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Poor posture or extra stress on the spine has been shown to lead to a variety of spinal disorders including
chronic back pain, and to incur numerous health costs to society. For this reason, workplace ergonomics is
rapidly becoming indispensable in all major corporations. Making the individual continuously aware of poor
posture may reduce out-of-posture tendencies and encourage healthy spinal habits. Spine stress can also
worsen existing structural deformities in the spine such as adolescent idiopathic scoliosis (AIS). In this work
we developed a system to monitor spine health through both dynamic monitoring and structural imaging. The
dynamic sensing method monitors spine stress in real-time by detecting poor back posture and strain on the
back due to prolonged sitting or standing, and provides real-time user feedback when poor posture is sustained.
The imaging method extracts the structural curvature of the spine and is used for the diagnosis of AIS in a
non-invasive and inexpensive manner. Namely, the image is obtained using a photograph where the spinous
processes have been marked to trace the shape of the spine. The spine curvature is then extracted automatically
and modeled by a curve-fitting polynomial. The approach is simple and practical and allows scoliosis patients to
monitor their curvature progress from home while minimizing the use of X-rays. The theme of our work is spine
health, which we monitor through the wireless sensing system and the orthopedic imaging system. The two
are complementary: the mobile wireless system assesses spine health during daily activity while the imaging
system can assess the progression of a patient’s structural spine curvature. We demonstrate effectiveness
of our sensing system in simultaneously monitoring posture and position by testing in numerous situations.
Furthermore, experiments show that our imaging method is accurate and robust under different brightness
conditions. X-ray data used for this study was obtained from the international, electronic database of surgical
cases of AIS, Scolisoft®.
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1. INTRODUCTION
Spine stress caused by poor back posture or extensive standing
or sitting in fixed positions can result in pain and discomfort,
and may lead to unpleasant changes to soft tissue and bone,
resulting in bone spurs and intervertebral disc damage, and other
spinal musculoskeletal disorders.1 The resulting back pain can
eventually become chronic. These spinal problems are a burden
to society because of the high costs of health care incurred as
well as the negative repercussions as to employee disablement,
absence from work, and the individual’s overall life quality. Poor
posture is common among adolescents as well as employees
who work for prolonged hours. It is estimated that about 80%
of adults will experience back pain at some point in life, and
roughly 10% of those will suffer a relapse.2 Moreover, spinal
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injuries are second only to the common cold as a cause of
absence from work, with many of these problems emerging from
poor posture habits. Since more spinal problems will inevitably
lead to higher health costs and lower productivity, helping peo-
ple maintain healthy spinal habits and reduce spine stress during
daily activity is of considerable benefit. In particular, we found
that making the user continuously aware of poor posture will
reduce out-of-posture tendencies and encourage healthy spinal
habits.3 Increasing patient awareness of poor posture means that
the patient can use her own back muscles to correct the spinal
curvature, instead of using external support devices which could
cause physical and psychological discomfort.3

Poor posture and spine stress can also worsen existing
spinal deformities such as adolescent idiopathic scoliosis (AIS).
Scoliosis is a spinal deformity characterized by lateral curva-
ture of the spine. Serious cases of scoliosis affect the digestive,
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cardiovascular, and nervous systems,4 and can cause distressing
symptoms of pain and result in cosmetic deformities.5 Scoliosis
at early stages remains undetected for many patients because of
their lack of awareness of the existence of the condition. In a
significant number of patients, early stages of scoliosis are pro-
gressive, usually increasing in symptoms as the patients grow
older.6

For a complete assessment of spine health, we have devel-
oped a mobile sensing system which monitors spine stress in
real-time, and an imaging method that allows simple, inexpen-
sive, and non-invasive diagnosis of scoliosis that can be used
for initial screening and tracking of curvature progression. The
mobile sensing system monitors the patient through daily activ-
ity, while the imaging method can provide an approximation of
the patient’s structural curvature. This approximation can help
the patient monitor her condition on her own when a physician
is not available, but it should not replace or eliminate the need
for expert medical diagnosis by physicians.

