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Abstract— Gesture recognition is a novel and compelling user 

input modality which allows users to interact quickly and 

naturally with their devices with less demand on their visual 

attention. Continuous gesture recognition places stringent 

demands on device power consumption, battery life and 

processing capability.  In this work, we show that we can reduce 

the energy consumed during continuous gesture recognition on a 

mobile device with the delegation of the pre-processing stages, 

which filter out non-gesture segments, to a low power node that is 

separate from the main CPU. The main CPU can thus be kept in 

stop mode until a potential gesture is detected by the low power 

node, invoking the main processor to perform the computation-

intensive gesture classification to detect which exact gesture has 

been performed by the user. We present details of the processing 

performance and power consumed at each step of the processing 

pipeline, showing the extent of power savings achieved. 

Experiments were conducted for detailed evaluation of the power 

consumption of the optimized gesture pipeline.   

Keywords-continuous gesture recognition, energy-efficiency, 

movement detection, template matching, 3D accelerometer and 3D 

gyroscope, HMM 

 

I.  INTRODUCTION  

 
Gesture recognition on mobile and hand-held devices is a 

compelling interaction modality that allows users to interact 
with their devices on-the-go without having to pay visual 
attention to or be limited by a traditional interface such as 
keyboard, textual interface or touch screen. Detected gestures 
can trigger functions from any gesture-enabled application that 
is running such as music player, games, calendar, voice mail, 
phone calls, etc.  Gesture recognition is part of a larger 
computing paradigm aimed at making devices aware of their 
users’ context and intentions hence enabling more natural 
human-machine interaction.  

 Like other context-sensing applications, gesture 
recognition requires continuous capture of data from sensors –
which places stringent demands on the device power 
consumption, battery life and processing capability.  
Continuous capture and filtering of non-gestural data from the 
sensors force the main CPU to stay active consuming power 

while waiting for a true gesture to be performed. While most 
existing work relies on having the user explicitly indicate the 
start and stop of gestures to improve accuracy and reduce 
computational overhead, we found that such a solution is 
cumbersome from a usability perspective. In this work, we 
delegate the preprocessing tasks to a low-power processing 
node that enables the main CPU to go into a stop mode until a 
potential gesture has been detected. 

In previous work [1], we developed an efficient pipeline for 
continuous gesture recognition based on data from 3D 
accelerometer and gyroscope sensors and we proved that 
adding a gyroscope results in accuracy improvement over an 
accel only approach. The system was designed to automatically 
detect potential gestures from continuous input data streams. 
The front-end consisted of low computation pre-processing 
stages which classify gestural segment data from non-gestural 
movements based on accelerometer features. The back-end 
consisted of the computation-intensive Hidden Markov Model 
(HMM) and rejection algorithms responsible for classifying the 
specific gesture from a set of trained gestural data, leveraging 
both gyroscope and accelerometer. While the front-end needs 
to run continuously, the back-end only needs to run when a 
potential gesture is detected. 

While such partitioning is advantageous from a 
computation and power perspective, since compute intensive 
stages are invoked sparingly, more power savings can be 
realized by offloading these low compute stages to low power 
micro-controllers as they are more suited for such simple tasks.  
Our contributions can be summarized as follows: (1) we 
developed a low power sensing subsystem that consists of 
sensors connected to a low power micro-controller which 
interfaces to the application processor of a mobile device, (2) 
We effectively partitioned the processing pipeline for 
continuous gesture recognition across  the main CPU and the 
low power processor and (3) We provide details of the 
processing time and power consumption at every stage.   

In section II, we discuss related work in gesture recognition 
on mobile devices. In section III, we describe the gesture 
recognition pipeline and our approach to energy-efficient 
gesture recognition by offloading the movement detection and 
early template matching stages to the low power processing 



 

 

node. In section IV we present details of the performance and 
power analysis at each stage of the pipeline.  We conclude our 
findings in section V and discuss future work. 

