
Informed Prefetching and Caching

R. Hugo Patterson*, Garth A. Gibson~, Eka Ginting~, Daniel Stodolsky~, Jim Zelenkat

*Department of Electrical and Computer Engineering
Kkhocd of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

{rhp, garth, eginting, ckumer,jimz} @cs.cmu.edu
http:/lwww.cs.cmu.edulTVeb/Groups/PDL/

Abstract

In this paper, we present aggressive, proactive mechanisms that

tailor file system resource management to the needs of l/O-inten-

sive applications. In particular, we show how to use application-

disclosed access patterns (hints) to expose and exploit I/O parallel-

ism, and to dynamically allocate file buffers among three compet-

ing demands: prefetching hinted blocks, caching hinted blocks for

reuse, and caching recently used data for unhinted accesses. Our

approach estimates the impact of alternative buffer allocations on

application execution time and applies cost-benefit analysis to

allocate buffers where they will have the greatest impact. We have

implemented informed prefetching and caching in Digital’s OSF/1

operating system and measured its performance on a 150 MHz

Alpha equipped with 15 disks nmning a range of applications.

Informed prefetching reduces the execution time of text sewch,

scientific visualization, relational database queries, speech recog-

nition, and object linking by 20-83%. Informed caching reduces

the execution time of computational physics by up to 42% and

contributes to the performance improvement of the object linker

and the database. Moreover, applied to multiprogrammed, I/O-

intensive workloads, informed prefetching and caching increase

overall throughput.

1 Introduction

Traditional disk and file buffer cache management is reactive;

disk accesses are initiated and buffers allocated in response to

application demands for file data. In this paper, we show that pro-

active disk and buffer management based on application-disclosed

hints can dramatically improve performance. We show how to use

these hints to prefetch aggressively, thus eliminating the I/O stalls

This work was supported in part by Advanced Resemch Projects Agency
contract DABT63-93-C-O054, in part by Nationat Scieuce Foundation
grant ECD-8907068, and in part by donations aad scholarships horn Data
General, Symbios Logic, IBM, Digital, and Seagate. The United States
government has certain rights in this material. The views and conclusions
contained in this document rue those of the authors end should not be inter-
preted as representing the official policies, either expmmed or implied, of
any of the fending agencies.

Permission to make digital/hard copy of part or ail of this work for personal
or classroom use is ranted without fee provided that copies are not made

!or distributed for pro It or mmmercial advantage, the copyright notice, the
title of the publication and ite date appear, and notioe is given that
copying is by permissionof ACM, Inc. To capy otherwise, to republish, to
post on servers,or to redistribute to lists, requires prior specific permission
andlor a fee.

SIGOPS ’95 12/95 CO, USA

tCI 1995 ACM 0-89791 -715-419510012... $3.50

incurred by accesses that would otherwise have missed in the

cache, and how to keep hinted data in the cache in anticipation of

reuse. At the core of our approach is a cost-benefit analysis which

we use kdir to balance buffer usage for prefetching versus cach-

ing, and to integrate this proactive management with traditional

LRU (least-recently-used) cache management for non-hinted

accesses.

Three factors make proactive I/O management desirable and

possible

1. the underutilization of storage parallelism,

2. the growing importance of file-access performance, and

3. the ability of I/O-intensive applications to offer hints about

their future I/O demands.

Storage parallelism is increasingly available in the form of

disk azrays and striping device drivers. These hardware and soft-

ware arrays promise the I/O throughput needed to balance ever-

faster CPUS by distributing the data of a single file system over

many disk arms [Salem86]. Trivially parallel I/O workloads bene-

fit immediately; very large accesses benefit from parallel transfer,

and multiple concurrent accesses benefit from independent disk

actuators. Unfortunately, many I/O workloads are not at all paral-

lel, but instead consist of serial streams of non-sequential accesses.

In such workloads, the service time of most disk accesses is domi-

nated by seek and rotational latencies. Moreover, these workloads

access one disk at a time while idling the other disks in an array.

Disk arrays, by themselves, do not improve I/O performance for

these workIoads any more than mukiprocessors improve the per-

formance of single-threaded programs. Prefetching strategies are

needed to “parallelize” these workloads.

