
Advances in DesigningAdvances in Designing
Clockless Clockless Digital SystemsDigital Systems

Prof. Steven M. Prof. Steven M. NowickNowick
nowick@csnowick@cs..columbiacolumbia..eduedu

Department of Computer Science (and Elect. Eng.)Department of Computer Science (and Elect. Eng.)
Columbia UniversityColumbia University
New York, NY, USANew York, NY, USA

#2

IntroductionIntroduction

 Synchronous Synchronous vsvs. Asynchronous Systems?. Asynchronous Systems?

 Synchronous Systems:Synchronous Systems: use a use a global clockglobal clock
 entire system operates entire system operates at fixed-rateat fixed-rate

 uses uses ““centralized controlcentralized control””

clock

#3

Introduction (cont.)Introduction (cont.)

 Synchronous Synchronous vsvs. Asynchronous Systems? (cont.). Asynchronous Systems? (cont.)

 Asynchronous Systems:Asynchronous Systems: no global clockno global clock

 components can operate atcomponents can operate at varying ratesvarying rates

 communicate locallycommunicate locally via via ““handshakinghandshaking””

 uses uses ““distributed controldistributed control””

“handshaking
 interfaces”
(channels)

#4

Trends and ChallengesTrends and Challenges

Trends in Chip Design: Trends in Chip Design: next decadenext decade
 ““Semiconductor Industry Association (SIA) RoadmapSemiconductor Industry Association (SIA) Roadmap””

Unprecedented Challenges:Unprecedented Challenges:
 complexity and scale (= size of systems)complexity and scale (= size of systems)

 clock speedsclock speeds

 power managementpower management

 reusability & scalabilityreusability & scalability

 reliabilityreliability

 ““time-to-markettime-to-market””

Design becoming unmanageable using a centralized single clockDesign becoming unmanageable using a centralized single clock
(synchronous) approach(synchronous) approach……..

#5

Trends and Challenges (cont.)Trends and Challenges (cont.)

1. Clock Rate:1. Clock Rate:

 1980: 1980: several several MegaHertzMegaHertz

 2001: 2001: ~750 ~750 MegaHertz MegaHertz - 1+ - 1+ GigaHertzGigaHertz

 2009:2009: 3-6 3-6 GigaHertz GigaHertz (and sometimes falling!)(and sometimes falling!)

Design Challenge:Design Challenge:

 ““clock skewclock skew””:: clock must be clock must be near-simultaneousnear-simultaneous across entire chip across entire chip

#6

Trends and Challenges (cont.)Trends and Challenges (cont.)

2. Chip Size and Density:2. Chip Size and Density:

Total #Transistors per Chip: Total #Transistors per Chip: 60-80% increase/year60-80% increase/year

 ~1970: ~1970: 4 thousand4 thousand (Intel 4004 microprocessor)(Intel 4004 microprocessor)

 today: today: 50-200+ million50-200+ million

 2010 and beyond: 12010 and beyond: 1 billion+billion+

Design Challenges:Design Challenges:

 system complexity, design time, clock distributionsystem complexity, design time, clock distribution
 clock will require 10-20 cycles to reach across chipclock will require 10-20 cycles to reach across chip

#7

Trends and Challenges (cont.)Trends and Challenges (cont.)

3. Power Consumption3. Power Consumption

 Low power: ever-increasing demandLow power: ever-increasing demand

 consumer electronics:consumer electronics: battery-powered battery-powered

 high-end processors:high-end processors: avoid expensive fans, packaging avoid expensive fans, packaging

Design Challenge:Design Challenge:

 clock clock inherentlyinherently consumes power consumes power continuouslycontinuously

 ““power-downpower-down”” techniques: add complexity, only partly effective techniques: add complexity, only partly effective

#8

Trends and Challenges (cont.)Trends and Challenges (cont.)

4. Time-to-Market, Design Re-Use, Scalability4. Time-to-Market, Design Re-Use, Scalability

Increasing pressure for faster Increasing pressure for faster ““time-to-markettime-to-market””.. Need: Need:
 reusable components:reusable components: ““plug-and-playplug-and-play”” design design

 flexible interfacing:flexible interfacing: under varied conditions, voltage scalingunder varied conditions, voltage scaling

 scalable design:scalable design: easy system upgradeseasy system upgrades

Design Challenge:Design Challenge: mismatch with central fixed-rate clock mismatch with central fixed-rate clock

#9

Trends and Challenges (cont.)Trends and Challenges (cont.)