 

II. RELATED WORK 

 Several works in gesture recognition have used camera and 
vision-based recognition [2, 3] or camera-enabled mobile 
phones  [4]. Such systems are not yet practical in real mobile 
environments due to limited wearability and high demands on 
computation and energy. On the other hand, we focus on 
accelerometer and gyroscope based gesture recognition which 
is more practically usable in a real on-the-go environment. 
Such systems that have been successfully implemented include 
the Wii Controller  [5], VTT Soapbox  [6,7], GeorgiaTech 
Watch  [8], KAIST Ring  [9], and ETH Wearable Computer  
[10].  In [5] and [8] the system relies on the user explicitly 
indicating the start and stop of gestures which is inconvenient 
from a usability perspective. VTT Soapbox [6,7] utilizes 
discrete HMM and vector quantization, impacting accuracy. In 
[9] only four gestures are considered. In [10] gesture spotting is 
discussed but the authors did not consider energy efficiency or 
use in mobile settings.  A few systems which have been used to 
automatically detect gestures from continuous sensor streams 
are found in  [9,10,11,12]. However, these have shown to have 
either higher computation costs such as HMM-based methods  
in  [12] and analysis-based methods in  [10], or lower filtering 
rates in threshold-based  methods such as in   [9,11]. In  [13], 
authors developed watch-based recognition system based on 
discrete HMM. However, the vocabulary is limited to three 
gestures with low accuracy, i.e. 93.5%. Furthermore, none of 
these systems explored offloading of the pre-processing stages 
or examined energy consumption in detail.  

From an algorithm perspective, the most used gesture 
recognition algorithms are HMM [14], SVM [16], DTW [15] 
and Bayesian Networks [17]. The HMM algorithm has been so 
far reported to have the best accuracy (up to 98.5%)  [14], but it 
is the most computationally expensive.  

In our work in [1], we adopted a computation-intensive 
HMM-based back-end achieving an average gesture 
recognition accuracy of 98% and a threshold-based pre-
processing segmentation method with a 4% false positive and 
0.1% false negative filtering rates. The system used 3D 
accelerometer and gyroscope based gesture recognition and 
was implemented on a sensor-enabled wrist watch which 
communicated with a mobile device via Bluetooth.  The reader 
is referred to [1] for detailed approach and experimental 
results.  In this work, we implement the entire system on an 
experimental mobile device and offload the pre-processing 
stages to a low-power sensing node and evaluate the 
corresponding energy savings. 

III.  APPROACH TO ENERGY-EFFICIENT GESTURE 

RECOGNITION  

In this section we describe our approach to energy-efficient 
gesture recognition by briefly introducing the gesture 
recognition pipeline and describing how we offloaded the 
front-end pre-processing to the low power microcontroller.  

The pre-processing stages filter out non-movement and 
non-gesture data from potential true gestures to be classified by 
the HMM algorithm. By partitioning the processing and 
offloading the front end, we realize the following benefits : 

(1) Reduced data load on the HMM algorithm because we 
drop most non-gestural data before the HMM stage 

(2) Reduced power consumption during continuous 
recognition by allowing the main CPU to go to stop 
mode instead of having to stay in active mode to 
capture data and pre-process each sample  

      We describe below the architecture of the system, followed 
by a brief description of the end-to-end gesture pipeline as well 
as the pipeline partitioning between the two processors.  

A. System Architecture 

    We used an internal prototype of a mobile device equipped 

with an Intel Atom CPU which operates at a clock frequency 

up to 1.9 GHz (“Moorestown” platform). The mobile device 

contains an embedded low-power microcontroller that 

interfaces with the 3D accelerometer and 3D gyroscope 

(among other sensors) and communicates with the main Intel 

Atom CPU via an SPI port and GPIOs. The low power node 

(LPN) microcontroller is a Cortex M3 processor that can 

operate at a variable frequency up to 72 MHz. In the present 

work, the LPN has been run at 8MHz, sufficient to implement 

the front end algorithms. A diagram of the system is shown in 

Figure 1. 

