Advances in Designing
Clockiess Digital Systems

Prof. Steven M. Nowick
nowick@cs.columbia.edu

Department of Computer Science (and Elect. Eng.)
Columbia University
New York, NY, USA

Introduction

e Synchronous vs. Asynchronous Systems?

% Synchronous Systems: use a global clock
% entire system operates at fixed-rate

% Uses 'centralized control”

- -
o
\ v

Introduction (cont)

e Synchronous vs. Asynchronous Systems? (cont.)

% Asynchronous Systems: no global clock
% components can operate at varying rates
% communicate locally via “handshaking”
% Uses “distributed control”

-
.

Trends and Ghallenges

Trends in Chip Design: next decade

i

Unprecedented Challenges:

complexity and scale (= size of systems)
clock speeds

power management

reusability & scalability

reliability

“time-to-market”

Design becoming unmanageable using a centralized single clock
(synchronous) approach....

Trends and Ghallenges (cont.)

1. Clock Rate:

% 1980: several MegaHertz
% 2001: ~750 MegaHertz - 1+ GigaHertz
% 2009: 3-6 GigaHertz (and sometimes falling!)

Design Challenge:

% ‘clock skew”; clock must be near-simultaneous across entire chip

Trends and Ghallenges (cont.)

2. Chip Size and Density:

Total #Transistors per Chip:
% ~1970: 4 thousand (Intel 4004 microprocessor)
% today: 50-200+ million
% 2010 and beyond: 1 billion+

Design Challenges:

% system complexity, design time, clock distribution
% clock will reguire 10-20 cycles to reach across chip

Trends and Ghallenges (cont.)

3. Power Consumption

% Low power: ever-increasing demand
% consumer electronics: battery-powered

% high-end processors: avoid expensive fans, packaging

Design Challenge:

% clock consumes power
% “power-down” techniques: add complexity, only partly effective

Trends and Ghallenges (cont.)

4. Time-to-Market, Design Re-Use, Scalability

Increasing pressure for faster “time-to-market”. Need:

% reusable components: “plug-and-play” design

% flexible interfacing: under varied conditions, voltage scaling

% Scalable design: easy system upgrades

Design Challenge: mismatch with central fixed-rate clock

Trends and Ghallenges (cont.)

5. Future Trends: "Mixed Timing” Domains

Chips themselves becoming distributed systems....
% contain many sub-regions, operating at different speeds:

Design Challenge: breakdown of single centralized
clock control

Asynchronous Design: Potential Advantages

Several Potential Advantages:

% Lower Power

% No clock
% =¥ components use dynamic power only “on demand”
% =» no global clock distribution

= effectively provides automatic clock gating at arbitrary granularity

% Robustness, Scalability

No global timing
= “mix-and-match” variable-speed components
=» supports dynamic voltage scaling

%
%
s

% Higher Performance
not limited to “worst-case” clock rate

% “Demand- (Data-) Driven” Operation
% instantaneous wake-up from standby mode

1. Philips Semiconductors:
% Wide commercial use:
for consumer electronics: pagers, cell phones, smart cards, digital passports, automotive

» Benefits (vs. sync):
3-4x lower power (and lower energy consumption/ops)

% much lower “electromagnetic interference” (EMI)
Instant startup from stand-by mode (no PLL's)

% Complete commercial CAD tool flow:
“Tangram™: Philips (mid-90's to early 2000’s)
“Haste™: Handshake Solutions (incubated spinoff) (early 2000s to present)

2
2

Synthesis strategy: "syntax-directed compilation”

% Starting point: concurrent HDL (Tangram, Haste)

« 2-step synthesis:
» front-end: HDL spec => intermediate netlist of concurrent components
» back-end: each component => standard cell (... then physical design)

« +: fast, transparent’, easy-to-use
« - few optimizations, low/moderate-performance only

