

Energy-Efficient Mobile Gesture Recognition with

Computation Offloading

Noura Farra
1
, Giuseppe Raffa

2
, Lama Nachman

2
and Hazem Hajj

1

1
Department of Electrical and Computer Engineering

American University of Beirut

Beirut, Lebanon

{naf08, hazem.hajj}@aub.edu.lb

2
Interaction and Experience Research

Intel Labs, Intel Corporation

Santa Clara, CA (USA)

{giuseppe.raffa, lama.nachman}@intel.com

Abstract— Gesture recognition is a novel and compelling user

input modality which allows users to interact quickly and

naturally with their devices with less demand on their visual

attention. Continuous gesture recognition places stringent

demands on device power consumption, battery life and

processing capability. In this work, we show that we can reduce

the energy consumed during continuous gesture recognition on a

mobile device with the delegation of the pre-processing stages,

which filter out non-gesture segments, to a low power node that is

separate from the main CPU. The main CPU can thus be kept in

stop mode until a potential gesture is detected by the low power

node, invoking the main processor to perform the computation-

intensive gesture classification to detect which exact gesture has

been performed by the user. We present details of the processing

performance and power consumed at each step of the processing

pipeline, showing the extent of power savings achieved.

Experiments were conducted for detailed evaluation of the power

consumption of the optimized gesture pipeline.

Keywords-continuous gesture recognition, energy-efficiency,

movement detection, template matching, 3D accelerometer and 3D

gyroscope, HMM

I. INTRODUCTION

Gesture recognition on mobile and hand-held devices is a

compelling interaction modality that allows users to interact
with their devices on-the-go without having to pay visual
attention to or be limited by a traditional interface such as
keyboard, textual interface or touch screen. Detected gestures
can trigger functions from any gesture-enabled application that
is running such as music player, games, calendar, voice mail,
phone calls, etc. Gesture recognition is part of a larger
computing paradigm aimed at making devices aware of their
users’ context and intentions hence enabling more natural
human-machine interaction.

 Like other context-sensing applications, gesture
recognition requires continuous capture of data from sensors –
which places stringent demands on the device power
consumption, battery life and processing capability.
Continuous capture and filtering of non-gestural data from the
sensors force the main CPU to stay active consuming power

while waiting for a true gesture to be performed. While most
existing work relies on having the user explicitly indicate the
start and stop of gestures to improve accuracy and reduce
computational overhead, we found that such a solution is
cumbersome from a usability perspective. In this work, we
delegate the preprocessing tasks to a low-power processing
node that enables the main CPU to go into a stop mode until a
potential gesture has been detected.

In previous work [1], we developed an efficient pipeline for
continuous gesture recognition based on data from 3D
accelerometer and gyroscope sensors and we proved that
adding a gyroscope results in accuracy improvement over an
accel only approach. The system was designed to automatically
detect potential gestures from continuous input data streams.
The front-end consisted of low computation pre-processing
stages which classify gestural segment data from non-gestural
movements based on accelerometer features. The back-end
consisted of the computation-intensive Hidden Markov Model
(HMM) and rejection algorithms responsible for classifying the
specific gesture from a set of trained gestural data, leveraging
both gyroscope and accelerometer. While the front-end needs
to run continuously, the back-end only needs to run when a
potential gesture is detected.

While such partitioning is advantageous from a
computation and power perspective, since compute intensive
stages are invoked sparingly, more power savings can be
realized by offloading these low compute stages to low power
micro-controllers as they are more suited for such simple tasks.
Our contributions can be summarized as follows: (1) we
developed a low power sensing subsystem that consists of
sensors connected to a low power micro-controller which
interfaces to the application processor of a mobile device, (2)
We effectively partitioned the processing pipeline for
continuous gesture recognition across the main CPU and the
low power processor and (3) We provide details of the
processing time and power consumption at every stage.

In section II, we discuss related work in gesture recognition
on mobile devices. In section III, we describe the gesture
recognition pipeline and our approach to energy-efficient
gesture recognition by offloading the movement detection and
early template matching stages to the low power processing

node. In section IV we present details of the performance and
power analysis at each stage of the pipeline. We conclude our
findings in section V and discuss future work.

