
Musubi: Disintermediated Interactive Social Feeds
for Mobile Devices

Ben Dodson Ian Vo T. J. Purtell Aemon Cannon Monica S. Lam

Computer Science Department
Stanford University
Stanford, CA 94305

{bjdodson, ianvo, tpurtell, aemon, lam}@cs.stanford.edu

ABSTRACT
This paper presents Musubi, a mobile social application
platform that enables users to share any data type in real-
time feeds created by any application on the phone. Musubi
is unique in providing a disintermediated service to end
users; all communication is supported using public key en-
cryption thus leaking no user information to a third party.

Despite the heavy use of cryptography to provide user au-
thentication and access control, users found Musubi simple
to use. We embed key exchange within familiar friending
actions, and allow users to interact with any friend in their
address books without requiring them to join a common net-
work a priori. Our feed abstraction allows users to easily ex-
ercise access control. All data reside on the phone, granting
users the freedom to apply applications of their choice.

In addition to disintermediating personal messaging, we
have created an application platform to support multi-party
software with the same respect for personal data. The So-
cialKit library we created on top of Musubi’s trusted com-
munication protocol facilitates the development of multi-
party applications and integrates with Musubi to provide
a compelling group application experience. SocialKit allows
developers to make social, interactive, privacy-honoring ap-
plications without needing to host their own servers.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—distributed applications; E.3 [Data]:
Data Encryption—public key cryptosystems

General Terms
Design, Security

Keywords
Mobile, Social, Privacy, Platform, RSA

1. INTRODUCTION
Smartphones are fast becoming the device of choice when

it comes to personal and social computing. We take pictures
on the phone, we play music on the phone, and we can even

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2012, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1229-5/12/04.

remotely control our TVs. Through Bluetooth, NFC (Near-
Field Communication), and QR codes we can build ad-hoc
personal device networks. Eventually we will have all our
credentials on the phone so we can unlock paid content any-
where without logging in.

As the gateway to everything personal and digital, the
phone can be viewed as an extension of ourselves. Being
constantly on and connected, the phone has the ability to
let us share and celebrate all our daily moments with our
friends and loved ones. For those who do not wish to give
up the totality of our digital selves to a for-profit third party,
the phones can allow us to interact with others without inter-
mediation. This paper presents Musubi which allows users
to share virtually anything with our contacts without sacri-
ficing data privacy or ownership.

1.1 Disintermediation of Social Interactions
Practically everything social is intermediated today, from

full-blown social networking to simple games like Tic-Tac-
Toe. While earlier social networks would acquire their own
social graphs, now almost all social software shares through
existing social networks using protocols like Facebook Con-
nect. Users interested in owning their data and control-
ling access beyond what is made available by such networks
have few alternatives. As more information is aggregated
and owned by the provider of the proprietary social graph,
a powerful monopoly that owns the proprietary social app
platform may emerge to the detriment of competition, inno-
vation, and welfare of the consumers.

The closed proprietary social networks we have today
do not comply with privacy protection regulations such as
COPPA and HIPAA [1]. They do not serve the communi-
cation needs of individuals or corporations who wish to own
and control their data. Even among those less concerned
about privacy, they need to exercise caution using such net-
works. They need to protect their image, which is defined
by not just what they post, but what their family, friends
and friends-of-friends post as well.

Personal smartphones make possible the notion of disin-
termediated social services. Disintermediation is attractive
not just for sharing confidential information, but for friends
to share anything with each other freely from silly pictures,
random thoughts, to dark secrets. However, while phones
have persistent connections to the Internet, mobile IP net-
works disallow incoming connections to the devices. We cre-
ated the Trusted Group Communication Protocol, or TGCP,
to enable phones to contact each other through a cloud re-
lay while providing information confidentiality. Data is pro-

tected using public key cryptography and the data is de-
crypted only on end users’ devices.

1.2 A Decentralized Trusted Social Graph
In the Musubi system, there is no single central social

graph. Instead, our friends’ contact information is stored
purely in our address book; we can interact with any of our
friends directly, without requiring them to sign up on an
external social network. Individuals are identified by public
keys. PKI systems for personal identity are notoriously hard
to use [32]. Our goal is to hide the security mechanisms so
that even a child could use them. We leverage smartphone
technologies such as NFC and Bluetooth to allow users to
seamlessly connect with each other as they interact in the
physical world. We provide a group-centric user interface
that aggregates application activity and communication into
interactive private social feeds.

1.3 Sharing Everything Interactively
Musubi provides a social feed that lets groups of friends

share everything on the phone frictionlessly with each other
in real time, from status updates and photos, names of
installed apps, to real-time multi-party app sessions. We
made the Musubi disintermediated communication primi-
tives available to app developers in a library called SocialKit.
The library helps connect participants, exchange messages
among participants by reading and writing to feeds, and
maintain distributed state by providing an automatically
replicated social database. No personal friend information
is leaked to the social apps on Musubi, nor do these apps
need to host a server.

1.4 Contributions
This paper presents the design of a complete social sharing

platform for smartphones. The contributions of this paper
include:

• Musubi, which allows users to interact with their
friends right out of their address books. Users can
share just about everything on friends’ feeds. The
Musubi feeds let collaborative apps advertise their
progress on the same feed; users can launch any of
the shared apps easily by clicking on an entry. Musubi
also helps friends establish trust with one another by
hiding key exchange in common friending interactions.

• TGCP: a trusted communication protocol for exchang-
ing encrypted messages within groups on the mobile
phone. This is the backbone of our disintermediated
services.

• SocialKit, an API of a social application platform for
creating multi-party apps with disintermediated com-
munication.

• a large collection of Musubi applications that range
from simple sharing of to-do lists to engaging multi-
player games. All these disintermediated apps can be
developed quickly using our application platform and
require no servers.

