A High-Speed Asynchronous Decompression
Circuit for Embedded Processors

Martin Benes* Andrew Wolfe' Steven M. Nowick?
Department of EECS Department of EE Department of CS
U.C. Berkeley Princeton University Columbia University
Berkeley, CA Princeton, NJ New York, NY
Abstract

This paper describes the architecture and implementation of a high-speed decompression
engine for embedded processors. The engine is targeted to processors where embedded pro-
grams are stored in compressed form, and decompressed at runtime during instruction cache
refill.

The decompression engine uses a unique asynchronous variable decompression rate ar-
chitecture to process Huffman-encoded instructions. The resulting circuit is significantly
smaller than comparable synchronous decoders, yet has a higher throughput rate than al-
most all existing designs. The 0.8u layout is all full-custom and contains predominantly
dynamic domino logic. The top-level control, as well as several small state machines, are
implemented using asynchronous logic. The design operates without a user-supplied clock.

Simulations using Lsim show average throughput of 32 bits/45 ns on the oulpul side,
corresponding to about 480 Mbit/sec on the inputl side. The chip has been manufactured
by MOSIS; tests show thatl the asynchronous implementation operates correctly, with an
average throughput exceeding simulations: 32 bits/39 ns on the output side, corresponding
to about 560 Mbit/sec on the input side. This speed is acceptable for our application. The
area of the design (excluding the pad-frame overhead) is only 0.75 mm?. The design is the
first fabricated chip for an instruction decompression unit for embedded processors.

1: Introduction

Embedded systems incorporate microprocessors or microcontrollers to implement com-
munication and control functions for consumer electronics products. These systems are
sensitive to many design constraints, including limits of size, weight, power consumption
and cost. Many interesting design problems for embedded systems involve optimizing these
properties for high-volume products, such as consumer electronics. Since the programs in
embedded systems are generally stored in ROM, the size of the program has a direct impact
on the per-unit cost of the device.

In previous work, a method was proposed whereby embedded programs are stored in
compressed form and decompressed at run time during instruction-cache refill [Wolfe92,
Kozuch94]. Using a Huffman encoding scheme, a compression ratio of 73% was reported

* While at Department of Electrical Engineering, Princeton University, Princeton, NJ

"This work was funded in part from NSF under award MIP-9408462 and by an AT&T foundation gift.

{This research was funded in part by an NSF CAREER Award MIP-9501880 and by an Alfred P. Sloan
Research Fellowship.

for the MIPS instruction set. In this paper, we describe the architecture and implementation
of a high-speed decompression engine for such applications. There are two key requirements
for such a decompression circuit. First, it must be extremely small to be widely applicable.
Reducing the area requirements for program memory would be futile if all of the saved
space were consumed by the decompression logic. Second, the circuit must also provide
very high performance to avoid slowing down the processor.

Our decompression engine uses a unique variable decompression rale architecture, as
well as some innovative asynchronous timing mechanisms, to obtain much smaller chip
area than previous designs, with higher throughput than nearly all existing designs. In
addition to providing an excellent solution to a specific application requirement, this design
demonstrates the benefits of asynchronous circuits in a practical system.

Asynchronous design provides numerous opportunities to optimize a design for the most
common inputs [Nowick96, Nowick97, Davis95]. This feature is particularly important in
the case of an entropy code like a Huffman code, where the distribution of input values
is essentially known. An asynchronous methodology also allows the design of small, high-
speed circuits without the risk or overhead associated with high speed clocks. Recently, a
number of asynchronous chips have been successfully fabricated, both for microprocessors
and DSPs [Furber94, Furber97, Kessels97, Martin89, Nielsen96, Yun97].

Our proposed decompression engine achieves its cost/performance advantage over ex-
isting designs through a combination of architectural improvements as well as aggressive
circuit design. Novel features of this chip include :

e A variable-input-rate/variable-output-rate asynchronous architecture that allows the
decoder timing to be optimized for the most common cases while concurrently pro-
cessing many bits from the input data stream

o A simplified symbol-length detection circuit that minimizes area

o A customized ROM implementation that overlaps output-symbol lookup with symbol-
length detection and minimizes area of the decoding logic

e Asynchronous circuit timing using several different synchronization mechanisms

e Use of dynamic domino logic circuits with few stages for high speed and small area

The resulting circuit has been implemented in 0.8 CMOS using the MOSIS CMOSX
design rules. The complete decoder including input and output buffers for 32-bit 1/0
interfaces occupies a net area of 0.75 mm?, which corresponds to the area of at most
3 Kbytes of instruction ROM. Simulated performance based on a 150 Kbyte program sample
exceeds 480 Mbit/sec in decoding the input stream, while the fabricated chip operates at
560 Mbit/sec.

The design is significantly smaller than comparable synchronous decoders, and yet has
a higher throughput rate than almost all existing designs. It is the first fabricated chip for
an instruction decompression engine for embedded processors.

The paper is organized as follows. Section 2 discusses related work on the design of
synchronous Huffman decoders. Section 3 presents background on the proposed compres-
sion scheme, and also motivates our use of an asynchronous approach. A basic overview
of our decompression engine architecture is presented in Section 4, followed by detailed
descriptions of the components and circuit implementations in Section 5. Simulation and
fabrication results are presented in Section 6. Section 7 discusses the tradeoffs between an
asynchronous and synchronous implementation, and Section 8 presents conclusions.

2: Related Work

Decompression of Huffman codes is not a new problem: many previous synchronous
implementations of Huffman decoders have been described in the literature. Virtually all
recent practical implementations of Huffman decoders are for digital video applications,
and focus on the MPEG-2 VLD decoder for the DCT coeflicient table. The Huffman code
used in MPEG-2 has 114 code words, varying in length from 1 to 16 bits, where one of the
codes is an escape sequence followed by fixed length code, extending the maximum code
length to 28 bits. The structure of the code is quite simple, and the code length can be
easily derived from the number of leading zeros. The complexity of this code is therefore
simpler than our MIPS-based code which has 256 code words.