The second factor encouraging our proactive I/O management

is that ever-faster CPUS are processing data more quickly and

encouraging the use of ever-larger data objects. Unless file-cache

miss ratios decrease in proportion to processor performance,

Amdahl’s law tells us that overall system performance will

increasingly depend on I/O-subsystem performance [Patterson88].

Unfortunately, simply growing the cache does not decrease cache-

miss ratios as much as one might expect. For example, the Sprite

group’s 1985 caching study led them to predict higher hit ratios for

larger caches. But in 1991, after larger caches had been installed,

hit ratios were not much changed — files had grown just as fast as

the caches [Ousterhout85, Balcet91]. This suggests that new tech-

niques are needed to boost I/O performance.

Tbe problem is especially acute for read-intensive applica-

tions. Write performance is less critical because the writing appli-

cation generally does not wait for the disk to be written. In this

common case, write behind can exploit storage parallelism even

79

when the application’s writes are serial and non-sequential

[Rosenblum91, Solworth90]. Examples of read-intensive applica-

tions include text search, 3D scientific visualization, relational

database queries, speech recognition, object code linkers, and

computational physics. In general, these programs process large

amounts of data relative to file-cache sizes, exhibit poor access

locality, perform frequent non-sequential accesses, and stall for

l/O for a significant fraction of their total execution time.

Yet, all of these applications’ access patterns are largely pre-

dictable. This predictability could be used directly by the applica-

tion to initiate asynchronous I/O accesses. But this sort of explicit

prefetching can cripple resource management. First, the depth to

which art application needs to prefetch depends on the throughput

of the application, which varies as other applications place

demands on the system. Second, asynchronously fetched data may

eject useful data from the file cache. Third, asynchronously

fetched file blocks end up indistinguishable from any other block

in virtual memory, requiring the programmer to be explicitly

aware of virtual image size to avoid losing far more to paging than

is gained from parallel I/O. Finally, the specializations a progmm-

mer puts into overcoming these problems may not be appropriate

when the program is ported to a different system.

Instead, we recommend using the predictability of these

applications to inform the file system of future demands on it. Spe-

cifically, we propose that applications disclose their future

accesses in hints to the file system. We show how to use this infor-

mation to exploit storage parallelism, balance caching against

prefetching, and distribute cache buffers among competing appli-

cations.

The rest of this paper explains and justifies proactive I/O

management based on informed prefetching and caching. Sections

2 aud 3 review related work and describe disclosure-based hints.

Section 4 develops our cost-benefit model and Section 5 describes

its implementation in Digital’s OSF/1 v2.OA file system. Section 6

describes our experimental testbed. Benchmark applications and

single-application performance experiments are presented in Sec-

tion 7. Section t? presents multiple application experimental

results. Finally, Sections 9 and 10 provide directions for future

research and conclusions.

2 Related work

Hints are a well established, broadly applicable technique for

improving system performance. Lampson reports their use in oper-

ating systems (Alto, Pilot), networking (Arpanet, Ethernet), and

kmgnage implementation (Smrdltalk) [Lampson83]. Broadly,

these examples consult a possibly out-of-date cache as a hint to

short-circuit some expensive computation or blocking event.

In the context of tile systems, historical information is often

used for both file caching and prefetching. The ubiquitous LRLJ

cache replacement algorithm relies on the history of recent

awesses to choose a buffer for replacement. For histo~-basect

prefetching, the most successful approach is sequential readahead

[Feiertag71, McKusicM34]. Digital’s OSWI is at aggressive exam-

ple, prefetchirtg up to 64 blocks ahead when it detects long sequen-

tial rums. Others, notably Kotz, have looked at detecting more

complex access patterns and prefetching non-sequentially within a

file [Kotz91].

At the level of whole files or database objects, a number of

researchers have looked at infernng future accesses based on past

accesses [Komer90, Kotz91, Tait91, Palmer91, Curewitz93,

Griffioen94]. The danger in speculative prefetching based on his-

torical access patterns is that it risks hurting, rather than helping,

performance [Smith85]. As a result of this danger, speculative

prefetching is usually conservative, waiting until its theories are

confktned by some number of demand accesses.

