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IntroductionIntroduction

 Synchronous Synchronous vsvs. Asynchronous Systems?. Asynchronous Systems?

 Synchronous Systems:Synchronous Systems:  use a   use a global clockglobal clock
 entire system operates entire system operates at fixed-rateat fixed-rate

 uses uses ““centralized controlcentralized control””

clock
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Introduction (cont.)Introduction (cont.)

 Synchronous Synchronous vsvs. Asynchronous Systems? (cont.). Asynchronous Systems? (cont.)

 Asynchronous Systems:Asynchronous Systems:  no global clockno global clock

 components can operate atcomponents can operate at  varying ratesvarying rates

 communicate locallycommunicate locally via  via ““handshakinghandshaking””

 uses uses ““distributed controldistributed control””

“handshaking
  interfaces”
(channels)
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Trends and ChallengesTrends and Challenges

Trends in Chip Design:  Trends in Chip Design:  next decadenext decade
 ““Semiconductor Industry Association (SIA) RoadmapSemiconductor Industry Association (SIA) Roadmap””

Unprecedented Challenges:Unprecedented Challenges:
 complexity and scale (= size of systems)complexity and scale (= size of systems)

 clock speedsclock speeds

 power managementpower management

 reusability & scalabilityreusability & scalability

 reliabilityreliability

 ““time-to-markettime-to-market””

Design becoming unmanageable using a centralized single clockDesign becoming unmanageable using a centralized single clock
(synchronous) approach(synchronous) approach……..
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Trends and Challenges (cont.)Trends and Challenges (cont.)

1.  Clock Rate:1.  Clock Rate:

 1980:   1980:   several several MegaHertzMegaHertz

 2001:   2001:   ~750 ~750 MegaHertz MegaHertz - 1+ - 1+ GigaHertzGigaHertz

 2009:2009:    3-6 3-6 GigaHertz GigaHertz (and sometimes falling!)(and sometimes falling!)

Design Challenge:Design Challenge:

 ““clock skewclock skew””::  clock must be   clock must be near-simultaneousnear-simultaneous across entire chip across entire chip



#6

Trends and Challenges (cont.)Trends and Challenges (cont.)

2. Chip Size and Density:2. Chip Size and Density:

Total #Transistors per Chip:  Total #Transistors per Chip:  60-80% increase/year60-80% increase/year

 ~1970:  ~1970:  4 thousand4 thousand    (Intel 4004 microprocessor)(Intel 4004 microprocessor)

 today:   today:   50-200+ million50-200+ million

 2010 and beyond: 12010 and beyond: 1  billion+billion+

Design Challenges:Design Challenges:

 system complexity, design time, clock distributionsystem complexity, design time, clock distribution
 clock will require 10-20 cycles to reach across chipclock will require 10-20 cycles to reach across chip



#7

Trends and Challenges (cont.)Trends and Challenges (cont.)

3. Power Consumption3. Power Consumption

 Low power:  ever-increasing demandLow power:  ever-increasing demand

 consumer electronics:consumer electronics: battery-powered battery-powered

   high-end processors:high-end processors: avoid expensive fans, packaging avoid expensive fans, packaging

Design Challenge:Design Challenge:

 clock clock inherentlyinherently consumes power  consumes power continuouslycontinuously

 ““power-downpower-down”” techniques:  add complexity, only partly effective techniques:  add complexity, only partly effective
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Trends and Challenges (cont.)Trends and Challenges (cont.)

4. Time-to-Market, Design Re-Use,  Scalability4. Time-to-Market, Design Re-Use,  Scalability

Increasing pressure for faster Increasing pressure for faster ““time-to-markettime-to-market””..  Need:  Need:
 reusable components:reusable components:      ““plug-and-playplug-and-play”” design design

 flexible interfacing:flexible interfacing:    under varied conditions, voltage scalingunder varied conditions, voltage scaling

 scalable design:scalable design:    easy system upgradeseasy system upgrades

Design Challenge:Design Challenge: mismatch with central fixed-rate clock mismatch with central fixed-rate clock
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Trends and Challenges (cont.)Trends and Challenges (cont.)