5. Future Trends: 5. Future Trends: ““Mixed TimingMixed Timing”” Domains Domains

Chips themselves becoming Chips themselves becoming distributed systemsdistributed systems……..
 contain many sub-regions, contain many sub-regions, operating at different speeds:operating at different speeds:

Design Challenge:Design Challenge: breakdown of single centralizedbreakdown of single centralized
clock controlclock control

#10

Asynchronous Design: Potential AdvantagesAsynchronous Design: Potential Advantages

Several Potential Advantages:Several Potential Advantages:

 Lower PowerLower Power
 no clockno clock

  components use dynamic power only components use dynamic power only ““on demandon demand””
  no global clock distributionno global clock distribution
  effectively provides effectively provides automatic clock gatingautomatic clock gating at arbitrary granularity at arbitrary granularity

 Robustness, ScalabilityRobustness, Scalability
 no global timingno global timing

  ““mix-and-matchmix-and-match”” variable-speed components variable-speed components
  supports dynamic voltage scalingsupports dynamic voltage scaling

 modular design style modular design style  ““object-orientedobject-oriented””

 Higher PerformanceHigher Performance

 not limited to not limited to ““worst-caseworst-case”” clock rate clock rate

 ““Demand- (Data-) DrivenDemand- (Data-) Driven”” Operation Operation
 instantaneous wake-up from standby modeinstantaneous wake-up from standby mode

#11

Asynchronous Design: Asynchronous Design: Recent Industrial DevelopmentsRecent Industrial Developments

 1. Philips Semiconductors:1. Philips Semiconductors:
 Wide commercial use: Wide commercial use: 700 million 700 million async async chipschips

 for for consumer electronicsconsumer electronics:: pagers, cell phones, smart cards, digital passports, automotivepagers, cell phones, smart cards, digital passports, automotive

 Benefits (Benefits (vsvs. sync):. sync):
 3-4x lower power (and lower energy consumption/ops)3-4x lower power (and lower energy consumption/ops)
 much lower much lower ““electromagnetic interferenceelectromagnetic interference”” (EMI) (EMI)
 instant startup from stand-by mode (no instant startup from stand-by mode (no PLLPLL’’ss))

 Complete commercial CAD tool flow:Complete commercial CAD tool flow:
 ““TangramTangram””:: Philips Philips (mid-90(mid-90’’s to early 2000s to early 2000’’s)s)

 ““HasteHaste””: : Handshake Solutions (incubated Handshake Solutions (incubated spinoffspinoff)) (early 2000(early 2000’’s to present)s to present)

 Synthesis strategy:Synthesis strategy: ““syntax-directed compilationsyntax-directed compilation””
 starting point: concurrent HDL starting point: concurrent HDL ((TangramTangram, Haste), Haste)
 2-step synthesis:2-step synthesis:

 front-end:front-end: HDL spec => intermediate HDL spec => intermediate netlist netlist of concurrentof concurrent componentscomponents
 back-end:back-end: each component => standard cell (each component => standard cell (…… then physical design) then physical design)

 +: fast, +: fast, ‘‘transparenttransparent’’, easy-to-use, easy-to-use
 -: -: few optimizations, low/moderate-performance onlyfew optimizations, low/moderate-performance only

#12

Asynchronous Design: Asynchronous Design: Recent Industrial DevelopmentsRecent Industrial Developments

2. Intel:2. Intel:
 experimental experimental Pentium instruction-length decoderPentium instruction-length decoder = = ““RAPPIDRAPPID”” (1990 (1990’’s)s)
 3-4x faster 3-4x faster than synchronous subsystemthan synchronous subsystem
 ~2x lower power~2x lower power

3. Sun Labs:3. Sun Labs:
 commercial: high-speed commercial: high-speed FIFOFIFO’’s s in recent in recent ““UltraUltra’’ss”” (memory access) (memory access)

4. IBM Research:4. IBM Research:
 experimental: high-speed pipelines, FIR filters, mixed-timing systemsexperimental: high-speed pipelines, FIR filters, mixed-timing systems

5. Recent 5. Recent Async Async Startups:Startups:

 Fulcrum MicrosystemsFulcrum Microsystems (California): (California): Ethernet routing chipsEthernet routing chips

 Camgian Camgian Systems:Systems: very low-power/robust designs (sensors, etc.)very low-power/robust designs (sensors, etc.)

