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Abstract

Traditional �le system implementations do not allow
applications to control �le caching replacement deci-
sions. We have implemented two-level replacement, a
scheme that allows applications to control their own
cache replacement, while letting the kernel control the
allocation of cache space among processes. We de-
signed an interface to let applications exert control on
replacement via a set of directives to the kernel. This
is e�ective and requires low overhead.

We demonstrate that for applications that do not
perform well under traditional caching policies, the
combination of good application-chosen replacement
strategies, and our kernel allocation policy LRU-SP,
can reduce the number of block I/Os by up to 80%,
and can reduce the elapsed time by up to 45%. We also
show that LRU-SP is crucial to the performance im-
provement for multiple concurrent applications: LRU-
SP fairly distributes cache blocks and o�ers protection
against foolish applications.

1 Introduction

File caching is a widely used technique in �le sys-
tems. Cache management policy is normally cen-
trally controlled by the operating system kernel. Re-
cently, we have shown by simulation that application-
controlled �le caching can o�er higher �le cache hit
ratios than the traditional approach [3]. This pa-
per presents the design and implementation of an
application-controlled �le cache and reports its per-
formance bene�t under a real application workload.

The design of our application-controlled �le cache
is based on a two-level replacement scheme proposed
in [3]. This method lets the kernel dynamically al-
locate cache blocks to user processes, and allows
each user process to apply its favorite �le caching
policy to its blocks. A cache block allocation pol-
icy, called Least-Recently-Used with Swapping and

Placeholders(LRU-SP), is used to guarantee the fair-
ness of allocation.

We designed an interface of user-to-kernel directives
to enable applications to control �le cache replace-
ment. The interface is designed to be su�ciently exi-
ble for applications to express desired strategies in the
common cases, and yet to have low overhead.

We implemented the application-controlled �le
cache for the Ultrix �le system on the DEC 5000/240
workstation. We compared the performance of our
�le cache to that of the traditional, global LRU ap-
proach, using several real applications. First, we
showed that a well-chosen caching policy can reduce
cache misses (and hence disk I/Os) signi�cantly. In
our single-application experiments, good policies can
reduce cache misses by between 10% and 80%. As
a result, these policies can reduce the elapsed time
of applications by up to 45%. Second, we measured
the e�ectiveness and fairness of our LRU-SP allocation
policy. Using various mixes of concurrent applications,
we showed that our implementation can reduce their
elapsed times by up to 30% over the global LRU ap-
proach.

We also compared our implementation with our ear-
lier simulation study. This con�rmed the result from
our simulation study that the added features of LRU-
SP (swapping and placeholders) are important for per-
formance improvement. Although LRU-SP does not
always provide perfect protection against foolish pro-
cesses, it signi�cantly reduces their e�ect, and it pro-
vides an easy way for the kernel to detect foolish or
malicious behavior.

2 Two-Level Replacement and LRU-

SP

This section presents some background material about
two level block replacement and the LRU-SP global
allocation policy. For a full discussion see [3].

The challenge in application-controlled �le caching
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Figure 1: Interaction between kernel and user pro-
cesses in two-level replacement: (1) P misses; (2) ker-
nel consults Q for replacement; (3) Q decides to give
up page B; (4) kernel reallocates B to P.

is to allow each user process to control its own caching
and at the same time to maintain the dynamic alloca-
tion of cache blocks among processes in a fair way so
that overall system performance improves.

To achieve this goal, we use two level block replace-

ment. Two-level replacement splits the responsibil-
ity for allocation and replacement between the kernel
and user level. The kernel is responsible for allocating
cache blocks to processes, while each user process can
control the replacement strategy on its share of cache
blocks. When a user-level process misses in the cache,
the kernel chooses a process to give up a cache block.
The designated process is free to give up whichever
block it likes. The kernel's allocation policy is used to
decide which process will give up a block.

The interactions between the kernel and the con-
trolling user process (called the manager process) are
as follows: on a cache miss, the kernel �rst �nds a
candidate block to replace, based on its \global re-
placement" policy (step 1 in Figure 1). The kernel
then identi�es the manager process for the candidate.
This manager process is given a chance to decide on
the replacement (step 2). The candidate block is given
as a hint, but the manager process may overrule the
kernel's choice by suggesting an alternative block un-
der that manager's control (step 3). Finally, the block
suggested by the manager process is replaced by the
kernel (step 4). (If the manager process does not ex-
ist or is uncooperative, then the kernel simply replaces
the candidate block.)

Clearly, the kernel's \global replacement" policy is
actually not a replacement policy at all (as it doesn't
really decide which block to replace) but rather a
global allocation policy. A sound global allocation pol-
icy is crucial to the success of two level replacement.
It should satisfy these three criteria:

� Oblivious processes (those that do not want to
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Figure 2: How LRU-SP keeps the \LRU" list. Here the
kernel suggests block A as a candidate for replacement;
the application overrules the kernel, and causes block
B to be replaced instead. The �gure shows the list
before and after the replacement decision.

manage their share of the cache) should do no
worse than they would have done under the exist-
ing LRU policy.

� Foolish processes should not hurt other processes.

� Smart processes should perform better than under
the existing LRU policy whenever possible, and
they should never perform worse.