The mobile sensing system simultaneously monitors back pos-
ture and patient position (sitting, standing, and walking). For poor
posture, the system provides feedback to the patient in the form
of a text message when the time spent out-of-posture exceeds a
threshold that can be specified by the doctor. For patient posi-
tion, the system monitors increased pressure on the back due to
undesirable positions such as standing or sitting in a fixed posi-
tion for a long period of time. The system measures the weight
at the user’s feet and detects whether he or she is standing, sit-
ting, or walking at any given time. Furthermore, a daily summary
report is automatically generated and provides an account of the
amount of time during the day that the patient is standing, sit-
ting, or walking, as well as daily information related to posture
angle and severity of poor posture. We used an inclinometer to
measure posture and load cells, positioned at the soles of the
feet, to measure weight. Data from the sensors is acquired and
transmitted wirelessly to a central processor, allowing storage of
data for tracking of the patient’s progress. Furthermore, a graphi-
cal animation of the patient that mirrors her posture and position
is displayed in real-time on the central processor. Finally, all
sensor data is stored in a database that can be used for post-
processing analysis to track the patient’s spine stress progression
over time.

The imaging method, on the other hand, allows the extraction
and measurement of a patient’s scoliosis curvature by using a
photograph of the back, after the spinous processes have been
marked. The figure of merit used for this diagnosis is the ‘Cobb
Angle’, described in Section 4. A sequence of image processing
steps are applied to segment the image and extract the spine
curvature leading to the calculation of the Cobb angle.

The rest of this paper is organized as follows: Section II
presents existing techniques which measure posture in real time
as well as imaging techniques that have been developed for struc-
tural assessment of spine health. Section III describes the mobile
sensing system including approach, device design, and the algo-
rithms we implemented, and presents experiments verifying the
effectiveness of the system. Section IV describes the imaging
system for scoliosis diagnosis, including image acquisition, fea-
ture extraction, and curvature measurement, and presents results
verifying accuracy and robustness. Finally, Section V concludes
with a summary of our findings and future work.

2. RELATED WORK
The use of sensor technology for dynamic monitoring of spine
health has generally been limited. Some of the existing systems
for monitoring spine health typically include X-rays and pho-
togrammetric systems. However, these systems cannot monitor
spine during daily activity and thus cannot provide the awareness
that comes with monitoring and user feedback. Some systems
that can be used for dynamic monitoring of spine health include
electromagnetic tracking systems and potentiometric goniome-
ters, and are discussed in Ref. [7] along with their limitations.
Another system, designed specifically for posture monitoring,
was proposed in Ref. [3]. The system uses accelerometers and
gyroscopes. It is a smart garment that monitors poor posture
of the spine during daily activities and provides corresponding
feedback signals to the user through a buzzer. The system was
able to prove the effectiveness of user feedback in correcting
posture. Data processing was local using microcontrollers. Other
related work for dynamic activity monitoring, but unrelated to
spine health, includes ‘The Mobile Sensing Platform’,8 which
describes a small wearable device that uses multimodal sensors
to monitor physical activity to encourage physical exercise and
healthy habits. There have also been studies to monitor the pos-
ture habits of patients and provide corresponding feedback, as in
Refs. [7, 9].

For structural assessment, traditional and popular techniques
to diagnose the scoliosis curvature of the spine include anal-
ysis of radiographic images, which subjects patients to harm-
ful radiation. More modern techniques in the literature include
electromagnetic, photogrammetric and ultrasonic means of image
acquisition, although these are not yet widely used and rely in
most cases on complex medical equipment such as scanners, opti-
cal machines, and high resolution equipment. Some of the most
recent techniques or machines found are summarized in Table I.

3. MOBILE SENSING SYSTEM
In this section we describe the mobile wireless sensing system
for dynamic monitoring of spine stress.