2. Intel:
% experimental Pentium instruction-length decoder = "RAPPID" (1990°s)
than synchronous subsystem
s

3. Sun Labs:
% commercial: high-speed FIFO’s in recent “Ultra’s” (memory access)

4. IBM Research:
% experimental: high-speed pipelines, FIR filters, mixed-timing systems

5. Recent Async Startups:
% Fulcrum Microsystems (California): Ethernet routing chips
% Camgian Systems: very low-power/robust designs (sensors, €etc.)
% Handshake Solutions (Netherlands): incubated by Philips -- tools + design
% Sllistrix (UK): /nterconnect for low-end heterogenous/mixed-timing systems
% Achronix: high-speed FPGA's

Asynchronous Design: Potential Targets

Large variety of asynchronous design styles

% Address different points in “design-space” spectrum...

% Example targets:

» extreme timing-robustness:

providing near “delay-insensitive (DI)” operation

. ultra-low power or energy:

% ‘on-demand” operation, instant wakeup
: ease-of-design/moderate performance
e.g. Philips” style

. very high-speed: asynchronous pipelines (with localized timing constraints)
% ... comparable to high-end synchronous

» with added benefits: support variable-speed I/O rates

. support for heterogeneous systems: integrate different clock domains + async
» “GALS-style” (globally-async/locally-sync)

Asynchronous Design: Ghallenges

e Critical Design Issues:

% components must communicate cleanly: ‘hazard-free” design

% highly-concurrent designs: much harder to verify!

e [ack of Automated “"Computer-Aided Design” Tools:

% most commercial "CAD” tools targeted to synchronous

What Are GAD Tools?

Software programs to aid digital designers =

“computer-aided design” tools
% automatically synthesize and optimize digital circuits

Input: Output:

desired circuit ‘ ‘ optimized circuit
specification implementation

Asynchronous Design Ghallenge

Lack of Existing Asynchronous Design Tools:

% Most commercial "CAD"” tools targeted to synchronous

% Synchronous CAD tools:
% major drivers of growth in microelectronics industry

% Asynchronous “chicken-and-egg” problem:
few CAD tools €~ less commercial use of async design

% especially lacking: tools for designing/optmzng. large systems

Overview: Asynchronous Gommunication

Components usually communicate & synchronize on channels

channel

Sender Receiver

Overview: Signalling Protocols

Communication channel: usually instantiated as 2 wires

Sender Receiver

Overview: Signalling Protocols

Sender Receiver

4-Phase Handshaking

Overview: Signalling Protocols

Sender Receiver

2-Phase Handshaking = “"Transition-Signalling”

Data channel: replace “"req” by (encoded) data bits
- ... still use 2-phase or 4-phase protocol

data

O

Sender Receiver

Overview: How to Encode Data?

A variety of asynchronous data encoding styles

% Two key classes: (i) "DI” (delay-insensitive) or (ii) “timing-dependent”
% ... each can use either a 2-phase or 4-phase protocol

DI Codes: provides timing-robustness (to arbitrary bit skew, arrival times, etc.)

% 4-phase (RZ) protocols:
dual-rail (1-of-2): widely used!
1-of-4 (or m-of-n)
% 2-phase (NRZ) protocols:

transition-signaling (1-of-2)
LEDR (1-of-2) [“level-encoded dual-rail”] [Dean/Horowitz/Dill, Advanced Research in VLSI '91]

LETS (1-of-4) [“level-encoded transition-signalling”]
[McGee/Agyekum/Mohamed/Nowick IEEE Async Symp. ‘08]

Timing-Dependent Codes: use localized timing assumptions
Single-rail “bundled data™: widely used! = sync encoding + matched delay
Other: “pulse-mode”, etc.

Overview: How to Encode Data?

4-Phase (RZ)

)
i

Sender

Bit
X

Dual-rail encoding
X1 X0

Receiver

Overview: How to Encode Data?

4-Phase (RZ2)

Dual-rail encoding
X3 X2 X1 X0

Sender Receiver

Overview: How to Encode Data?