In [3] we proposed a kernel policy called LRU-SP
that satis�es these criteria. LRU-SP operates by keep-
ing an LRU list of all cache blocks and having two
extensions to the \basic LRU" scheme:

� If the kernel suggests block A for replacement and
the user-level manager chooses to replace B in-
stead, the kernel swaps the positions of A and B
in the LRU list (\swapping"), then builds a record
(a \placeholder") for B, pointing to A, to remem-
ber the manager's choice. (See Figure 2.)

� If a user process misses on a block B, and a place-
holder for B exists, then the block pointed to by
that placeholder is chosen as the candidate for
replacement. Otherwise, the block at the end of
the LRU list is picked as the candidate.

If an application never overrules the kernel's sugges-
tions, then no swapping or placeholders are ever used
for that application's blocks, so the application sees
an LRU policy. If it uses a better policy than LRU to
overrule the kernel's suggestion, then swapping is nec-
essary so that it won't be penalized by the kernel. If
it uses a worse policy than LRU, then placeholders are
necessary to prevent it from hurting other processes.
For more details please see [3].



3 Supporting Application Control

There are a variety of ways to implement the user-

kernel interaction in two level block replacement, as

discussed in [3]. The main design challenge is to de-

vise an interface that allows applications to exert the

control they need, without introducing the overhead

that would result from a totally general mechanism.

Our approach was to �rst consider common �le ac-

cess patterns reported in the literature (e.g. [24, 1, 6])

as well as patterns that we observed in the applications

discussed below. We then chose a simple interface that

was su�cient to compose caching strategies to support

these access patterns.

An Interface for Application Control

The basic idea in our interface is to allow applications

to assign priorities to �les and to specify �le cache re-

placement policies for each priority level. The kernel

always replaces blocks with the lowest priority �rst.

(This rule applies only within the blocks of a single

process. Inter-process allocation decisions are made

using LRU-SP, as explained above.) The calls for ap-

plications are:

� set priority(file, prio) and

get priority(file) set and get the long-term

cache priority of a �le.

� set policy(prio, policy)

and get policy(prio) set and get the �le cache

replacement policy of a priority level. At present,

we o�er only two policies: least-recently-used

(LRU) and most-recently-used (MRU). The de-

fault policy is LRU.

Since �les with the same priority belong to the same

caching \pool" with the same replacement policy, ap-

plication or library writers can use a combination of

priorities and policies to deal with various �le access

patterns. They can apply a single policy to all �les,

can apply di�erent policies for di�erent pools of �les,

and can change priorities to tell the kernel to replace

some �les before others.

Our interface also has a primitive for applications to

assign temporary priorities to �le blocks:

set_temppri(file,startBlock,endBlock,prio)

This is a mechanism to allow applications to tem-

porarily change the priority of a set of blocks within a

�le. This temporary change a�ects only those blocks

that are presently in the cache, and a block's priority

change only lasts until the next time the block is either

referenced or replaced. When the temporary priority

ends, the block reverts to its long-term priority as set

by set priority.

These �ve operations are multiplexed through a sin-

gle new fbehavior system call, in the same way that

the Unix ioctl system call multiplexes several opera-

tions.

Supporting Common Access Patterns

We now illustrate how our interface can be used to sup-

port a variety of common �le access patterns. Further

examples are found in section 5, in which we discuss

how we used our interface to control caching for a set

of real applications.

Sequential Applications often read a �le sequen-

tially from beginning to end. If the �le is accessed

sequentially repeatedly, it can be assigned a low prior-

ity and MRU replacement policy. If the �le is accessed

only once, it can be assigned priority -1 to ush its

block from cache quickly.

Cyclic access Some applications repeat the same

sequence of accesses several times. These applications

can assign a low priority, and MRU replacement policy,

to the relevant �le or �les.

Access to many small �les Some applications ac-

cess many small �les. Since our interface treats all �les

of the same priority as being in a single \pool" when

making replacement decisions, these applications can

control the caching of these blocks. (An interface that

allowed control only within individual �les would be

useless for tiny �les.)

Hot and cold �les Some applications have partic-

ular �les that are accessed unusually often, or with

unusually good temporal locality. Such �les can be

assigned high priority.

Future access prediction Some applications can

predict that certain blocks are especially likely to be

accessed in the near future. These blocks can be given

a temporary increase in priority, to keep them in the

cache longer.

Done-with blocks An application may know that

it is �nished with a block, and will not be accessing it

again for a long time. For example, this can happen

in temporary �les, which are often written once and

then read once. When such a �le is being read, the

priority of a block can be decreased temporarily when

the �le pointer moves past the end of the block. This

will ush the block quickly from the cache.
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Caching.

4 Kernel Implementation

The kernel implementation of two-level replacement is
done by breaking the existing bu�er cache code into
two modules. The bu�er cache module (BUF) handles
cache management and bookkeeping and implements
the allocation policy. The application control module
(ACM) implements the interface calls and acts as a
proxy for the user-level managers. Both of these mod-
ules sit below the VFS interface and communicate via
procedure calls. The implementation is done on a Ul-
trix 4.3 kernel. 1

When a block must be replaced, BUF picks a can-
didate block and asks ACM which block to replace,
giving the candidate block as a suggestion. ACM then
acts on behalf of the appropriate user-level manager to
make the decision. The structure is shown in Figure 3.