 
Figure 1: System Architecture of low-power gesture recognition system 

 

B. Gesture pipeline 

The gesture pipeline we developed consists of the following 
stages: (1) Sensors capture, (2) low pass filtering, (3) 
Movement Detection, (4) Early Template Matching, (5) 
Normalization, (6) Feature Extraction, (7) HMM and Garbage 
Model, and (8) Late Template Matching. 

 

Figure 2:  Block diagram of partitioned gesture recognition processing 
system 
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Stages 1 – 4 constitute the data capture and front end pre-
processing and are offloaded to the LPN. Stages 5-8 constitute 
the computation-intensive back end processing and run on the 
Intel Atom CPU. A block diagram of the partitioned processing 
system is shown in Figure 2. 

In stage (1), data is captured from the 3D accelerometer 
sensors at a sampling rate of 100 Hz. To reduce power 
consumption, data capture from the power hungry 3D 
gyroscope is only triggered when movement from the user is 
detected based on accelerometer features. Low-pass filtering 
using an Exponential Moving Average filter is subsequently 
applied to the signal to eliminate high frequency noise and 
sensor noise.  

In the Movement Detection (MD) stage, accelerometer-
based segmentation is used to detect a movement from the user 
carrying the device. This stage runs after every capture of an 
accelerometer sample, buffering samples when movements are 
being detected. In case a complete movement segment is 
detected, the Early Template Matching (ETM) stage is 
triggered to determine if the movement is a gesture or not. 

If a movement is classified as a possible gesture by the 
early template matching stage,  the gesture 6-dimensional data 
buffer (3D accel and 3D gyro raw data) is forwarded to the 
back-end pipeline for specific gesture recognition by the HMM 
and garbage model (HMM + G), followed by a late template 
matching stage (LTM) to further reduce the false positives.  

Our implementation yielded a 96% discard rate and 4% 
false positive rate with the early template matching stage. An 
average recognition accuracy of 88% was obtained after the 
HMM + G model and a final gesture recognition accuracy of 
98% was obtained after the late template matching model with 
4% false positives and 0.1% false negatives. 

C. Offloading Moving Detection 

The movement detection stage is based on calculation of 
the 'Hand Force' from each accelerometer sample: 

 

            
     

      
                       (1) 

 

where          ) is a 3D accelerometer sample and   is the 

gravitational constant.   

When the hand force (filtered by a low pass filter) meets a 
certain strong threshold HFtS, the movement detection enters 
the 'during gesture' state, and consequently triggers capture of 
data from the gyroscope. The 'during gesture' state ends when a 
certain forward threshold HFtF is met, and the resulting data is 
sent to the early template matching stage. The implementation 
of the movement detection is based on Forward Backward 
Movement Detection (FBMD) in [1];  

      The Movement Detection stage should run every 10 ms    

after capture of each sample from the accelerometer. If this  

stage were to be run on the main CPU, the processor would be 

forced to transition between active (C0) and sleep (C6) states at 

every 10 ms for each sensor (accel and gyro), consuming 

unnecessary active power to sample the sensor data using the 

slow I2C bus as well as  to process each sample. On the other 

hand, offloading the MD stage to the LPN would reduce this 

unnecessary overhead. Moreover, it would enable the main 

CPU to transition to a deeper standby state (S3) if no other 

applications require the CPU to be active.  

 

       We implemented the Movement Detection stage on the 

LPN, where data was being captured and processed from the 

accelerometer at 100 Hz. The LPN can be duty cycled 

between stop and active mode whereby it can wake up to 

capture an accelerometer sample and process it, and sleep in 

between. 