 Handshake SolutionsHandshake Solutions (Netherlands): (Netherlands): incubated by Philips -- tools +incubated by Philips -- tools + designdesign

 Silistrix Silistrix (UK):(UK): interconnect for low-end interconnect for low-end heterogenous/mixed-timing heterogenous/mixed-timing systemssystems

 AchronixAchronix:: high-speed high-speed FPGAFPGA’’ss

#13

Asynchronous Design: Potential Targets

Large variety of asynchronous design stylesLarge variety of asynchronous design styles

 Address different points in Address different points in ““design-spacedesign-space”” spectrum spectrum……

 Example targets:Example targets:

 extreme timing-robustness:extreme timing-robustness:
 providing near providing near ““delay-insensitive (DI)delay-insensitive (DI)”” operation operation

 ultra-low power or energy:ultra-low power or energy:
 ““on-demandon-demand”” operation, instant wakeup operation, instant wakeup

 ease-of-design/moderate performanceease-of-design/moderate performance
 e.g. Philipse.g. Philips’’ style style

 very high-speed: asynchronous pipelinesvery high-speed: asynchronous pipelines (with localized timing constraints) (with localized timing constraints)
 …… comparable to high-end synchronouscomparable to high-end synchronous

 with added benefits:with added benefits: support variable-speed I/O rates support variable-speed I/O rates

 support for heterogeneous systems: support for heterogeneous systems: integrate different clock domains + integrate different clock domains + asyncasync
 ““GALS-styleGALS-style”” ((globally-async/locally-syncglobally-async/locally-sync))

#14

Asynchronous Design: ChallengesAsynchronous Design: Challenges

 Critical Design Issues:Critical Design Issues:

 components must components must communicate cleanly:communicate cleanly: ‘‘hazard-freehazard-free’’ design design

 highly-concurrent designs:highly-concurrent designs: much harder to verify! much harder to verify!

 Lack of Automated Lack of Automated ““Computer-Aided DesignComputer-Aided Design”” Tools: Tools:

 most commercial most commercial ““CADCAD”” tools targeted to synchronous tools targeted to synchronous

#15

What Are CAD Tools?What Are CAD Tools?

Software programs to aid digital designers =Software programs to aid digital designers =
““computer-aided designcomputer-aided design”” tools tools

 automatically automatically synthesize synthesize and and optimizeoptimize digital circuits digital circuits

CAD
TOOL

Input:
desired circuit
 specification

Output:
optimized circuit
 implementation

#16

Asynchronous Design ChallengeAsynchronous Design Challenge

Lack of Existing Asynchronous Design Tools:Lack of Existing Asynchronous Design Tools:

 Most commercial Most commercial ““CADCAD”” tools targeted to synchronous tools targeted to synchronous

 Synchronous CAD tools:Synchronous CAD tools:

 major drivers of growth in microelectronics industrymajor drivers of growth in microelectronics industry

 Asynchronous Asynchronous ““chicken-and-eggchicken-and-egg”” problem: problem:

 few CAD tools few CAD tools  less commercial use of less commercial use of async async designdesign

 especially lacking: tools for especially lacking: tools for designing/optmzngdesigning/optmzng. large systems. large systems

#17

Overview: Overview: Asynchronous CommunicationAsynchronous Communication

Sender Receiver

Components usually communicate & synchronize on channels

channel

#18

Overview: Overview: Signalling Signalling ProtocolsProtocols

Sender Receiver

Communication channel: usually instantiated as 2 wires

req

ack

#19

Overview: Overview: Signalling Signalling ProtocolsProtocols

Sender Receiver

req

ack

req

ack

Active (evaluate) phase

Return-to-zero (RZ) phase

4-Phase Handshaking

One transaction
(return-to-zero [RZ]):

#20

Overview: Overview: Signalling Signalling ProtocolsProtocols

Sender Receiver

req

ack

req

ack

First communication

Second communication

Two transactions
(non-return-to-zero [NRZ]):

2-Phase Handshaking = “Transition-Signalling”

#21

Overview: How toOverview: How to Communicate Data?Communicate Data?

Sender Receiver

ack

Data channel: replace “req” by (encoded) data bits
- … still use 2-phase or 4-phase protocol

data

#22

Overview: How to Encode Data?Overview: How to Encode Data?
A variety of asynchronous data encoding stylesA variety of asynchronous data encoding styles

 Two key classes: Two key classes: (i) (i) ““DIDI”” (delay-insensitive) (delay-insensitive) or or (ii) (ii) ““timing-dependenttiming-dependent””
 …… each can use each can use eithereither a a 2-phase2-phase or or 4-phase protocol4-phase protocol

DI Codes:DI Codes: provides timing-robustness (to arbitrary bit skew, arrival times, etc.)provides timing-robustness (to arbitrary bit skew, arrival times, etc.)

 4-phase (RZ) protocols:4-phase (RZ) protocols:
 dual-rail (1-of-2):dual-rail (1-of-2): widely used!widely used!