Rudberg [Rudberg96] presents a design for a constant-input-rate synchronous Huffman
decoder. His design uses aggressive pipelining to break the critical dependency loop in
length detection, thereby allowing the implementation of a constant-input-rate/variable-
output-rate decoder without complex state machines. However, while the circuit allows
a high clock speed, it can only process one input bit per cycle and thus only supports a
120 Mbit/sec decode rate. The area of this circuit is unknown.

Some basic ideas for partitioning the output-symbol ROM into multiple small ROMs
and for extracting symbols from the input stream with a barrel shifter are described in
[Hashemian94] and [Choi95]. Similar mechanisms are employed in our design. These con-
cepts have also been included in a decoder for the MPEG-2 DCT coeflicient table that has
been implemented and described in [Park95]. The circuit area is 3.5 mm? in a 0.654 CMOS
process, compared with only 0.75 mm? for our design in a 0.8u process. The authors claim
a peak performance of 680 Mbit/sec, but this is based on the decoding of maximal-length
17-bit codewords at 40 MHz. Since the worst possible 114 symbol Huffman code has an
average symbol length of 7 bits and a more typical code would have an average symbol
length of no more than 5 bits, sustained performance in the 200-250 Mbit/sec range is
more realistic.

Two of the fastest recent decoders were developed in Japan. Both implementations
integrate the VLD decoder with IDCT transform to completely decode the video stream.
The first design, at Osaka University [Onoye95], uses pipelined design with a separate
stage for input shifting, length detection and symbol decoding. The VLD layout using
ASIC libraries occupies about 5 mm? in a 0.6u process. The second design, at Toshiba
Microelectronics [Matsui94], uses one stage for length and symbol lookup (details were
not given). To compensate for slow length detection, it uses a two-stage pipelined shifting
scheme that removes the adder delay from the critical path. The 28k-transistor VLD macro
occupies about 5 mm? in a 0.8y process (0.54 nFETS are used). Both of these chips operate
at 3.3 V. Since they include both VLD and IDCT blocks, it is unclear whether the speed
is limited by the VLD critical path. The Osaka University chip is clocked at 100 MHz
and the Toshiba chip at 200 MHz. After scaling to our conditions (5 V and 0.8y process),
the normalized rates are 95 MHz and 150 MHz, respectively. The latter speed is achieved
mainly by using aggressive but area-expensive circuit techniques like pass-transistor and
differential amplifying logic, which we have not used. In comparison, our asynchronous
chip has an output rate of 32 bits/39 ns, which is roughly 103 MHz. At the same time, our
decoder area is roughly 5 times smaller than each of these designs.

Finally, Wei and Meng [Wei95] introduce a JPEG Huffman decoder which operates at
40 MHz, but can be pipelined at 80 MHz. This work focuses on programmable codes,
rather than the fixed codes which we consider. The resulting chip area is 11 mm? in a 1.2
process, which is over 10 times larger than ours.

3: Background and Motivation

3.1: Compression Scheme

The proposed compression scheme relies on a standard entropy code [Huffman52] that
represents fixed-length symbols from a source alphabet as variable-length code symbols.
The key challenge in the development of a code compression scheme for existing micro-
processor architectures is that the system must run existing programs correctly. This is
accomplished by decompressing a program as it is felched into the instruction cache. As a
result, the processor core sees only uncompressed program code [Wolfe92, Kozuch94].

Since the instruction cache only holds a small fraction of the program at one time,
it is not possible to decompress the entire program at once; therefore, a block-oriented
compression scheme is required. The experiments we have performed are based on com-
pressing 32-byte cache lines into smaller byte-aligned blocks. Compression takes place at
program development time, and therefore compression time is immaterial. Decompression
time, however, directly impacts the cache refill time and hence performance. The preferred
encoding method uses a fixed Huffman code, based on an aggregate distribution of 8-bit
input symbols determined through the analysis of a large set of typical programs for a given
processor architecture. This code is not optimal for any given program, but is quite close
and it allows the code to be hardwired into the decompression hardware, rather than being
stored along with the program.

In principle, the decoding of Huffman codes is a very simple task. Huffman codes are
entropy-based, prefix codes that replace fixed-length symbols with variable-length symbols
to represent the same information with fewer total bits. The original source data is rep-
resented as a sequence of fixed-length symbols. The full set of symbols is called the input
alphabet. We experimented with input alphabets ranging from 4 to 16 bits per symbol
for this application. Although 16-bit symbols would provide the best compression, 8-bit
symbols performed nearly as well and can be decoded with far less hardware.

The frequency of each symbol in the input data is measured, to determine the probability
of any given symbol occurring in a randomly selected sample from the input data. This
model assumes that the probability of any symbol occurring is independent of other symbols
in the data stream. Naturally, if frequently occurring symbols are represented with few
bits, and rarely occurring symbols are represented with more bits, the total number of bits
required can be minimized. As an example, Figure 1 gives a sample histogram of Huffman
code length versus the percentage of input symbols, where the symbols are statically binned
into different classes. Figure 2 shows the corresponding histogram based on the actual
frequency of occurrence of the input symbols in a given program. Using a Huffman encoding
scheme, a compression ratio of 73% was reported for the MIPS instruction set [Wolfe92,
Kozuch94].

The number of bits required for each symbol is approximately logy(1/Psymbol). In order to
make it easier to decode this representation, prefix codes are used for the output alphabet.
Prefix codes have the property that appending additional bits to a valid output symbol
never produces another valid output symbol. Therefore, by scanning the coded data one
bit at a time until we find a valid symbol, we can immediately decode that symbol and
remove it from the data stream. The actual code that was used for this implementation is
based on measurements of byte frequencies from programs for the MIPS architecture. The
resulting code includes symbols ranging from 2 to 14 bits in length [Wolfe92, Kozuch94].