D. Offloading Early Template Matching 

 
In the Early Template Matching (ETM) stage, a preliminary 

binary classification of gesture/non-gesture is implemented 
based on comparing the movement data (potential gesture data) 
with the gestural training data, optimized for minimizing false 
negatives. We chose to focus on eliminating false negatives as 
much as possible at the expense of false positives because the 
former will result in missed recognitions while the latter can be 
caught and filtered by the backend be it at a higher energy cost. 
A min-max bounding box is calculated for each feature using 
the training data from all gestures. Then, in the template 
matching, for each potential gesture, the features are compared 
to the bounding box. The features considered in our 
implementation were the movement duration T and the 
maximum hand force MaxForce of the movement. From the 
training data of all gestures we can infer the two bounding 
boxes for duration [TMIN, TMAX] and MaxForce [FMin, FMax], as 
following: 
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       Similarly, we implemented the early template matching 

ETM stage on the LPN and measured the processing time for 

different gesture sizes at different clock frequencies. The ETM 

stage is triggered after a potential gesture is identified by the 

MD stage and its output is a binary classification of 

'gesture/non-gesture', whereby an event is triggered signaling 

the initiation of the back-end pipeline on the main processor to 

classify the specific gesture. 

 

IV. EVALUATING ENERGY CONSUMPTION 

In this section we evaluate energy consumption by 
presenting the duty cycle, power consumption, and processing 
time at each of the processing stages and we show the 
advantage of task offloading versus running the gesture 
recognition pipeline on the main CPU. 



 

 

Table 1 shows the power consumption of the Cortex M3 
during active and stop. 

   TABLE I. AVERAGE POWER CONSUMPTION  
ON CORTEX M3 

Power 
Consumption 
(mW) 

Active Stop 

Cortex M3 25 0.13 

 

A.  Movement Detection  Performance and Power 

 

1) Duty Cycle and Processing Time  

    We measured the duty cycle of the LPN between active and 

stop while capturing data from the accelerometer at 100 Hz 

and subsequently performing the movement detection stage. 

 

    The duty cycle   is defined as the percentage of time the 

processor is actively consuming power, whereby: 

 

Pavg =   *Pactive + (1-  )*Pstop  (5)  

  

          Table II shows the duty cycle and processing time for data   

capture from the sensors and movement detection processing 

when the sensors are sampled at 100 Hz (total period of 10 

ms). Measurements were obtained for both accelerometer and 

gyroscope to represent both the case of no movement (only 

accel is sampled) and “during movement”, when accel and 

gyro are both sampled. 

 

      It is worth noting that data capture from the gyroscope only 

occurs in the 'during gesture' phase; hence the measurements 

representing both accelerometer and gyroscope capture are a 

worst case scenario. The duty cycle and corresponding power 

consumption will thus depend on the fraction of time that the 

gyroscope is being captured which in turn depends on the 

fraction of time that a movement is detected from the user. 

 

TABLE II.  MOVEMENT DETECTION PERFORMANCE ON LOW-
POWER NODE 

 

Clock 

Frequency, 

Sensor 

Capture 

 

MD 

Processing  

(ms) 

 

Duty 

Cycle 

MD 

(%) 

 

Sensor 

Capture  

(ms) 

 

Duty Cycle 

Capture 

(%) 

8 MHz, accel 0.368  3.68 % 1.8 18% 

8 MHz, accel + 

gyro 

0.368  3.68% 3.1 31% 

72 MHz, accel 0.0552  0.55% 0.96 9.6% 

72 MHz, accel 

+ gyro 

0.0552 0.55% 1.8 18% 

 

   

    2) Power Consumption 
 

We measured the power consumed during 
accelerometer and gyroscope capture and Movement 
Detection stages on the LPN at 8 MHz, as shown in Table 
III.  

 The average power consumed is determined according 
to equation (5).  