4 -Phase (RZ)

Sender

Uses synchronous (single-rail) data
+ local worst-case "model delay”

Receiver

signalling Protocols + Data Encoding:
Tradeotis

DI Codes: provides timing-robustness
% 4-phase (RZ) protocols:

dual-rail (1-of-2):
1-of-4 (or m-of-n)

% 2-phase (NRZ) protocols:

transition-signaling (1-of-2)
LEDR (1-of-2)
[Dean/Horowitz/Dill, Advanced Research in VLSI "91]
LETS (1-of-4)
[McGee/Agyekum/Mohamed/Nowick IEEE Async Symp. ‘08]

Timing-Dependent Codes:

Single-rail “bundled data™: widely used! = sync encoding + matched delay
Other: “pulse-mode”, etc.

Async Protocols: Evaluation Summary

Robust/High-Throughput Global Communication:

% High throughput + low power:

Efficient Local Computation (easy-to-design function blocks):

» Ease-of-design + low area + low power:

Timing Robust (DI):
% Non-DI:

Our recent research: efficient protocol converters
Global communication: use 2-phase (LEDR, LETS)
% Local computation: use 4-phase (bundled, dual-rail, 1-of-4)

[McGee/Agyekum/Mohamed/Nowick IEEE Async Symp. ‘08]

Overview: My Research Areas

e CAD Tools/Algorithms for Asynchronous Controllers (FSM's)
% “MINIMALIST” Package: for synthesis + optimization

o Mixed-Timing Interface Circuits:
for interfacing sync/sync and sync/async systems

e High-Speed Asynchronous Pipelines:
% for static or dynamic logic

GAD Tools for Async Gontroliers

MINIMALIST: developed at Columbia University [1994-]
% extensible CAD package for synthesis of asynchronous controllers
% Integrates synthesis, optimization and verification tools
used in 80+ sites/17+ countries (was taught in IIT Bombay)
% URL:

Features:

Automatic design scripts + custom commands
Performance-driven multi-level logic decomposition
Verilog back-end

Automatic verifier

Graphical interfaces

... many optimization modes

%
%
%
%
%
%

Recent application: laser space measurement chip (joint with NASA Goddard)
* NASA/Columbia (2006-2007)
fabricated experimental chip: taped out (Oct. 06)

Key goal: facilitate design-space exploration

Example: “PE-SEND-IFG” [HP Lahs)

Inputs: Outputs:
req-send tack
treq peack
rd-iq adbld
adbld-out

ack-pkt

From HP Labs
“Mayfly” Project:
B.Coates, A.Davis, K.Stevens,
"The Post Office
Experience: Designing a
Large Asynchronous Chip”,
INTEGRATION: the
VLSI Journal, vol. 15:3,
pPp- 341-66 (Oct. 1993)

req-send-/
adbld+

adbld-out+/

| peack+
adbld-out- @rd-iq-/

treq- ack-pkt+/ | peack- adbld-

peack+ @ tack+

| ack-pkt+/ [adbld-out- treq-

peack- tack- : rd-id+/ adbld+
treq_/ tl'eq-l‘/ adbld'out+/

O

rd-iq-/ peack-

peack+ tack+

ack-pkt- treq-/ adbld- tack-
peack- tack-
\ f adbld-out- treq+ ack-pkt+/

req-send+ treq+ rd-iq+/

adbld-out-
treq+ rd-iq+/
adbld+

EXAMPLE (cont.):

Design-Space Exploration
using MINIMALIST:

optimizing for area vs. speed

J0)

y

TTUTUGUU&[

)

I

adbkd

ack_pkt

paack.

tack

adod_out

rd_iq

gl 1 7]

traq

req_sand

JUUUUJUUOL

WELJUU

PE_SEND IFC-FL

iLﬁTTudtﬁuu%TuLﬁuﬁ'%duuugdt%&!