5.  Future Trends:  5.  Future Trends:  ““Mixed TimingMixed Timing”” Domains Domains

Chips themselves becoming Chips themselves becoming distributed systemsdistributed systems……..
 contain many sub-regions, contain many sub-regions, operating at different speeds:operating at different speeds:

Design Challenge:Design Challenge:    breakdown of single centralizedbreakdown of single centralized
clock controlclock control
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Asynchronous Design:   Potential AdvantagesAsynchronous Design:   Potential Advantages

Several Potential Advantages:Several Potential Advantages:

 Lower PowerLower Power
 no clockno clock

     components use dynamic power only components use dynamic power only ““on demandon demand””
   no global clock distributionno global clock distribution
     effectively provides effectively provides automatic clock gatingautomatic clock gating at arbitrary granularity at arbitrary granularity

 Robustness, ScalabilityRobustness, Scalability
 no global timingno global timing

   ““mix-and-matchmix-and-match”” variable-speed components variable-speed components
   supports dynamic voltage scalingsupports dynamic voltage scaling

 modular design style modular design style     ““object-orientedobject-oriented””

 Higher PerformanceHigher Performance

 not limited to not limited to ““worst-caseworst-case”” clock rate clock rate

 ““Demand- (Data-) DrivenDemand- (Data-) Driven”” Operation Operation
 instantaneous wake-up from standby modeinstantaneous wake-up from standby mode
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Asynchronous Design: Asynchronous Design:     Recent Industrial DevelopmentsRecent Industrial Developments

  1. Philips Semiconductors:1. Philips Semiconductors:
 Wide commercial use: Wide commercial use: 700 million 700 million async async chipschips

 for for consumer electronicsconsumer electronics::  pagers, cell phones, smart cards, digital passports, automotivepagers, cell phones, smart cards, digital passports, automotive

 Benefits (Benefits (vsvs. sync):. sync):
 3-4x lower power (and lower energy consumption/ops)3-4x lower power (and lower energy consumption/ops)
 much lower much lower ““electromagnetic interferenceelectromagnetic interference”” (EMI) (EMI)
 instant startup from stand-by mode (no instant startup from stand-by mode (no PLLPLL’’ss))

 Complete commercial CAD tool flow:Complete commercial CAD tool flow:
 ““TangramTangram””::  Philips Philips (mid-90(mid-90’’s to early 2000s to early 2000’’s)s)

 ““HasteHaste””: :           Handshake Solutions (incubated Handshake Solutions (incubated spinoffspinoff) ) (early 2000(early 2000’’s to present)s to present)

 Synthesis strategy:Synthesis strategy:    ““syntax-directed compilationsyntax-directed compilation””
 starting point:  concurrent HDL starting point:  concurrent HDL ((TangramTangram, Haste), Haste)
 2-step synthesis:2-step synthesis:

 front-end:front-end:    HDL spec => intermediate HDL spec => intermediate netlist netlist of concurrentof concurrent  componentscomponents
 back-end:back-end:    each component => standard cell (each component => standard cell (…… then physical design) then physical design)

 +:  fast, +:  fast, ‘‘transparenttransparent’’, easy-to-use, easy-to-use
 -: -:   few optimizations, low/moderate-performance onlyfew optimizations, low/moderate-performance only
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Asynchronous Design: Asynchronous Design:     Recent Industrial DevelopmentsRecent Industrial Developments

2. Intel:2. Intel:
 experimental experimental Pentium instruction-length decoderPentium instruction-length decoder =  = ““RAPPIDRAPPID”” (1990 (1990’’s)s)
 3-4x faster  3-4x faster  than synchronous subsystemthan synchronous subsystem
 ~2x lower power~2x lower power

3. Sun Labs:3. Sun Labs:
 commercial:  high-speed commercial:  high-speed FIFOFIFO’’s s in recent in recent ““UltraUltra’’ss”” (memory access) (memory access)

4. IBM Research:4. IBM Research:
 experimental:  high-speed pipelines, FIR filters, mixed-timing systemsexperimental:  high-speed pipelines, FIR filters, mixed-timing systems

5. Recent 5. Recent Async Async Startups:Startups:

 Fulcrum MicrosystemsFulcrum Microsystems (California): (California):      Ethernet routing chipsEthernet routing chips

 Camgian Camgian Systems:Systems:    very low-power/robust designs (sensors, etc.)very low-power/robust designs (sensors, etc.)

 Handshake SolutionsHandshake Solutions (Netherlands): (Netherlands):    incubated by Philips -- tools +incubated by Philips -- tools +  designdesign

 Silistrix Silistrix (UK):(UK):    interconnect for low-end interconnect for low-end heterogenous/mixed-timing heterogenous/mixed-timing systemssystems

 AchronixAchronix::    high-speed high-speed FPGAFPGA’’ss
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Asynchronous Design:  Potential Targets

Large variety of asynchronous design stylesLarge variety of asynchronous design styles

 Address different points in Address different points in ““design-spacedesign-space”” spectrum spectrum……