TABLE III. AVERAGE POWER CONSUMPTION ON LPN (8MHZ) 

 Active 

Power 

(mW) 

Capture 

Duty Cycle 

Average Power 

Consumption 

(mW) 

 Accel 

Capture+MD 

26.37 21.68% 5.8 

Accel  + 

Gyro 

Capture+MD 

45.66 34.68% 15.9 

 

 

A. Early Template Matching Performance  

 

Early Template Matching stage (ETM) running at 8 MHz on 

the LPN, shows a processing time linear with gesture size, 

with average processing time in the range of 57 msec per 

typical gesture. 

 

In terms of duty cycle, since ETM is performed 

sporadically, only once per gesture, the ETM computation 

affects only marginally the LPN duty cycle. For example, for a 

typical gesture of 1 second, the incurred computation is 35 

msec, or 1.75% duty cycle in the worst case. 

 

B. Performance and Power on main CPU 

       So far we have shown the performance in terms of 

average power consumed and processing times of MD and 

ETM running on the low power node. We now see how the 

processing pipeline would behave when exclusively run on the 

main CPU. 

       Table V shows the processing time of running the entire 

pipeline on the main CPU with no offloading. Two gestures 

'flick and circle' are considered. 

TABLE V.  GESTURE PIPELINE PERFORMANCE ON MAIN CPU 

Processing Time (ms) 'flick' -58 samples 'circle'-109 samples 

 

MD 0.01*580.58 0.01*109 1.09 

Early TM 0.26 0.32 

Normalization 3.16 4.49 

Feature Extraction 0.99 0.77 

HMM Prep 

(copy/format data) 

0.28 0.28 

HMM 16.72 14.74 



 

 

Late TM 0.25 0.24 

Total Duration 21.68 20.86 

 

As can be seen from Table V, the early stages consume about 

1.4% of the total pipeline running time on the main CPU (per 

gesture) but they will run most of time in a typical scenario 

where movement represents the majority of the data and 

gestures are assumed to represent the minority of the data. In 

[1] we showed an average false positive rate of MD of ~28.8% 

but only 4% for the ETM, hence on average all the gesture 

data + 4% of the movement data will flow to the main CPU. 

The HMM algorithm is the most time consuming stage but it 

will run only once per gesture performed and not 

continuously. Hence, offloading the initial stages we will 

considerably limit the time the main CPU will be active. 

 

C. Energy Advantage of Offloading the Early Stages 

In this section we compare the power consumption in the two 

cases of the initial stages of the pipeline implemented in the 

main CPU compared with the optimized version on the LPN. 

 

Consider the case where the full pipeline runs on the main 

CPU and no offloading occurs. The CPU will be consuming 

“active” power when it is waiting for a sample and “sleep” 

power when it captures and processes a sample. We are in the 

process of obtaining those numbers.  

 

         

Energy consumed per gesture can be decomposed in three 

main components: (1) Capture and MD time, once per sample, 

(2) ETM time, once per gesture, (3) energy consumed during 

sleep/stop mode
1
: 

 

Egesture =  

(Twakeup+Tcapture+TMD+Tgo_to_sleep)*Pactive*Nsamples+ 

TETM*Pactive 

+Psleep/stop* Tsleep/stop    (6) 

 

Considering the “circle” gesture (1.09sec duration), 

considering the pipeline running on LPN, the energy utilized 

per gesture would be: 

 

(0.0054+3.1+0.368+0.0054)*25*109 +  

35*25+ 

(10-(0.0054+3.1+0.368+0.0054))* 0.13 *109 =  10.44 mJ 

 

Similarly, when no gesture or movement is occurring, the 

implementation on LPN only consume 6.05 mJ. When gesture 

spotting is implemented on LPN, we can take full advantage 

of fast transitions between active and stop modes of LPN 

instead of the much longer entry/exit latency times of 

application processors, typically usec in LPN vs. msec on 

Main CPU. Hence, LPN can be put in stop mode between 

sensors acquisitions (with power consumption in the order of 

                                                           
1
 All the power numbers and transition times are obtained 

from official datasheet and specifications 

uW) and Main CPU can be kept in more energy efficient 

power states (with power consumption in the order of uW or 

few mW) instead of the more power consuming but faster 

sleep states, necessary when the main CPU actively polls data 

from sensors. 

