
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 161–167,
Baltimore, Maryland, USA, June 23-25 2014. c©2014 Association for Computational Linguistics

Generalized Character-Level Spelling Error Correction

Noura Farra, Nadi Tomeh†, Alla Rozovskaya, Nizar Habash

Center for Computational Learning Systems, Columbia University
{noura,alla,habash}@ccls.columbia.edu
†LIPN, Université Paris 13, Sorbonne Paris Cité
nadi.tomeh@lipn.univ-paris13.fr

Abstract

We present a generalized discrimina-
tive model for spelling error correction
which targets character-level transforma-
tions. While operating at the charac-
ter level, the model makes use of word-
level and contextual information. In con-
trast to previous work, the proposed ap-
proach learns to correct a variety of er-
ror types without guidance of manually-
selected constraints or language-specific
features. We apply the model to cor-
rect errors in Egyptian Arabic dialect text,
achieving 65% reduction in word error
rate over the input baseline, and improv-
ing over the earlier state-of-the-art system.

1 Introduction

Spelling error correction is a longstanding Natural
Language Processing (NLP) problem, and it has
recently become especially relevant because of the
many potential applications to the large amount
of informal and unedited text generated online,
including web forums, tweets, blogs, and email.
Misspellings in such text can lead to increased
sparsity and errors, posing a challenge for many
NLP applications such as text summarization, sen-
timent analysis and machine translation.

In this work, we present GSEC, a Generalized
character-level Spelling Error Correction model,
which uses supervised learning to map input char-
acters into output characters in context. The ap-
proach has the following characteristics:

Character-level Corrections are learned at the
character-level1 using a supervised sequence la-
beling approach.

Generalized The input space consists of all
characters, and a single classifier is used to learn

1We use the term ‘character’ strictly in the alphabetic
sense, not the logographic sense (as in the Chinese script).

common error patterns over all the training data,
without guidance of specific rules.

Context-sensitive The model looks beyond the
context of the current word, when making a deci-
sion at the character-level.

Discriminative The model provides the free-
dom of adding a number of different features,
which may or may not be language-specific.

Language-Independent In this work, we in-
tegrate only language-independent features, and
therefore do not consider morphological or lin-
guistic features. However, we apply the model
to correct errors in Egyptian Arabic dialect text,
following a conventional orthography standard,
CODA (Habash et al., 2012).

Using the described approach, we demonstrate
a word-error-rate (WER) reduction of 65% over a
do-nothing input baseline, and we improve over
a state-of-the-art system (Eskander et al., 2013)
which relies heavily on language-specific and
manually-selected constraints. We present a de-
tailed analysis of mistakes and demonstrate that
the proposed model indeed learns to correct a
wider variety of errors.

2 Related Work

Most earlier work on automatic error correction
addressed spelling errors in English and built mod-
els of correct usage on native English data (Ku-
kich, 1992; Golding and Roth, 1999; Carlson
and Fette, 2007; Banko and Brill, 2001). Ara-
bic spelling correction has also received consider-
able interest (Ben Othmane Zribi and Ben Ahmed,
2003; Haddad and Yaseen, 2007; Hassan et al.,
2008; Shaalan et al., 2010; Alkanhal et al., 2012;
Eskander et al., 2013; Zaghouani et al., 2014).

Supervised spelling correction approaches
trained on paired examples of errors and their cor-
rections have recently been applied for non-native
English correction (van Delden et al., 2004; Li et
al., 2012; Gamon, 2010; Dahlmeier and Ng, 2012;
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Rozovskaya and Roth, 2011). Discriminative
models have been proposed at the word-level for
error correction (Duan et al., 2012) and for error
detection (Habash and Roth, 2011).

In addition, there has been growing work on lex-
ical normalization of social media data, a some-
what related problem to that considered in this pa-
per (Han and Baldwin, 2011; Han et al., 2013;
Subramaniam et al., 2009; Ling et al., 2013).