The organization of the rest of the paper is as follows.
We first present the user experience by way of an example.
Sections 3, 4, 5 and 6 present key concepts in our design:
the decentralize social graph, TGCP, the Musubi feed, and
the SocialKit library. We describe our experience with our
system and report on the apps developed on Musubi in Sec-
tion 7. We then discuss related work and conclude.

2. USER EXPERIENCE
Our goal is to make the Musubi experience feel as nat-

ural and integrated as possible by reducing the frictions in
starting up, friend interactions, and the app sharing experi-
ence. Here we provide some sample scenarios to show how
Musubi is integrated into the social experience on mobile de-
vices. Note below that the user is unaware of the underlying
cryptographic operations involved.

Acquiring new friends. Michael meets new customers
every day. With Musubi’s help, he now manages all of his
business associates on his phone. Instead of exchanging busi-
ness cards with them, he simply touches his phone to theirs
to become friends over Musubi and he can now message them
easily and securely.

Easy access control. Michael has been using Musubi
for some time now and belongs to a few groups: “College
Buddies”, “The Scotts”, and “Dunder Mifflin Paper.” He
likes this separation of friends, family, and coworkers, as he
can act naturally in each group without concerns of how
other groups would perceive him. He meets Bob, a college
friend from out of town at a bar. He shows Bob a picture
shared by Ann, a mutual friend, on the “College Buddies”
feed. He brings up a camera with a click and snaps a picture
of Bob and himself. The picture is shared immediately on
the same feed, Michael can rest assured that his mother,
who is opposed to alcohol, will not see the picture.

Group sharing. Michael takes his sales team to the zoo
in celebration of a good past quarter. To keep a record of
the event, he creates a new group“Dunder Mifflin Zoo Trip.”
He broadcasts the group locally using GPS and password
protects it. His employees check “Nearby Groups” on their
phones, enter in the password, and join Michael’s new group.
Michael creates a to-do list of goals for the day with the
TodoBento application, as seen in Figure 1. Everyone turns
on the“Share photos”mode, and all of the pictures they take
on their phone while in this mode are automatically shared
with just the “Dunder Mifflin Zoo Trip” group.

Figure 1: A list of Musubi feeds, a single Musubi
feed, and the TodoBento application.

Non-Musubi applications. Michael sees that Ann
posted a picture of a cat in the “Dunder Mifflin Paper” feed
and can’t help but think that it would be hilarious to see
the cat with a monocle. He clicks the cat picture, chooses to
edit, and loads the cat picture into PicSay, a free third-party
photo-editor he downloaded from the market. After he puts
the finishing touches on his cat, he presses the back button
and his well-dressed cat automatically appears in the feed.

Easy multi-party applications. Ann starts a poker
game in the Musubi feed as an invitation for Michael to
join. Michael has not heard of that app before; he clicks
on the game and is automatically brought to the Android
market page for the poker app. After he installs it, he joins
the poker game in session and begins playing with Ann. He
notices that this free app has no ads because it is an open-
source distributed app that requires no server infrastructure.

The above scenarios demonstrate how natural it is for new
and old friends to share information and play games with dif-
ferent groups on the phone. The user can discover new apps
and install them easily. Existing apps get shared socially
without modification and free lightweight multi-party apps
are enabled, all without losing any personal or social data
to a third party.

3. A DECENTRALIZED SOCIAL GRAPH
Musubi is built upon the familiar address book model.

Once friends have exchanged contact information, which in-
clude public keys in this case, they are able to contact each
other without needing to sign up with a common third-party
provider. Thus, Musubi has a decentralized social graph,
with only users knowing who their friends are.

3.1 Key Management
By focusing on mobile, we take advantage of the fact that

the phone is primarily a single-owner device. Accounts can
be bound to a device eliminating the need for account reg-
istration. Upon installation, a public/private key pair is
generated on the user’s behalf.

Users have the option of associating their public keys with
their web identities to facilitate key distribution and revo-
cation. If users lose or leak their secret key, they can simply
update their public keys. Public keys can be stored with web
finger providers [34] such as Google. There has also been a
proposal to place public keys on Facebook profiles using So-
cialKeys [17]. Users can import keys of their friends into
their address book just as they would import phone num-
bers and addresses.

We note that some users, such as peace activists in au-
thoritarian regimes, may not wish to link their accounts with
any known identities. They can open an anonymous account
with some identity provider or they can simply handle the
key distribution and revocation themselves.

NFC-enabled mobile devices offer an easy and direct way
to exchange public keys through physical contact. Musubi
takes advantage of the natural handshake interaction that
people perform when they introduce themselves. By touch-
ing phones, we can utilize NFC to directly exchange public
keys, thereby establishing friendship. For phones without
NFC, we use QR codes that embed the public key.

3.2 Friends and Groups
Public keys are well-known, so anyone can send a message

to a Musubi user. For Musubi to be a successful social net-
work, it is important to eliminate spam. Our design is based
on the premise that friends should be able to exchange keys
with each other. In Musubi, we define friends as people who
have exchanged public keys and the keys are in their respec-
tive address books. Messages received from a non-friend are
summarily discarded.

Musubi groups allow for the mass acquisition of friends.
Any member in a Musubi group can invite their friends to

join the group, and public keys are automatically shared
among group members. There is no central group server;
the membership is replicated on all the members’ devices,
and messages to the group are simply addressed to all the
members directly. Each group has a public and private key
pair which is used for group membership control messages.

A group invitation message contains the group’s public-
private key pair. This key pair is used to validate that people
claiming to be part of the group are actually trusted. Once
the user clicks on the invitation, they accept the key-pair as
a means for validating new friends. Once the group’s public
key is entered into the address book, messages that include
a signature based on the group key will be accepted even
if the sender is unknown. This allows friends to extend the
social circles of their peers in a seamless fashion.