II. RELATED WORK

 Several works in gesture recognition have used camera and
vision-based recognition [2, 3] or camera-enabled mobile
phones [4]. Such systems are not yet practical in real mobile
environments due to limited wearability and high demands on
computation and energy. On the other hand, we focus on
accelerometer and gyroscope based gesture recognition which
is more practically usable in a real on-the-go environment.
Such systems that have been successfully implemented include
the Wii Controller [5], VTT Soapbox [6,7], GeorgiaTech
Watch [8], KAIST Ring [9], and ETH Wearable Computer
[10]. In [5] and [8] the system relies on the user explicitly
indicating the start and stop of gestures which is inconvenient
from a usability perspective. VTT Soapbox [6,7] utilizes
discrete HMM and vector quantization, impacting accuracy. In
[9] only four gestures are considered. In [10] gesture spotting is
discussed but the authors did not consider energy efficiency or
use in mobile settings. A few systems which have been used to
automatically detect gestures from continuous sensor streams
are found in [9,10,11,12]. However, these have shown to have
either higher computation costs such as HMM-based methods
in [12] and analysis-based methods in [10], or lower filtering
rates in threshold-based methods such as in [9,11]. In [13],
authors developed watch-based recognition system based on
discrete HMM. However, the vocabulary is limited to three
gestures with low accuracy, i.e. 93.5%. Furthermore, none of
these systems explored offloading of the pre-processing stages
or examined energy consumption in detail.

From an algorithm perspective, the most used gesture
recognition algorithms are HMM [14], SVM [16], DTW [15]
and Bayesian Networks [17]. The HMM algorithm has been so
far reported to have the best accuracy (up to 98.5%) [14], but it
is the most computationally expensive.

In our work in [1], we adopted a computation-intensive
HMM-based back-end achieving an average gesture
recognition accuracy of 98% and a threshold-based pre-
processing segmentation method with a 4% false positive and
0.1% false negative filtering rates. The system used 3D
accelerometer and gyroscope based gesture recognition and
was implemented on a sensor-enabled wrist watch which
communicated with a mobile device via Bluetooth. The reader
is referred to [1] for detailed approach and experimental
results. In this work, we implement the entire system on an
experimental mobile device and offload the pre-processing
stages to a low-power sensing node and evaluate the
corresponding energy savings.

III. APPROACH TO ENERGY-EFFICIENT GESTURE

RECOGNITION

In this section we describe our approach to energy-efficient
gesture recognition by briefly introducing the gesture
recognition pipeline and describing how we offloaded the
front-end pre-processing to the low power microcontroller.

The pre-processing stages filter out non-movement and
non-gesture data from potential true gestures to be classified by
the HMM algorithm. By partitioning the processing and
offloading the front end, we realize the following benefits :

(1) Reduced data load on the HMM algorithm because we
drop most non-gestural data before the HMM stage

(2) Reduced power consumption during continuous
recognition by allowing the main CPU to go to stop
mode instead of having to stay in active mode to
capture data and pre-process each sample

 We describe below the architecture of the system, followed
by a brief description of the end-to-end gesture pipeline as well
as the pipeline partitioning between the two processors.

A. System Architecture

 We used an internal prototype of a mobile device equipped

with an Intel Atom CPU which operates at a clock frequency

up to 1.9 GHz (“Moorestown” platform). The mobile device

contains an embedded low-power microcontroller that

interfaces with the 3D accelerometer and 3D gyroscope

(among other sensors) and communicates with the main Intel

Atom CPU via an SPI port and GPIOs. The low power node

(LPN) microcontroller is a Cortex M3 processor that can

operate at a variable frequency up to 72 MHz. In the present

work, the LPN has been run at 8MHz, sufficient to implement

the front end algorithms. A diagram of the system is shown in

Figure 1.

Figure 1: System Architecture of low-power gesture recognition system

B. Gesture pipeline

The gesture pipeline we developed consists of the following
stages: (1) Sensors capture, (2) low pass filtering, (3)
Movement Detection, (4) Early Template Matching, (5)
Normalization, (6) Feature Extraction, (7) HMM and Garbage
Model, and (8) Late Template Matching.