N
o

N
o
T

[N
[¢)]
T
w
o
T

=
o
T

U‘I
-
o

T

Percentage of Input Symbols (%)
Percentage of Input Symbols (%)
N
o

Rl I

2 56 7 8 9 1011 12 13 14 2 56 7 8 9 1011 12 13 14
Code Length (bits) Code Length (bits)
Figure 1. Static code distribution Figure 2. Dynamic code distribution

3.2: Motivation for an Asynchronous Architecture

There are two standard synchronous approaches to decoding Huffman encoded data (see
[Rudberg96]).

In a basic constant-input-rate scheme, the input data stream is processed at a rate of one
bit per cycle by traversing a Huffman code tree through the use of a finite state machine.
To achieve 480 Mbit/sec performance using this type of design would require a 480 MHz
clock, introducing many very difficult high-speed circuit problems. In fact, it is unlikely
that a state machine of adequate complexity can be designed to run at this speed in 0.8y
CMOS. However, as an optimization, the very high-speed clocks required can be eliminated
by combining multiple state transitions into a single cycle. This reduces the required clock
frequency but increases the complexity and area of the decoder approximately exponentially
with respect to the increased performance per clock.

The other commonly-used approach is a constant-oulpul-rate scheme. In this design, a
portion of the input data stream, at least as large as the longest input symbol, is translated
into an output symbol on each cycle. This approach requires a complex shifting network
to remove variable length symbols from the input data stream, as well as a more complex
symbol detection circuit. The disadvantage of this approach is that the length of the critical
paths is dominated by the time to detect and decode the longest input symbol. In the case
of our test codes, the 14-bit symbols represent only about .01% of the input data; thus,
the vast majority of cycles are limited by a very infrequent worst-case path. Furthermore,
an input data buffer and shifting network that can sustain 14 bits of new input data is far
more expensive than one that can sustain the average rate of 5-6 bits of input per output
symbol.

The compromises required for a high-speed/low area implementation in each of these
methods led us to examine an asynchronous approach. Our new architecture has similar-
ities to the constant-output-rate synchronous decoding scheme, but is in fact modified to
support both a wvariable-input-rate and a variable-output-rate. Our design is optimized so
that common symbols can be decoded quickly, while less common symbols require longer
combinational logic delays, multiple state transitions and reuse of some hardware. This
approach balances good performance with compact area.

4: Overview: Asynchronous Decoder Architecture

This section presents an overview of our asynchronous decoder architecture. Further
details on the circuit implementations are presented in Section 5.

Input Data in_rgst in_ack Blocks affected by the global clock (%) Input Data Input Handshake
(EH o — | 1
. Alignment Offset E Input Reload
. Network Register ' Buffer Sequencer
Huffman RESET i T
. Match Add Shift !
Decoder ' Logic er Sequencer | !

L[i (@)
I = S| | o |

E E Clock
Output Data out_rgst out_ack : ! T Feedback
' Ls{Code ROM :
- / : : urrer
in_ack / \ Ry ; T
out_rgst /\ pAS — D - precharged domino logic Output Handshake ~Output Data
out_ack =continue [] - static logic; initialized by RESET
Figure 3. Decoder overview Figure 4. Decoder components and signals

The decoding of a Huffman-encoded program requires a sequence of interfacing and code
translation steps. First, data must be fetched from memory into an input buffer as 32-bit
words. Next, the input stream must be parsed into variable-length tokens. Fach token
must be translated into the output byte which it represents. The output bytes must then
be buffered into 32-bit output words. Finally, the input symbol bits must be removed
from the input stream and the remaining input data must be realigned in the input buffer.
The input buffer must then be refilled as space becomes available, to insure that there is
adequate data for the next symbol. As many of these steps as possible must be done in
parallel to obtain good performance.

Figure 3 gives a top-level view of our decoder module as a black box. Input data is fetched
from memory using a simple 4-phase asynchronous handshaking protocol [Davis95]. Simi-
larly, output data is delivered to the instruction cache using a 4-phase protocol. Existing
logic within the processor generates memory addresses. The cache refill logic counts the
32-bit data words produced by the decoder, and it resets the decoder after 8 words have
been produced, which correspond to an entire uncompressed cache line.

Figure 4 shows the major components of the decoder and their interaction. The Input
Buffer holds 7 bytes of data. The lower 4 bytes receive new data which are then shifted
into the top 3 bytes to be processed. This large buffer allows new data to be fetched while
older data is being decoded. The data in the Input Buffer is shifted in 1-byte increments.
Therefore, as symbols are removed from the input stream, the remaining input data in the
buffer may be misaligned. Realignment is implemented using an Alignment Network. The
Offset Register holds the correct shift offset, thereby extracting an aligned 14 bits (the size
of the largest symbol) from the Alignment Network for processing.

The input data is then processed by Match Logic, which categorizes the token into one
of 31 classes within the Huffman code tree. Each class contains only symbols of a given
length, although there may be several classes that contain codes with the same length.

The output Code ROM is a compact lookup table, which is used to generate the output
symbol. The symbol is generated by a 2-way decoding process. Fach match class produces
a unique enable signal for the corresponding portion of the Code ROM. However, in parallel
with the processing of the Match Logic, the aligned input data is forwarded directly to the
ROM decoders, which identify one potential output symbol for each class. When the Match
Logic finally indicates the correct class, it enables the final stage of exactly one of the ROM
decoders, which then generates the correct output symbol. The symbol is then stored in
the Qutput Buffer.

The class selected by the Match Logic is also used to determine the length of the input
symbol, by using a small Length ROM. The length indicates how many bits of input data
to retire from the input data stream. This length is added to the current offset in the
Offset Register, to determine the new offset for the next token, which is stored in the Offset
Register. If the offset exceeds the range of the Alignment Network, a carry is generated by
the Adder, and the Shift Sequencer is instructed to shift data in the Input Buffer by either
one or two bytes.

As shown in Figure 4, many of the components are implemented in precharged domino
logic (gray modules), while some are implemented in static logic (white modules). The use
of precharged domino logic greatly improves speed and reduces area of the design.

