocol, 52.4% of injected traffic is multicast
 • Shared-operand networks: operand delivery to multiple processors
 • Multi-threaded applications: for barrier synchronization
 - [Jerger/Lipasti et al., “Virtual circuit tree multicasting: a case for on-chip hardware multicast support,” ISCA-08]

• Additional applications: multicast in emerging technologies
 • Wireless: mixed wire + millimeter-wave (or surface-wave)
 • Nano-photonics: support for energy-efficient optical broadcast
 • Large-scale neuromorphic CMPs: multicast between 1000s of neurons

• Key challenge for NoCs: performance/energy-efficient multicast
Asynchronous Design: Potential Advantages

- Lower power
 - No clock power
 - Energy-proportional computing: on-demand operation
 - Less overall power than deeply clock-gated sync counterpart

- Comparison with synchronous NoC router [in 40 nm technology]
 - 71% area reduction
 - 39% lower latency, comparable throughput
 - 44% lower energy/flit

- Industrial uptake of asynchronous NoCs
 IBM’s TrueNorth neuromorphic chip
 - 5.4 billion transistors, fully-asynchronous chip, consuming only 63 mW
 - 4096 neurosynaptic asynchronous cores modeling 1 million neurons
 - connected using fully-asynchronous NoC
Related Work: Techniques for Multicast

1) Path-based serial multicast [Ebrahimi/Daneshtalab/Tenhunen IEEE TC-14]
 • Packet routed to first destination, from there to next, and so on
 • **Expensive** if large number of destinations – latency overheads

2) Tree-based parallel multicast: high-performance, widely-used
 • First route packet on a **common path** from source to all destinations
 - When common path ends, **replicate packet and diverge**
 • Earlier works **set up tree in advance** using multiple unicasts [Jerger/Lipasti ISCA-08]
 • Recent works do not use unicast-based set up: **tree constructed dynamically**
 - [Krishna/Reinhardt MICRO-11]
Major Contributions

1) First general-purpose asynchronous NoC to support multicast
 • Initial solution: uses simple tree-based parallel multicast

2) Novel strategy called *Local Speculation* for parallel multicast
 • Always broadcast at subset of very fast speculative routers
 • Neighboring non-speculative routers:
 • Quickly throttle misrouted packets from speculative nodes
 • Correctly route the other packets based on source-routing address
 • New multicast protocol relaxed variant of tree-based multicast

3) New hybrid network architecture
 • Mixes speculative and non-speculative routers
 • 17.8-21.4% improvement in network latency
 • over basic non-hybrid tree-based solution

4) Additional contributions:
 • Two more architectures with extreme degrees of speculation:
 • *no speculation* and *full (global) speculation*
 • Router-level protocol optimizations for multi-flit packets
 • Further improve power and performance
Variant Mesh-of-Trees Topology

- Variant MoT: contains **two binary trees**
 - Fanout tree: 1-to-2 routing nodes
 - Fanin tree: 2-to-1 arbitration nodes

- Recently used for core-to-cache network
 - In shared memory parallel processors

- Several advantages of variant MoT:
 - Small hop count from source to destination
 - constant: \(\log(n) \)
 - Unique path from source to destination
 - Minimize network contention
 - Challenge: lack of path diversity
 Can be bottleneck for unbalanced traffic
 - But overall, significant benefits for improved saturation throughput

- [Balkan/Vishkin et al. “Layout-accurate design and implementation of a high-throughput interconnection network for single-chip parallel processing,” HOTI-07]

Baseline Asynchronous NoC

- New approach builds on recent async NoC: supports only unicast

- Comparison with synchronous 8x8 MoT network
 - Network latency: 1.7x lower (vs. 800 MHz synchronous)
 - Node-level metrics: significantly lower area, energy/packet than 1GHz sync

- Key design decisions: async communication + packet addressing
 - Uses 2-phase handshaking protocol instead of 4-phase
 - Only 1 round trip communication per data transfer
 - Data encoding: single-rail bundled data encoding
 - High coding efficiency and low area/power
 - Source routing: header contains address for every fanout node on its path
 - Allows simple fanout node

- Due to lack of multicast support
 - Multicast packet serially routed using multiple unicasts

- Our focus only on fanout nodes
 - Only fanout nodes will be modified to support parallel multicast
 - Enhancements to support parallel replication, new multicast addressing
 - No changes needed to fanin nodes for multicast: use baseline ones
Overview of Proposed Approach
Local Speculation: Basic Idea

• Goal of research
 • High-performance parallel multicast: improve latency/throughput

• Basic strategy = speculation
 • Fixed subset of fanout nodes are always speculative
 • Speculative nodes always broadcast every packet
 • Lightweight, very fast: no route computation or channel allocation steps
 • Novel approach: does not follow classic speculation
 • Hybrid network: non-speculative nodes surround speculative
 • Non-speculative nodes: always route based on address
 • Support parallel replication capability for multicast
 • Throttle any redundant copies received from speculative nodes
 • Redundant copies restricted to small local regions