Figure 2 shows the protocol for sharing a group and main-
taining the group membership. First, a user creates a group,
which consists of a name and a public and private key pair.
Then he sends an invitation message to all of the desired
participants. Users who want to join the group respond to
this request (at the behest of the user) with a join notifi-
cation that indicates their participation in the group feed.
The originator of the group then responds with a message
that contains the complete membership list of the group.

This message is signed with the group’s public key. When
the invitee eventually receives the join response, he will send
a notification to all of the other members with his perceived
membership list for the group. Whenever a participant re-
ceives a membership list signed by the group key, Musubi
extends the membership of the group to include all of the
asserted members. Any member can extend invitations to
new members in the same way.

Figure 2: Any group member can invite new partic-
ipants by sharing the group key pair and a partial
list of group members with another Musubi user.

3.3 Invitation through External Channels
Musubi users can extend group invitations using external

channels. A group invitation can be encoded as an HTTP
link. The link encodes the group’s public and private keys,
sender’s public key, and a friendly name for the group as
parameters. The domain of the link is that of Musubi’s
home page, allowing the app to register itself to handle such
links directly.

The link can be distributed through any medium, for ex-
ample NFC, email, a GPS-based group broadcasting server,
or on a (access-controlled) website. If Musubi is not in-
stalled, the link leads to a webpage prompting the user to
install it. Once installed, a second click of the link is inter-
cepted by Musubi to initiate the group joining process.

4. TRUSTED GROUP COMMUNICATION
PROTOCOL

Mobile phones are the primary platform of a modern so-
cial network. These devices are always on, often connected,
and intimately involved with our daily lives. Unfortunately,
the 3G network service provided for these devices usually
does not allow for incoming connections to be accepted by
the device. This limitation mandates the use of an external
service to buffer messaging between smartphones. Further-
more, aggregating non-critical message delivery allows for
significantly reduced power consumption [19].

To preserve the principle of disintermediation, the Musubi
social application platform relies on end-to-end encryption of
messages addressed to public keys. We propose the Trusted
Group Communication Protocol, or TGCP, for the required
message transport primitives for the application platform.
TGCP is a multicast messaging system that provides public-
key based routing, server-hosted message queues, and con-
nection aggregation. Each user, and hence each public-
key, has a message queue associated with it on the TGCP
server. Devices receives new messages from their corre-
sponding message queues. When a user sends a message
to a friend, it sends it through the TGCP server. Thus each
users’ device only needs to maintain a connection to the
TGCP server to interact with their friends’ devices.

4.1 Public-Key Based Messaging
Instead of using human readable names such as an email

address, TGCP specifies that a public key be used as a global
identifier. Messages are addressed to individuals by their
public keys; the content of the messages are encrypted and
signed with the senders’ private keys. A user can hand the
encrypted message off to any server to forward the message
to a recipient, as only the recipients can decrypt the mes-
sages with their secret keys. We require all messages be
signed so the recipient can authenticate the sender. Servers
can even cache large amounts of data for clients without
imposing any risk to privacy. This design preserves the dis-
intermediation principle because the messaging subsystem
is not privy to the content of the messages. However, the
server is given a pseudononymous view of the structure of
groups and frequency of messages.

Figure 3 shows the message format of a TGCP message.
Each message consists of a header and a payload. The pay-
load is encrypted with a 128-bit AES key using CBC mode
with PKCS5 padding. Each message is encrypted with a
different key, which itself is encrypted with the RSA pub-
lic key for each of the recipients of the message using ECB
mode with PKCS1 padding. The sender’s public key and an
RSASSA-PKCS1-v1 5 signature using the SHA1 hash func-
tion for the full message are also included in the header to
prevent tampering [11].

signature from to0 key0 ... ton keyn payload

Figure 3: A TGCP packet is encrypted with a per-
message key and signed for authenticity.

4.2 Federation
One possible implementation of TGCP is a centralized

cluster that handles the routing of message between all mo-
bile phone users. We have implemented this design to ex-

plore the higher level challenges inherent in implementing
a decentralizable application platform. For the purpose of
geographic distribution and choice of different providers, a
federated design is necessary. In a federated model, each
public key is associated with a server, or home agent, that
serves as the designated contact point for a mobile device.

Federated TGCP aggregates all social activity into a sin-
gle stream of messages to and from the home agent. The
protocol implies a network topology where many clients are
connected to a single server, and each server is connected
to many other servers. The servers participate in the peer-
to-peer network that routes traffic between devices, while
the client simply pushes and pulls messages to and from its
self-designated home agent.

TGCP is intended to operate using semi-trusted networks
of home agents, such as those that might be provided by
telecom operators. Messages are addressed to a set of in-
dividuals by specifying their public keys with an encoded
TGCP packet. Once more than one server is available for
message routing, it is necessary to designate which server
is pertinent to the specific recipient of a message. The ex-
pected home agent for a particular keyed identity is also
encoded in the TGCP packet. This allows the common case
of messaging to happen without requiring servers to consult
a global database of designated home agents. The client can
easily keep track of the home agent for its contacts because
the home agent designation changes infrequently.

5. MUSUBI FEEDS
Musubi is designed to be a highly engaging application

platform. Users can share everything, not only status up-
dates and photos, but arbitrary content generated by any
application on the phone as well as interactive application
states that solicit active and ongoing participation from
group members.

5.1 The Feed Abstraction
All objects shared within a group are organized in the

abstraction we call a feed. A feed can be a long-lasting con-
nection with a mostly fixed group of people. A feed can also
be associated with a physical place such as someone’s house,
with its members being the people and devices present there.
A conference room can associate with several feeds through-
out the course of a day, one for each meeting, allowing ap-
plications and data to be shared easily with the people and
devices nearby.