A global synchronization or clocking signal @, is generated, to synchronize the system.
The signal is generated asynchronously, based on the actual completion of the various
modules. The logic within the dotted region in Figure 4 is controlled by ®. When & is low,
the domino logic precharges. When @ goes high, the logic evaluates its inputs, and finally
generates a new output symbol and an offset value. Completion signals from the Code
ROM and the Adder are then combined, to indicate to the clock generation circuit that the
evaluation phase is complete, and that the next precharge phase may begin. During the
precharge phase, static operations may occur; in particular, the data in the Input Buffer
is shifted by the Shift Sequencer, if necessary. The precharge phase ends when shifting is
complete, the dynamic logic is precharged, and the Qutput Buffer has room for another
symbol. The decompression engine produces one output symbol per ® cycle, but the length
of that cycle varies and may include zero, one, or two Input Buffer shift cycles during the
precharge phase.

5: Detailed Implementation

This section provides details on each of the decoder’s components.
5.1: Input Buffer and Alignment Network

Extracting new symbols from the input data stream is the critical path in the decoding
process. The next input symbol cannot be located until after the length of the current
symbol is determined. We use a 2-step extraction process, to reduce the hardware overhead.

The Input Buffer consists of 7 registers, as shown in Figure 5. Four of the registers are
9-bits wide, where each holds 8 bits of data and 1 status bit. A new 32-bit data word is
loaded, in parallel and asynchronously using in_load, into these four registers. In addition,
a “True” value is loaded into each of the four status bits, to indicate that these registers
contain valid data. The signal “Full” is the Boolean AND of these four status bits, and

Input Data

$32

in_clk

8-bit register 4—4
8-bit register 4—4
A
8-bit register 4—4
A
8-bit register 4»
[

8-bit register <

N
=
9]
2
R
=)
9]
<
=
2
®

8-bit register <

T qm e

Unaligned data (d0, d1, ... d20) in_load
S S A A R R S T R S T S S T T R R
\O/\O/\O/\O/\O/\OAOAOAOAOAOAOA AWAYWAWAYA /\O/\O/ o
00 0000000000000 Y
ONONONONONONONONONONO O O O OQ<=——sen

\?99?9?999?9?99%*”

|> Offset Register

{ Status
% Status
% Status
% Status

reg_clk ——|

Aligned data (b0, b1, ... b13)

Figure 5. Input Buffer and Alignment Network

indicates that the data has been successfully loaded into these registers. The layout has
been designed so that the status bits reliably reflect the worst-case timing of every bit in
the register, and thus they can safely be used as completion signals.

Once data and status bits have been loaded into the rightmost registers, they are shifted
into the leftmost registers for processing. The Shift Sequencer logic controls this shifting,
initially shifting the data 3 times to move the data into the four leftmost registers. Fach
shift moves the data 8 bits forward in the data stream. This may result in a residual
misalignment of the beginning of the next input symbol by up to 7 bits. A misalignment
is corrected by the barrel shifter structure in the Alignment Network, shown on bottom of
Figure 5. (Further details on the Shift Sequencer are presented in Subsection 5.4.)

The Alignment Network consists of 3 stages of 2-1 multiplexers implemented in hazard-
free, precharged domino logic. The dual-rail data inputs come from the Input Buffer and
the dual-rail select inputs from the Offset Register. The outputs are also dual-rail and thus
each bit is completed when one of the two wires for one bit of the output falls to zero.

As data is consumed from the Input Buffer and processed, the input data is shifted fur-
ther. Fach shift operation shifts a “False” value into the status bit of the rightmost register
indicating that there is no longer valid data in that register. When all four status bits have
the value “False”, the signal “Empty” is asserted to the Reload Sequencer and more data
is loaded from external memory. A completion signal for individual shifts is derived from
a delayed sample of the shift clock. The outputs of this buffer, feeding into the Alignment
Network, are the 21 leftmost bits of the buffer. These signals, and their complements, are
provided to the Alignment Network and must be stable before the precharge phase ends.

5.2: Huffman Decoding: Symbol Assignment and Match Logic

Once the bits that contribute to the next code word are extracted from the data stream,
they must be parsed in order to determine the length of the next input symbol and to extract
the bits of that symbol. In order to simplify this procedure, we have taken advantage of
some of the flexibility of Huffman codes. On the one hand, the length of each Huffman
symbol is precisely determined by the frequency distribution of the original input alphabet.
On the other hand, the actual bit encoding for each input symbol is flexible, as long as the
prefix property and the code length requirement are maintained.

Our approach is therefore to select code words of a given length such that those code
words contain as many common bits as possible. For example, note that all of the 5 bit
long symbols, as shown in Table 1, contain the string 010 as the initial bits while no other
symbols contain those values in those positions. This allows us to use that substring in
that position to define a class of 5-bit symbols, and to use the remaining bits to enumerate
the values in that class. In many cases, we can structure the code such that only a small
number of bits need to be tested in order to determine the length. This means that we
match the class of 5-bit codes by finding bit-strings that contain the string 010 in bits 0-2.
Similarly we find a class of 6-bit codes that begin with the string 011 and another that
begins with the string 1000.

0 00 2c 10111001 86 110111000 b6 1110111110 fd 11111001010 fa 111111100000
8f 01000 b0 10111010 43 110111001 fe 1110111111 Te 11111001011 15 111111100001
24 01001 9 10111011 b9 110111010 e2 1111000000 65 11111001100 56 111111100010

1 01010 {8 10111100 8a 110111011 e6 1111000001 67 11111001101 d2 111111100011
10 01011 e7 10111101 6¢c 110111100 ef 1111000010 {7 11111001110 cd 111111100100
46 011000 a8 10111110 32 110111101 d4 1111000011 71 11111001111 16 111111100101
25 011001 ae 10111111 a9 110111110 ce 1111000100 3a 11111010000 ed 111111100110
80 011010 88 11000000 b 110111111 7t 1111000101 9e 11111010001 be 111111100111