 1-of-4 (or 1-of-4 (or m-of-nm-of-n))

 2-phase (NRZ) protocols:2-phase (NRZ) protocols:

 transition-signaling (1-of-2)transition-signaling (1-of-2)

 LEDR (1-of-2) LEDR (1-of-2) [[““level-encoded dual-raillevel-encoded dual-rail””]] [Dean/Horowitz/Dill, Advanced Research in VLSI [Dean/Horowitz/Dill, Advanced Research in VLSI ’’91]91]

 LETS (1-of-4) LETS (1-of-4) [[““level-encoded level-encoded transition-signallingtransition-signalling””]]
 [[McGee/Agyekum/Mohamed/Nowick McGee/Agyekum/Mohamed/Nowick IEEE IEEE Async SympAsync Symp. . ‘‘08]08]

Timing-Dependent Codes:Timing-Dependent Codes: use localized timing assumptions use localized timing assumptions

 Single-rail Single-rail ““bundled databundled data””: : widely used! = sync encoding + matched delaywidely used! = sync encoding + matched delay

 Other: Other: ““pulse-modepulse-mode””, etc., etc.

#23

Overview: How to Encode Data?Overview: How to Encode Data?

Sender Receiver

ack

“dual-rail”: 4-Phase (RZ)

Bit
X

Dual-rail encoding
X1 X0

0 0 1
1 1 0

no data 0 0 = NULL (spacer)

X1
X0

Bit
X

#24

Overview: How to Encode Data?Overview: How to Encode Data?

Bits
A B

Dual-rail encoding
X3 X2 X1 X0

00 0 0 0 1
01 0 0 1 0

no data 0 0 0 0 = NULL (spacer)

10 0 1 0 0
11 1 0 0 0

“1-of-4”: 4-Phase (RZ)

Sender Receiver

ack

X3
X2
X1
X0

Bits
A B

#25

Overview: How to Encode Data?Overview: How to Encode Data?

Single-Rail “Bundled Data”: 4-Phase (RZ)

Sender Receiver

ack

req
A
B

Uses synchronous (single-rail) data
+ local worst-case “model delay”

“bundling” signal

#26

Signalling Signalling Protocols + Data Encoding:Protocols + Data Encoding:
TradeoffsTradeoffs

DI Codes:DI Codes: provides timing-robustness provides timing-robustness

 4-phase (RZ) protocols: 4-phase (RZ) protocols: -: -: poorer system throughput + powerpoorer system throughput + power (2 roundtrips), (2 roundtrips),
+: +: easy function block designeasy function block design

 dual-rail (1-of-2):dual-rail (1-of-2): worse power (# rail transitions)worse power (# rail transitions)

 1-of-4 (or 1-of-4 (or m-of-nm-of-n)) better powerbetter power (# rail transitions)(# rail transitions)

 2-phase (NRZ) protocols:2-phase (NRZ) protocols: +:+: better system throughput + powerbetter system throughput + power (1 roundtrip), (1 roundtrip),

-: -: difficult to design function blocksdifficult to design function blocks

 transition-signaling (1-of-2)transition-signaling (1-of-2) worse powerworse power (# rail transitions)(# rail transitions)

 LEDR (1-of-2)LEDR (1-of-2) better power (# rail transitions)better power (# rail transitions)

 [Dean/Horowitz/Dill, Advanced Research in VLSI [Dean/Horowitz/Dill, Advanced Research in VLSI ’’91]91]

 LETS (1-of-4)LETS (1-of-4) best power (# rail transitions)best power (# rail transitions)
[[McGee/Agyekum/Mohamed/Nowick McGee/Agyekum/Mohamed/Nowick IEEE IEEE Async SympAsync Symp. . ‘‘08]08]

Timing-Dependent Codes:Timing-Dependent Codes: good power + ease of function design/poor robustnessgood power + ease of function design/poor robustness

 Single-rail Single-rail ““bundled databundled data””: : widely used! = sync encoding + matched delaywidely used! = sync encoding + matched delay

 Other: Other: ““pulse-modepulse-mode””, etc., etc.

#27

Async Async Protocols: Evaluation SummaryProtocols: Evaluation Summary

Robust/High-Throughput Global Communication:Robust/High-Throughput Global Communication:

 High throughput + low power: High throughput + low power: 2-phase (NRZ) protocols (LETS)2-phase (NRZ) protocols (LETS)

Efficient Local Computation (easy-to-design function blocks):Efficient Local Computation (easy-to-design function blocks):

 Ease-of-design + low area + low power:Ease-of-design + low area + low power:

 Timing Robust (DI): Timing Robust (DI): 4-phase (RZ) protocols (dual-rail, 1-of-4)4-phase (RZ) protocols (dual-rail, 1-of-4)