Figure 2: Block diagram of partitioned gesture recognition processing
system

Sponsored by the Intel-Middle East Energy Efficiency Research (MER)
Program

Sensor
data

acquisition

Low pass
filter

“ forward -
backward ”
movement
detection

Early
Template
Matching

HMM
Viterbi

Decoding +
“ filler
” model

Late
Template
Matching
Rejection

Low
Power
Node

Main CPU Normalizat
ion

Feature
Extraction

Main

CPU
3D Accel Low

Power

Node

SPI Bus &

GPIOs

I2C

I2C
3D Gyro

Stages 1 – 4 constitute the data capture and front end pre-
processing and are offloaded to the LPN. Stages 5-8 constitute
the computation-intensive back end processing and run on the
Intel Atom CPU. A block diagram of the partitioned processing
system is shown in Figure 2.

In stage (1), data is captured from the 3D accelerometer
sensors at a sampling rate of 100 Hz. To reduce power
consumption, data capture from the power hungry 3D
gyroscope is only triggered when movement from the user is
detected based on accelerometer features. Low-pass filtering
using an Exponential Moving Average filter is subsequently
applied to the signal to eliminate high frequency noise and
sensor noise.

In the Movement Detection (MD) stage, accelerometer-
based segmentation is used to detect a movement from the user
carrying the device. This stage runs after every capture of an
accelerometer sample, buffering samples when movements are
being detected. In case a complete movement segment is
detected, the Early Template Matching (ETM) stage is
triggered to determine if the movement is a gesture or not.

If a movement is classified as a possible gesture by the
early template matching stage, the gesture 6-dimensional data
buffer (3D accel and 3D gyro raw data) is forwarded to the
back-end pipeline for specific gesture recognition by the HMM
and garbage model (HMM + G), followed by a late template
matching stage (LTM) to further reduce the false positives.

Our implementation yielded a 96% discard rate and 4%
false positive rate with the early template matching stage. An
average recognition accuracy of 88% was obtained after the
HMM + G model and a final gesture recognition accuracy of
98% was obtained after the late template matching model with
4% false positives and 0.1% false negatives.

C. Offloading Moving Detection

The movement detection stage is based on calculation of
the 'Hand Force' from each accelerometer sample:

 (1)

where) is a 3D accelerometer sample and is the

gravitational constant.

When the hand force (filtered by a low pass filter) meets a
certain strong threshold HFtS, the movement detection enters
the 'during gesture' state, and consequently triggers capture of
data from the gyroscope. The 'during gesture' state ends when a
certain forward threshold HFtF is met, and the resulting data is
sent to the early template matching stage. The implementation
of the movement detection is based on Forward Backward
Movement Detection (FBMD) in [1];

 The Movement Detection stage should run every 10 ms

after capture of each sample from the accelerometer. If this

stage were to be run on the main CPU, the processor would be

forced to transition between active (C0) and sleep (C6) states at

every 10 ms for each sensor (accel and gyro), consuming

unnecessary active power to sample the sensor data using the

slow I2C bus as well as to process each sample. On the other

hand, offloading the MD stage to the LPN would reduce this

unnecessary overhead. Moreover, it would enable the main

CPU to transition to a deeper standby state (S3) if no other

applications require the CPU to be active.

 We implemented the Movement Detection stage on the

LPN, where data was being captured and processed from the

accelerometer at 100 Hz. The LPN can be duty cycled

between stop and active mode whereby it can wake up to

capture an accelerometer sample and process it, and sleep in

between.

D. Offloading Early Template Matching

In the Early Template Matching (ETM) stage, a preliminary

binary classification of gesture/non-gesture is implemented
based on comparing the movement data (potential gesture data)
with the gestural training data, optimized for minimizing false
negatives. We chose to focus on eliminating false negatives as
much as possible at the expense of false positives because the
former will result in missed recognitions while the latter can be
caught and filtered by the backend be it at a higher energy cost.
A min-max bounding box is calculated for each feature using
the training data from all gestures. Then, in the template
matching, for each potential gesture, the features are compared
to the bounding box. The features considered in our
implementation were the movement duration T and the
maximum hand force MaxForce of the movement. From the
training data of all gestures we can infer the two bounding
boxes for duration [TMIN, TMAX] and MaxForce [FMin, FMax], as
following:

 (2)

 (3)

) (4)

 Similarly, we implemented the early template matching

ETM stage on the LPN and measured the processing time for

different gesture sizes at different clock frequencies. The ETM

stage is triggered after a potential gesture is identified by the

MD stage and its output is a binary classification of

'gesture/non-gesture', whereby an event is triggered signaling

the initiation of the back-end pipeline on the main processor to

classify the specific gesture.