3.1. Wearable Device Components
We used an inclinometer (Digi-key; part# 551-1017-ND) (1), a
device which measures the positive and negative angles in a given
plane, to measure the forward bending angle of a person’s back.
As for the weight, we used load cells fixed inside one’s shoes (2).
The load cells (measurement specialities; part# MSP6954-ND),
measure the strain placed by each foot. As for the wireless
link between the sensors and the base station, we used a Wi-Fi
data acquisition device (National Instruments; NI-WLS 9215) (3)
which wirelessly transmits the sensor data it receives to the base
station. (4) is the battery used to power the sensors and DAQ
module. The components are shown in Figure 1. The system
when worn by the patient, with a comfortable attach and pocket
for inclinometer, is shown in Figure 2.

3.2. Measuring Inclination
In order to measure the forward bending angle of the user’s upper
back, and thus determine to what extent the user is bending down,
we fixed the inclinometer at the neck, at the intersection of the
shoulders and the spinal cord. We experimented with placing it
at different positions and found.
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Table I. Some techniques to measure structural curvature.

Type Advantages Disadvantages

Ortelius 80010�11 Electromagnetic High correlation with Cobb angle
measurements, intra and inter examiner
reliability

Expensive, not portable, Not suitable
for patients with metallic implants

ISIS212�13 Photogrammetric Radiation free, fast Complex equipment
ISIS112 Photogrammetric Radiation free, no palpation required, fast,

generally less expensive than other
techniques

Complex equipment, patient’s build or
position may cause erroneous
results, not portable

Zebris14 Ultrasonic Radiation free, high measurement accuracy Expensive, complex ultrasound
equipment, not portable,
uncomfortable

CA 600015 Mechanical Radiation free Complex equipment, may be
uncomfortable

The requirement of the inclination algorithm is to detect when
the angle made by a person’s back exceeds the angle threshold for
a sustained period of time. The two parameters of the algorithm
are the angle threshold Tp and the time threshold Tt , which can
both be specified by the doctor or user. The algorithm starts by
reading streaming posture angles continuously. To perform the
analysis, it averages the values coming in every stream and con-
tinuously compares each average to the angle threshold. If the
stream average exceeds the angle threshold, a timer starts. If the
user adjusts his or her posture within the time, then no warning
message is sent and the algorithm restarts. If the user does not
correct his posture within the time threshold Tt , a message is
automatically sent to the user’s mobile device (e.g., cell phone)
warning him/her to correct his/her posture. Every time the aver-
age of a stream is calculated, the angle and the corresponding
timestamp are saved. The timestamp corresponds to the time at
which the last value in the stream was sampled. A pseudocode
of this algorithm can be found in Figure 3.

The reason that average values of a certain number of the incli-
nation angles are considered rather than individual values is to
render the algorithm more robust to temporary variations. In this
way, if a user bends down for an insignificant period of time,
the timer is not triggered. Similarly, if a user only temporar-
ily straightens his or her back and then returns to an incorrect
position, the timer is not reset and the user will be judged to
have remained the whole period of time in an incorrect posture
situation.

Fig. 1. Wearable components of spine stress monitoring system: Incli-
nometer (1), Load cells (2), Wireless DAQ (3), and battery (4).

3.3. Measuring Strain and Position
Load cells placed in the user’s shoes are used to measure the
stress exerted on the spine during the day. This allows the patient
to determine how much strain was placed on the spine over the
course of a day due to prolonged standing or sitting in fixed posi-
tions. Such analysis can be useful not only for spine health but
also for improving the user’s fitness if it is found that the user
does not engage in sufficient physical activity. Different activities
and positions may be preferable for different users, depending
on that person’s age and health condition. Note that the use of
strain data is not limited to monitoring patient position, which
we have demonstrated as an example application, but it can also
be used to monitor increased pressure on the back due to con-
tinuous lifting of heavy items, or to detect imbalance in walking
resulting from structural spinal conditions such as adolescent
idiopathic scoliosis. The requirement of the strain detection algo-
rithm is to determine the position of the user at every sampled
period of time. Position takes on categorical values: ‘walk’, ‘sit’
or ‘stand’. Then analysis can be performed to determine for how
long the user was standing, sitting, or walking. As before, we
based our analysis on the averages of streams of data rather
than on individual values. For every stream, the output of the