 Non-DI: Non-DI: single-rail bundled data (2-/4-phase)single-rail bundled data (2-/4-phase)

Our recent research: Our recent research: efficient protocol convertersefficient protocol converters
 Global communication: Global communication: use 2-phase (LEDR, LETS)use 2-phase (LEDR, LETS)

 LocalLocal computation: computation: use 4-phase (bundled, dual-rail, 1-of-4)use 4-phase (bundled, dual-rail, 1-of-4)

[[McGee/Agyekum/Mohamed/Nowick McGee/Agyekum/Mohamed/Nowick IEEE IEEE Async SympAsync Symp. . ‘‘08]08]

#28

Overview: My Research AreasOverview: My Research Areas

 CAD Tools/Algorithms for Asynchronous Controllers (CAD Tools/Algorithms for Asynchronous Controllers (FSMFSM’’ss))

 ““MINIMALISTMINIMALIST”” Package: Package: for synthesis + optimization for synthesis + optimization

 Mixed-Timing Interface Circuits:Mixed-Timing Interface Circuits:

 for interfacing sync/sync and for interfacing sync/sync and sync/async sync/async systemssystems

 High-Speed Asynchronous Pipelines:High-Speed Asynchronous Pipelines:

 for static or dynamic logicfor static or dynamic logic

#29

CAD Tools for CAD Tools for Async Async ControllersControllers

MINIMALIST:MINIMALIST: developed at Columbia University [1994-] developed at Columbia University [1994-]
 extensible CAD package for synthesis of asynchronous controllersextensible CAD package for synthesis of asynchronous controllers

 integrates synthesis, optimization and verification toolsintegrates synthesis, optimization and verification tools

 used in 80+ sites/17+ countries (was taught in IIT Bombay)used in 80+ sites/17+ countries (was taught in IIT Bombay)

 URL: URL: http://www.cs.columbia.edu/~nowick/asynctoolshttp://www.cs.columbia.edu/~nowick/asynctools

Features:Features:
 Automatic design scriptsAutomatic design scripts + custom commands+ custom commands
 Performance-driven multi-level logic decompositionPerformance-driven multi-level logic decomposition
 Verilog Verilog back-endback-end
 Automatic verifierAutomatic verifier
 Graphical interfacesGraphical interfaces
 …… many optimization modes many optimization modes

Recent application: Recent application: laser laser space measurement chip (joint with NASA Goddard)space measurement chip (joint with NASA Goddard)
 NASA/Columbia (2006-2007)NASA/Columbia (2006-2007)

 fabricated experimental chip: taped out (Oct. 06)fabricated experimental chip: taped out (Oct. 06)

Key goal: Key goal: facilitate design-space explorationfacilitate design-space exploration

#30

Example: Example: ““PE-SEND-IFCPE-SEND-IFC”” (HP Labs) (HP Labs)
Inputs:
req-send
treq
rd-iq
adbld-out
ack-pkt

Outputs:
tack
peack
adbld

0

1

2

7

3

4

5

6

8

9

10

req-send+ treq+ rd-iq+/
adbld+

adbld-out+/
peack+

rd-iq-/
peack- adbld-
 tack+

adbld-out- treq-
rd-id+/ adbld+

adbld-out+/
peack+

rd-iq-/ peack-
adbld- tack-

adbld-out- treq+ ack-pkt+/
 peack+ tack+

ack-pkt- treq-/
peack- tack-

treq-/
tack-

treq+/
tack+

ack-pkt+/
peack- tack-

adbld-out-
treq- ack-pkt+/

peack+

req-send-/
--

 adbld-out-
 treq+ rd-iq+/
 adbld+

From HP Labs
 “Mayfly” Project:
B.Coates, A.Davis, K.Stevens,
 “The Post Office
 Experience: Designing a
 Large Asynchronous Chip”,
 INTEGRATION: the
 VLSI Journal, vol. 15:3,
 pp. 341-66 (Oct. 1993)

#31

EXAMPLE (cont.):EXAMPLE (cont.):

Examples:

Design-Space Exploration
using MINIMALIST:

optimizing for area vs. speed

#32

Overview: My Research AreasOverview: My Research Areas

 CAD Tools/Algorithms for Asynchronous Controllers (CAD Tools/Algorithms for Asynchronous Controllers (FSMFSM’’ss))

 ““MINIMALISTMINIMALIST”” Package: Package: for synthesis + optimization for synthesis + optimization

 Mixed-Timing Interface Circuits:Mixed-Timing Interface Circuits:

 for interfacing sync/sync and for interfacing sync/sync and sync/async sync/async systemssystems