 Example targets:Example targets:

 extreme timing-robustness:extreme timing-robustness:
 providing near providing near ““delay-insensitive (DI)delay-insensitive (DI)”” operation operation

 ultra-low power or energy:ultra-low power or energy:
 ““on-demandon-demand”” operation, instant wakeup operation, instant wakeup

 ease-of-design/moderate performanceease-of-design/moderate performance
 e.g. Philipse.g. Philips’’ style style

 very high-speed:  asynchronous pipelinesvery high-speed:  asynchronous pipelines (with localized timing constraints) (with localized timing constraints)
 ……  comparable to high-end synchronouscomparable to high-end synchronous

 with added benefits:with added benefits:  support variable-speed I/O rates  support variable-speed I/O rates

 support for heterogeneous systems: support for heterogeneous systems:     integrate different clock domains + integrate different clock domains + asyncasync
 ““GALS-styleGALS-style””  (  (globally-async/locally-syncglobally-async/locally-sync))
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Asynchronous Design:  ChallengesAsynchronous Design:  Challenges

 Critical Design Issues:Critical Design Issues:

 components must components must communicate cleanly:communicate cleanly:  ‘‘hazard-freehazard-free’’ design design

 highly-concurrent designs:highly-concurrent designs:  much harder to verify!  much harder to verify!

 Lack of Automated Lack of Automated ““Computer-Aided DesignComputer-Aided Design”” Tools: Tools:

 most commercial most commercial ““CADCAD”” tools targeted to synchronous tools targeted to synchronous
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What Are CAD Tools?What Are CAD Tools?

Software programs to aid digital designers =Software programs to aid digital designers =
““computer-aided designcomputer-aided design”” tools tools

 automatically automatically synthesize synthesize and and optimizeoptimize digital circuits digital circuits

CAD
TOOL

Input:
desired circuit 
   specification

Output:
optimized circuit 
   implementation
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Asynchronous Design ChallengeAsynchronous Design Challenge

Lack of Existing Asynchronous Design Tools:Lack of Existing Asynchronous Design Tools:

 Most commercial Most commercial ““CADCAD”” tools targeted to synchronous tools targeted to synchronous

 Synchronous CAD tools:Synchronous CAD tools:

 major drivers of growth in microelectronics industrymajor drivers of growth in microelectronics industry

 Asynchronous Asynchronous ““chicken-and-eggchicken-and-egg”” problem: problem:

 few CAD tools few CAD tools  less commercial use of  less commercial use of async async designdesign

 especially lacking:  tools for especially lacking:  tools for designing/optmzngdesigning/optmzng. large systems. large systems
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Overview: Overview:   Asynchronous CommunicationAsynchronous Communication

Sender Receiver

Components usually communicate & synchronize on channels

channel
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Overview:  Overview:  Signalling Signalling ProtocolsProtocols

Sender Receiver

Communication channel:  usually instantiated as 2 wires

req

ack
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Overview:  Overview:  Signalling Signalling ProtocolsProtocols

Sender Receiver

req

ack

req

ack

Active (evaluate) phase

Return-to-zero (RZ) phase

4-Phase Handshaking

One transaction
(return-to-zero [RZ]):



#20

Overview:  Overview:  Signalling Signalling ProtocolsProtocols

Sender Receiver

req

ack

req

ack

First communication

Second communication

Two transactions
(non-return-to-zero [NRZ]):

2-Phase Handshaking = “Transition-Signalling”
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Overview:  How toOverview:  How to  Communicate Data?Communicate Data?

Sender Receiver

ack

Data channel:  replace “req” by (encoded) data bits
-  … still use 2-phase or 4-phase protocol

data
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Overview: How to Encode Data?Overview: How to Encode Data?
A variety of asynchronous data encoding stylesA variety of asynchronous data encoding styles

 Two key classes:  Two key classes:  (i) (i) ““DIDI”” (delay-insensitive) (delay-insensitive) or  or (ii) (ii) ““timing-dependenttiming-dependent””
 …… each can use  each can use eithereither a  a 2-phase2-phase or  or 4-phase protocol4-phase protocol

DI Codes:DI Codes:    provides timing-robustness (to arbitrary bit skew, arrival times, etc.)provides timing-robustness (to arbitrary bit skew, arrival times, etc.)

 4-phase (RZ) protocols:4-phase (RZ) protocols:
 dual-rail (1-of-2):dual-rail (1-of-2):    widely used!widely used!