The feed is, in a sense, an extensible semantic web con-
sisting of members and objects with access protection, as
illustrated in Figure 4. Only members in the group can
submit objects to the feed, and everything is replicated on
members’ phones. Data objects can be of well-known, ren-
derable types such as photos or text, or they may be of a
type without an associated view, useful for storing internal
application state. The meta-information associated with the
objects provides the semantic relationships between them. It
includes information about the user who submits the object,
the application that creates the object, the time of creation,
whether the object is a response to another, and so forth.
Musubi displays renderable data in order of its arrival time,
and all data is stored in Musubi’s social database, which can
be accessed by applications in controlled ways.

Figure 4: The Musubi API builds a semantic web of
objects and users with the feed defining the context.

5.2 Interactions on a Feed
Besides letting users type in status updates or post pic-

tures, users can interact with content on the feed in several
novel ways.

Data import and export. Musubi supports the basic
kind of sharing available on today’s mobile devices. For
example, a link can be shared from a web browser with a
few clicks: the user elects to share a link, chooses Musubi,
and then chooses a set of recipients which can be either
friends or feeds. Later, the link can be exported from the
feed to email, or launched in the browser.

In-place editing. Users can edit objects in the feed and
reshare them easily. They click on an object, pick among
a list of applications installed on the phone that support
editing that object, and the data is shared upon exiting the
program. As seen in Figure 5, two clicks allow a user to
invoke their favorite photo editing application to edit a pic-
ture that has been shared in a feed, and when he is done, the
content is instantly shared with the group. This basic inter-
activity is enabled through the “edit” intent on the Android
platform. The Musubi feed provides the context of how the
data is shared.

Figure 5: Using the PicSay photo editor to modify
a picture in a feed.

Virtual presence. Musubi takes advantage of being
“mobile-first” by supporting ongoing engagement that ex-
tends beyond Musubi’s core application. The phone is an
important personal accompaniment and is increasingly privy

to our daily goings-on. Musubi makes it easy for friends to
continually share activities through the phone, giving them
a persistent sense of companionship.

With a click on the feed of their choice, users can elect
to share a variety of ongoing activities from their phone as
“presence updates” to a feed. For example, users can en-
able GPS location sharing. This feature is similar to several
other services such as Loopt or Google Latitude, but without
intermediation.

The “camera presence” shares any newly captured images
with a group whenever a photo is captured with the built-in
Android camera application. A group of friends can enable
camera presence during a night out to automatically share
their captured experience with each other without requiring
a centralized service. We can also broadcast the music we
listen to and even the TV shows we watch. Sharing such
data with feeds provides fresh context for us to interact with
friends while limiting the scope of what we share.

Multi-party applications. All the modalities described
so far show how users can share information of existing appli-
cations on mobile devices, provided that these applications
support the proper intents. Musubi also exposes an API, de-
scribed in the next section, which further enables new kinds
of disintermediated interactions built by third-party devel-
opers. Interactions with these applications are analogous to
the above; an app adds a visual representation of itself to a
feed, and clicking on the feed entry launches the application
for further interaction.

6. MULTI-PARTY APP PLATFORM
Writing multi-party games for mobile phones remains a

daunting task for developers today. Consider the exercise
of writing a basic game of Tic-Tac-Toe for phones, played
across two remote devices. In the standard model, we must
(1) choose an API for pairing friends, such as Facebook Con-
nect; (2) set up a server to handle the pairing; (3) manage
push notifications from server to client; (4) write the mobile
client. Musubi reduces the task to only writing the mobile
client.

We expose the platform’s interaction primitives through
an API allowing application writers to simply write the mo-
bile client code. They do not have to set up a server. Note
that we do not preclude the development of server-client
apps; we are simply providing an alternative model that
was not available before.

6.1 Overview
A decentralized multi-party application needs:
1. a group of participants,
2. a sequence of objects that represent interactions be-

tween members,
3. distribution or replication of these objects across mem-

bers’ devices.
The feed is a basic example of such an application. We
further extend the feed primitives to multi-party application
developers so apps can be developed as a subfeed within a
feed. The main feed serves as a form of a “bulletin board”
of arbitrary posts from a mix of applications, where users
can issue and accept invitations to new app sessions. Users
can easily join these sessions even if they do not have that
app installed. Moreover, they do not have to monitor the
status of independent applications, users are alerted of state
updates from any applications on the general feed.

In this model, an application is bound by a parent feed
and communicates purely with feed primitives. Musubi pro-
vides an identity firewall that enables applications to send
messages to a users’ friends without learning their identities.

Our Android version of Musubi provides an API that is
accessible to other native appicatitions through the use of
built-in interprocess communication mechanisms including
Content Providers and Intents. On other mobile platforms
like iOS, applications are sandboxed and we cannot provide
this level of communication. We thus provide API access to
HTML5 applications which execute within a web container
embedded inside the Musubi application.

The following describes the application platform we have
built for the Android OS. The API is accessible directly as a
Content Provider representing feed data. We also provide a
library called SocialKit to further simplify the development
of multi-party applications.

6.2 Subfeeds
The abstraction of a subfeed is used for grouping messages

from the same application session as well as for grouping
user responses to messages within a feed. Technically, ev-
ery object in a feed is the head of a subfeed. Each object
has a universal identifier generated from the TGCP’s packet
signature which we reference in our semantic graph. The
subfeed is then a collection of objects that lists the head as
a “parent.”

Independent subfeeds allow different app instances (such
as two different games of poker) to maintain separate state.
Musubi supports a mechanism for updating the view within
a feed that is associated with an app instance by sending a
specially typed object to the subfeed. The rendering is avail-
able on devices even if the application is not yet installed.

Figure 6 demonstrates how a poker application interacts
with a Musubi feed. The feed has two different application
instances, each representing a game played with different
people. The poker app associates internal state information
with each session which is shared across all participants.
It also periodically updates the visual representation of the
game so it can be rendered in Musubi as seen in Figure 8.

Figure 6: A feed showing two sessions of a poker
application, an image, and a text object. Each poker
session has a subfeed of non-rendered session data
as well as thumbnails representing the current state.