The work of Eskander et al. (2013) is the
most relevant to the present study: it presents
a character-edit classification model (CEC) using
the same dataset we use in this paper.2 Eskan-
der et al. (2013) analyzed the data to identify the
seven most common types of errors. They devel-
oped seven classifiers and applied them to the data
in succession. This makes the approach tailored to
the specific data set in use and limited to a specific
set of errors. In this work, a single model is con-
sidered for all types of errors. The model consid-
ers every character in the input text for a possible
spelling error, as opposed to looking only at cer-
tain input characters and contexts in which they
appear. Moreover, in contrast to Eskander et al.
(2013), it looks beyond the boundary of the cur-
rent word.

3 The GSEC Approach

3.1 Modeling Spelling Correction at the
Character Level

We recast the problem of spelling correction into
a sequence labeling problem, where for each input
character, we predict an action label describing
how to transform it to obtain the correct charac-
ter. The proposed model therefore transforms a
given input sentence e = e1, . . . , en of n char-
acters that possibly include errors, to a corrected
sentence c of m characters, where corrected char-
acters are produced by one of the following four
actions applied to each input character ei :

• ok: ei is passed without transformation.
• substitute − with(c): ei is substituted with

a character c where c could be any character
encountered in the training data.
• delete: ei is deleted.
• insert(c): A character c is inserted before

ei. To address errors occurring at the end

2Eskander et al. (2013) also considered a slower, more
expensive, and more language-specific method using a mor-
phological tagger (Habash et al., 2013) that outperformed the
CEC model; however, we do not compare to it in this paper.

Input Action Label
k substitute-with(c)
o ok
r insert(r)
e ok
c ok
t ok
d delete

Table 1: Character-level spelling error correction process
on the input word korectd, with the reference word correct

Train Dev Test
Sentences 10.3K 1.67K 1.73K
Characters 675K 106K 103K
Words 134K 21.1K 20.6K

Table 2: ARZ Egyptian dialect corpus statistics

of the sentence, we assume the presence of a
dummy sentence-final stop character.

We use a multi-class SVM classifier to predict the
action labels for each input character ei ∈ e. A
decoding process is then applied to transform the
input characters accordingly to produce the cor-
rected sentence. Note that we consider the space
character as a character like any other, which gives
us the ability to correct word merge errors with
space character insertion actions and word split er-
rors with space character deletion actions. Table 1
shows an example of the spelling correction pro-
cess.

In this paper, we only model single-edit actions
and ignore cases where a character requires mul-
tiple edits (henceforth, complex actions), such as
multiple insertions or a combination of insertions
and substitutions. This choice was motivated by
the need to reduce the number of output labels, as
many infrequent labels are generated by complex
actions. An error analysis of the training data, de-
scribed in detail in section 3.2, showed that com-
plex errors are relatively infrequent (4% of data).
We plan to address these errors in future work.

Finally, in order to generate the training data
in the described form, we require a parallel cor-
pus of erroneous and corrected reference text (de-
scribed below), which we align at the character
level. We use the alignment tool Sclite (Fiscus,
1998), which is part of the SCTK Toolkit.

3.2 Description of Data

We apply our model to correcting Egyptian Ara-
bic dialect text. Since there is no standard dialect
orthography adopted by native speakers of Ara-
bic dialects, it is common to encounter multiple
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Action % Errors Example Error⇒ Reference
Substitute 80.9
E Alif A @ forms ( @/


@/ @/

�
@AÂ/Ǎ/Ā) 33.3 AHdhm⇒ ÂHdhm ÑëYg@⇒ ÑëYg


@

EYa ø
 /ø forms ( y/ý) 26.7 ςly⇒ ςlý ú
Î«⇒úÎ«
Eh/~ è/ �è , h/w è/ð forms 14.9 kfrh⇒ kfr~ èQ 	®»⇒ �èQ 	®»
Eh/H è/h forms 2.2 htςmlhA⇒ HtςmlhA AêÊÒª�Jë⇒ AêÊÒª�Jk
Other substitutions 3.8 AltAny~⇒ AlθAny~ �éJ
 	K A�JË @⇒ �éJ
 	K A�JË @ ; dA⇒ dh @X⇒ èX
Insert 10.5
EPInsert {A} 3.0 ktbw⇒ ktbwA ñJ. �J»⇒ @ñJ. �J»
EPInsert {space} 2.9 mAtzςlš⇒ mA tzςlš ��Ê« 	Q�KAÓ⇒ ��Ê« 	Q�K AÓ
Other insertion actions 4.4 Aly⇒ Ally ú
Í@⇒ ú
Î�Ë @
Delete 4.7
E Del{A} 2.4 whmA⇒ whm AÒëð⇒ Ñëð