 High-Speed Asynchronous Pipelines:High-Speed Asynchronous Pipelines:

 for static or dynamic logicfor static or dynamic logic

#33

Mixed-Timing Interfaces: ChallengeMixed-Timing Interfaces: Challenge

Asynchronous
Domain

Synchronous
Domain 1

Synchronous
Domain 2

Goal: provide low-latency communication between “timing domains”

Challenge: avoid synchronization errors

Asynchronous
Domain

#34

Mixed-Timing Interfaces: SolutionMixed-Timing Interfaces: Solution

Asynchronous
Domain

Synchronous
Domain 1

Synchronous
Domain 2

Async-Sync FIFO

A
sy

nc
-S

yn
c

FI
FO

Sy
nc

-A
sy

nc
 F

IF
O

Mixed-Clock FIFO’s

… developed complete family of mixed-timing interface circuits
[Chelcea/Nowick, IEEE Design Automation Conf. (2001); IEEE Trans. on VLSI Systems v. 12:8, Aug. 2004]

Solution: insert mixed-timing FIFO’s ⇒ provide safe data transfer

Asynchronous
Domain

#35

Overview: My Research AreasOverview: My Research Areas

 CAD Tools/Algorithms for Asynchronous Controllers (CAD Tools/Algorithms for Asynchronous Controllers (FSMFSM’’ss))

 ““MINIMALISTMINIMALIST”” Package: Package: for synthesis + optimization for synthesis + optimization

 Mixed-Timing Interface Circuits:Mixed-Timing Interface Circuits:

 for interfacing sync/sync and for interfacing sync/sync and sync/async sync/async systemssystems

 High-Speed Asynchronous Pipelines:High-Speed Asynchronous Pipelines:

 for static or dynamic logicfor static or dynamic logic

#36

global clock

NON-PIPELINED COMPUTATION:

High-Speed Asynchronous PipelinesHigh-Speed Asynchronous Pipelines

“datapath component” =
 adder, multiplier, etc.

SYNCHRONOUS

#37

global clock

SYNCHRONOUS

ASYNCHRONOUS

“PIPELINED COMPUTATION”: like an assembly line

no global clock

High-Speed Asynchronous PipelinesHigh-Speed Asynchronous Pipelines

#38

Goal:Goal: fast + flexible fast + flexible async datapath async datapath componentscomponents
 speed:speed: comparable to fastest existing synchronous designscomparable to fastest existing synchronous designs

 additional benefits:additional benefits:

 dynamically adaptdynamically adapt to variable-speed interfaces to variable-speed interfaces

 handles dynamic voltage scalinghandles dynamic voltage scaling

 no requirement of equal-delay stagesno requirement of equal-delay stages

 no high-speed clock distributionno high-speed clock distribution

Contributions: 3 New Asynchronous Pipeline Styles Contributions: 3 New Asynchronous Pipeline Styles [M. Singh/S.M. Nowick][M. Singh/S.M. Nowick]
(i) MOUSETRAP:(i) MOUSETRAP: static logic static logic [ICCD-01, IEEE Trans. on VLSI Systems 2007][ICCD-01, IEEE Trans. on VLSI Systems 2007]

(ii) (ii) Lookahead Lookahead (LP):(LP): dynamic logicdynamic logic [Async-02,[Async-02, IEEE Trans. on VLSI Systems 2007]IEEE Trans. on VLSI Systems 2007]

(iii) High-Capacity (HC): (iii) High-Capacity (HC): dynamic logicdynamic logic [Async-02, ISSCC-02,[Async-02, ISSCC-02, IEEE Trans. on VLSI Systems 2007]IEEE Trans. on VLSI Systems 2007]

Application (IBM Research): Application (IBM Research): experimental FIR filterexperimental FIR filter [ISSCC-02, J. [ISSCC-02, J. Tierno Tierno et al.]et al.]

-- async async filter in sync wrapperfilter in sync wrapper

-- provides provides ““adaptive latencyadaptive latency”” = # of clock cycles per operation = # of clock cycles per operation

-- performance: better thanperformance: better than leading comparable commercial synchronous design (from IBM)leading comparable commercial synchronous design (from IBM)

High-Speed Asynchronous PipelinesHigh-Speed Asynchronous Pipelines

#39

reqN

ackN-1

reqN+1

ackN

 Data Latch

Latch Controller

doneN

Data in Data out

Stage NStage N-1 Stage N+1

En

MOUSETRAP: A Basic FIFO (no computation)MOUSETRAP: A Basic FIFO (no computation)

Stages communicate using Stages communicate using transition-signaling:transition-signaling:

[Singh/Nowick, IEEE Int. Conf. on Computer Design (2001), IEEE Transactions on VLSI Systems (2007)]

#40

Stage N+1

logic

delay

Stage N

Data Latch

Latch Controller

doneN

logic

delay

Stage N-1

logic

delay
reqreqNN

ackN-1

reqreqN+N+11

ackN

 ““MOUSETRAPMOUSETRAP”” Pipeline: w/computation Pipeline: w/computation

Function Blocks:Function Blocks: use use ““synchronoussynchronous”” single-rail circuits (not hazard-free!) single-rail circuits (not hazard-free!)