8 011011 90 11000001 4c 111000000 4b 1111000110 7b 11111010010 77 111111101000

3 011100 ed 11000010 aa 111000001 de 1111000111 6b 11111010011 12 111111101001
21 011101 50 11000011 13 111000010 39 1111001000 6a 11111010100 97 111111101010

c 011110 2a 11000100 64 111000011 2f 1111001001 c3 11111010101 c9 111111101011

4 011111 44 11000101 d 111000100 dc 1111001010 1b 11111010110 7d 111111101100
20 100000 bd 11000110 68 111000101 45 1111001011 66 11111010111 55 111111101101
ff 100001 6 11000111 22 111000110 51 1111001100 35 11111011000 ca 111111101110

2 100010 ab 11001000 2b 111000111 b3 1111001101 4d 11111011001 e9 111111101111
af 100011 bf 11001001 a7 111001000 62 1111001110 79 11111011010 95 111111110000
c0 1001000 1c 11001010 a3 111001001 9c 1111001111 le 11111011011 9b 111111110001
8c 1001001 8d 11001011 89 111001010 cf 1111010000 e 11111011100 of 111111110010
8e 1001010 38 11001100 fc 111001011 4f 1111010001 be 11111011101 fb 111111110011
84 1001011 11 11001101 ad 111001100 {4 1111010010 47 11111011110 69 111111110100
82 1001100 26 11001110 c8 111001101 52 1111010011 el 11111011111 53 111111110101
e0 1001101 a4 11001111 23 111001110 91 1111010100 1f 11111100000 eb 111111110110
28 1001110 ac 11010000 31 111001111 99 1111010101 b7 11111100001 96 111111110111
c4 1001111 a0 11010001 87 111010000 5¢ 1111010110 49 11111100010 d7 1111111110000
30 1010000 5 11010010 81 111010001 ch 1111010111 33 11111100011 da 1111111110001
18 1010001 60 11010011 15 111010010 17 1111011000 6f 11111100100 d3 1111111110010
c? 1010010 2e 110101000 58 111010011 cl 1111011001 36 11111100101 bb 1111111110011
14 1010011 ab 110101001 98 111010100 7c 1111011010 eb 11111100110 ds 1111111110100
40 1010100 63 110101010 a 111010101 61 1111011011 93 11111100111 9d 1111111110101
27 1010101 29 110101011 f 111010110 b5 1111011100 {9 11111101000 5d 1111111110110
3c 1010110 92 110101100 83 111010111 b2 1111011101 la 11111101001 9a 1111111110111
12 10101110 8b 110101101 a2 111011000 e8 1111011110 ee 11111101010 75 1111111111000
48 10101111 ds 110101110 a6 111011001 74 1111011111 76 111111010110 5f 1111111111001
42 10110000 bl 110101111 e 111011010 ec 1111100000 de 111111010111 7a 1111111111010
41 10110001 94 110110000 73 1110110110 37 11111000010 3f 111111011000 57 1111111111011

7 10110010 do 110110001 Ge 1110110111 ea 11111000011 ba 111111011001 ba 1111111111100
85 10110011 c6 110110010 2d 1110111000 de 11111000100 5b 111111011010 3b 1111111111101
19 10110100 al 110110011 c2 1110111001 72 11111000101 f1 111111011011 df 1111111111110
78 10110101 16 110110100 cc 1110111010 ed 11111000110 d1 111111011100 dd 11111111111110
34 10110110 b4 110110101 4a 1110111011 1d 11111000111 {3 111111011101 db 1111111111111
b8 10110111 54 110110110 bec 1110111100 do 11111001000 cb 111111011110
70 10111000 {0 110110111 59 1110111101 6d 11111001001 3d 111111011111

Table 1. Rearranged Huffman code for MIPS architecture encoding

Overall, we are able to group the 256 different code words into 31 distinct classes; they are
shown in Table 2 along with their qualifying bit patterns (“-” means a don’t care). Every
member of each class is a code word of equal length and a small number of remaining bits

class | bit pattern length
0| 00 2
1| 0-0.. 5
210 .. 6
3 | -000
4| -00 .. 7 020 —
5 | =0-00. s
6 | -0-0-0 28 —
7 | -0-0--0 H n—{>0— mm)
8§11 -0 8 72822 — pyo
- = =
1(9) __8?00 26 210 119 180 - g
[= =
11 (-0 9 25 23 19 1615 g
12 ___00. ’_A ’_A A_I ’_A
13 | -—-0-0... 24 20 19 14
14 | ---0--00. K e o o
15 | ---0--0-0 19 16 7= b6
16 | -0 10 L s
17 | ====0..... 13; {11 10 & — s
18 | ———-- 00000 ﬁ*ﬂ le ll'“ﬂ r‘*s
19 | ————- 0..... 11 - = - b4
ol p— oo, IR RIS ™
22 | -====-0-0-0 decode-outl decode_out0 2 1 —
23 | ====—- 0 12 [)
R 0.... o 4
25 | ——--mm-- 0... T
I — 0... 13 L B — o
0] !
27 | —————————- 0.. l 1 3 ‘
28 | m=mmmmmmm- 0. ®
DL I e — 0 b | % %b(i)_not —
30 : 14 decode_in

Table 2. Match Classes Figure 6. Class Matching logic

(represented with dots) can be used to enumerate the class members. The matching process
starts from the top and examines each bit pattern until a match is found.

The Match Logic in Figure 6 performs the matching task. Each block represents the
4-transistor circuit shown on the bottom. Both phases of one of the input bits are used
at each level of the match tree. The row of cells labeled b5, for example, is connected to
the two phases of the input bit 5. The decode_in signal is driven by a sequence of prior
stages that represents a value of the preceding bits. The numbers on outputs of the tree
represent the length classes. In some cases, several output are connected in a wire-or circuit
to indicate a length class. Since only one class is detected, any of the 31 outputs going low
indicates completion to the following stages. Note that this circuit is constructed such that
the shortest, and thus most common, codes are matched using the fewest levels of logic;
therefore, the average response time is much faster than the worst-case.