ACM implements the calls from user level in a
straightforward way. It allocates a \manager" struc-
ture for any process that wants to control its own
caching. Then for each priority level it allocates a
header to keep the list of blocks in that level. It also
allocates a �le record if a �le has a non-zero long-term
priority. The implementation imposes a limit on ker-
nel resources consumed by these data structures and
fails the calls if the limit would be exceeded.

Every block, upon entering the cache, is linked into
the appropriate list based on its �le's long-term pri-
ority. The lists are always kept in LRU order, and
LRU (MRU, respectively) chooses blocks from the
head (tail) of the list. Blocks may move among lists
by set priority or set temppri. The implementa-
tion uses the rule that blocks moving into a list will
be put at the end that causes them to be replaced
later (the MRU end if the policy is LRU, or the LRU
end if the policy is MRU). The opposite e�ect can be
achieved by appropriate use of set temppri.

BUF and ACM communicate by using �ve proce-

1Contact the authors for portions of the code that are not

vendor-proprietary.

dure calls. They serve the purpose of notifying ACM
about replacement decisions and mistakes, informing
ACM about changes in cache state and accesses, and
asking ACM for replacement decisions. The calls are:

� new block(block): informs ACM that block was
loaded into cache bu�er;

� block gone(block): informs ACM that block
was removed from the cache;

� block accessed(block, offset, size): in-
forms ACM that block was accessed;

� replace block(candidate, missing block):
asks ACM which block to replace;

� placeholder used(block, placeholder): in-
forms ACM that a previous decision to replace
block was erroneous.

Changes are needed in the replacement procedure
in BUF to implement LRU-SP. Instead of replacing
the LRU (Least-Recently-Used) block, the procedure
�rst checks if the missing block has a placeholder, then
takes the LRU block or the block pointed to by the
placeholder (if there is one) as the candidate. BUF
calls replace block if the candidate block's caching
is application-controlled, and �nally BUF swaps block
positions and builds a placeholder. The interface is
well de�ned, and the procedures are called with no
lock held.
Since BUF and ACM sit below the VFS inter-

face, our implementation works for both UFS [18] and
NFS [26]. In all our following experiments, however,
we put all �les on local disks to avoid impact on per-
formance from network tra�c.
We believe this interface could be used if one wanted

to implement two level replacement using upcalls or
dropped-in-kernel \user-level handlers" [2]. In partic-
ular user-level handlers could know which blocks are in
cache by keeping track of new block and block gone

calls.
Our current implementation adds negligible over-

head to �le accesses. For processes that do not con-
trol their own caching, there is no added overhead on
cache hits. On a cache miss, there are two sources of
overhead: we have to keep track of which �le's data
are in a cache block because Ultrix does not remem-
ber this; and if the candidate block belongs to a pro-
cess that manages its own cache, replace block and
block gone have to be called. Since these procedures
are cheap and are implemented in the kernel, both
overheads are small; indeed they are negligible com-
pared to the disk latency.
For processes that control their own caching, the ex-

tra overhead on a cache miss is similar to the above
case except that new block is called as well. The



overhead on a cache hit depends on the work done
in block accessed, which in our current implemen-
tation only involves updating counters and moving a
few blocks around in lists. These overheads are often
smaller than the potential reduction in system CPU
time caused by reducing the number of misses.

5 Performance Results

Bene�ciaries of application controlled caching include
applications that use large �le data sets (i.e. they
do not �t in cache), because LRU is often not the
right policy for them. Examples include: database
systems, including text retrieval software; trace-driven
simulations, as the trace �les are often large; graphics
and image-processing applications; and I/O-intensive
UNIX utilities.

We chose a set of such applications for our experi-
ments. Below we �rst describe the applications that
we chose and the replacement strategies they use; then
we present performance results for single and multiple
application experiments.

5.1 Applications

We chose the following applications:

cscope [cs1-3] Cscope is an interactive C-source ex-
amination tool written by Joe Ste�en. It builds a
database of all source �les, then uses the database
to answer queries about the program. There are two
kinds of queries for cscope: symbol-oriented ones,
mostly questions about where C-symbols occur; and
egrep-like text search, mostly asking where patterns
of text occur. We used cscope on two software pack-
ages (in fact, two kernel sources), one about 18MB and
one about 10MB, and did two sets of queries: searching
for eight symbols, and searching for four text patterns.
The three runs are: cs1| symbol search on the 18MB
source; cs2 | text search on the 18MB source; cs3 |
text search on the 10MB source.