““Bundled DataBundled Data”” Requirement: Requirement:
 each each ““reqreq”” must arrive must arrive afterafter data inputs valid and stable data inputs valid and stable

#41

1. Asynchronous Interconnection Networks: for Shared-Memory Parallel Processors1. Asynchronous Interconnection Networks: for Shared-Memory Parallel Processors

 Medium-scale NSF project [2008-12]: with Prof. Uzi Medium-scale NSF project [2008-12]: with Prof. Uzi Vishkin Vishkin (University of Maryland)(University of Maryland)

 Goal:Goal: low-power/high-performance low-power/high-performance async async routing network (processors <=> memory)routing network (processors <=> memory)

 ““GALSGALS””-style:-style: globally-asynchronous/locally-synchronous globally-asynchronous/locally-synchronous

 [M. [M. HorakHorak, S.M. Nowick, M. , S.M. Nowick, M. CarlbergCarlberg, U. , U. VishkinVishkin, ACM NOCS-10 Symposium], ACM NOCS-10 Symposium]

2. Continuous-Time 2. Continuous-Time DSPDSP’’ss
 Medium-scale NSF project [2010-14]: with Prof. Medium-scale NSF project [2010-14]: with Prof. Yannis Tsividis Yannis Tsividis (Columbia EE Dept.)(Columbia EE Dept.)

 Idea: Idea: adaptiveadaptive signal processing, based on signalsignal processing, based on signal rate-of-changerate-of-change

 Goal:Goal: low-aliasing + low-power -- combine analog + low-aliasing + low-power -- combine analog + async async digitaldigital

3. Asynchronous Bus Encoding: for Timing-Robust Global Communication3. Asynchronous Bus Encoding: for Timing-Robust Global Communication

 Goal:Goal: low-power, error-correction + timing-robust (low-power, error-correction + timing-robust (““delay-insensitivedelay-insensitive””) communication) communication

 [M. [M. Agyekum/SAgyekum/S.M. Nowick, DATE-10, IWLS-10, DATE-11].M. Nowick, DATE-10, IWLS-10, DATE-11]

4. Variable-Latency Functional Units: 4. Variable-Latency Functional Units: ““Speculative CompletionSpeculative Completion””
 Goal:Goal: high-performance components with high-performance components with ‘‘data-dependentdata-dependent’’ completion completion

 [S.M. Nowick et al., IEE Proceedings [S.M. Nowick et al., IEE Proceedings ‘‘96; IEEE Async-97 Symposium]96; IEEE Async-97 Symposium]

Other Research ProjectsOther Research Projects

#42

#43

reqN

ackN-1

reqN+1

ackN

 Data Latch

Latch Controller

doneN

Data in Data out

Stage NStage N-1 Stage N+1

En

MOUSETRAP: A Basic FIFOMOUSETRAP: A Basic FIFO
Stages communicate using Stages communicate using transition-signaling:transition-signaling:

1 transition1 transition
per data item!per data item!

One Data Item

#44

Goal: fast analytical techniques + toolsGoal: fast analytical techniques + tools
 - to handle large/complex asynchronous + mixed-timing systems- to handle large/complex asynchronous + mixed-timing systems

 using using stochastic delay modelsstochastic delay models ((MarkovianMarkovian):): [P. McGee/S.M. Nowick,[P. McGee/S.M. Nowick, CODES-05 CODES-05]]

 using using bounded delay modelsbounded delay models (min/max): (min/max): [P. McGee/S.M. Nowick,[P. McGee/S.M. Nowick, ICCAD-07 ICCAD-07]]

Applications: analysis + optimizationApplications: analysis + optimization

 LargeLarge Asynchronous Systems:Asynchronous Systems:

 Evaluate latency, throughput, critical Evaluate latency, throughput, critical vsvs. slack paths, average-case performance. slack paths, average-case performance

 Drive optimization:Drive optimization: pipeline granularity, module selection pipeline granularity, module selection

 Large Heterogeneous (mixed-clock) orLarge Heterogeneous (mixed-clock) or ““GALSGALS”” Systems: Systems:

 Evaluate critical Evaluate critical vsvs. slack paths. slack paths

 Drive optimizationDrive optimization: dynamic voltage scaling,: dynamic voltage scaling, load balancing ofload balancing of threads, buffer insertionthreads, buffer insertion

Performance Analysis of Concurrent SystemsPerformance Analysis of Concurrent Systems

#45

Introduction to MLOIntroduction to MLO

 MLO is an integrated MLO is an integrated post-processingpost-processing (i.e. backend) tool for Minimalist. (i.e. backend) tool for Minimalist.