Other deletion actions 2.3 wfyh⇒ wfy éJ
 	̄ð⇒ ú

	̄ ð

Complex 4.0 mykwnš⇒ mA ykwnš ��	�ñºJ
Ó⇒ ��	�ñºK
 AÓ

Table 3: Character-level distribution of correction labels. We model all types of transformations except complex actions, and
rare Insert labels with counts below a tuned threshold. The Delete label is a single label that comprises all deletion actions.
Labels modeled by Eskander et al. (2013) are marked with E, and EP for cases modeled partially, for example, the Insert{A}
would only be applied at certain positions such as the end of the word.

spellings of the same word. The CODA orthogra-
phy was proposed by Habash et al. (2012) in an
attempt to standardize dialectal writing, and we
use it as a reference of correct text for spelling
correction following the previous work by Eskan-
der et al. (2013). We use the same corpus (la-
beled "ARZ") and experimental setup splits used
by them. The ARZ corpus was developed by
the Linguistic Data Consortium (Maamouri et al.,
2012a-e). See Table 2 for corpus statistics.

Error Distribution Table 3 presents the distri-
bution of correction action labels that correspond
to spelling errors in the training data together with
examples of these errors.3 We group the ac-
tions into: Substitute, Insert, Delete, and Complex,
and also list common transformations within each
group. We further distinguish between the phe-
nomena modeled by our system and by Eskander
et al. (2013). At least 10% of all generated action
labels are not handled by Eskander et al. (2013).

3.3 Features
Each input character is represented by a feature
vector. We include a set of basic features inspired
by Eskander et al. (2013) in their CEC system and
additional features for further improvement.

Basic features We use a set of nine basic fea-
tures: the given character, the preceding and fol-
lowing two characters, and the first two and last

3Arabic transliteration is presented in the Habash-Soudi-
Buckwalter scheme (Habash et al., 2007). For more informa-
tion on Arabic orthography in NLP, see (Habash, 2010).

two characters in the word. These are the same
features used by CEC, except that CEC does
not include characters beyond the word boundary,
while we consider space characters as well as char-
acters from the previous and next words.

Ngram features We extract sequences of char-
acters corresponding to the current character and
the following and previous two, three, or four
characters. We refer to these sequences as bi-
grams, trigrams, or 4-grams, respectively. These
are an extension of the basic features and allow
the model to look beyond the context of the cur-
rent word.

3.4 Maximum Likelihood Estimate (MLE)

We implemented another approach for error cor-
rection based on a word-level maximum likeli-
hood model. The MLE method uses a unigram
model which replaces each input word with its
most likely correct word based on counts from the
training data. The intuition behind MLE is that it
can easily correct frequent errors; however, it is
quite dependent on the training data.

4 Experiments

4.1 Model Evaluation

Setup The training data was extracted to gener-
ate the form described in Section 3.1, using the
Sclite tool (Fiscus, 1998) to align the input and
reference sentences. A speech effect handling step
was applied as a preprocessing step to all models.
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This step removes redundant repetitions of charac-
ters in sequence, e.g., Q�
J
�
J
�
�J» ktyyyyyr ‘veeeeery’.
The same speech effect handling was applied by
Eskander et al. (2013).

For classification, we used the SVM implemen-
tation in YamCha (Kudo and Matsumoto, 2001),
and trained with different variations of the fea-
tures described above. Default parameters were
selected for training (c=1, quadratic kernel, and
context window of +/- 2).