• Net effect:
 • High performance due to speculation
 • Minimum power overhead due to local restriction
New Hybrid Network Architecture

One possible hybrid fanout network for 8x8 MoT

One possible hybrid fanout network for 16x16 MoT

Speculative node
Non-speculative node
Local Speculation: Multicast Operation

- **Speculative nodes:**
 - Very fast and simple: latency: 52 ps in 45 nm
 - Low area: 247 um² in 45 nm

- **Non-speculative nodes:**
 - Latency: 299 ps in 45 nm
 - Area: 406 um² in 45 nm

- Similar operation for unicast traffic
- **Simplified** source routing:
 - Only encode non-speculative nodes on paths to destinations
 - *No addressing* for speculative nodes: improves packet coding efficiency
Node-Level Protocol Optimizations

Optimize power and performance for multi-flit packets

1) **Speculative nodes** – extra power due to redundant copies
 - Optimize power \(\rightarrow\) switch to non-speculative mode for body flits
 - After header: no need for speculation as correct route known

 Speculative for head
 - **Switch** to non-speculative for body going to one port
 - **Back** to speculative for tail

2) **Non-speculative nodes** – slow, compute route + allocate channel per flit
 - Optimize latency/throughput using channel pre-allocation
 - Routing of head used to pre-allocate correct output channel(s) for body/tail
 - Body/tail fast forwarded after arrival

 Header: Route Compute \(\rightarrow\) Allocate Channel \(\rightarrow\) Traverse Switch \(\rightarrow\) Traverse Link

 Body/Tail: Traverse Switch \(\rightarrow\) Traverse Link
Experimental Results
Experimental Setup

• Compare 5 new parallel multicast networks with serial *Baseline*
 - **BasicNonSpeculative**: tree-based multicast/unoptimized fanout nodes
 - **BasicHybridSpeculative**: local speculation/unoptimized fanout nodes
 - **OptNonSpeculative**: tree-based multicast/optimized fanout nodes
 - **OptHybridSpeculative**: local speculation/optimized fanout nodes
 - **OptAllSpeculative**: full (global) speculation/optimized fanout nodes

• Six 8x8 MoT networks: one for each configuration
 - Technology-mapped pre-layout implementation using structural Verilog
 - Implemented using FreePDK Nangate 45 nm technology

• Six synthetic benchmarks
 - 3 unicast: *Uniform Random (UR), Bit Permutation*, and *Hotspot*
 - 3 multicast:
 - *Multicast5/10* – 5% or 10% of injected packets are multicast
 - *Multicast_static*: 3 sources perform multicast, remaining: UR unicast
Network Latency

• Latency measured at 25% saturation load of respective network

• Significant improvements for new hybrid networks over tree-based and Baseline

39.1-74.1% improvement for basic parallel tree-based multicast over Baseline serial

Additional 10.5-21.4% improvement using local speculation (unoptimized/optimized)
Network Power

- Power measured at 25% saturation load of Baseline
- Optimized network with local speculation (OptHybridSpeculative) has minimal overhead vs. Baseline

Both tree-based and speculative (unoptimized) incur moderate (5.8-23.8%) overhead over Baseline. Optimized speculative network (OptHybridSpeculative) reduces this overhead to 2.9-10.3% vs Baseline.
Different Degrees of Speculation: Effect on Network Power

- Power measured at 25% saturation load of Baseline
- Fully-speculative network (*OptAllSpeculative*) incurs significant overhead due to global speculation

Optimized network with *local speculation* (*OptHybridSpeculative*) has almost the same power as non-speculative network.

However, fully-speculative network (*OptAllSpeculative*) incurs 14.7-22.9% extra power over non-speculative network.
Conclusions and Future Work

• New parallel multicast approaches for asynchronous NoCs
 • *First general-purpose asynchronous NoC to support multicast*
 • New routing strategy called *Local Speculation* for parallel multicast
 • Fixed high-speed speculative switches: *always broadcast*
 • Extremely simple and fast
 • Non-speculative switches: rapidly throttle incorrect traffic locally
 • Redundant copies restricted to neighboring local regions
 • New hybrid network architecture
 • Mixes speculative and non-speculative switches

• Experimental design-space exploration
 • New basic tree-based parallel multicast network achieves:
 • 39.1-74.1% latency reduction over unicast-based serial multicast baseline
 • Incurs only small power overheads over serial multicast baseline
 • Additionally, new local speculation based hybrid network achieves:
 • 17.8-21.4% latency improvements over our basic tree-based solution
 • Small power reductions over our basic tree-based approach

• Future Work
 • Extend approach to larger MoTs, 2D-mesh topology, synchronous NoCs