 Targeted to Targeted to multi-level logicmulti-level logic..

 In contrast, Minimalist currently is targeted to two-level logic.In contrast, Minimalist currently is targeted to two-level logic.

 Designed to work on Designed to work on combinationalcombinational hazard-free logichazard-free logic for Burst Mode for Burst Mode

controllers.controllers.

 Uses Uses ““hazard-non-increasinghazard-non-increasing”” transforms. transforms.

 Output of MLO is Output of MLO is VerilogVerilog..

 MLO is a standalone tool running from the Linux shell MLO is a standalone tool running from the Linux shell outside of Minimalist.outside of Minimalist.

#46

Minimalist: MLO (Multi-Level Optimizer)Minimalist: MLO (Multi-Level Optimizer)
 Accessible on the web from:Accessible on the web from:

 Initial ReleaseInitial Release
 One version One version –– for Linux Distributions for Linux Distributions

 IncludesIncludes

 Complete TutorialComplete Tutorial
 DocumentationDocumentation
 ExamplesExamples

 Tool requires Python interpreter to run:Tool requires Python interpreter to run:

 Consult README for MLO installation informationConsult README for MLO installation information

http://www1.cs.columbia.edu/~nowick/asynctools

http://www.python.org/download/

#47

CEO Feature - CEO Feature - User-Specified Critical EventsUser-Specified Critical Events

Case 1: Non colorized
arc. User-Specified
nothing is critical. Defaults
to automated mode for
every output.

Case 2: Some outputs
colorized, some outputs
not. Both user-specified
data and automated
approaches are used to
determine criticality.
ITEventReq will use user-
specified data to
determine criticality.
CtrincReq will default to
automated mode to
determine criticality.

Case 3: Every output is
colorized. Automated
approach is never used.
IntITReq- is critical with
respect to CtrIncReq-,
while ITEvent2Ticks- is
NOT critical to
CtrIncReq-.

User-Specified Critical Arcs Highlighted in Red

IntITReq-

ITEvent2Ticks- /

CtrIncReq-

 5
 0

 1

 2
 3

 4

IntITReq+ /

ITEventReq+
IntITReq+ /

ITEventReq+

ITEvent2Ticks-

CtrIncAck+ / CtrIncReq-

IntITReq- /

ITEventReq-

IntITReq+ /

ITEventReq+

CtIncAck- /

ITEventReq+

ITEvent2Ticks- /

CtrIncReq+ ITEventReq-

#48

Feature Set - Initial Two-Level Implementation (Feature Set - Initial Two-Level Implementation (beforebefore
applying MLOapplying MLO))

The next four slides

present different MLO

output examples. For each

example, the starting circuit

(input to MLO) is this circuit

Two-level Structure from Minimalist Output

#49

Feature Set Example 1 - Feature Set Example 1 - Gate Fan-in LimitationGate Fan-in Limitation

Result of MLO: Multi-Level circuit with Result of MLO: Multi-Level circuit with AND gate fan-in limit of 2AND gate fan-in limit of 2

#50

Feature Set Example 2 - Feature Set Example 2 - Negative LogicNegative Logic

Result of MLO: Multi-Level Circuit using Result of MLO: Multi-Level Circuit using MLOMLO Negative LogicNegative Logic
This mode carefully optimizes
only hazard non-increasing
safe transformations
(DeMorgan’s Law).
Optimizations are also
included to carefully eliminate
extra inverters.

#51

Feature Set Example 3 - Feature Set Example 3 - CEOCEO
““critical event optimizercritical event optimizer””

Result of MLO: Multi-Level Circuit after Result of MLO: Multi-Level Circuit after MLOMLO CEOCEO is used is used

Gate Decomposed. Input

intitreq is more critical to

output iteventreq than

ctrincack’ and y0’

critical primary input-

to-output path

#52

Feature Set Feature Set Example 4 - Example 4 - CombinedCombined

Result of MLO: Multi-Level Circuit with Result of MLO: Multi-Level Circuit with negative logicnegative logic, , AND gate fan-in limit of 2AND gate fan-in limit of 2,,
and and CEOCEO..

Gate fan-in limit
of 2

Negative
Logic

CEO Optimizes Critical Path