Fig. 2. Spine stress monitoring system worn by patient.
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Fig. 3. Inclination algorithm.

algorithm is ‘sit’, ‘stand’, or ‘walk’. The data of both load cells,
one in the left foot and one in the right, is collected and analyzed
as follows:
(1) If the difference between the weight values of the two load
cells in each foot is “large”, then the person is walking at that
particular instant of time
(2) If the difference is “small”, then the person is either standing
or sitting.
(3) If the difference is “small” and the average of the actual val-
ues are “small” then the person is sitting; otherwise, the person
is standing.

The definitions of “large” and “small” are also parameters that
are user-defined and that are usually dependent on the weight
and build of the person. For example, less heavy people will
need a lower threshold to be judged as standing. As before the
output for every stream is saved and the values and corresponding
timestamps are then stored in the database.

3.4. User Interface
The user interface allows the user or doctor to specify the pref-
erences for a number of parameters and thresholds. Moreover, it
allows real-time monitoring of both numerical and graphical data
related to the user’s activity. The doctor can use the graphical
display to monitor the distant patient using Wi-Fi to visually and
easily track the patient’s status. The graphical display is in the
form of an animation figure that mirrors the posture and position
of the user in real time (shown in Fig. 4). This display serves not
only for monitoring but also as a test for accuracy by comparing

the display with the user’s actual position. The graphical display
indicates whether the user is sitting, standing or walking. In case
the user is sitting, the graphical display changes according to his
or her back posture.

3.5. User Feedback
User feedback is implemented in two forms: a real-time text
message when sustained bad posture is detected, and a summary
report of the day’s activities that is sent by email to the user at
the end of the session. The SMS message is received by the user
when incorrect posture is detected. The summary report, which
is sent by email, is generated at the end of the day from the

Fig. 4. User interface.

4



R E S E A R CH AR T I C L EJ. Med. Imaging Health Inf. 1, 1–8, 2011

Fig. 5. Inclination chart.

database where the data is stored. The report contains informa-
tion such as the average posture angle per day, the number of text
notifications sent per day, the percentage of time during the day
spent sitting, standing or walking, and other relevant information.

3.6. Experiments and Results
3.6.1. Inclination
We tested the inclinometer in a variety of scenarios. Figure 6
shows one of the tests, where the user was first in a correct
posture position, then bent over, and then briefly straightened up
before going through a period of fluctuation. We verified that
after the user bent down below the threshold, the timer started.
If the user spends the specified amount of time in an incorrect
position, a message is sent to her cell phone in real-time with
minimal delay. And as the user bent down, the animation figure
in the interface mimicked the user’s actions, and bent down its
back in proportion to the user’s bending.

3.6.2. Strain and Position
Similarly, we tested the load cells in several different scenarios
comprising walking, sitting, and standing. Figure 7 shows the
results of one such test case. As can be seen from the figure,
when the user was sitting, the mean of load cells was low and the
mean of difference was low. When she was standing, the mean
of load cells was high and the mean of difference was low. When

Fig. 6. Strain chart.

Fig. 7. Approach employed for cobb angle derivation.

she was walking, both were high. Furthermore, the animation
figure in the graphical display was able to successfully mimic
the user in real-time; he stood when the user stood, walked when
she walked, and sat down when the user sat down.