 1-of-4 (or 1-of-4 (or m-of-nm-of-n))

 2-phase (NRZ) protocols:2-phase (NRZ) protocols:

 transition-signaling (1-of-2)transition-signaling (1-of-2)

 LEDR (1-of-2)  LEDR (1-of-2)    [[““level-encoded dual-raillevel-encoded dual-rail””]   ]   [Dean/Horowitz/Dill, Advanced Research in VLSI [Dean/Horowitz/Dill, Advanced Research in VLSI ’’91]91]

 LETS (1-of-4)   LETS (1-of-4)   [[““level-encoded level-encoded transition-signallingtransition-signalling””]]
  [[McGee/Agyekum/Mohamed/Nowick McGee/Agyekum/Mohamed/Nowick IEEE IEEE Async SympAsync Symp. . ‘‘08]08]

Timing-Dependent Codes:Timing-Dependent Codes:  use localized timing assumptions  use localized timing assumptions

 Single-rail Single-rail ““bundled databundled data””: : widely used!  = sync encoding + matched delaywidely used!  = sync encoding + matched delay

 Other:  Other:  ““pulse-modepulse-mode””, etc., etc.
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Overview: How to Encode Data?Overview: How to Encode Data?

Sender Receiver

ack

“dual-rail”:  4-Phase (RZ)

Bit 
X

Dual-rail encoding
X1 X0

0 0 1
1 1 0

no data 0 0  = NULL (spacer)

X1
X0

Bit 
X



#24

Overview: How to Encode Data?Overview: How to Encode Data?

Bits 
A B

Dual-rail encoding
X3 X2 X1 X0

00 0 0 0 1
01 0 0 1 0

no data 0 0 0 0 = NULL (spacer)

10 0 1 0 0
11 1 0 0 0

“1-of-4”:  4-Phase (RZ)

Sender Receiver

ack

X3
X2
X1
X0

Bits 
A B
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Overview: How to Encode Data?Overview: How to Encode Data?

Single-Rail “Bundled Data”:  4-Phase (RZ)

Sender Receiver

ack

req
A
B

Uses synchronous (single-rail) data
+ local worst-case “model delay”

“bundling” signal
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Signalling Signalling Protocols + Data Encoding:Protocols + Data Encoding:
TradeoffsTradeoffs

DI Codes:DI Codes:  provides timing-robustness  provides timing-robustness

 4-phase (RZ) protocols: 4-phase (RZ) protocols:             -: -: poorer system throughput + powerpoorer system throughput + power (2 roundtrips), (2 roundtrips),
+: +: easy function block designeasy function block design

 dual-rail (1-of-2):dual-rail (1-of-2):    worse power (# rail transitions)worse power (# rail transitions)

 1-of-4 (or 1-of-4 (or m-of-nm-of-n))  better powerbetter power  (# rail transitions)(# rail transitions)

 2-phase (NRZ) protocols:2-phase (NRZ) protocols:        +:+:  better system throughput + powerbetter system throughput + power (1 roundtrip), (1 roundtrip),

-:  -:  difficult to design function blocksdifficult to design function blocks

 transition-signaling (1-of-2)transition-signaling (1-of-2)  worse powerworse power  (# rail transitions)(# rail transitions)

 LEDR (1-of-2)LEDR (1-of-2)  better power (# rail transitions)better power (# rail transitions)

  [Dean/Horowitz/Dill, Advanced Research in VLSI [Dean/Horowitz/Dill, Advanced Research in VLSI ’’91]91]

 LETS (1-of-4)LETS (1-of-4)  best power (# rail transitions)best power (# rail transitions)  
[[McGee/Agyekum/Mohamed/Nowick McGee/Agyekum/Mohamed/Nowick IEEE IEEE Async SympAsync Symp. . ‘‘08]08]

Timing-Dependent Codes:Timing-Dependent Codes:      good power + ease of function design/poor robustnessgood power + ease of function design/poor robustness

 Single-rail Single-rail ““bundled databundled data””: : widely used!  = sync encoding + matched delaywidely used!  = sync encoding + matched delay

 Other:  Other:  ““pulse-modepulse-mode””, etc., etc.
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Async Async Protocols:  Evaluation SummaryProtocols:  Evaluation Summary

Robust/High-Throughput Global Communication:Robust/High-Throughput Global Communication:

 High throughput + low power:  High throughput + low power:  2-phase (NRZ) protocols (LETS)2-phase (NRZ) protocols (LETS)

Efficient Local Computation (easy-to-design function blocks):Efficient Local Computation (easy-to-design function blocks):

 Ease-of-design + low area + low power:Ease-of-design + low area + low power:

 Timing Robust (DI):   Timing Robust (DI):   4-phase (RZ) protocols (dual-rail, 1-of-4)4-phase (RZ) protocols (dual-rail, 1-of-4)

 Non-DI: Non-DI:                   single-rail bundled data (2-/4-phase)single-rail bundled data (2-/4-phase)

Our recent research:  Our recent research:  efficient protocol convertersefficient protocol converters
 Global communication:  Global communication:  use 2-phase (LEDR, LETS)use 2-phase (LEDR, LETS)