{ » =
B = =
adt_pkt '—D— _El) fadk
—— PO ™, e
iy o | —/D ,
T — 1 ¥y
teg 1L F =
req send I [D‘I_E‘ j

PE_SEND_IFC-Fs

Overview: My Research Areas

e CAD Tools/Algorithms for Asynchronous Controllers (FSM's)
% “MINIMALIST” Package: for synthesis + optimization

o Mixed-Timing Interface Circuits:
for interfacing sync/sync and sync/async systems

e High-Speed Asynchronous Pipelines:
% for static or dynamic logic

Mixed-Timing Interfaces: Ghallenge

—

Asynchronous Asynchronous
’ Domain
Domain <

Synchronous
Domain 2

—>
Synchronous
Domain 1
‘_

provide low-latency communication between “timing domains”
avoid synchronization errors

Mixed-TimingInterfaces: Solution

Async-Sync FIFO

{

—>
Asynchronous Asynchronous 4
Domain < Domain

Z : Synchronous
, AV Domain 2

oo [
Synchronous
Domain 1 \

Mixed-Clock FIFO's

S e «

(@)
w
-
w
Q
I~
>
n
T
Q
<
>
V)

Async-Sync FIFO

Solution: insert mixed-timing FIFO’s = provide safe data transfer

... developed complete family of mixed-timing interface circuits
[Chelcea/Nowick, IEEE Design Automation Conf. (2001); IEEE Trans. on VLSI Systems v. 12:8, Aug. 2004] 434

Overview: My Research Areas

e CAD Tools/Algorithms for Asynchronous Controllers (FSM's)
% “MINIMALIST” Package: for synthesis + optimization

o Mixed-Timing Interface Circuits:
for interfacing sync/sync and sync/async systems

e High-Speed Asynchronous Pipelines:
% for static or dynamic logic

High-Speed Asynchronous Pipelines

NON-PIPELINED COMPUTATION:

adder, multiplier, etc.

global clock

]

High-Speed Asynchronous Pipelines

"PIPELINED COMPUTATION”: like an assembly line

T]
S _Bin a3

- -E-E-

no global clock

High-Speed Asynchronous Pipelines

Goal: fast + flexible async datapath components
% speed:
% additional benefits:
dynamically adapt to variable-speed interfaces

% handles dynamic voltage scaling
#* no_requirement of equal-delay stages

no high-speed clock distribution

Contributions: 3 New Asynchronous Pipeline Styles [M. Singh/S.M. Nowick]

(I) MOUSETRAP: static logic [ICCD-01, IEEE Trans. on VLSI Systems 2007]
(i) Lookahead (LP): dynamic logic [Async-02, IEEE Trans. on VLSI Systems 2007]
(iii) High-Capacity (HC): dynamic logic [Async-02, ISSCC-02, IEEE Trans. on VLSI Systems 2007]

Application (IBM Research): experimental FIR filter jisscc-02, 3. Tierno et al.]

async filter in sync wrapper
provides “adaptive latency” = # of clock cycles per operation

MOUSETRAP: A Basic FIFO (no.computation)

Stages communicate using transition-signaling:

Data in|

Stage N-1 Stage N Stage N+1

[Singh/Nowick, IEEE Int. Conf. on Computer Design (2001), IEEE Transactions on VLSI Systems (2007)]

“MOUSETRAP” Pipeline: w/computation

> (@) —>

Data Latch

> logic |:>

Stage N

Stage N+1

Function Blocks: use “synchronous” single-rail circuits (not hazard-free!)

“Bundled Data™ Requirement:

% each must arrive after data inputs valid and stable

1. Asynchronous Interconnection Networks: for Shared-Memory Parallel Processors

low-power/high-performance async routing network (processors <=> memory)
"GALS"-style: globally-asynchronous/locally-synchronous
[M. Horak, S.M. Nowick, M. Carlberg, U. Vishkin, ACM NOCS-10 Symposium]

2. Continuous-Time DSP’s

¥

% Idea: adaptive signal processing, based on signal rate-of-change
= low-aliasing + low-power -- combine analog + async digital

3. Asynchronous Bus Encoding: for Timing-Robust Global Communication

low-power, error-correction + timing-robust (“delay-insensitive™) communication
[M. Agyekum/S.M. Nowick, DATE-10, IWLS-10, DATE-11]

4, Variable-Latency Functional Units: “Speculative Completion™
high-performance components with ‘data-dependent” completion
[S.M. Nowick et al., IEE Proceedings '96; IEEE Async-97 Symposium]

MOUSETRAP: A Basic FIF0

Stages communicate using transition-signaling:

1 transition

f

per data item! [Q

—
done,, :reqp.