An alternate class of hints are those that express one system

component’s advance knowledge of its impact on another. Perhaps

the most familiar of these occurs in the form of policy advice from

an application to the virtual-memory or file-cache modules, In

these hints, the application recommends a resource management

policy that has been statically or dynatnicaIly determined to

improve performance for this application [Trivedi79, Sun88,

Cao94].

In large integrated applications, more detailed knowledge

may be available. The database community has long taken advart-

tage of this for buffer management. The buffer manager can use

the access plan for a query to help determine the number of buffers

to aIbcate [Sacco82, Chou85, Comel189, Ng91, Chen93]. Ng,

Faloutsos and Sellis’s work on marginal gains considered the

question of how much benefit a query would derive from an addi-

tional buffer. Their work stimulated the development of our

approach to cache management. It also stimulated Chen and Rous-

sopoulos in their work to supplement knowledge of the access plan

with the history of past access patterns when the plan does not con-

tain sufficient detail.

Relatively little work has been done on the combination of

caching and prefetching. In one notable example, however, Cao,

Felton, Karlin and Li derive an aggressive prefetching policy with

excellent competitive performance characteristics in the context of

complete knowledge of future accesses [Cao95a]. These same

authors go on to show how to integrate prefetching according to

hints with application-supplied cache management advice

[Cao95b]. In contrast, we use the same hints, described in the next

section, for both caching and prefetching.

Much richer languages for expressing and exploiting disclo-

sure include collective I/O calls [Kotz94] and operations on stmc-

tttred files [Grimshaw91] or dynamic sets [Steere95].

3 Hints that disclose

The proactive management strategy described in this paper

depends on a reliable picture of future demands. We advocate a

form of hints based on advance knowledge which we call disclo-

sure [Patterson93]. An application discloses its future resource

requirement when its hints describe its future requests in terms of

the existing request interface. For example, a disclosing hint might

indicate that a particular file is going to be read sequentially four

times in succession. Such hints stand in contrast to hints which

give advice. For example, an advising hint might specify that the

named file should be prefetched and cached with a caching policy

whose name is “MRU.” Advice exploits a programmer’s knowl-
ectg~ of application and system implementations to recommend

how resources should be managed. Disclosure is simply a pro-

grammer revealing knowledge of the application’s behavior.

Disclosure has three advantages over advice. First, because it

expresses information independent of the system implementation,

it remains correct when the application’s execution environment,

system implementation or hardware platform changes. As such,

disclosure is a mechanism for portable I/O optimizations. Second,

because disclosure provides the evidence for a policy decision,

rather than the policy decision itself, it is more robust. Specifi-

80

E!!2EE1’m
Figure 1. ‘l%e disclosure hint interface. Disclosure hints describe

future requests in the same terms as the existing interface. T&
our file system hints have two components, a tile specifier and

pattern specifier. The file specifier describes the file either by name

or file descriptor. The pattern specifier describes the access pattern
within the tile. Currently, we support two pattern specifiers; a file

read sequentially from beginning to end, or read according to an
ordered list of <offset, length> intervals. Thus, there are currently

four different forms of hints.

tally, if the system cannot easily honor a particular piece of advice
— there being too little free memory to cache a given file, for

example — there is more information in disclosure that can be

used to choose a partial measure. Third, because disclosure is

exmessed in terms of the interface that the arxiication later uses to. . .
issue its accesses; that is, in terms of tile names, file descriptors,

and byte ranges, rather than inodes, cache buffers, or file Mocks, it

conforms to software engineering principles of moduku-ity.

In our implementations, disclosing hints are issued through

an I/O-control (ioctl) system call. As shown in Figure 1, hints

specify a file and au access pattern for the file. There maybe mul-

tiple outstanding hints, and the order in which hints are given indi-

cates the order of the subsequent accesses.

Given disclosing hints, proactive management can deliver

three primary benefits:

1, informed prefetchmg can “parallelize” the I/O request stream

and take advantage of disk arrays to eliminate I/O stalls:

2. informed caching can hold on to useful blocks and outper-

form LRU caching independent of prefetchins and

3. informed disk management can schedule future disk I/Os to

reduce access latency, and batch multiple requests for

increased access efficiency.

This paper demonstrates the first two of these benefits.