4. IMAGING SYSTEM
Here we describe a simple, inexpensive and noninvasive method
to automate the assessment of the degree of a user’s scoliosis
condition using a photograph of her back. The figure of merit
that we use to determine the degree of severity of a patient’s
condition is the Cobb angle, described and shown in Ref. [5].
Several image features need to be identified for the derivation
of the Cobb angle, which is defined as the angle made by the
two lines perpendicular to the most deviated vertebrae on either
side of the apex of the curve, and is considered the ”golden stan-
dard” for scoliosis diagnosis.5 The apex of a curve is the farthest
position from the cranial (neck) vertebrae. Thus, to evaluate the
Cobb angle, it is required to identify first the apex, and then the
most deviated vertebrae on either side of the apex-also known as
the upper and lower-end vertebrae,5 and then the lines perpen-
dicular to the curve at these vertebrae. The procedure is usually
done manually by a medical examiner using an X-ray image of
the patient’s spine. Naturally, as the Cobb angle increases, the
severity of the curve increases.

The approach comprises four stages. The first stage involves
acquiring the 2-D image by taking a photograph or tracing
an X-ray. The second stage comprises image segmentation and
object detection using digital image processing and by applying
a dynamic thresholding algorithm. The third stage involves fea-
ture includes the Cobb angle derivation and diagnosis using the
output of the previous stages. Figure 7 shows a block diagram of
the approach employed to calculate the Cobb angle. The steps are
described in the subsequent sections. Note that all stages, except
for image acquisition, are automated in software.

4.1. Image Acquisition
To obtain the image, we start by tracing the spinous processes on
the back of the patient and marking them with adhesive mark-
ers. The inherent assumption is that the lateral curve obtained by
tracing the spinous processes corresponds to the scoliosis curve,
an assumption which is shared by several techniques in the litera-
ture such as the Ortelius800,10�11 ISIS12�13 and Zebris.14 We then
take a photograph of the patient’s back and run the sequence of
automated image processing steps on the photograph. A simple
camera of average resolution quality will suffice, and no other
equipment is required.
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4.2. Image Segmentation
The goal of this stage is to isolate the spine curve from image
noise, image background, and other image objects, for further
processing and feature extraction. We had to account for the fact
that different objects in the photograph other than the spine trace
may be detected. Moreover, we had to account for conditions
such as varying brightness and lighting of the photograph and
varying skin color. We start segmenting the image by converting
the RGB color image into a grayscale image and then dynami-
cally assigning a threshold that converts the grayscale image into
a binary image. Pixels that fall below the threshold are part of the
background and not the spine curve, and are hence rejected from
the image. This step is the first step in isolating the spine and
is a preprocessing step for object detection. Since objects other
than the spine-such as back contour or light from the camera-
may also be identified as part of the foreground, the next step is
to label the image to detect its different objects or ’blobs’. We
then find the areas of all detected objects. We assume that the
object of interest, namely the spine, is the object with the largest
area, and hence we reject all other objects from the image by
setting their pixel values to zero. Finally, we proceed to ”skele-
tonizing” the spine image to transform it into a single-pixel-thin
line. This step is required for feature extraction in the next stage.
The photograph at the different processing stages is shown in
Figure 8.

Depending on the amount of light, the color of the person’s
skin, the colors of the background, and other such factors, the
threshold could be different for each image. To account for this

Fig. 8. Spine curve using spine isolation steps.

we opted for dynamic threshold selection based on the brightness
content of the image. We used an iterative segmenting algorithm
based on image histogram analysis that finds the optimal middle
threshold. The histogram shows the frequency content or number
of pixels for each of the 256 levels in the grayscale image, as
shown below in Figure 9 for the same photograph where the
brightness level has been changed from dark to bright.