5.3: Huffman Decoding: Generating Output Symbols

Once the code has been mapped to a particular class, the actual fixed-length output
symbol must be generated. A specialized Code ROM construct has been developed to
perform this translation. The basic idea is to decode the 1 to 5 enumerating bits! within a
class in parallel with the class matching process, and then to use the class matching bit as

1 . .
In some cases, there are 0 enumerating bits.

an enable signal to the decoder.

Input Bits (output of Alignment Network)

e romiselé"le")

| ——= rom_sel("93")

T

(o) decode_out0
b3 b4 b5 b6 b7 b8 b9 bl0 bll bl2 bi3 m(i)
m EREEEERE
m2 —————
/—ﬂ ,_o{
mil
m 4|5 |9) | —o— rom_sel0
mo b(l)_th — 4{
o ma — decode_in —
Q i
S | m o | 2 0~ X
— ’ ——o—= rom_sell
mi17 »_o{
S | mi2 E——
=
g | m BERE:
= m19
—
S) m16 — . ,
5 mi13 I . decode_outl //
= [1] 2| 4| 8|15 . y
5| mo ﬁ L 16 m28 m27 |~ m26, .
S m6 = N Q‘//
%) m23 | = ! ——= rom_sel("215")
5 | m20 2| 4| s W rom_sel("213"
— I { romfselé"ll?"g
6 mi4 = i ; rom_sel("122"
= m25 TRt
= m24
8 4 1
m21 | 1]

2 “ rom_sel("186")

¥ rom_sel("59")

m28 i I("218"

= = rom_se

m27 1% | ——= rom_sel "157”3
m26 ‘- *‘ rom_sel("95"
m30 T ¥ rom_sel("87"

4 S e romfselé"lBT'g

& = rom_sel("154"

Mb12 b11 b10

Figure 7. ROM Decoders

The decoders use dynamic logic and are activated by transitions on the b(i) inputs from
the Alignment Network and the m(i) inputs from the Match Logic. As a further optimiza-
tion, the decoder logic is shared between similar classes. Figure 7 shows the whole decoding
structure of the ROM, along with an example for classes 26, 27, and 28. The shaded boxes
represent decoders which produce pair of ROM word lines. The total number of decoders
is 145, only 16% more than the minimum of 125 (which occurs with maximum sharing),
but 60% less than 240 without sharing any decoders.

One decoder output will be enabled and will drive one word line of a 9-bit wide ROM.
This ROM contains the 8-bit output value and a completion bit that is slower than any
other ROM value. As a performance optimization, there are actually 3 ROM arrays that
have their outputs merged by additional logic outside the ROM.

Since the all-zero output symbol is so common [Wolfe92, Kozuch94], its input code by-
passes the decode ROM and directly drives the merge logic to zero for additional speed.
The completion signal indicates that the output code has been determined and also clocks
the result into the Qutput Buffer. Full/Empty bits on the Output Buffer indicate when it
is time to output a full 32-bit word to the cache unit.

5.4: Shift Control and Clock Generation

While output symbols are being generated, the code bits that correspond to that symbol
must also be removed from the input data stream. Input bits are removed by computing
the length of the input symbol and by adjusting the input data by the appropriate number
of bits. The length of each input symbol is computed using a small Length ROM, which

simply generates a 4-bit length value for each of the 31 match classes. It is implemented
using dual-rail hazard-free dynamic logic.

As an optimization, rather than physically shifting the data by the computed number of
bits, a 2-step shifting and alignment process is used. First, the current offset of the Offset
Register is added to the length of the current code. The carry-out of this addition is used
to indicate that the data must be physically shifted in the Input Buffer by either 0, 8, or
16 bits. The remainder is then used as the alignment offset for the next cycle.

The completion of this addition, along with completion signal from the Code ROM,
together indicate the completion of the entire evaluation phase for the dynamic logic. The
logic can then be precharged for the next cycle, which also clocks the new offset into the
Offset Register.

reset

S S Y Y O P

RI< R RI< R< R |

"0" —= Fo F1 F2 4+ F3 %= F4 = F5 ¢ shift_done
s s s s
reset shiftl6 shift8 shift0
@—> shift_ack

shift_enable ‘){ Clock generating network }— in_clk

Figure 8. Shift Sequencer

If the Input Buffer needs to be shifted, the shift is also performed during the precharge
phase. The Shift Sequencer is shown in Figure 8. The 3 inputs, shiftO, shift8, and shift16,
are 1-hot outputs of the Adder, indicating the desired byte-shift amount. These inputs are
used to asynchronously set one of the flipflops in the Shift Sequencer, and thus initializes
the shift operation. The timing of each shift operation is monitored by a feedback path
from the Input Buffer shift clock (fb_clk).

Clocking signals are generated by a Timing Control unit shown in Figure 9. The unit is
essentially a C-element combined with a clock distribution tree. Feedback from the slowest
clocking path, the Code ROM, is used to determine the minimum precharge time.

6: Results

6.1: Simulation Results

The performance of the design has been measured through circuit simulation using Lsim
(Mentor Graphics). Since we are primarily interested in the throughput of the decoder,
we measured the cycle time for decoding each symbol. This cycle time is defined as the
time from the end of one precharge phase to the end of the following precharge phase. In
practice, this is the time from the beginning of decoding a symbol from the Input Buffer,
through the alignment, match, length detection and symbol lookup stages. It also includes
computing the shift amount for the next symbol and any shifting of the Input Buffer that
is required. It may also include the loading of an additional 4 bytes of data from the input,
but we have assumed that the external program memory is not the bottleneck. We have
also assumed that the Output Buffer is read before it is required for the next symbol.

code_done

out_clk Output Buffer

ax reg_clk
Offset Reg.
From Adder
. 4x
bit2_done 4 >o—‘ >0—
. Adder, Shift
bitl_done
bit0_done shift_ack Ax 2x 8x Alignment
- [>o—{>o— Network
””” X Match Logic
add_done Length ROM
shift_done ———————=

out_empty -+

out_ack »—Do—j

L o

out_rgst

Clock Control Unit

Figure 9. Timing control schematics

4x
’—‘>O—‘>O—> ROM (merge)

4x 16x

o

o L d

‘ 1.92

ROM \ Precharge\ >
473 ‘ 2 05 1 80

Align, Match, Length \\ T2 (o] \\
1.64 ‘ 2.94 8.09‘
Add No shift 8-bit shift 16-bit shift
min. time max. time

Figure 10. Breakdown of the cycle

Figure 10 shows the breakdown of the cycle time. Delay of each major logic block is only
dependent on what kind of data it is processing and this delay might vary. The figure shows
minimum and maximum delays for each component, indicating significant data-dependent
variation.