Data in| . _ > I >Dataout

<y

Stage N-1 Stage N Stage N+1

One Data Item

Performance Analysis of Goncurrent Systems

Goal: fast analytical techniques + tools
- to handle large/complex asynchronous + mixed-timing systems

% Uusing stochastic delay models (Markovian): [P. McGee/S.M. Nowick, CODES-05]

% Using bounded delay models (min/max): [P. McGee/S.M. Nowick, ICCAD-07]

Applications: analysis + optimization

Large Asynchronous Systems:
Evaluate latency, throughput, critical vs. slack paths, average-case performance

% Drive optimization: pipeline granularity, module selection

Large Heterogeneous (mixed-clock) or "GALS"” Systems:
Evaluate critical vs. slack paths

% Drive optimization: dynamic voltage scaling, load balancing of threads, buffer insertion

MLO is an integrated post-processing (i.e. backend) tool for Minimalist.
Targeted to multi-level logic.
In contrast, Minimalist currently is targeted to two-level logic.

Designed to work on combinational hazard-free logic for Burst Mode
controllers.

Uses “hazard-non-increasing” transforms.
Output of MLO is Verilog.

MLO is a standalone tool running from the Linux shell outside of Minimalist.

e Accessible on the web from:
Initial Release
% One version — for Linux Distributions

http://www1.cs.columbia.edu/~nowick/asynctools

Includes

% Complete Tutorial
% Documentation
% Examples

Tool requires Python interpreter to run:

Consult README for MLO installation information

http://www.python.org/download/

User-Specified Critical Arcs Highlighted in

Both user-specified
data and automated
User-Specified approaches are used to
nothing is critical. Defaults determine criticality.
IntITReq+ / ITEventReq will use user-

to automated mode for o
every output. ITEventReq+ ‘ specified data to

IntITReq+ / determine criticality.
ITEventReq+ CtrincReq will default to
IntITReq+ / automated mode to
ITEventReq+ determine criticality.
ITEvent2Ticks- /

‘ CtrincReqg+
IntiITReq- /
ITEventReq- ‘
‘ CtincAck- / Automated
ITEventReq+ approach is never used.
ITEvent2Ticks. IntITReq- is critical with
CtrincAck+ / CtrincReq- respect to CtrIncReq-,

while ITEvent2Ticks- is
NOT critical to

‘ CtrincReq-

Feature Set - Initial Two-Level Implementation (
)

ctrincack

ctrincreq

itevent2ticks iteventreq

intitreq

Two-level Structure from Minimalist Output

Feature Set Example 1-

ctrincack

2 ctrincreq

itevent2ticks . : iteventreq

Tro

0
intitreq DTL

ctrincack

Uoo

itevent2ticks

ctrincreq

* iteventreq

v
oo

intitreq

Result of MLO: Multi-Level Circuit using MLO Negative Logic

This mode carefully optimizes
only hazard non-increasing
safe transformations
(DeMorgan’s Law).
Optimizations are also
included to carefully eliminate
extra inverters.

ctrincack

>0

E ctrincreq

itevent2ticks iteventreq

Tro

0
intitreq) y
rimary input-

Result of MLO: Multi-Level Circuit after MLO CEO is used

Gate fan-in |
of 2

ctrincack

>0 :—: ctrincreq

iteventreq

Itevent2ticks

y0

intitreq

/'

ptimizes Critical Path

>0

Result of MLO: Multi-Level Circuit with negative logic, AND gate fan-in limit of 2,
and CEO.