4.3. Feature Extraction Using Non-Linear Regression
Modeling

Once the spine curve has been isolated, the next step is to use the
resulting image to obtain a mathematical model of the curvature.
This model is used to extract the features that are needed for the
Cobb angle derivation and that are described at the beginning of
the section: the apex of the curve, the upper and lower-end verte-
brae, and the lines perpendicular to the curve at these vertebrae.
We use the model to approximate these features by characteriz-
ing mathematical points of interest on the curve. Namely, given
an image we apply a transformation T :

T �I� � I�px�py�→ P�x�

where px and py are 2-D pixel values, and P�x� is a non-linear
polynomial representing the scoliosis curvature of the spine. The
curvature patterns of the polynomial can be determined by solv-
ing the equation P ′′�x� = 0, which yields the inflection points.
The position of the apex (usually turning out to be the global
maximum or minimum of the curve) is approximated by the
point whose y-value is the farthest from the cervical end of the
curve, and the positions of the upper and lower-end vertebrae are
approximated by the closest inflection points on either side of
the apex. Note that in choosing the inflection points we take only
real roots and reject any complex solutions. The perpendicular
lines are the tangents at the inflection points.

Fig. 9. Histogram content and optimal threshold for bright and dark image.
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To obtain the model, we use the pixel-thin and isolated spine
produced by the previous stage. We first rotate the spine, origi-
nally oriented in the vertical direction, in the counter-clockwise
direction such that it becomes horizontally oriented. The purpose
of this step to allow for the transformation of the image into a
function. We then extract the spatial coordinates of the pixels of
the spine and use a least-squares non-linear regression function
to fit the coordinates to a polynomial curve. We experimented
with polynomials of different degrees and found that a polyno-
mial of degree seven gives the best combination of accuracy and
robustness. Once the polynomial model is obtained, we extract
the required apex, inflection points, and tangents.

4.4. Cobb Angle Derivation and Diagnosis
The final stage is the Cobb angle calculation based on the identi-
fied features of the curve. We use the tangents constructed at the
inflection points of the obtained polynomial and find the angles
of each of the tangents with the horizontal. The sum of the two
angles is the Cobb angle of the curve, as can be seen in Figure 10.
The fitted plot is superimposed over the pixel plot and the inflec-
tion points are marked with stars on the figure. The tangents are
drawn passing through the points and the Cobb angle is the acute
angle of the curve. Note that according to the scoliosis condi-
tion of the patient, the spine may have a minor (much smaller)
curve-also known as a compensatory curve-alongside the major
curve. It may also have two major curves, the resulting condition
known as a ‘double major curve’. In all such cases, our method
would ideally extract the Cobb angle of the largest curve, i.e.,
with the apex of largest magnitude.

4.5. Experiments and Results
We had two experimental setups to test our method:
Setup 1: System accuracy: This tests the mathematical accuracy
of our method. We used X-rays of scoliosis patients from the
electronic database Scolisoft,® that have already been diagnosed
by orthopedic surgeons. Cobb angle measurements from our sys-
tem are compared with these X-rays.
Setup 2: Robustness: This setup tests the digital image process-
ing aspect of our method, mainly the spine isolation and object
detection approach. The purpose is to evaluate the validity of
image analysis using a photograph. We used photographs taken
of the back of a healthy volunteer. We varied several parame-
ters while taking the photographs to ensure a variety of different
scenarios.

4.5.1. System Accuracy
We evaluated the results of our implementation against 31 cases
picked randomly from the Scolisoft database. We traced the

Fig. 10. Input photographs simulating different skin color.

Table II. Relative error for the same photograph under different bright-
ness conditions.

Brightness Cobb angle Relative error
(in increasing levels) (in degrees) compared to actual (%)

Level 1 (darkest) 72 2.8
Level 2 70 0
Level 3 69 1.4
Level 4 (brightest) 69 1.4

Table III. Reliability test for different photographs of the same back.