There are two ways in which an application can attach
itself as a subfeed to a feed. The user can first pick the people
with whom he wishes to interact and then the application,
or he can pick the app first and then choose participants.

In the first case, the user launches an application within
a Musubi feed. When a user views a feed, a button press

allows him to choose an application to launch, adding it to
the feed. The application is automatically handed a subfeed
identifier, which it can use for subsequent communication.
In the second case, an application can call into Musubi to
prompt the user for a feed. On Android, this is achieved
by having the app send an intent to Musubi requesting that
Musubi ask the user to pick a feed; Musubi ultimately re-
sponds to this intent with the feed identifier. During the
process, a user may create a new feed for the application.

6.3 Messaging
Once an app is connected to a feed, it can send arbitrary

data objects to it. Musubi wraps the object with additional
meta information as shown in Figure 7, signs it with the
user’s private key and sends it to the TGCP network.

The message contains the application’s data and also in-
cludes a timestamp, an identifier for the sending application,
and a sequence number indicating how many messages the
user has sent to this feed, and the name of the feed. Ob-
jects are composed of properties that address various needs
of application development. An object must contain a type
(a short string identifier), and can optionally contain JSON-
formatted data as well as raw binary. The size of a message
is limited to 1 MB due to constraints on the devices. When
an object is received, the timestamp, sending application’s
identifier, and user signature are also made available to an
application.

timestamp app id seq id feed name type json raw

Figure 7: A data object to be encrypted and inserted
as the body of a TGCP packet.

6.4 Social Database
Objects entered into the social database are available

to applications in controlled ways. In Android parlance,
the Musubi social database is implemented as a Content
Provider, allowing apps to run queries over the feeds and
objects it maintains. The Content Provider also allows us
to enforce access control, as we can determine the applica-
tion that issued a query.

If an application is given access to a feed, it can obtain lim-
ited information about the users of that feed, including their
public key, nickname, and profile picture. This is enough
information to visually represent that user and also to es-
tablish communication with him via Musubi. More sensitive
data such as phone numbers, email addresses, and physical
addresses are by design not accessible. We believe a user
should not have the ability to share this data on behalf of
a friend, preferring instead for this data to be opted-in for
sharing from that friend’s device.

Currently, applications are restricted to seeing only data
generated by their application from any member in the feed.
We are actively exploring models that allow willing applica-
tions to exchange data.

6.5 SocialKit
Even with the friend management and connectivity pro-

vided by Musubi, writing distributed applications remains a
challenge. We must also help developers manage distributed
state, tackling transportation and state management details
while providing a straight-forward, usable API.

To help develop applications over the distributed data-
store, we provide APIs to manage common application
styles in a library called SocialKit. For example, the Turn-
BasedGame API maintains consistency for applications in
which only one user at a time is allowed to update the
application’s state. The API allows a developer to set a
JSON object representing the application’s state, to specify
whose turn is next, and also to provide a text, HTML, or
bitmap thumbnail representing the application for display
in the main feed. This greatly simplified API can support a
wide variety of applications.

The universal identifier given to the app instance’s feed
object can also be used to set up data connections outside
of Musubi. We have demonstrated how this identifier can be
used to run application sessions using the Junction API [7],
which is bundled with SocialKit.

Junction allows applications to communicate in real-time
as if they were in a chatroom. A unique session identifier acts
as a capability for joining that session. Junction supports
communication over a variety of channels, including XMPP,
Bluetooth, and a local LAN. In each case, a device acts as
a “switchboard,” routing messages and establishing a global
ordering. While objects in Musubi are implicitly persisted,
Junction messages are transient. Junction also provides its
own system for managing distributed state with its Props
abstraction, which may be preferable to Musubi’s APIs for
some styles of applications.

The app instance identifier can also be used to maintain
state on a central server. Musubi is still useful for estab-
lishing the application’s membership and embedding it in a
social feed.

7. EXPERIMENTAL RESULTS

7.1 Implementation
We have developed a prototype of Musubi on the Android

platform and have made Musubi available in the Android
Market since July of 2011. Our codebase is open source and
available on GitHub [16].

Our experimental implementation of TGCP uses a stock
distribution of the popular AMQP server RabbitMQ [23].
Each individual owns a message queue on the server named
according to his public key. When a person sends a message,
he creates a fanout exchange that multicasts messages to
their intended recipients. Then, they send a message to
the fanout, which causes it to be distributed to all of the
recipients’ message queues. The message queues are durable,
meaning that the server guarantees message delivery once
it accepts a message. A receiver acks messages from the
server as it consumes them to ensure that each message is
processed by the receiver at least once. The receiver itself
keeps track of the signatures of messages it has received
and fully processed to avoid repeatedly handling the same
message. Our single server instance was able to route about
30,000 small messages per second. The architecture of the
RabbitMQ server allows for it to scale up nearly linearly
versus CPUs in a clustered configuration [22].

7.2 User Experience
Our research group has been using our prototype contin-

uously for over half a year. On a larger scale, Musubi and
our whiteboard application have been deployed at a charter
school in New Jersey to 150 K-3 students. Teachers have

responded favorably to the ability to share a private, col-
laborative drawing space with their students, using it for
situations such as helping a student practice their cursive.

We have also conducted a study with two groups of 15
students each, aged 10-12, at a local Montessori school [30].
Students were all joined to one big group ahead of time
to simulate the scenario where a student directory is made
available by the school. Musubi was exceedingly popular
with the children, so much so that parents were concerned
about how to limit usage. The children had little trouble
adapting to the system, making excessive use of picture tak-
ing and photo editing with PicSay, while remaining com-
pletely unaware of the underlying cryptographic operations.
These students had mostly positive feedback, with a number
of them proclaiming that “Musubi is AWESOME!”