Strategy: Symbol-oriented queries always read the
database �le \cscope.out" sequentially to search for
records containing the requested symbols. Therefore
for this kind of queries, the right policy is to use MRU
on \cscope.out":

set_priority("cscope.out", 0);

set_policy(0, MRU);

Text searches involve reading all the source �les in the
same order on every query, so the right policy is MRU
on all the source �les. Since all source �les have the
default priority 0, the only necessary call is:

set_policy(0, MRU);

(When there is a mix of these queries, cscope can keep
or discard \cscope.out" in cache when necessary by
raising or lowering its priority.)

dinero [din] Dinero is a cache simulator written by
Mark Hill and used in Hennessy and Patterson's ar-
chitecture textbook [13]. The distribution package for
the course material includes the simulator and several
program trace �les. We chose the \cc" trace (about
8MB) from the distribution package, and ran a set of
simulations, varying the cache line size from 32 to 128
bytes, and set associativity from 1 to 4.
Strategy: Dinero reads the trace �le sequentially on

each simulation. Hence the right policy is MRU on
trace �le and the call is:

set_priority(trace, 0);

set_policy(0, MRU);

glimpse [gli] Glimpse is a text information retrieval
system [17]. It builds approximate indexes for words
to allow both relatively fast search and small index
�les. We took a snapshot of news articles in several
comp.* newsgroups on May 22, 1994, about 40MB of
texts. Then we glimpseindexed it, resulting in about
2MB of indexes. The searches are for lines contain-
ing these keywords: scheduling, scheduling and disk,
cluster, rendering and volume, DTM.
Strategy: The index �les and data �les naturally

lead to two priority levels because index �les are always
accessed �rst on every query, but data �les are not.
Hence glimpse gives the index �les long-term priority
1, and the articles the default long-term priority 0.
Since index �les are always accessed in the same order,
and several groups of articles (called partitions [17])
are accessed in the same order, MRU is chosen for
both levels. The calls are:

set_priority(".glimpse_index", 1);

set_priority(".glimpse_partitions", 1);

set_priority(".glimpse_filenames", 1);

set_priority(".glimpse_statistics", 1);

set_policy(1, MRU);

set_policy(0, MRU);

link editor [ldk] Ld is the Ultrix link-editor. We
used it to build the Ultrix 4.3 kernel from about 25
MB of object �les.
Strategy: Ld almost never accesses the same �le

data twice, but it does lots of small accesses, so the
right thing to do is to free a block whenever its data
have all been accessed by calling 2:

set_temppri(file, blknum, blknum, -1);

2We can't obtain the source of the DEC MIPS link editor, so

we implemented this policy in the kernel to simulate what the

program would do and called it \access-once".



postgres join [pjn] Postgres is a relational

database system from the University of California at

Berkeley. We used version 4.0.1 for Ultrix 4.3. It uses

the �le system for I/O operations, and since it only has

a small internal bu�er, it relies heavily on �le caching.

We chose one query operation: a join between an in-

dexed and a non-indexed relation, to illustrate how it

can use application control on �le caching.

The relations are a 200,000 tuple one, twohundredk,

and a 20,000 tuple one, twentyk, from a scaled-

up Wisconsin benchmark[10]. The join is on

�eld unique1, which is uniquely random within

1-200,000 in twohundredk, and uniquely random

within 1-1,000,020 in twentyk. The size of twentyk

is roughly 3.2MB, twohundredk 32MB, and index

twohundredk unique1 5MB.

Strategy: Since there is a non-clustered index on

unique1 in twohundredk, and no index in twentyk,

Postgres executes the join by using twentyk as the

outer relation and using the index to retrieve tuples

from twohundredk. The index blocks have a much

higher probability of being accessed than data blocks.

Therefore postgres uses two priority levels: the index

�le has long-term priority 1, while data �les have de-

fault priority 0. LRU is used for both priority levels.

The only call necessary is:

set_priority("twohundredk_unique1", 1);

sort [sort] Sort is the external sorting utility in

UNIX.We used a 200,000-line, 17MB text �le as input,

and sorted numerically on the �rst �eld.

Sort has two phases: it �rst partitions the input

�le into sorted chunks that are stored in temporary

�les, then repeatedly merges the sorted �les. Its access

pattern has the following characteristics: input �les

are read once; temporary �les are written once and

then read once; merging is done eight �les at a time,

and temporary �les are merged in the order in which

they were created.

Strategy: Sort has two priority levels, -1 and 0. In-

put �les have priority -1 as they are read once. Tem-

porary �les have default priority 0. MRU is chosen

for both level -1 and level 0 (because temporary �les

created earlier will be merged �rst). The calls are:

set_policy(-1, MRU);

set_policy(0, MRU);

set_priority(input_file, -1);

In addition, the \readline" routine is changed to keep

track of when the end of an 8K block is reached, and at

the end of reading a block to free the block by calling:

set_temppri(file, blknum, blknum, -1);

We experimented with other strategies, and we found

that the ones given here performed the best.

5.2 Single Applications

We compared the performance of each application un-

der application-controlled �le caching to that under

the kernel-controlled �le caching (the original, unmod-

i�ed kernel). We used a DEC 5000/240 workstation

with one RZ56 disk and one RZ26 disk. The RZ56

is a 665M SCSI disk, with average seek time of 16ms,

average rotational latency of 8.3ms, and peak transfer

rate of 1.875MB/s; the RZ26 is a 1.05GB SCSI disk,

with average seek time of 10.5ms, average rotational

latency of 5.54ms, and peak transfer rate of 3.3MB/s.

The two disks are connected to one SCSI bus.