Cobb angle Relative error
Photographs (in degrees) compared to actual (%)

Image 1 72 2.8
Image 2 72 2.8
Image 3 69 1.4
Image 4 (brightest) 67 4.3

database X-rays on a white background and used them as an
input to our program. Note that for this setup we used a simplified
version of our image processing method whereby object detec-
tion is not needed as edge detection will suffice for extracting a
black spine on a white background. We compared the resulting
Cobb angle measurement with the actual doctor’s diagnosis of
the major Cobb angle. Out of the 31 cases, 27 runs were able
to pick out the major Cobb angle while in the other 4, the angle
of a minor curve was extracted. Of the 27 successful runs, we
obtained an average relative error of 6.01% with 14 cases below
6% and 9 cases below 3%. Moreover, we obtained an average
error in degrees of 3.6 with 14 cases below 3 and 6 cases below 2.
It is important to note, however, that this test does not fully test
our photogrammetric technique; it tests the validity of our curve
representation and linear regression modeling method. Tests on
photogrammetric robustness are presented in the next section.

4.5.2. Robustness of Image Segmentation
We tested the photogrammetric technique using photographs of
a healthy volunteer whose back was marked so as to simulate
a scoliosis spine. Our manual estimate of the Cobb angle was
70 degrees. First we used one photograph and varied the bright-
ness to obtain quasi-different scenarios that simulate different
skin color.

The input photographs are shown in Figure 10 and the results
are shown in Table II. Note how the four photographs, despite the
difference in brightness, yielded approximately the same result,
which shows that our dynamic segmentation approach is robust
enough to withstand changes in the brightness of the photograph.

Then we compared the results of different photographs taken
of the same back with the same curve of 70 degrees. The results
are shown in Table III. The different photographs gave very simi-
lar results, once more demonstrating the robustness of our image
segmentation method under different conditions.

Note that we also took a photograph of this curve when flash
was on. Flash proved to be problematic because it caused a bright
spot to fall on the marked ’dark’ spine and thus the corresponding
region was identified by the thresholding algorithm as part of the
background pixels rather than the foreground.

5. CONCLUSIONS AND FUTURE WORK
We have developed a mobile sensing and imaging system for
complete assessment of spine health from both a dynamic and
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structural perspective. The wireless mobile sensing system mon-
itors spine stress during daily activity while the imaging system
provides a simple, inexpensive, and portable means of identify-
ing and monitoring the progress of a patient’s scoliosis condition,
and this can be carried out by the patient at any time while min-
imizing exposure to X-rays.

The sensing system can achieve real-time monitoring of both
poor back posture and stress on the spine deduced through mea-
surements at the feet. It ensures patient awareness of poor pos-
ture in real-time through user feedback by SMS, encouraging the
persistence of healthy spinal habits and reducing poor posture
tendencies. For our given experiments, the system demonstrates
high accuracy in identifying posture and position combined with
a relatively inexpensive cost.

The imaging system is able to find the Cobb angle in an
automated, non-invasive and simple fashion. We introduced a
photogrammetric digital image processing approach based on
dynamic thresholding and object detection for isolation of the
spine object, and an automated approach for Cobb angle fea-
ture extraction using a non-linear regression model of the spine.
Results, based on comparison with X-ray images, verified the
accuracy of the mathematical method, and robustness of the
photogrammetric method was shown under different brightness
conditions that simulate different skin color. Compared to past
techniques, this imaging technique approach is inexpensive, sim-
ple, portable, and requires no complex equipment. Note, however
that this system is to be used by the patient as an initial screening
or for regular progression monitoring from home. It should not
replace or eliminate the need for professional medical diagnosis
by expert physicians.

To fully verify the accuracy and reliability of the imaging
method, further experiments are needed where the full approach
is tested by taking photographs of real scoliosis patients whose
curvature angles are known. Moreover, the mobile system can be
further productized for mass consumption by using smaller sen-
sors and acquisition device. Finally, the goal is to have the two
systems fully integrated whereby the database for each patient
contains both dynamic and structural spine health data that can be
mined to find patterns and correlations between the two subsys-
tem outputs and generate user recommendations and notifications
accordingly. Such a system can then- with use of appropriate

interfaces to the sensors and data transmission- enable the devel-
opment of a mobile phone application that helps users continu-
ously and easily track and monitor their spinal health.
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