4 Cost-benefit analysis for I/O management

The I/O manager’s goal is to deploy its limited resources to

minimize I/O service time. At its disposal are disk arms and file

cache buffers. But, because we are primarily concerned with the

exploitation of storage parallelism, we assume an adequate supply

of disk arms and focus on the allocation of cache buffers.

Bidding to acquire cache buffers are two consumers: demand

accesses that miss in the cache, and prefetches of hinted blocks.

Holding out are two buffer suppliers: the traditional LRU cache,

and the cache of hinted blocks. The I/O manager must resolve this

tension between buffer consumers and suppliers.

In this section, we develop a framework for cache manage-

ment based on cost-benefit analysis. We show how to estimate the

benefit (decrease in I/O service time) of giving a buffer to a con-

sumer and the cost (increase in I/O service time) of taking a buffer

from a supplier. Finally, we show how to use these estimates to

decide whether a buffer should be reallocated from a supplier to

consumer, and, if so, how to pick the buffer for reallocation.

As shown in Figure 2, each potential buffer consumer and

supplier has an estimucor that independently computes the value of

its use of a buffer. The buffer allocator continually compares these

Buffer Consumers Buffer Suppliers

I

demand miss LRU cache

o cached blocks

service demand
demand

Buffer

‘ss -

prefetch prefetch hinted cache

benefit

I
prefetched blocks ~ cached blocks hinted sequence

I hinted sequence

hinted sequence

1

.

Figure 2. Informed cache manager schematic. Independent estimators express different strategies for reducing I/O service time. Demand

misses need a buffer immediately to minimize the stall that has already started. Informed prefetching would like a buffer to initiate a read
and avoid disk latency. To respond to these buffer requests, the buffer allocator compares their estimated benefit to the cost of freeing the
globally least-valuable buffer. To identify this buffer, the allocator consults the two types of buffer suppliers. The LRU queue uses the

traditional rule that the least recently used block is least valuable. In contrast, informed caching identifies as least valuable the block whose
next hinted access is furthest in the future. The buffer allocator takes the least-valuable buffer to fulfill a buffer demand when the estimated

benefit exceeds the estimated cost.

——— ——— ——— ———

llli
——

Figure 3. Components of syk~ e;ec~tio;. In our s~mplified
system model, application execution time, T, has two

components, computation and I/O. The computational
component, Tcpu, consists of user-level application execution
plus time spent in kernel subsystems other than the file system.

The I/O component, Tvo, consists of time spent in the file system,
which includes time for reading blocks, allocating blocks for disk

X/Os, servicing disk interrupts, and waiting for a physical disk I/fl
to complete.

estimates and reallocates buffers when doing so would reduce IJO

service time.

When comparing the different estimates, the buffer aliocator

must consider more than the absolute change in I/O service time; it

must consider how much of the limited buffer resource is

involved. Thus, we define the unit of buffer usage as the occupa-

tion of one buffer for one inter-access period and call it one buffer-

access. Then we define the common currency for the expression of

all value estimates as the magnitude of the change in L@ service

time per bufler-uccess. With this common currency, the buffer

allocator can meaningfully compare the independent value esti-

mates and allocate buffers where they will have the greatest impact

on I/O service time.

In the following sections, we define our system model and

then develop each estimator’s strategy for valuing buffers.

4.1 System model

We assume a modem operating system with a file buffer

cache running on a uniprocessor with sufficient memory to make

available a substantial number of cache buffers. With respect to

our workload, consistent with our emphasis on read-intensive

applications, we assume that all application I/O accesses request a

single file block that can be read in a single disk access. Further,

we assume that system parameters such as disk access latency,

Td~k, are constants. Lastly, as mentioned above, we assume

enough disk parallelism for there never to be any congestion (that

is, there is no disk queueing). As we shall see, distressing as these
assumptions may seem, (he policies derived from this simple sys-

tem model behave well in a real system, even one with a single

congested disk.

The execution time, T, for an application is given by

T = NI/o (Tcpu + TVO) Y (1)

where NVO is the number of I/O accesses, TCPU is the inter-access

application CPU time, and TWO is the time it takes to service an I/O

access. Figure 3 diagrams our system model.