IV. EVALUATING ENERGY CONSUMPTION

In this section we evaluate energy consumption by
presenting the duty cycle, power consumption, and processing
time at each of the processing stages and we show the
advantage of task offloading versus running the gesture
recognition pipeline on the main CPU.

Table 1 shows the power consumption of the Cortex M3
during active and stop.

 TABLE I. AVERAGE POWER CONSUMPTION
ON CORTEX M3

Power
Consumption
(mW)

Active Stop

Cortex M3 25 0.13

A. Movement Detection Performance and Power

1) Duty Cycle and Processing Time

 We measured the duty cycle of the LPN between active and

stop while capturing data from the accelerometer at 100 Hz

and subsequently performing the movement detection stage.

 The duty cycle is defined as the percentage of time the

processor is actively consuming power, whereby:

Pavg = *Pactive + (1-)*Pstop (5)

 Table II shows the duty cycle and processing time for data

capture from the sensors and movement detection processing

when the sensors are sampled at 100 Hz (total period of 10

ms). Measurements were obtained for both accelerometer and

gyroscope to represent both the case of no movement (only

accel is sampled) and “during movement”, when accel and

gyro are both sampled.

 It is worth noting that data capture from the gyroscope only

occurs in the 'during gesture' phase; hence the measurements

representing both accelerometer and gyroscope capture are a

worst case scenario. The duty cycle and corresponding power

consumption will thus depend on the fraction of time that the

gyroscope is being captured which in turn depends on the

fraction of time that a movement is detected from the user.

TABLE II. MOVEMENT DETECTION PERFORMANCE ON LOW-
POWER NODE

Clock

Frequency,

Sensor

Capture

MD

Processing

(ms)

Duty

Cycle

MD

(%)

Sensor

Capture

(ms)

Duty Cycle

Capture

(%)

8 MHz, accel 0.368 3.68 % 1.8 18%

8 MHz, accel +

gyro

0.368 3.68% 3.1 31%

72 MHz, accel 0.0552 0.55% 0.96 9.6%

72 MHz, accel

+ gyro

0.0552 0.55% 1.8 18%

 2) Power Consumption

We measured the power consumed during
accelerometer and gyroscope capture and Movement
Detection stages on the LPN at 8 MHz, as shown in Table
III.

 The average power consumed is determined according
to equation (5).

TABLE III. AVERAGE POWER CONSUMPTION ON LPN (8MHZ)

 Active

Power

(mW)

Capture

Duty Cycle

Average Power

Consumption

(mW)

 Accel

Capture+MD

26.37 21.68% 5.8

Accel +

Gyro

Capture+MD

45.66 34.68% 15.9

A. Early Template Matching Performance

Early Template Matching stage (ETM) running at 8 MHz on

the LPN, shows a processing time linear with gesture size,

with average processing time in the range of 57 msec per

typical gesture.

In terms of duty cycle, since ETM is performed

sporadically, only once per gesture, the ETM computation

affects only marginally the LPN duty cycle. For example, for a

typical gesture of 1 second, the incurred computation is 35

msec, or 1.75% duty cycle in the worst case.

B. Performance and Power on main CPU

 So far we have shown the performance in terms of

average power consumed and processing times of MD and

ETM running on the low power node. We now see how the

processing pipeline would behave when exclusively run on the

main CPU.

 Table V shows the processing time of running the entire

pipeline on the main CPU with no offloading. Two gestures

'flick and circle' are considered.

TABLE V. GESTURE PIPELINE PERFORMANCE ON MAIN CPU

Processing Time (ms) 'flick' -58 samples 'circle'-109 samples

MD 0.01*580.58 0.01*109 1.09

Early TM 0.26 0.32

Normalization 3.16 4.49

Feature Extraction 0.99 0.77

HMM Prep

(copy/format data)

0.28 0.28

HMM 16.72 14.74

Late TM 0.25 0.24

Total Duration 21.68 20.86

As can be seen from Table V, the early stages consume about

1.4% of the total pipeline running time on the main CPU (per

gesture) but they will run most of time in a typical scenario

where movement represents the majority of the data and

gestures are assumed to represent the minority of the data. In

[1] we showed an average false positive rate of MD of ~28.8%

but only 4% for the ETM, hence on average all the gesture

data + 4% of the movement data will flow to the main CPU.