7.3 Application Experience
The Musubi application provides a suite of functionalities

including group management, app communication, and dis-
tributed state management. We describe below a sample of
the different kinds of collaborative apps built for Musubi.

7.3.1 Interactive Sharing
Musubi makes it trivial to build interactive sharing ap-

plications among friends. TadPoll allows members to con-
duct quick polls. A user runs TadPoll in a feed and enters
a question he would like people to answer. The question
is rendered as an HTML thumbnail in the feed, and click-
ing it prompts users to respond to the poll. Each answer
is persisted in the social database, and when a new answer
is inserted, the HTML thumbnail updates to show current
answers from the aggregated results. The basic TadPoll im-
plementation is approximately 175 lines of code. In the same
vein, TodoBento helps friends keep track of a common to-
do list; friends can put up new items and check them off
when completed. These apps will see more usage if they
are frictionlessly integrated into the regular communication
flow.

7.3.2 Turn-Based Apps
Many casual games are turn-based apps. Instead of re-

quiring developers to manage scalable web services, Musubi
lets all these apps be written as peer-to-peer software. Tic-
Tac-Toe is implemented using SocialKit’s TurnBasedGame
API. Tic-Tac-Toe sessions are launched from within a feed,
with Musubi prompting the user to select an opponent. Tic-
Tac-Toe can be written in less than 200 lines of code, lever-
aging the TurnBasedGame API to maintain state and dis-
play players’ names and images, as well as to represent the
game’s state as an HTML thumbnail in the encapsulating
feed. Tic-Tac-Toe is particularly easy to write because its
state is known in full to all players; other compelling games
share this property, including Chess, Checkers, Connect 4,
and many more.

weHold’em and WordPlay are two fancier turn-based
games implemented using SocialKit. weHold’em is a game
of Texas Hold’em poker for 2 to 8 players, and WordPlay is
a Scrabble variant for up to 4 players. In weHold’em, each
player joins with a fixed amount of money, and the game is
played in rounds until a player’s money runs out. WordPlay
runs a single game per application instance. Both games
publish HTML thumbnails to the feed to update their state.

Unlike Tic-Tac-Toe, both weHold’em and WordPlay in-

Figure 8: A game of Poker and its feed view.

volve application state that should be kept private to each
player. We keep state private by simply not rendering it
on devices that do not have access, however a curious user
could determine other player’s private state by exploring
their local database. Because Musubi is designed for use
with friends, this is not a grave concern. It is possible to run
these games with cryptographically verified privacy [18].

7.3.3 Real-Time Collaboration
weTube and wePaint are two real-time applications we

had previously built using Junction. WeTube is a collabora-
tive playlisting application. A weTube session is started by
invoking the application from a feed. Within the app, users
can choose media from the web to add to a playlist, includ-
ing YouTube videos or links to music tracks. Links can be
voted up or down and are sorted based on their popular-
ity. WePaint is a collaborative whiteboard app. Friends can
draw with each other in real-time, and a thumbnail of the
sketch is displayed in a Musubi feed. Junction’s Props ab-
straction manages consistency of the distributed whiteboard
state across devices.

Junction applications support ad-hoc groups by design,
and Musubi provides the group context in which they may
run. Integration took approximately 20 lines of code per
app, allowing each to be shared directly from a feed. We-
Paint can also be launched atop an existing image in the
feed, making itself available using the “edit” intent. Musubi
passes the object’s universal identifier as an argument to the
editor, which allows wePaint to establish a unique, shared
editing session.

7.3.4 Making Existing Apps Social
Jinzora is an independently developed media streaming

application that connects to a personally-hosted cloud-based
service to browse and stream a music collection. Jinzora in-
tegrates with Musubi in two ways. First, it can publish
playback information to feeds as a form of presence shar-
ing, letting friends know what you are currently listening
to. Since Jinzora’s music is hosted in the cloud, a friend can
click on a music entry to play it back immediately.

Second, Jinzora can be launched as a feed app, sharing
a session across devices. When Jinzora detects that it has
been launched as such, it allows the client to be put in “juke-
box” or “remote” mode. When in jukebox mode, Jinzora lis-
tens for messages to update the current playlist or to control

Figure 9: The TadPoll and wePaint applications.

playback, turning the device into a media renderer. Remote
mode shares playback requests over Musubi rather than han-
dling them on the local device.

The basic jukebox functionality took roughly an hour to
implement, and required about 50 lines of code. Presence
sharing required about 10 lines. Note that presence updates
occur on a main feed, while jukeboxing occurs in a subfeed.

7.4 Discussion
We have shown that a large range of applications, from

simple polling among friends to complete media browsing
and streaming apps, can be integrated into the Musubi so-
cial experience seamlessly. We found the uniformity in the
user interface to be very helpful because users know how to
interact with new apps instinctively. Unlike other collabo-
rative apps, these Musubi apps have no access to friends’
contact information. And except for Jinzora, which streams
from a media server, none of these apps have a server compo-
nent. weHold’em and TodoBento are written by non-Musubi
developers, who succeeded in building these apps without
our involvement. This suggests that the API is usable and
complete enough for at least these apps.

Our exploration of Musubi and TGCP highlight several
challenges in deploying such a system in the real world. First
and foremost, public keys are not widely associated with
existing user accounts today. If we wish to import them from
existing social networks, we must first persuade our friends
to put up public keys in their profiles. Also, our technique of
generating the keys on the device restricts us from extending
TGCP messages to a user’s proliferating number of devices.

Musubi focuses on the exchange of small data blobs up to
1 MB in size. Sharing larger content is out of the scope of
TGCP, however we envision a companion service for sharing
data such as HD photos and videos. This service would store
encrypted copies of large data for only a short period of time
(say, 1 week). Such short-lived data storage would keep
deployment costs low while supporting common use-cases of
mobile data consumption.