In our model, the I/O service time, Tvo, includes some sys-

tem CPU time. In particular, an access that hits in the cache experi-

ences time Thit to read the block from the cache. In the case of a

cache miss, the block needs to be fetched from disk before it may

be delivered to the application. In addition to the latency of the

fetch, Tdi$b these requests suffer the computational overhead,

TdfiVeP of allocating a buffer, queuing the request at the drive, and

servicing the interrupt when the disk operation completes. The

total time to service an I/O access that misses in the cache, Tmi~$,is

the sum of these times:

Tmi~$ = Thi~ + Td,ive, + Tdi,k . (2)

In the terms of this model, allocating a buffer for prefetching

can mask some disk latency. Deallocating an LRU cache buffer

makes it more likely that an unhinted access misses in the cache

and must pay a delay of Tmi~~ instead of Thir Ejecting a hinted

block from the cache means an extra disk read will be needed to

prefetch it back later. In the next sections, we quantify these

effects.

4.2 The benefit of allocating a buffer to a consumer

The two consumers of buffers are demand accesses that miss

in the cache and prefetches of hinted blocks. Since any delay in

servicing a demand miss adds to I/O service time, we treat requests

from demand misses as undeniable and assign them inthite value.

Computing the benefit of prefetching, explained below, is a bit

harder.

Prefetching a block according to a hint can mask some of the

kdtYICy of a disk read, Tdi~~ Thus, in general, an application

accessing such a prefetched block will stall for less than the full

Td&~ SUppOSe we are currently using x buffers to prefetch x

accesses into the future. Then, stall time is a function of x, T~tdJx),

and the service time for a hinted read, also a function of x, is

TPf(x) = Thit+ Tdriver+ ‘T~falr(x) . (3)

The benefit of using an additional buffer to prefetch one access

deeper is the change in the service time,

ATPf (x) = Tpf (x + 1) - Tpf (x) (4]

= T,,all (X + 1) - T,tall (x) o (5)

Evaluating this expression requires an estimate of T~ti~x).

A key observation is that the application’s data consumption

rate is finite. Typically, the application reads a block from the

cache in time Thil) does some computation, TCPU, and pays an

overhead, Tdn’veP for future accessescurrently being prefetchcd.
Thus, even if all intervening accesses hit in the cache, the soonest

we might expect a block x accesses into the future to be requested

is X(TCPU + Thil + Tdn-ver). Under our assumption of no disk con-

gestion, a prefetch of this xth future block would complete in Tdi$k

time. Thus, the stall time when requesting this block is at most

Figure 4 shows this worst case stall time as a finction of x.

This stall-time expression allows us to define the distance, in

terms of future accesses, at which informed prefetching yields a

zero stall time. We call this distance the prefetch horizon,

82

stall
time

1 prefetch horizon= P(TCPU)

‘disk% T~~k/(TCpU+Tdnver+Thit)

Figure 4. Worst case stall time and the prsfetch horizon. Data

consumption is limited by the time an application spends acquiring
and consuming each block. This graph shows the worst case

application stall time for a single prefetch x accesses in advance,

assuming adequate I/O bandwidth, and therefore no disk queues.
There is no benefit from prefetching further ahead than the
prefetch horizon.

P(Tcpu), recognizing that it is a function of a specific applica-

tion’s inter-access CPU time.

‘disk

p (Tc~u) = (Tcpu + Thir + ~driver) a
(7)

Because there is no benefit from prefetching more deeply than the

prefetch horizon, we can easily bound the impact of informed

prefetching on effective cache size; prefetching a stream of hints

will not lead informed prefetching to acquire more than P(TCPU)

buffers.

Equation (6) is an upper bound on the stall time experienced

by the xth future access assuming that the intervening accesses are

cache hits and do not stall. Unfortunately, it overestimates stall

time in practice. In steady state, multiple prefetches are in progress

and a stall for one access masks latency for another so that, on

average, only one in .x accesses experiences the stall in Equation

(6). Figure 5 diagrams this effect. Thus, the average stall per

access as a function of the prefetch depth, P(TCPU) > x >0, is

T. –X(TCPU+ Thif)+ ‘driver .
T~,all (x) = ‘“k (8)

x

At x = O, there is no prefetching, and T~ld~O) = Tdisk. similarly, for
~ > p(TCPu), TStil~X) = O. Figure 6 shows that thk estimate,

though based on a simple model, is a good predictor of the actual

stall time experienced by a synthetic application running on a real

system.