 LocalLocal  computation:  computation:  use 4-phase (bundled, dual-rail, 1-of-4)use 4-phase (bundled, dual-rail, 1-of-4)

[[McGee/Agyekum/Mohamed/Nowick McGee/Agyekum/Mohamed/Nowick IEEE IEEE Async SympAsync Symp. . ‘‘08]08]
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Overview:  My Research AreasOverview:  My Research Areas

 CAD Tools/Algorithms for Asynchronous Controllers (CAD Tools/Algorithms for Asynchronous Controllers (FSMFSM’’ss))

 ““MINIMALISTMINIMALIST”” Package: Package:  for synthesis + optimization  for synthesis + optimization

 Mixed-Timing Interface Circuits:Mixed-Timing Interface Circuits:

 for interfacing sync/sync and for interfacing sync/sync and sync/async sync/async systemssystems

 High-Speed Asynchronous Pipelines:High-Speed Asynchronous Pipelines:

 for static or dynamic logicfor static or dynamic logic
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CAD Tools for CAD Tools for Async Async ControllersControllers

MINIMALIST:MINIMALIST: developed at Columbia University [1994-] developed at Columbia University [1994-]
 extensible CAD package for synthesis of asynchronous controllersextensible CAD package for synthesis of asynchronous controllers

 integrates synthesis, optimization and verification toolsintegrates synthesis, optimization and verification tools

 used in 80+ sites/17+ countries  (was taught in IIT Bombay)used in 80+ sites/17+ countries  (was taught in IIT Bombay)

 URL:  URL:  http://www.cs.columbia.edu/~nowick/asynctoolshttp://www.cs.columbia.edu/~nowick/asynctools

Features:Features:
 Automatic design scriptsAutomatic design scripts  + custom commands+ custom commands
 Performance-driven multi-level logic decompositionPerformance-driven multi-level logic decomposition
 Verilog Verilog back-endback-end
 Automatic verifierAutomatic verifier
 Graphical interfacesGraphical interfaces
 …… many optimization modes many optimization modes

Recent application:  Recent application:  laser laser space measurement chip (joint with NASA Goddard)space measurement chip (joint with NASA Goddard)
 NASA/Columbia (2006-2007)NASA/Columbia (2006-2007)

 fabricated experimental chip:  taped out (Oct. 06)fabricated experimental chip:  taped out (Oct. 06)

Key goal:  Key goal:  facilitate design-space explorationfacilitate design-space exploration
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Example:  Example:  ““PE-SEND-IFCPE-SEND-IFC”” (HP Labs) (HP Labs)
Inputs:
req-send
treq
rd-iq
adbld-out
ack-pkt

Outputs:
tack
peack
adbld

0

1

2

7

3

4

5

6

8

9

10

req-send+ treq+ rd-iq+/
adbld+

adbld-out+/
peack+

rd-iq-/
peack- adbld- 
    tack+

adbld-out- treq-
rd-id+/ adbld+

adbld-out+/
peack+

rd-iq-/ peack- 
adbld- tack-

adbld-out- treq+ ack-pkt+/ 
    peack+ tack+

ack-pkt- treq-/
peack- tack-

treq-/
tack-

treq+/
tack+

ack-pkt+/
peack- tack-

adbld-out-
treq- ack-pkt+/

peack+

req-send-/
--

  adbld-out- 
   treq+ rd-iq+/ 
        adbld+

From HP Labs
    “Mayfly” Project:
B.Coates, A.Davis, K.Stevens,
 “The Post Office
    Experience:  Designing a
   Large Asynchronous  Chip”,
 INTEGRATION:  the
    VLSI Journal, vol. 15:3,
     pp. 341-66 (Oct. 1993)
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EXAMPLE  (cont.):EXAMPLE  (cont.):

Examples:

Design-Space Exploration
using MINIMALIST:

optimizing for area vs. speed
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Overview:  My Research AreasOverview:  My Research Areas

 CAD Tools/Algorithms for Asynchronous Controllers (CAD Tools/Algorithms for Asynchronous Controllers (FSMFSM’’ss))

 ““MINIMALISTMINIMALIST”” Package: Package:  for synthesis + optimization  for synthesis + optimization

 Mixed-Timing Interface Circuits:Mixed-Timing Interface Circuits:

 for interfacing sync/sync and for interfacing sync/sync and sync/async sync/async systemssystems

 High-Speed Asynchronous Pipelines:High-Speed Asynchronous Pipelines:

 for static or dynamic logicfor static or dynamic logic
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Mixed-Timing Interfaces:  ChallengeMixed-Timing Interfaces:  Challenge