8. RELATED WORK

8.1 Groups as a Primitive
Group management in online social networks are a popu-

lar feature that enhances community interactions. The bur-
den of getting group functionality tailored for efficacy in each

and every social application is daunting, and the primitives
need to become a part of a basic social operating system.
When properly integrated into a system, group-based com-
munication systems can increase usage by more than dou-
ble [5]. Systems such as Cluestr, SocialFlows, and Facebook
SmartLists all strive to eliminate the overhead of creating
groups, yet they do not leverage the possibility of real-time
acquisition of groups from mobile sensors nor do they pro-
vide a mechanism for ongoing private communication with
the group members [9, 14, 28].

8.2 Alternative Social Application Platforms
A few companies, such as Skiller and OpenFeint, have at-

tempted to provide game developers with a managed back-
end networking service so that developers need not worry
about implementing and hosting a server. These compa-
nies, however, address this problem with a centralized solu-
tion and do not provide the same guarantees of privacy that
encryption offers [20, 27].

Many systems have been built that try to enhance the
ability of the individual to control the flow of information
about them. Decentralization and encryption are the tech-
niques that support preservation of data ownership and in-
formation flow control. Diaspora was a newsworthy exam-
ple of a distributed social network because they were able
to rapidly garner the interest and money of a crowd of peo-
ple who were yearning for a safe social option [26]. There
are a plethora of other alternative social network protocols
in the open source community, each with a slightly differ-
ent architecture [2, 31, 33]. SocialVPN suggests that the
communication interface can be any IP based protocol and
that members of groups should be connected via a virtual-
ized subnet [12]. Distributed social communication systems,
such as Contrail and MobiClique, are also designed with the
mobile phone in mind, however, these systems do not ad-
dress the difficulties the architectures present to distributed
multi-party application developers [21, 29].

Google’s Plus social network emphasizes the need for
private correspondence by making users specify the pre-
cise groups they wish to share with, similar to how email
works [8]. Although this network encourages users to con-
sider the audience of their posts, it does not provide any
guarantees about data ownership and privacy beyond what
is outlined in the EULA. FlyByNight takes a different ap-
proach and uses existing centralized social networks to man-
age friend relationships, while storing only encrypted con-
tent on a central server [13]. Technically it provides disinter-
mediation, but it requires all participants to join the same
proprietary social network to establish friendships.

8.3 Identity and Routing
External identities can be authenticated in many ways

ranging from standards like OpenID [25] or OAuth [10] to
proprietary system such as Facebook Connect. Our system
allows for real world identities to have a public key attached
using these federated identity systems, but we do not require
the Musubi identity to be bound to a “real world” account.
This opens up the possibility to have pseudononymous iden-
tities, with the caveat that the structure of the social graph
is still visible to the network operators. This is distinct from
the anonymization provided by services like TOR [6] which
obscure the endpoints of internet communication channels.

Because of the difficulties associated with P2P overlay

routing schemes [4], the Musubi design depends on reliable
traffic relay services. The reliable, but not fully trusted,
provider model is more similar to existing sytems for elec-
tronic mail and instant messaging than P2P routing tech-
niques [15, 35]. TGCP allows delivery of messages across
a variety of network links because it is an identity-based
routing system [3] with embeddable routing hints.

Authenticatr is a framework for establishing secured con-
nections between friend on existing social networks [24]. Af-
ter negotiating a shared key using the messaging primitives
of existing social networks, it encodes future messages within
the available platform-specific sharable types. It does not
address the issue of data sharing between applications, but
rather solves the problem of passing a secret message to a
friend programmatically using existing channels. SocialKeys
also proposes a mechanism for bootstrapping cryptographi-
cally secured identities through existing social networks by
repurposing existing data sharing APIs [17].

9. CONCLUSION
This paper presents the Musubi social sharing platform

which enables users to share and interact with friends on the
phone without having to give up privacy to any third-party
service providers. We have focused on creating a usable sys-
tem, making sure the cryptographic operations used in en-
forcing privacy and security do not get in the way of the us-
ability of the software. We have made the social experience
very natural on the phone; we can interact with anybody on
the phone’s address book, without having to ask users to sign
up on an external social network. Our informal user study
involving about thirty children suggests that the software is
attractive. We have made Musubi and a host of Musubi ap-
plications (Jinzora, wePaint, weHold’em, weTube) available
in the Android Market, and all the source is open and avail-
able on GitHub. Videos showing some of Musubi’s features
are available on http://mobisocial.stanford.edu/musubi.

Disintermediation of phone interactions is accomplished
with the design of the Trusted Group Communication
Protocol (TGCP). The data are routed according to the
public keys, thus enabling many possible relatively sim-
ple implementations. Making TGCP available through our
application-level API, we enable easy development of many
collaborative decentralized applications that honor privacy
and without the need of hosting servers.

As we have demonstrated with the Musubi applications
described in this paper, we now have the ability to create
small and large decentralized social apps without having to
worry about disclosing our friends’ information to a third
party. Even non-Musubi applications can share information
privately through our system using Android intents. We
envision one day that there will be hundreds of thousands of
Musubi applications, and all of the native applications will
share within Musubi feeds.

10. ACKNOWLEDGMENTS
We would like to thank Chanh Nguyen and Kazuya

Yokoyama for their help in creating the weHold’em and
TodoBento apps. This research was funded in part by NSF
Programmable Open Mobile Internet (POMI) 2020 Expe-
dition Grant 0832820, the Stanford MobiSocial Computing
Laboratory, and a Stanford graduate student fellowship.

11. REFERENCES

[1] D. Boyd, E. Hargittai, S. J., and J. Palfrey. Why
parents help their children lie to Facebook about age:
Unintended consequences of the “Children’s Online
Privacy Protection Act”, 2011. http://www.uic.edu
/htbin/cgiwrap/bin/ojs/index.php/fm/article/
view/3850/3075.