Applications cs[1-3], din, gli and ldk were run on

the RZ56 disk, and pjn and sortwere run on the RZ26

disk.

We measured both the number of block I/Os, reect-

ing the cache misses, and the elapsed time, for several

con�gurations of the bu�er cache size (6.4MB3, 8MB,

12MB, 16MB). Figure 4 shows the elapsed times and

the number of block I/Os normalized to those under

the original kernel. The raw data for this experiment

appear in the appendix4.

Application-speci�c policies reduce the number of

block I/Os by an amount ranging from 9% to over

80%. This con�rms our simulation result [3] that miss

ratio is reduced by application controlled caching. The

reduction in elapsed time ranges from 6% to over 45%.

Elapsed time is not directly proportional to block I/Os

because elapsed time is also a�ected by the amount of

CPU computation time, and because the disk access

latency is not uniform.

The performance improvement often depends on the

relative size of the cache versus the data set. For ex-

ample, for cs1, the improvement increases until the

9MB database �le \cscope.out" �ts in cache, at which

point all policies perform the same. In some cases LRU

makes a bigger cache useless | there is no bene�t un-

til the entire data set can �t in the cache. Application

speci�c policies, on the other hand, can appropriately

take advantage of a bigger cache and improve appli-

cation performance. As DRAM density improves, we

will see ever-larger caches, so the bene�t of application

control will become more signi�cant.

5.3 Multiple Applications

In our previous paper we used simulations to show

that our global allocation policy LRU-SP can properly

take advantage of application control on replacement

to improve the hit ratio of the whole system. Now

3This is 10% of the memory of our workstation, which is the

default cache size under Ultrix.
4Raw data for all of our experiments are available at

ftp.cs.princeton.edu: /pub/pc/OSDI/.
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Figure 4: Normalized elapsed time and block I/Os of individual applications under LRU-SP, versus �le cache

size. Elapsed times under the original kernel are set to 1.0. All numbers are averages of �ve cold-start runs;

variances are less than 2% with a few exceptions that are less than 5%.

that we've implemented the system, we'd like to see

whether this is true in practice.

We ran several combinations of two or more of the

above applications, with each application using its ap-

propriate user-level replacement policy. The combina-

tions were chosen to have various mixes of access pat-

terns. For this purpose, we put the applications into

categories based on their access patterns. We put cs[1-

3] and din into the \cyclic" category, gli and pjn into

the \hot/cold" category, and ldk and sort in two sep-

arate categories. We ran six two-application combina-

tions, chosen to cover all combinations of the four cat-

egories. We also randomly chose two three-application

combinations and one four-application combination.

The combinations are: cs2+gli, cs3+ldk,

gli+sort, din+sort, sort+ldk, pjn+ldk,

din+cs2+ldk, cs1+gli+ldk, and

din+cs3+gli+ldk. Note that gli+sort, din+sort,

sort+ldk, pjn+ldk are run using two disks, while all

others are run using one disk.

We measured the total elapsed time and the total

number of block I/Os for these concurrent applica-

tions. Figure 5 shows the normalized elapsed time and

the number of block I/Os. As can be seen, LRU-SP

indeed improves the performance of the whole system.

The improvement becomes more signi�cant as the �le

cache size increases.

6 Analysis of LRU-SP

In our simulation study [3] we found that both the

swapping and placeholders techniques in LRU-SP

are necessary, and that LRU-SP satis�es our alloca-

tion criteria as described in Section 2. In this section,

we investigate these questions again with our real im-

plementation.

6.1 Comparison with ALLOC-LRU

LRU-SP keeps a basic LRU list of cache blocks to

choose victim processes, but makes two variations,

swapping and placeholders, to the list, as described

in Section 2. In the following we �rst see whether

swapping is necessary, then check whether placehold-

ers are necessary.

Is swapping necessary? Let's call the basic

scheme that simply uses the LRU list to choose

victim processes the ALLOC-LRU (ALLOCation by

LRU order) policy. With ALLOC-LRU as alloca-

tion policy in two level replacement, we randomly

chose the following from our above experiments:

cs2+gli, cs3+ldk, din+cs2+ldk, cs1+gli+ldk,

and din+cs3+gli+ldk, and compared the results to

those of LRU-SP. The results of this comparison are

shown in Figure 6.

In most cases ALLOC-LRU performs worse. In fact,

in a few cases, under ALLOC-LRU applications are

better o� not using smart policies | smarter alloca-

tion hurts their performance
5
! The problem is that

ALLOC-LRU uses straight LRU order without swap-

ping, and hence penalizes any process that does not

replace the LRU block. These results show that swap-

ping positions of candidate and alternative blocks is

necessary.

Are placeholders necessary? To see whether

placeholders are also necessary, we need an application

that can have a replacement policy that does much

5For detailed data, see ftp.cs.princeton.edu: /pub/pc/OSDI.