The HMM algorithm is the most time consuming stage but it

will run only once per gesture performed and not

continuously. Hence, offloading the initial stages we will

considerably limit the time the main CPU will be active.

C. Energy Advantage of Offloading the Early Stages

In this section we compare the power consumption in the two

cases of the initial stages of the pipeline implemented in the

main CPU compared with the optimized version on the LPN.

Consider the case where the full pipeline runs on the main

CPU and no offloading occurs. The CPU will be consuming

“active” power when it is waiting for a sample and “sleep”

power when it captures and processes a sample. We are in the

process of obtaining those numbers.

Energy consumed per gesture can be decomposed in three

main components: (1) Capture and MD time, once per sample,

(2) ETM time, once per gesture, (3) energy consumed during

sleep/stop mode
1
:

Egesture =

(Twakeup+Tcapture+TMD+Tgo_to_sleep)*Pactive*Nsamples+

TETM*Pactive

+Psleep/stop* Tsleep/stop (6)

Considering the “circle” gesture (1.09sec duration),

considering the pipeline running on LPN, the energy utilized

per gesture would be:

(0.0054+3.1+0.368+0.0054)*25*109 +

35*25+

(10-(0.0054+3.1+0.368+0.0054))* 0.13 *109 = 10.44 mJ

Similarly, when no gesture or movement is occurring, the

implementation on LPN only consume 6.05 mJ. When gesture

spotting is implemented on LPN, we can take full advantage

of fast transitions between active and stop modes of LPN

instead of the much longer entry/exit latency times of

application processors, typically usec in LPN vs. msec on

Main CPU. Hence, LPN can be put in stop mode between

sensors acquisitions (with power consumption in the order of

1
 All the power numbers and transition times are obtained

from official datasheet and specifications

uW) and Main CPU can be kept in more energy efficient

power states (with power consumption in the order of uW or

few mW) instead of the more power consuming but faster

sleep states, necessary when the main CPU actively polls data

from sensors.

In both cases of gestures performed and no gestures, we can

expect a considerable power saving.
2

Such a scenario would occur if the running application is not

CPU-intensive. In the case of a music player scenario, for

example, the main CPU can be kept completely in energy

efficient Stop mode until a gesture occurs (as audio playback

can occur through a dedicated audio path). Maximum energy

savings would be incurred in this case. In general, the

percentage of CPU usage while running the gesture-enabled

application will impact the extent of energy savings achieved.

D. Dependence on Gesture Frequency

 The extent of energy savings achieved is also highly

dependent on the frequency of time that the user performs a

gesture. In the first extreme, maximum energy savings are

incurred when the user does not gesture at all: in this case the

mobile device remains in sleep mode and no computation-

intensive HMM processing occurs, and the overall power of

the system is determined only by the power consumed by the

low-power microcontroller. The energy efficiency will

decrease as the frequency of gestures increases; the main CPU

will spend more time in active mode and less time in stop

mode. However, it is expected that power savings will be

incurred in most cases as we assume that on average users will

not be performing gestures continuously, but it will be a sparse

interaction modality in typical on the go applications such as

Mp3, voice mail, etc... More detailed experiments are needed

to verify this assumption.

E. Smart Sensors

New sensor modules are currently available that allow a

certain amount of data buffering and basic processing /

threshold detection. While these capabilities are great for

reducing power consumption as the main CPU can be

interrupted less often, it is important to note that an LPN will

still provide extra power savings in such an application over

directly connecting the smart sensor to the main CPU. To

understand why this is the case, consider the following two

possibilities. One possibility is to push some basic form of

movement detection to the sensor itself and eliminate the

LPN, however, in this case the false positives will increase

dramatically if we only perform movement detection without

template matching in low power. A better solution from a

power perspective would be to push this basic movement

detection to the sensor but still run a more accurate gesture

spotter on the LPN. This allows the LPN to stay in stop mode

2
 We are in the process of measuring power numbers and

latency times for a typical smartphone application processor.

They will be submitted with the final camera ready version of

the paper

longer and trigger the switch to active mode only when some

movement is detected.

Another possibility would be to buffer 100s of msec worth

of data in the sensor and interrupt the main CPU less often

again without having an LPN. This reduces the number of

interrupts that the main CPU will handle hence improving

power. Again, this is not ideal for two reasons. The first is

that the gyro will need to be captured all the time since we

can’t trigger the gyro acquisition in real-time. The power

consumption of the gyro sensor in this case is higher than the

power consumption of the LPN. The second issue is that to

really see considerable improvement in transition power

consumption, we need to increase the buffering time

considerably which will cause a latency problem for the

recognition.