Asynchronous
Domain

Synchronous
Domain 1

Synchronous
Domain 2

Goal:  provide low-latency communication between “timing domains”

Challenge:  avoid synchronization errors

Asynchronous
Domain
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Mixed-Timing Interfaces:  SolutionMixed-Timing Interfaces:  Solution

Asynchronous
Domain

Synchronous
Domain 1

Synchronous
Domain 2

Async-Sync FIFO

A
sy

nc
-S

yn
c 

FI
FO

Sy
nc

-A
sy

nc
 F

IF
O

Mixed-Clock FIFO’s

… developed complete family of mixed-timing interface circuits
[Chelcea/Nowick, IEEE Design Automation Conf. (2001); IEEE Trans. on VLSI Systems v. 12:8, Aug. 2004 ]

Solution:  insert mixed-timing FIFO’s ⇒ provide safe data transfer

Asynchronous
Domain
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Overview:  My Research AreasOverview:  My Research Areas

 CAD Tools/Algorithms for Asynchronous Controllers (CAD Tools/Algorithms for Asynchronous Controllers (FSMFSM’’ss))

 ““MINIMALISTMINIMALIST”” Package: Package:  for synthesis + optimization  for synthesis + optimization

 Mixed-Timing Interface Circuits:Mixed-Timing Interface Circuits:

 for interfacing sync/sync and for interfacing sync/sync and sync/async sync/async systemssystems

 High-Speed Asynchronous Pipelines:High-Speed Asynchronous Pipelines:

 for static or dynamic logicfor static or dynamic logic
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global clock

NON-PIPELINED COMPUTATION:

High-Speed  Asynchronous PipelinesHigh-Speed  Asynchronous Pipelines

“datapath component” =
    adder, multiplier, etc.

SYNCHRONOUS
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global clock

SYNCHRONOUS

ASYNCHRONOUS

“PIPELINED COMPUTATION”:  like an assembly line

no global clock

High-Speed  Asynchronous PipelinesHigh-Speed  Asynchronous Pipelines
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Goal:Goal:    fast + flexible fast + flexible async datapath async datapath componentscomponents
 speed:speed:    comparable to fastest existing synchronous designscomparable to fastest existing synchronous designs

 additional benefits:additional benefits:

 dynamically adaptdynamically adapt to variable-speed interfaces to variable-speed interfaces

   handles dynamic voltage scalinghandles dynamic voltage scaling

 no requirement of equal-delay stagesno requirement of equal-delay stages

 no high-speed clock distributionno high-speed clock distribution

Contributions: 3 New Asynchronous Pipeline Styles Contributions: 3 New Asynchronous Pipeline Styles [M. Singh/S.M. Nowick][M. Singh/S.M. Nowick]
(i) MOUSETRAP:(i) MOUSETRAP:  static logic  static logic      [ICCD-01, IEEE Trans. on VLSI Systems 2007][ICCD-01, IEEE Trans. on VLSI Systems 2007]

(ii) (ii) Lookahead Lookahead (LP):(LP):    dynamic logicdynamic logic    [Async-02,[Async-02,  IEEE Trans. on VLSI Systems 2007]IEEE Trans. on VLSI Systems 2007]

(iii) High-Capacity (HC):  (iii) High-Capacity (HC):  dynamic logicdynamic logic    [Async-02, ISSCC-02,[Async-02, ISSCC-02,  IEEE Trans. on VLSI Systems 2007]IEEE Trans. on VLSI Systems 2007]

Application (IBM Research):  Application (IBM Research):  experimental FIR filterexperimental FIR filter  [ISSCC-02, J. [ISSCC-02, J. Tierno Tierno et al.]et al.]

-- async async filter in sync wrapperfilter in sync wrapper

-- provides provides ““adaptive latencyadaptive latency”” = # of clock cycles per operation = # of clock cycles per operation

-- performance:  better thanperformance:  better than  leading comparable commercial synchronous design (from IBM)leading comparable commercial synchronous design (from IBM)

High-Speed Asynchronous PipelinesHigh-Speed Asynchronous Pipelines
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reqN

ackN-1

reqN+1

ackN

  Data Latch

Latch Controller

doneN

Data in    Data out

Stage NStage N-1 Stage N+1

En

MOUSETRAP:  A Basic FIFO (no computation)MOUSETRAP:  A Basic FIFO (no computation)

Stages communicate using Stages communicate using transition-signaling:transition-signaling:

[Singh/Nowick, IEEE Int. Conf. on Computer Design (2001), IEEE Transactions on VLSI Systems (2007)]
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Stage N+1

logic

delay

Stage N

Data Latch

Latch Controller

doneN

logic

delay

Stage N-1

logic

delay
reqreqNN

ackN-1

reqreqN+N+11

ackN

  ““MOUSETRAPMOUSETRAP””  Pipeline:   w/computation  Pipeline:   w/computation

Function Blocks:Function Blocks:    use use ““synchronoussynchronous”” single-rail circuits (not hazard-free!) single-rail circuits (not hazard-free!)