0 6 8 10 12 14 16

Size of Buffer Cache (MB)

0.0

0.2

0.4

0.6

0.8

1.0
N

or
m

al
iz

ed
 E

la
ps

ed
 T

im
e pjn+ldk

gli+sort
cs2+gli
cs3+ldk
sort+ldk
din+sort
din+cs2+ldk
cs1+gli+ldk
din+cs3+gli+ldk

0 6 8 10 12 14 16

Size of Buffer Cache (MB)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 #
 o

f 
B

lo
ck

 I
/O

Figure 5: Normalized total elapsed time and block I/Os of multiple concurrent applications. Values under the

original kernel are normalized to 1.0. All numbers are averages of three cold-start runs; variances are less than

2%.

worse than LRU 6, and an oblivious application whose

performance is sensitive to the number of cache blocks

it is given. We found a program \ReadN" that can

serve both purposes.

ReadN sequentially reads the �rst N 8K-byte blocks

from a �le in sequence, repeating this sequence �ve

times, then reads the next N blocks �ve times, and so

on. MRU replacement policy is much worse than LRU

for ReadN, so ReadN with MRU can be used as an

example of a foolish application. ReadN also has the

characteristic that under LRU, the cache miss ratio is

low when it has at least N cache blocks, but is high

when it has less than N cache blocks. Therefore we can

compare the number of block I/Os done by ReadN in

di�erent situations as a way of measuring what share

of the cache blocks it is getting.

To answer our question about the e�ectiveness of

placeholders, we ran two versions of ReadN concur-

rently. One version, with N=300, is run with various

replacement policies: the oblivious LRU policy (which

is good but not optimal), and MRU (which is terrible).

The other version of ReadN is used to detect changes

in allocation of cache blocks. This version is run with

various values of N: Read390, Read400, Read490, and

Read500. These values are chosen because our cache

size is 6.4MB, or 819 blocks, so Read300 and Read390

can comfortably �t in cache together with plenty of

space to spare, while Read300 and Read500 can barely

just �t in cache together.

We measured the performance (running time and

number of I/Os) of the various ReadN's when the

background Read300 uses both oblivious (LRU) and

dumb (MRU) replacement policies. If processes are

6
We do not use the previous applications here because LRU

works poorly for them.

protected from the foolishness of others, then the per-

formance of the ReadN's should not get much worse

when the background Read300's policy is changed

from oblivious to foolish.

In the case where the background Read300 is fool-

ish, we actually ran two experiments. In the \pro-

tected" experiment, the kernel uses our LRU-SP allo-

cation policy. In the \unprotected" experiment, the

kernel uses LRU-SP without placeholders. Thus there

are three cases overall:

� Oblivious: the background Read300 uses the

oblivious (LRU) policy;

� Unprotected: the background Read300 uses a

foolish (MRU) policy, and the kernel uses LRU-SP

without placeholders i.e. LRU-S;

� Protected: the background Read300 uses a foolish

(MRU) policy, and the kernel uses LRU-SP;

The results are shown in Table 1. The data clearly

shows that place-holders are necessary to protect the

oblivious readN from losing its share of cache blocks.

(For a detailed explanation of why placeholders pro-

vide this protection, see [3].) However, the data also

shows that placeholders did not prevent the increas-

ing in elapsed times of ReadN. The next subsection

explains why.

6.2 Criteria Test

We have seen in Section 5 that smart processes im-

prove their performance. The next two questions are:

do foolish processes hurt other processes, and do smart

processes hurt oblivious processes?
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Figure 6: Normalized total elapsed time and block I/Os of multiple concurrent applications under ALLOC-

LRU. Values under two level replacement with LRU-SP are normalized to 1.0. All numbers are averages of

three cold-start runs; variances are less than 2%.

Elapsed Time of \ReadN" Block I/Os of \ReadN"

Settings Read390 Read400 Read490 Read500 Read390 Read400 Read490 Read500

Oblivious 53 58 59 72 1172 1181 1176 1481

(7%) (14%) (11%)

Unprotected 73 89 76 122 1300 1538 1465 2294

(23%) (24%) (27%) (19%) (21%) (27%)

Protected 75 75 72 91 1170 1170 1199 1580

(12%) (10%)

Table 1: Results from experiments done to test the e�ectiveness of placeholders. For descriptions of these

experiments please see text. The �rst four columns show the running time in seconds, and the next four the

number of block I/O's, for ReadN. Results are averaged over �ve runs. Variances are shown in parentheses; when

omitted they are less than 5%.

\Read300" Elapsed Time Block I/Os

Policy din cs2 gli ldk din cs2 gli ldk

Oblivious 155 225 156 112 3067 9760 9086 5201

Foolish 202 339 261 208 3495 10542 9759 5374

Table 2: E�ect of a foolish process on smart applications. This table shows performance of various processes

when run concurrently with a Read300 process, depending on whether the Read300 is oblivious (using LRU) or

is foolish (using MRU). The �rst four columns shows elapsed time in seconds, and the next four the number of

block I/Os. Numbers are averages of three runs with all variances < 3%.



Application Elapsed time of \Read300"

Policies w. din w. cs2 w. gli w. ldk

Oblivious 87 88 60(7%) 78

Smart 67(8%) 83 64(9%) 76

Table 3: Elapsed time of \Read300" when run concur-

rently with oblivious and smart versions of other appli-

cations on one disk. Numbers are in seconds, averages

of three runs with variances <4% except those shown

in parenthesis. Read300's numbers of block I/Os are

the same in all cases (about 1310) as they are all com-

pulsory misses.