We could characterize the behavior of the chip by simulating the cross product of each
possible input symbol and each possible starting alignment of the Input Buffer, but this
would give little insight into actual circuit performance for real symbol sequences. Instead,
we have simulated the time required for each cycle when decoding a real encoded program.

'
o
I
o

w
o
T
w
o
T

(i
o
T
=
o
T

HH Hﬂﬂ i Hﬂn | R HH HHHHHHHWHHHWWWW

10 12 14 16 18 20 40 45 50 55 60
Cycle Time (ns) Cycle Time (ns)

Percentage of Input Symbols (% / 0.25ns)
S
Percentage of Instructions (% / 1ns)
N
o

OOO
o

Figure 11. Distribution of cycle times for Figure 12. Distribution of cycle times
decoding individual symbols for decoding 32-bit instructions

N
o

w
o
T
]
]

=
o
T

Percentage of Cache Lines (% / 8ns)
N
o

mﬂﬂH Hﬂﬂﬂﬂﬂﬂnnw .

340 360 380 400 420
Cycle Time (ns)

o

Figure 13. Distribution of cycle times for decoding 32-byte cache lines

The results from one particular 150 Kbyte sample are shown on Figure 11. Individual
symbol decode cycles ranged from 9.23 ns to 19.66 ns. The distribution of decode times
contains two large peaks around 10.0 ns and 11.5 ns. These represent the cycles that

required zero and one shift of the Input Buffer, respectively. The outlying cycles around
17.5 ns represent two-shift cycles. The mean cycle time of 11.23 ns is about 75% faster
than the worst-case cycle time. Since the average input symbol length is 5.46 bits for the
test sample, this represents performance in excess of 480 Mbit/sec.

Figure 12 shows the distribution of decoding cycle times for 32-bit instructions. Since
the decoder core buffers 4 bytes of output, this represents the rate at which 32-bit instruc-
tions can be delivered to the instruction cache or directly to the processor. The CPU can
asynchronously read data from the Qutput Buffer at this rate or it can use a synchronous
clock and incorporate wait states whenever the data is not ready. Note that the varia-
tion between instruction decode times varies less than for individual symbols as would be
expected for uncorrelated input data.

Figure 13 shows the distribution of decode times for full 32-byte cache lines.

| imm |

Alignment | Buff
Network nput Bufter
Shift, Reload Bypass
Sequencers Capacitor
Adder Match Logi
Offset Register atch Logic
Length ROM Clock
end Control
Signal Buffers Code ROM
Output
/0O Pad Cell Buffer

Figure 14. Floorplan and layout of the decoder test chip

6.2: Fabrication Results

The circuits described in this paper have been designed and laid out using the Mentor
Graphics design suite and the MOSIS CMOSX 0.8y process using 3 metal layers. The
layout is all custom and contains about 6100 transistors, and it contains no standard cells,
except for few inverters, NAND gates, and registers. The complete circuit including the
input and output registers fits within a 1240 g x 800 u region for a total area of under
1 mm?. Since the layout is somewhat irregular, approximately 0.25 mm? of this space
could be used for other circuits resulting in a net area of 0.75 mm?, which corresponds
to an area of at most 3 Kbytes of ROM. The test chip uses shared I/O pins to reduce

100

(o]
o

S70r .
S ve
=601 Rt 750
5 s S
o . <
5501 S @
o y c
S e © k
40 o g 50
] Sse® o
£30f - €
F - @
T 20f . 25,
2 .
©10f e 1.4V
2 -
0 - L L L o L L L L
0 20 40 60 80 0 20 40 60 80 100
Estimated Time per Output Word (ns) Power (mw)
Figure 15. Timing measurements Figure 16. Power measurements

packaging costs and thus only has 60 pads. Figure 14 shows the floorplan and layout of the
test chip.

Figure 15 shows the comparison of measured and estimated decode times for a sample
of 50 individual instructions. The times roughly correspond to those of Figure 12, but they
take into account pin delays associated with the input handshake, which can cost up to
20 ns. The distribution does not correspond to real data, rather it was chosen to cover the
range of possible times. The correlation between the measured and estimated times is quite
strong, which gives credibility to our simulations. On average, the fabricated chip decodes
a 4-byte instruction 6 ns faster than as predicted by simulation (see Figure 15). This would
put the average cycle time at 9.7 ns, i.e., the time to generate one decoded output byte.
The resulting average input processing rate is 560 Mbit/second.

Figure 16 shows the chip power consumption while running at maximum speed. Mea-
surements were taken at room temperature for different supply voltages. The power is
virtually independent of the processed data, since increased complexity of the computation
results in slower internal cycles. The chip consumes up to 100 mW at 5 V. At 2.5 V the
chip runs about half the speed, but power is cut to 10 mW. Note that, since the chip is
asynchronous, power is consumed essentially only during the actual cache refill; at all other
times, the system is on standby, and only leakage current occurs.

7: Advantage of the Asynchronous Solution

We now compare our asynchronous design with potential synchronous implementations.
All timing data is based on simulation results.

The cycle breakdown of Figure 10 shows that the times T4 and partially T7 represent
pure asynchronous overhead. This overhead thus amounts to about 3 ns each cycle, which
is on average about 25% of the cycle time. Therefore it may seem that synchronous solution
would eliminate this overhead and actually be faster.