““Bundled DataBundled Data”” Requirement: Requirement:
 each each ““reqreq””  must arrive must arrive afterafter data inputs valid and stable data inputs valid and stable
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1. Asynchronous Interconnection Networks:  for Shared-Memory Parallel Processors1. Asynchronous Interconnection Networks:  for Shared-Memory Parallel Processors

 Medium-scale NSF project [2008-12]:  with Prof. Uzi Medium-scale NSF project [2008-12]:  with Prof. Uzi Vishkin Vishkin (University of Maryland)(University of Maryland)

 Goal:Goal:  low-power/high-performance   low-power/high-performance async async routing network (processors <=> memory)routing network (processors <=> memory)

 ““GALSGALS””-style:-style:  globally-asynchronous/locally-synchronous  globally-asynchronous/locally-synchronous

 [M. [M. HorakHorak, S.M. Nowick, M. , S.M. Nowick, M. CarlbergCarlberg, U. , U. VishkinVishkin, ACM NOCS-10 Symposium], ACM NOCS-10 Symposium]

2. Continuous-Time 2. Continuous-Time DSPDSP’’ss
 Medium-scale NSF project [2010-14]:  with Prof. Medium-scale NSF project [2010-14]:  with Prof. Yannis Tsividis Yannis Tsividis (Columbia EE Dept.)(Columbia EE Dept.)

 Idea:  Idea:  adaptiveadaptive  signal processing, based on signalsignal processing, based on signal  rate-of-changerate-of-change

 Goal:Goal:  low-aliasing + low-power -- combine analog +   low-aliasing + low-power -- combine analog + async async digitaldigital

3. Asynchronous Bus Encoding:  for Timing-Robust Global Communication3. Asynchronous Bus Encoding:  for Timing-Robust Global Communication

 Goal:Goal: low-power, error-correction + timing-robust ( low-power, error-correction + timing-robust (““delay-insensitivedelay-insensitive””) communication) communication

 [M. [M. Agyekum/SAgyekum/S.M. Nowick, DATE-10, IWLS-10, DATE-11].M. Nowick, DATE-10, IWLS-10, DATE-11]

4. Variable-Latency Functional Units:  4. Variable-Latency Functional Units:  ““Speculative CompletionSpeculative Completion””
 Goal:Goal:  high-performance components with   high-performance components with ‘‘data-dependentdata-dependent’’ completion completion

 [S.M. Nowick et al., IEE Proceedings [S.M. Nowick et al., IEE Proceedings ‘‘96; IEEE Async-97 Symposium]96; IEEE Async-97 Symposium]

Other Research ProjectsOther Research Projects
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reqN

ackN-1

reqN+1

ackN

  Data Latch

Latch Controller

doneN

Data in    Data out

Stage NStage N-1 Stage N+1

En

MOUSETRAP:  A Basic FIFOMOUSETRAP:  A Basic FIFO
Stages communicate using Stages communicate using transition-signaling:transition-signaling:

1 transition1 transition
per data item!per data item!

One Data Item
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Goal: fast analytical techniques + toolsGoal: fast analytical techniques + tools
  - to handle large/complex asynchronous + mixed-timing systems- to handle large/complex asynchronous + mixed-timing systems

 using using stochastic delay modelsstochastic delay models ( (MarkovianMarkovian):):    [P. McGee/S.M. Nowick,[P. McGee/S.M. Nowick, CODES-05 CODES-05]]

 using using bounded delay modelsbounded delay models (min/max):   (min/max):  [P. McGee/S.M. Nowick,[P. McGee/S.M. Nowick, ICCAD-07 ICCAD-07]]

Applications:  analysis + optimizationApplications:  analysis + optimization

 LargeLarge  Asynchronous Systems:Asynchronous Systems:

 Evaluate latency, throughput, critical Evaluate latency, throughput, critical vsvs. slack paths, average-case performance. slack paths, average-case performance

 Drive optimization:Drive optimization:  pipeline granularity, module selection  pipeline granularity, module selection

 Large Heterogeneous (mixed-clock) orLarge Heterogeneous (mixed-clock) or  ““GALSGALS”” Systems: Systems:

 Evaluate critical Evaluate critical vsvs. slack paths. slack paths

 Drive optimizationDrive optimization: dynamic voltage scaling,: dynamic voltage scaling,  load balancing ofload balancing of  threads, buffer insertionthreads, buffer insertion

Performance Analysis of Concurrent SystemsPerformance Analysis of Concurrent Systems
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Introduction to MLOIntroduction to MLO

 MLO is an integrated MLO is an integrated post-processingpost-processing (i.e. backend) tool for Minimalist. (i.e. backend) tool for Minimalist.