In all results listed below, the baseline corre-
sponds to the do-nothing baseline of the input text.

Metrics Three evaluation metrics are used. The
word-error-rate WER metric is computed by sum-
ming the total number of word-level substitution
errors, insertion errors, and deletion errors in the
output, and dividing by the number of words in the
reference. The correct-rate Corr metric is com-
puted by dividing the number of correct output
words by the total number of words in the refer-
ence. These two metrics are produced by Sclite
(Fiscus, 1998), using automatic alignment. Fi-
nally, the accuracy Acc metric, used by Eskander
et al. (2013), is a simple string matching metric
which enforces a word alignment that pairs words
in the reference to those of the output. It is cal-
culated by dividing the number of correct output
words by the number of words in the input. This
metric assumes no split errors in the data (a word
incorrectly split into two words), which is the case
in the data we are working with.

Character-level Model Evaluation The per-
formance of the generalized spelling correction
model (GSEC) on the dev data is presented in the
first half of Table 4. The results of the Eskan-
der et al. (2013) CEC system are also presented
for the purpose of comparison. We can see that
using a single classifier, the generalized model is
able to outperform CEC, which relies on a cascade
of classifiers (p = 0.03 for the basic model and
p < 0.0001 for the best model, GSEC+4grams).4

Model Combination Evaluation Here we
present results on combining GSEC with the
MLE component (GSEC+MLE). We combine the
two models in cascade: the MLE component is
applied to the output of GSEC. To train the MLE
model, we use the word pairs obtained from the
original training data, rather than from the output
of GSEC. We found that this configuration allows

4Significance results are obtained using McNemar’s test.

Approach Corr%/WER Acc%
Baseline 75.9/24.2 76.8
CEC 88.7/11.4 90.0
GSEC 89.7/10.4* 90.3*
GSEC+2grams 90.6/9.5* 91.2*
GSEC+4grams 91.0/9.2* 91.6*
MLE 89.7/10.4 90.5
CEC + MLE 90.8/9.4 91.5
GSEC+MLE 91.0/9.2 91.3
GSEC+4grams+ MLE 91.7/8.3* 92.2*

Table 4: Model Evaluation. GSEC represents the gener-
alized character-level model. CEC represents the character-
level-edit classification model of Eskander et al. (2013).
Rows marked with an asterisk (*) are statistically signifi-
cant compared to CEC (for the first half of the table) or
CEC+MLE (for the second half of the table), with p < 0.05.

us to include a larger sample of word pair errors
for learning, because our model corrects many
errors, leaving fewer example pairs to train an
MLE post-processor. The results are shown in the
second half of Table 4.

We first observe that MLE improves the per-
formance of both CEC and GSEC. In fact,
CEC+MLE and GSEC+MLE perform similarly
(p = 0.36, not statistically significant). When
adding features that go beyond the word bound-
ary, we achieve an improvement over MLE,
GSEC+MLE, and CEC+MLE, all of which are
mostly restricted within the boundary of the word.
The best GSEC model outperforms CEC+MLE
(p < 0.0001), achieving a WER of 8.3%, corre-
sponding to 65% reduction compared to the base-
line. It is worth noting that adding the MLE com-
ponent allows Eskander’s CEC to recover various
types of errors that were not modeled previously.
However, the contribution of MLE is limited to
words that are in the training data. On the other
hand, because GSEC is trained on character trans-
formations, it is likely to generalize better to words
unseen in the training data.

Results on Test Data Table 5 presents the re-
sults of our best model (GSEC+4grams), and best
model+MLE. The latter achieves a 92.1% Acc
score. The Acc score reported by Eskander et al.
(2013) for CEC+MLE is 91.3% . The two results
are statistically significant (p < 0.0001) with re-
spect to CEC and CEC+MLE respectively.