However, a synchronous solution faces problems that result in worse performance. It
is possible to build a synchronous decoder based on our datapath — including Alignment
Network, Match Logic, Length ROM, Code ROM, and the Adder. Assuming each cycle
produces one output byte, the evaluate phase of the system clock needs to be at least as

long as the longest possible datapath delay: it must take at least 8 ns. Since the Input
Buffer needs to be shifted on the falling edge of the system clock, the Input Buffer needs
to incorporate multiplexers to select the correct data to be loaded into each 8-bit register.
Not only would this increase the hardware complexity, but the propagation delay through
these muxes would add time to the evaluate phase of the system clock, making it at least
10 ns. Now, assuming at most 60-70% duty cycle of the clock, the cycle time would end
up being 15 ns, at minimum.

Another more realistic solution would provide two overlapping clocks, one used to control
the dynamic logic, and to latch the results of the Adder. Another clock would be used to
update the Input Buffer during the precharge phase of the main clock. A clock period of
14 ns for this solution seems realistic.

In any case, the asynchronous design would be 20-30% faster. Moreover, we are now
working on the next version of the asynchronous solution, which would include a better
clocking scheme with overlapping phases. We anticipate that we may be able to eliminate
some of the asynchronous overhead and shorten the average cycle time to about 8 ns. In
this case, the asynchronous design would be at least 75% faster than the synchronous one.

8&: Conclusions

The design presented in this paper illustrates a practical Huffman decoder based on
asynchronous circuits. A variable-input-rate, variable-output-rate architecture allows the
overall circuit to be optimized for the most common inputs. These circuit optimizations
allow the fastest inputs to be processed more than twice as fast as the slowest inputs.
Furthermore, due to the skewed distribution of symbols in Huffman-encoded data, the
typical performance is 75% faster than the worst-case performance. By combining these
techniques with new circuits for length detection and symbol lookup, as well as by using
aggressive dynamic logic circuits, we have achieved a performance of 560 Mbit/sec. Our
design is significantly smaller than comparable synchronous decoders, yet has a higher
throughput rate than almost all existing designs.

References

[Choi95] S. Choi and M. Lee, “High Speed Pattern Matching for a Fast Huffman Decoder”, IEEE
Trans. On Consumer Electronics, v. 41, no.1, pp. 97-103, Feb. 1995.

[Davis95] A. Davis and S. M. Nowick, “Asynchronous Circuit Design: Motivation, Background and

Methods”, Chapter in Asynchronous Digital Circuit Design, pp. 1-49, Springer-Verlag
(Workshops in Computing Series, 1995).

[Furber94] S.B. Furber, et al., “The Design and Evaluation of an Asynchronous Microprocessor”,
ICCD ’94, pp. 217-220, Oct. 1994.
[Furber97] S.B. Furber, J.D. Garside, S. Temple, J. Liu, P. Day and N.C. Paver, “AMULET2e: An

Asynchronous Embedded Controller”, Async97, pp. 290-299, Apr. 1997.

[Hashemian94] R. Hashemian, “Design and Implementation of a Memory Efficient Huffman Decoding”,
IEEE Trans. On Consumer Electronics, v. 40, no. 3, pp. 345-351, Aug. 1994.

[Huffman52] D. A. Huffman, “A Method for the Construction of Minimum Redundancy Codes”, Proc.
IEEE, v. 40, no. 10, pp. 1098-1101, Sept. 1952.

[Kessels97] J. Kessels and P. Marston, “Designing Asynchronous Standby Circuits for a Low-Power
Pager”, Async97, pp. 268-278, Apr. 1997.
[Kozuch94] M. Kozuch, and A. Wolfe, “Compression of Embedded System Programs”, ICCD ’94,

pp. 270-277, Oct. 1994.

[Martin89]
[Matsui94]
[Nielsen96]

[Nowick96]

[Nowick97]

[Onoye95]
[Park95]
[Rudberg96]

[Wolfe92]

[Wei95]

[Yun97]

A.J. Martin et al., “The Design of an Asynchronous Microprocessor”, Caltech Conference
on Very Large Scale Integration, 1989.

M. Matsui, et al., “200 MHz Video Compression Macrocells Using Low-Swing Differential
Logic”, ISSCC 94, pp. 76-77, 1994.

L.S. Nielsen and J. Sparso, “A Low-Power Asynchronous Data Path for a FIR Filter
Bank”, Async96, pp. 197-207, Nov. 1996.

S.M. Nowick, “Design of a Low-Latency Asynchronous Adder Using Speculative Comple-
tion”, IEE Proceedings - Computers and Digital Techniques (UK), v. 143, no. 5, pp. 301-
307, Sept. 1996.

S.M. Nowick, K.Y. Yun, P.A. Beerel and A.E. Dooply, “Speculative Completion for the
Design of High-Performance Asynchronous Dynamic Adders”, Async97, pp. 210-223, Apr.
1997.

T. Onoye, et al., “HDTV Level MPEG2 Video Decoder VLSI”, International Conference
on Microelectronics and VLSI, TENCON ’95, pp. 468-471, 1995.

H. Park, J. Son and S. Cho, “Area Efficient Fast Huffman Encoder for Multimedia Appli-
cations”, 1995 ICASSP, pp. 3279-3281.

M. K. Rudberg and L. Wanhammar, “New Approaches to High Speed Huffman Decoding”,
1996 ISCAS, pp. 149-152.

A. Wolfe and A. Chanin, “Executing Compressed Programs on an Embedded RISC Ar-
chitecture”, Micro-25, the 25th Annual International Symposium on Microarchitecture,
pp- 81-91, Dec. 1992.

B.W.Y. Wei and T.H.Meng, “A Parallel Decoder of Programmable Huffman Codes”, IEEE
Trans. on Circuits and Systems for Video Technology, v. 5, no. 2, pp. 175-178, Apr. 1995.

K.Y. Yun, P.A. Beerel, V. Vakilotojar, A.E. Dooply and J. Arceo, “The Design and Verifi-
cation of a High-Performance Low-Control-Overhead Asynchronous Differential Equation
Solver”, Async97, pp. 140-153, Apr. 1997.