 Targeted to Targeted to multi-level logicmulti-level logic..

 In contrast, Minimalist currently is targeted to two-level logic.In contrast, Minimalist currently is targeted to two-level logic.

 Designed to work on Designed to work on combinationalcombinational  hazard-free logichazard-free logic for Burst Mode for Burst Mode

controllers.controllers.

 Uses Uses ““hazard-non-increasinghazard-non-increasing”” transforms. transforms.

 Output of MLO is Output of MLO is VerilogVerilog..

 MLO is a standalone tool running from the Linux shell MLO is a standalone tool running from the Linux shell outside of Minimalist.outside of Minimalist.
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Minimalist:  MLO (Multi-Level Optimizer)Minimalist:  MLO (Multi-Level Optimizer)
 Accessible on the web from:Accessible on the web from:

 Initial ReleaseInitial Release
 One version One version –– for Linux Distributions for Linux Distributions

 IncludesIncludes

 Complete TutorialComplete Tutorial
 DocumentationDocumentation
 ExamplesExamples

 Tool requires Python interpreter to run:Tool requires Python interpreter to run:

 Consult README for MLO installation informationConsult README for MLO installation information

http://www1.cs.columbia.edu/~nowick/asynctools

http://www.python.org/download/
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CEO Feature - CEO Feature - User-Specified Critical EventsUser-Specified Critical Events

Case 1:  Non colorized
arc.  User-Specified
nothing is critical. Defaults
to automated mode for
every output.

Case 2:  Some outputs
colorized, some outputs
not. Both user-specified
data and automated
approaches are used to
determine criticality.
ITEventReq will use user-
specified data to
determine criticality.
CtrincReq will default to
automated mode to
determine criticality.

Case 3:  Every output is
colorized. Automated
approach is never used.
IntITReq- is critical with
respect to CtrIncReq-,
while ITEvent2Ticks- is
NOT critical to
CtrIncReq-.

User-Specified Critical Arcs Highlighted in Red

IntITReq-

ITEvent2Ticks- /

CtrIncReq-

  5
  0

  1

  2
  3

  4

IntITReq+ /

ITEventReq+
IntITReq+ /

ITEventReq+

ITEvent2Ticks-

CtrIncAck+ / CtrIncReq-

IntITReq- /

ITEventReq-

IntITReq+ /

ITEventReq+

CtIncAck- /

ITEventReq+

ITEvent2Ticks- /

CtrIncReq+ ITEventReq-
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Feature Set - Initial Two-Level Implementation (Feature Set - Initial Two-Level Implementation (beforebefore
applying MLOapplying MLO))

The next four slides

present different MLO

output examples.  For each

example, the starting circuit

(input to MLO) is this circuit

Two-level Structure from Minimalist Output
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Feature Set Example 1 - Feature Set Example 1 - Gate Fan-in LimitationGate Fan-in Limitation

Result of MLO:  Multi-Level circuit with Result of MLO:  Multi-Level circuit with AND gate fan-in limit of 2AND gate fan-in limit of 2



#50

Feature Set Example 2 -  Feature Set Example 2 -  Negative LogicNegative Logic

Result of MLO:  Multi-Level Circuit using Result of MLO:  Multi-Level Circuit using MLOMLO  Negative LogicNegative Logic
This mode carefully optimizes
only hazard non-increasing
safe transformations
(DeMorgan’s Law).
Optimizations are also
included to carefully eliminate
extra inverters.
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Feature Set Example 3 - Feature Set Example 3 - CEOCEO
““critical event optimizercritical event optimizer””

Result of MLO:  Multi-Level Circuit after Result of MLO:  Multi-Level Circuit after MLOMLO  CEOCEO is used is used

Gate Decomposed. Input

intitreq is more critical to

output iteventreq than

ctrincack’ and y0’

critical primary input-

to-output path
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Feature Set Feature Set Example 4 - Example 4 - CombinedCombined

Result of MLO: Multi-Level Circuit with Result of MLO: Multi-Level Circuit with negative logicnegative logic, , AND gate fan-in limit of 2AND gate fan-in limit of 2,,
and and CEOCEO..

Gate fan-in limit
of 2

Negative
Logic

CEO Optimizes Critical Path