Do foolish processes hurt other processes? We

have that seen placeholders at least limit the harm

done to oblivious processes by foolish processes. To

see whether smart processes are protected as well, we

ran each of din, cs2, gli and ldk, all using smart poli-

cies, concurrently with \Read300". The results when

\Read300" is oblivious and when it is foolish are shown

in Table 2.

The data show that there are degradations in both

the number of block I/Os and the elapsed time. This

contradicts results from our simulation study. The rea-

sons include the following:

� Foolish processes generate more I/O requests, and

thus put a heavier load on the disk. This leads to

longer queueing time for the disk, so non-foolish

processes' I/O requests wait longer to be served.

� Foolish processes take longer to �nish and there-

fore occupy cache blocks for a longer time. Pro-

cesses that run concurrently with them and �nish

after them normally get an increase in available

cache blocks after they are �nished. If they �nish

later, this increase comes later.

The best way to provide protection from foolish pro-

cesses is probably for the kernel to revoke the cache-

control privileges of consistently foolish applications.

Placeholders allow the kernel to tell when an appli-

cation is foolish, so the kernel can keep track of how

good the application's policy is. If it turns out that

a certain percentage of the application's decisions are

wrong, the kernel can revoke its right to control its

caching 7.

Do smart processes hurt oblivious ones? To an-

swer this we use \Read300" again, this time as an

oblivious application. We run it with each of din, cs2,

gli, ldk, both when they are oblivious and when they

are smart. The results are summarized in Table 3.

In most cases smart processes do not hurt but rather

help oblivious processes. Since these experiments are

7
We are adding this in our implementation.

Application Elapsed time of \Read300"

Policies w. din w. cs2 w. gli w. ldk

Oblivious 20 18 19 17

Smart 20 17.5 18 17

Table 4: Elapsed time of \Read300" when run con-

currently with oblivious and smart versions of other

applications on two disks. Numbers are in seconds,

averages of three runs with variances <3%. Read300's

number of block I/Os is the same in all cases (about

1310).

run on one disk (RZ56), the reduction in the number

of I/Os from smart processes reduces the load on the

disk, and speeds up the requests from \Read300".

The only exception is the experiments with gli,

which have a high variance in the elpased time. Since

the number of block I/Os from \Read300" did not in-

crease, nor did its user and system times, we suspect

that this is due to the RZ56 disk's internal scheduling

or bu�ering. To test this, we also run this experiments

on two disks, with \Read300" using RZ26 and others

using RZ56. The results are summarized in Table 4.

As can be seen, the anomaly goes away, which

suggests that the previous problem was due to the

disk contention. The improvements in the elapsed

times, however, are not as noticeable as before because

\Read300" is using a seperate disk.

From these results we believe that both swapping

and placeholders are necessary. Although placeholders

do not completely eliminate the harm done by foolish

processes, they at least help the kernel take adminis-

trative measures to solve the problem.

7 Related Work

There have been many studies on caching in �le sys-

tems (e.g. [27, 4, 26, 14, 22, 15]), but these in-

vestigations were not primarily concerned with the

performance impact of di�erent replacement policies.

Recently several research projects have tried to im-

prove �le system performance in a number of other

ways, including prefetching[30, 25, 7, 5, 11], delayed

writeback[21] and disk block clustering[20, 29]. Most

of these papers still assume global LRU as the ba-

sic cache replacement policy, and they do not address

how to use application control over replacement to im-

prove cache hit ratio. Our work is complementary to

these approaches; in other words, with application-

controlled �le caching, these approaches will improve

�le system performance even more.

The database community has long studied access

patterns and bu�er replacement policies [31, 6, 23].

In our experiments we used pjn (Postgres join) as an

example of how database systems may use our inter-



face to control �le caching. We believe our interface
is exible enough to implement most of the policies a
database system might want to use.

A very similar problem is application controlled
physical memory management in virtual memory sys-
tems. Current operating systems provide limited fa-
cilities that are not adequate for application control.
For example, the Berkeley UNIX system calls for pin-
ning pages, mpin or mlock, are often only available to
the superuser. Advisory calls like vadvise or madvise
provide an interface for applications to advise the ker-
nel about their access patterns over a memory object,
including a mapped �le. However, this interface is
much more limited than ours, allowing speci�cation of
only a small number of basic patterns and no priorities.

As a result, in the past few years there has been
a stream of research papers on application control of
caching in the virtual memory context [19, 28, 12, 16].
Our work di�ers from that described in these papers
in three signi�cant ways:

� None of these papers (except [12]) addresses the
global allocation policy problem. By contrast, we
discuss this problem in detail, and provide a so-
lution, LRU-SP, which we have simulated [3] and
now have implemented.

� Most of these papers relied on RPC or upcalls for
kernel-to-user communication, and consequently
reported overhead as high as 10% of the total ex-
ecution time [19, 28]. We provide a exible in-
terface for applications to issue primitives to ex-
ert control on cache replacement; we found that
this is adequate most of the time and requires low
overhead.

� Most of these papers do not adequately consider
which replacement policy an application should
use. In [3] we proposed that application replace-
ment policies be based on the optimal replacement
principle [8], and in this paper we discussed which
policies to use for our example applications.