V. CONCLUSIONS AND FUTURE WORK

 In this work, we partitioned the processing pipeline for

continuous mobile gesture recognition across the main CPU

and a low-power processing node and showed why such a

partitioning results in significant energy savings without

compromising system accuracy and performance. We

provided details of the processing performance and power

consumption at each stage and based on qualitative analysis,

showed that the extent of power savings depends on the main

CPU usage and on the percentage of time that the user

performs a gesture. To the best of our knowledge no other

work has examined energy analysis for mobile gesture

recognition by computation offloading. In future work, we

plan to enact specific gesture recognition usage scenarios with

different running applications whereby exact power savings

can be determined in each case.

VI. ACKNOWLEDGMENT

This work was partially funded by the Intel-Middle East
Energy Efficiency (MER) program.

VII. REFERENCES

[1] G. Raffa, J.Lee. L. Nachman, and J. Song, “Don’t Slow Me Down:

Bringing Energy Efficiency to Continuous Gesture Recognition”

[2] Y. Wu, T. S. Huang, "Vision-Based Gesture Recognition: A Review",
In Proc. of Gesture-Based Communication in Human-Computer
Interaction, 1999

[3] H. Brashear et al, "Using Multiple Sensors for Mobile Sign Language
Recognition", In Proc. of ISWC 2003

[4] Jingtao Wang, Shumin Zhai, and John Canny. 2006. Camera phone
based motion sensing: interaction techniques, applications and
performance study. In Proceedings of the 19th annual ACM symposium
on User interface software and technology (UIST '06). ACM, New
York, NY, USA, 101-110. DOI=10.1145/1166253.1166270
http://doi.acm.org/10.1145/1166253.1166270

[5] T. Schlomer et al, “Gesture Recognition with a Wii Controller”, In Proc.
of TEI, 2008

[6] J. Kela et al, “Accelerometer-based gesture control for a design
environment”, Personal and Ubiquitous Computing Journal, 2006

[7] J. Mantyjarvi, J. Kela, P. Korpipaa and S. Kallio, “Enabling fast and
effortless customization in accelerometer based gesture interaction”, In
Proc. of MUM, 2004

[8] K. Lyons et al, “GART: The Gesture and Activity Recognition Toolkit,
In Proc. of HCI, 2007

[9] J. Yoo,W. Hwang, S. Baek, and K. Park, “Intuitive Interface device for
Wearable Computers”, Next Generation PC, 2005

[10] H. Junker, O. Amft, P. Lukowicz, and G. Troster “Gesture spotting with
body-worn inertial sensors to detect user activities”, Pattern Recognition
Journal, 2007

[11] F. Hofmann et al, “Velocity profile based recognition of dynamic
gestures with discrete Hidden Markov Models” In Proc. of Gesture and
Sign Language in HCI, 1998

[12] H. Lee and J. Kim, “An HMM-Based Threshold Model Approach for
Gesture Recognition”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1999

[13] R. Amstutz, O. Amft, B. French, A.Smailagic, D.P. Siewiorek,
G.Tröster: Performance Analysis of an HMM-Based Gesture
Recognition Using a Wristwatch Device. CSE (2) 2009: 303-309

[14] T. Pylvannainen, "Accelerometer Based Gesture Recognition Using
Continuous HMMs", In Proc. of IbPRIA 2005]

[15] J. Lin et al, “uWave: Accelerometer-based Personalized Gesture
Recognition and Its Applications”, PerCom, 2009

[16] Jiahui Wu, Gang Pan, Daqing Zhang, Guande Qi, and Shijian Li. 2009.
Gesture Recognition with a 3-D Accelerometer. In Proceedings of the
6th International Conference on Ubiquitous Intelligence and Computing
(UIC '09), Daqing Zhang, Marius Portmann, Ah-Hwee Tan, and Jadwiga
Indulska (Eds.). Springer-Verlag, Berlin, Heidelberg, 25-38

[17] S. Cho et al, "Two-stage Recognition of Raw Acceleration Signals for 3-
D Gesture-Understanding Cell Phones", In Proc. of IWFHR, 2006

http://doi.acm.org/10.1145/1166253.1166270