 

In both cases of gestures performed and no gestures, we can 

expect a considerable power saving.
2
 

 

Such a scenario would occur if the running application is not 

CPU-intensive. In the case of a music player scenario, for 

example, the main CPU can be kept completely in energy 

efficient Stop mode until a gesture occurs (as audio playback 

can occur through a dedicated audio path). Maximum energy 

savings would be incurred in this case. In general, the 

percentage of CPU usage while running the gesture-enabled 

application will impact the extent of energy savings achieved. 

D. Dependence on Gesture Frequency 

       The extent of energy savings achieved is also highly 

dependent on the frequency of time that the user performs a 

gesture. In the first extreme, maximum energy savings are 

incurred when the user does not gesture at all: in this case the 

mobile device remains in sleep mode and no computation-

intensive HMM processing occurs, and the overall power of 

the system is determined only by the power consumed by the 

low-power microcontroller. The energy efficiency will 

decrease as the frequency of gestures increases; the main CPU 

will spend more time in active mode and less time in stop 

mode. However, it is expected that power savings will be 

incurred in most cases as we assume that on average users will 

not be performing gestures continuously, but it will be a sparse 

interaction modality in typical on the go applications such as 

Mp3, voice mail, etc...  More detailed experiments are needed 

to verify this assumption. 

E. Smart Sensors 

New sensor modules are currently available that allow a 

certain amount of data buffering and basic processing / 

threshold detection. While these capabilities are great for 

reducing power consumption as the main CPU can be 

interrupted less often, it is important to note that an LPN will 

still provide extra power savings in such an application over 

directly connecting the smart sensor to the main CPU. To 

understand why this is the case, consider the following two 

possibilities. One possibility is to push some basic form of 

movement detection to the sensor itself and eliminate the 

LPN, however, in this case the false positives will increase 

dramatically if we only perform movement detection without 

template matching in low power. A better solution from a 

power perspective would be to push this basic movement 

detection to the sensor but still run a more accurate gesture 

spotter on the LPN.  This allows the LPN to stay in stop mode 

                                                           
2
 We are in the process of measuring power numbers and 

latency times for a typical smartphone application processor. 

They will be submitted with the final camera ready version of 

the paper 



 

 

longer and trigger the switch to active mode only when some 

movement is detected.   

Another possibility would be to buffer 100s of msec worth 

of data in the sensor and interrupt the main CPU less often 

again without having an LPN.  This reduces the number of 

interrupts that the main CPU will handle hence improving 

power.  Again, this is not ideal for two reasons.  The first is 

that the gyro will need to be captured all the time since we 

can’t trigger the gyro acquisition in real-time.  The power 

consumption of the gyro sensor in this case is higher than the 

power consumption of the LPN.  The second issue is that to 

really see considerable improvement in transition power 

consumption, we need to increase the buffering time 

considerably which will cause a latency problem for the 

recognition. 

V. CONCLUSIONS AND FUTURE WORK 

 

      In this work, we partitioned the processing pipeline for 

continuous mobile gesture recognition across the main CPU 

and a low-power processing node and showed why such a 

partitioning results in significant energy savings without 

compromising system accuracy and performance. We 

provided details of the processing performance and power 

consumption at each stage and based on qualitative analysis, 

showed that the extent of power savings depends on the main 

CPU usage and on the percentage of time that the user 

performs a gesture. To the best of our knowledge no other 

work has examined energy analysis for mobile gesture 

recognition by computation offloading.     In future work, we 

plan to enact specific gesture recognition usage scenarios with 

different running applications whereby exact power savings 

can be determined in each case. 
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