Approach Corr%/WER Acc%
Baseline 74.5/25.5 75.5
GSEC+4grams 90.9/9.1 91.5
GSEC+4grams+ MLE 91.8/8.3 92.1

Table 5: Evaluation on test data.
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4.2 Error Analysis
To gain a better understanding of the performance
of the models on different types of errors and their
interaction with the MLE component, we separate
the words in the dev data into: (1) words seen in
the training data, or in-vocabulary words (IV), and
(2) out-of-vocabulary (OOV) words not seen in
the training data. Because the MLE model maps
every input word to its most likely gold word seen
in the training data, we expect the MLE compo-
nent to recover a large portion of errors in the IV
category (but not all, since an input word can have
multiple correct readings depending on the con-
text). On the other hand, the recovery of errors in
OOV words indicates how well the character-level
model is doing independently of the MLE compo-
nent. Table 6 presents the performance, using the
Acc metric, on each of these types of words. Here
our best model (GSEC+4grams) is considered.

#Inp Words Baseline CEC+MLE GSEC+MLE
OOV 3,289 (17.2%) 70.7 76.5 80.5
IV 15,832 (82.8%) 78.6 94.6 94.6
Total 19,121 (100%) 77.2 91.5 92.2

Table 6: Accuracy of character-level models shown sepa-
rately on out-of-vocabulary and in-vocabulary words.

When considering words seen in the training
data, CEC and GSEC have the same performance.
However, when considering OOV words, GSEC
performs significantly better (p < 0.0001), veri-
fying our hypothesis that a generalized model re-
duces dependency on training data. The data is
heavily skewed towards IV words (83%), which
explains the generally high performance of MLE.

We performed a manual error analysis on a sam-
ple of 50 word errors from the IV set and found
that all of the errors came from gold annotation er-
rors and inconsistencies, either in the dev or train.
We then divided the character transformations in
the OOV words into four groups: (1) characters
that were unchanged by the gold (X-X transforma-
tions), (2) character transformations modeled by
CEC (X-Y CEC), (3) character transformations not
modeled by CEC, and which include all phenom-
ena that were only partially modeled by CEC (X-Y
not CEC), and (4) complex errors. The character-
level accuracy on each of these groups is shown in
Table 7.

Both CEC and GSEC do much better on the
second group of character transformations (that
is, X-Y CEC) than on the third group (X-Y not
CEC). This is not surprising because the former

Type #Chars Example CEC GSEC
X-X 16502 m-m, space-space 99.25 99.33
X-Y 609 ~-h, h-~, Ǎ-A 80.62 83.09
(CEC) A-Ǎ, y-ý
X-Y 161 t-θ , del{w} 31.68 43.48
(not CEC) n-ins{space}
Complex 32 n-ins{A}{m} 37.5 15.63

Table 7: Character-level accuracy on different transforma-
tion types for out-of-vocabulary words. For complex trans-
formations, the accuracy represents the complex category
recognition rate, and not the actual correction accuracy.

transformations correspond to phenomena that are
most common in the training data. For GSEC,
they are learned automatically, while for CEC they
are selected and modeled explicitly. Despite this
fact, GSEC generalizes better to OOV words. As
for the third group, both CEC and GSEC per-
form more poorly, but GSEC corrects more errors
(43.48% vs. 31.68% accuracy). Finally, CEC is
better at recognizing complex errors, which, al-
though are not modeled explicitly by CEC, can
sometimes be corrected as a result of applying
multiple classifiers in cascade. Dealing with com-
plex errors, though there are few of them in this
dataset, is an important direction for future work,
and for generalizing to other datasets, e.g., (Za-
ghouani et al., 2014).

5 Conclusions

We showed that a generalized character-level
spelling error correction model can improve
spelling error correction on Egyptian Arabic data.
This model learns common spelling error patterns
automatically, without guidance of manually se-
lected or language-specific constraints. We also
demonstrate that the model outperforms existing
methods, especially on out-of-vocabulary words.

In the future, we plan to extend the model to use
word-level language models to select between top
character predictions in the output. We also plan
to apply the model to different datasets and differ-
ent languages. Finally, we plan to experiment with
more features that can also be tailored to specific
languages by using morphological and linguistic
information, which was not explored in this paper.
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