On the other hand, our work shares some com-
mon purposes with the existing work on application-
controlled virtual memory. We believe that, with some
minor modi�cations, our approach applies to virtual
memory cache management as well.
First, swapping and placeholder techniques apply to

the virtual memory caching problem | one can swap
positions of pages on the two-hand-clock list, and can
build placeholders to catch foolish decisions. Second,
our interface can be modi�ed to apply to virtual mem-
ory context, i.e. instead of �les, we use a range of
virtual addresses (or memory regions).
One important di�erence is that in the virtual mem-

ory context, the implementation cannot capture the

exact reference stream as it does in the �le caching
context. It is still not clear to us what are the com-
mon policies applications may want to use for virtual
memory caching and whether not capturing exact ref-
erences is a serious problem.

Our implementation is for Ultrix 4.3 where there
is a �xed amount of DRAM memory allocated for
�le caching. In modern operating systems the virtual
memory system and the �le system often share a com-
mon page bu�er pool. We believe our approach to
�le caching fully applies to these systems as well, with
only some minor changes in data structures.

Finally, the di�erence between this paper and the
work described in [3] is that in [3] we proposed and
simulated LRU-SP, and in this paper we proposed a
concrete scheme for user-kernel interaction and imple-
mented both the interaction scheme and application-
controlled caching in a real kernel.

8 Conclusion and Future Work

Our main conclusion is that two level replacement with
LRU-SP works. It can be implemented with low over-
head, and it can improve performance signi�cantly.

Applications with large data sets often do not per-
form well under traditional �le caching. We have iden-
ti�ed common access patterns of these applications,
and have designed an interface for them to express
control over cache replacement. The allocation policy
LRU-SP fairly distributes cache blocks among appli-
cations. As a result, the number of disk I/Os can
be signi�cantly reduced, and the application's elapsed
time and the system's throughput can improve.

We are working on improving our user-kernel inter-
face, and on supporting user-level control over caching
of concurrently shared �les[3]. In addition, our current
implementation ignores metadata blocks like inodes,
partly because there is a separate caching scheme for
them inside the �le system. We plan to look more into
metadata caching performance and investigate what
should be done.

We also plan to look into the interaction between
caching, prefetching, write-back and disk block clus-
tering.

The search for better global allocation policies re-
quires a clear de�nition of the goal and an examina-
tion of the interactions between caching and schedul-
ing/management policies in other parts of the system,
particularly process scheduling and disk scheduling[9].
This is a fruitful area for future work.
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Appendix

These tables show raw performance data for our single ap-

plication experiments.

Application Bu�er Cache Size

6.4MB 8MB 12MB 16MB

original 117 99 99 99

din LRU-SP 106 99 100 100

ratio 0.90 1.01 1.01 1.00

original 62 61 28 28

cs1 LRU-SP 38 33 27 28
ratio 0.62 0.54 0.99 1.00

original 96 96 57 47
cs3 LRU-SP 79 71 50 48

ratio 0.82 0.74 0.87 1.01

original 191 190 188 184

cs2 LRU-SP 172 168 152 128

ratio 0.90 0.88 0.81 0.70

original 126 123 113 97

gli LRU-SP 114 108 92 84
ratio 0.91 0.88 0.81 0.87

original 66 65 65 65
ldk LRU-SP 66 64 60 56

ratio 1.00 0.97 0.93 0.87

original 225 220 202 187

pjn LRU-SP 199 192 185 174
ratio 0.88 0.87 0.91 0.93

original 339 338 339 336
sort LRU-SP 294 281 256 243

ratio 0.87 0.83 0.75 0.72

Table 5: Elapsed time in seconds with/without
application-controlled cache. The numbers are aver-
age of �ve runs. Variances are less than 2% with a few
exceptions that are less than 5%.

Application Bu�er Cache Size

6.4MB 8MB 12MB 16MB

original 8888 998 997 998

din LRU-SP 2573 1003 997 997
ratio 0.29 1.01 1.00 1.00

original 8634 8630 1141 1141
cs1 LRU-SP 3066 1628 1141 1141

ratio 0.36 0.19 1.00 1.00

original 6575 6571 2815 1728

cs3 LRU-SP 4394 3548 1903 1733

ratio 0.67 0.54 0.68 1.00

original 11785 11762 11717 11647

cs2 LRU-SP 9680 9091 7650 5597
ratio 0.82 0.77 0.65 0.48

original 10435 10321 9720 7508
gli LRU-SP 8870 8308 7120 6275

ratio 0.85 0.81 0.73 0.84

original 5395 5389 5397 5390

ldk LRU-SP 5011 4760 4385 3898

ratio 0.93 0.88 0.81 0.72

original 7166 6738 5897 5257

pjn LRU-SP 5800 5635 5334 4993
ratio 0.81 0.84 0.90 0.95

original 14670 14671 14639 14520
sort LRU-SP 12462 11884 10400 9460

ratio 0.85 0.81 0.71 0.65

Table 6: The numbers of block I/Os with/without
application-controlled cache. The numbers are aver-
age of �ve runs, variances are less than 2% with one
exception which is less than 3%.