[2] S. Buchegger, D. Schiöberg, L.-H. Vu, and A. Datta.
PeerSoN: P2P Social Networking: Early Experiences
and Insights. In SNS ’09: Proceedings of the Second
ACM EuroSys Workshop on Social Network Systems,
pages 46–52, New York, NY, USA, 2009. ACM.

[3] M. Caesar. Identity-based routing. PhD thesis,
University of California at Berkeley, 2007.

[4] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and
D. Wallach. Secure routing for structured peer-to-peer
overlay networks. ACM SIGOPS Operating Systems
Review, 36(SI):299–314, 2002.

[5] S. Counts. Group-based mobile messaging in support
of the social side of leisure. Computer Supported
Cooperative Work (CSCW), 2007.

[6] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
The second-generation onion router. In Proceedings of
the 13th conference on USENIX Security
Symposium-Volume 13, pages 21–21. USENIX
Association, 2004.

[7] B. Dodson. Junction: A Platform for Mobile, Ad-Hoc,
Multi-Party Application Development.
http://openjunction.org.

[8] Introducing the Google+ project: Real-life sharing,
rethought for the web.
http://googleblog.blogspot.com/2011/06/introducing-
google-project-real-life.html.

[9] R. Grob, M. Kuhn, R. Wattenhofer, and M. Wirz.
Cluestr: Mobile Social Networking for Enhanced
Group Communication. In Proceedings of the ACM
2009 International Conference on Supporting Group
Work, pages 81–90. ACM, 2009.

[10] E. Hammer-Lahav. The OAuth 1.0 protocol, 2010.

[11] J. Jonsson and B. Kaliski. Public-key cryptography
standards (pkcs)# 1: Rsa cryptography specifications
version 2.1. Technical report, RFC 3447, February,
2003.

[12] P. Juste, D. Wolinsky, P. Oscar Boykin, M. Covington,
and R. Figueiredo. Socialvpn: Enabling wide-area
collaboration with integrated social and overlay
networks. Computer Networks, 54(12):1926–1938,
2010.

[13] M. Lucas and N. Borisov. flybynight: Mitigating the
Privacy Risks of Social Networking. In Proceedings of
the 7th ACM Workshop on Privacy in the Electronic
Society, pages 1–8. ACM, 2008.

[14] D. MacLean, S. Hangal, S. Teh, M. Lam, and J. Heer.
Groups Without Tears: Mining Social Topologies from
Email. In Proceedings of the 15th International
Conference on Intelligent User Interfaces, pages
83–92. ACM, 2011.

[15] S. Marti, P. Ganesan, and H. Garcia-Molina. Sprout:
P2p routing with social networks. In Current Trends
in Database Technology-EDBT 2004 Workshops, pages
511–512. Springer, 2005.

[16] MobiSocial. Musubi Source Code.
https://github.com/Mobisocial/dungbeetle.

[17] A. Narayanan. SocialKeys: Transparent Cryptography
via Key Distribution over Social Networks. The IAB
Workshop on Internet Privacy, 2010.

[18] C. A. Neff. Verifiable mixing (shuffling) of elgamal
pairs. Technical report, In proceedings of Privacy
Enhancing Technologies ’03 (PET), LNCS series, 2003.

[19] J. Nurminen. Parallel connections and their effect on
the battery consumption of a mobile phone. In
Consumer Communications and Networking
Conference (CCNC), 2010 7th IEEE, pages 1 –5, Jan.
2010.

[20] OpenFeint. OpenFeint. http://openfeint.com/.

[21] A.-K. Pietiläinen, E. Oliver, J. LeBrun, G. Varghese,
and C. Diot. MobiClique: Middleware for Mobile
Social Networking. In Proceedings of the 2nd ACM
Workshop on Online Social Networks, WOSN ’09,
pages 49–54, New York, NY, USA, 2009. ACM.

[22] RabbitMQ: FAQ, 2011. http://www.rabbitmq.com/
faq.html#clustering-scalability.

[23] RabbitQ. http://www.rabbitmq.com/.

[24] A. Ramachandran and N. Feamster. Authenticated
out-of-band communication over social links. In
Proceedings of the first workshop on Online social
networks, pages 61–66. ACM, 2008.

[25] D. Recordon and D. Reed. Openid 2.0: a platform for
user-centric identity management. In Proceedings of
the second ACM workshop on Digital identity
management, pages 11–16. ACM, 2006.

[26] R. Singel. Open Facebook Alternatives Gain
Momentum, $115K. http://www.wired.com
epicenter/2010/05/facebook-open-alternative/.

[27] Skiller. Skiller SDK. http://www.skiller-games.com/.

[28] The Facebook Blog: Improved Friend Lists.
http://www.facebook.com/
blog.php?post=10150278932602131.

[29] P. Stuedi, I. Mohomed, M. Balakrishnan,
V. Ramasubramanian, T. Wobber, D. Terry, and
Z. Mao. Contrail: Enabling Decentralized Social
Networks on Smartphones. Technical report, Tech.
Rep. MSR-TR-2010-132, Microsoft Research, 2010.

[30] I. Vo, T. Purtell, B. Dodson, A. Cannon, and M. S.
Lam. Musubi: A mobile privacy-honoring social
network, 2011.
http://mobisocial.stanford.edu/papers/musubi.pdf.

[31] The Appleseed Project, 2010.
http://opensource.appleseedproject.org/.

[32] A. Whitten and J. Tygar. Why johnny can’t encrypt:
A usability evaluation of pgp 5.0. In Proceedings of the
8th USENIX Security Symposium, pages 169–184,
1999.

[33] OneSocialWeb, 2010. http://onesocialweb.org/.

[34] WebFinger, 2010.
http://code.google.com/p/webfinger/.

[35] Z. Xu, R. Min, and Y. Hu. Hieras: a dht based
hierarchical p2p routing algorithm. In Parallel
Processing, 2003. Proceedings. 2003 International
Conference on, pages 187 –194, oct. 2003.