We can now plug Equation (8) into Equation (5) and obtain

an expression for the impact on I/O service time of acquiring one

additional cache buffer to increase the prefetching depth,

- (TCPU + ‘hi? + ‘driver)

ATPf (x)=

I

‘Tdisk
X< P(TCPU) —

X(x+l)
. (9)

Every access that this additional buffer is used for prefetcbing ben-

efits from this reduction in the average I/O service time. Thus,

Equation (9) is the change in I/O service time per buffer-access,

and the magnitude of this change is the value of allocating a buffer

for prefetching in terms of the common currency.

Having estimated the benefit of giving a buffer to a demand

miss or prefetch consumer, we now consider the cost of freeing a

buffer that could be used to obtain these benefits. We estimate the

cost fwst of taking a buffer from the LRU queue and then of eject-

ing a hinted block to take the buffer it cccupies.

4.3 The cost of shrinking the LRU cache

Over time, the portion of demand accesses that hit in the

cache is given by the cache-hit ratio, H(n), a function of the num-

11access Time (1 time-step= TcpU + Thil + Tdnver) I

1: initiate prefetch -: prefetch in progress C: block arrives in cache x: consume block O: stall

Figure 5. Average stall time when using a fixed number of buffers for parallel prefetcbing. This figure illustrates informed prefetching
as a pipeline. In thk example, three prefetch buffers are used, prefetches proceed in pamllel, Tcpu is fixed, and F’(TCPU) = 5. At time T=O,
the application gives hints for all its accesses and then requests tie first block. Prefetches for the first three accesses are initiated
immediately. The first access stalls until the prefetch completes at T=5, at which point the data is consumed and the buffer is msed to
initiate the fourth prefetch. Accesses two and three proceed witbout stalls because the latency of prefetches for those accesses is overlapped
with the latent y of the first prefetch. But, the fourth access stalls for T~mll = Td&~ - 3(Tcp~Thi1+ Td,jver). The next two accesses don’t stall,

‘but the seventh does. The application settles into a pattern of stalling every third access, In general, when x buffers are used for prefetching,

a stall occurs once every x accesses.

83

Average Stall Time VS. Prefetch Depth Figure 6. Predicted and measured per-access stall time. To verify the

utility of Equation (8), we measured the stall time of a synthetic

15.0 microbenchmark as we varied prefetch depth. The benchmark does 2000

- measured stall reads of random, unique 8K blocks from a 500 MB tile striped over 15

w predicted stall disks. It has 1 millisecond of computation between reads, so Tcpu =

lms, and for the system described in SeCtiOIt 6, Thti+Tdtie, = 823ws and

Tdfik = 15ms. Overall, Equation (8) has a maximum error of about 2
.?! ~lo.o -
:g

milliseconds, making it is a good predictor of actual stall time. The
equation underestimates stall time because the underlying model

Gz
Qal

neglects two factors, disk contention and variation in Td~~ Deeper

rJJv
tu~

prefetching increases the chance that two or more accesses contend for

g ~ 5.0
the same disk and add nnmodelled stalls. Variability in Tdi~k has a more

<Q
subtle effect. Longer than average disk accesses may be balanced in
number and duration by shorter than average accesses, but the former

always add stall time to the measurement, while the latter only reduce

stall time if their access time is not fully overlapped. With deeper

0.0 prefetching most accesses are well overlapped, so shorter accesses do

o 4 12 16 not reduce measured stall time. Effectively, variability in TdjSk makes a
Prefetch%epth (x) cons~t Td~~~appew longer.

ber of boffers in the cache, n. Given H(n), the average time to ser-

vice a demand I/O request, denoted Tm~n), is

Taking the least-recently-used buffer from a cache employing an

LRU replacement policy results in an increase in the average MO

service time of

ATLRu(n)=

=

Since H(n) varies as

T~Ru(rs - 1) ‘TLRu(n)

(H(n) -H(n- 1)) (Tmi~$-Thit) . (11)

the I/O workload changes, our LRU cache

estimator dynamically estimates H(n) and the value of this expres-

sion as explained in Section 5.1.

Every access that the LRU cache is deprived of this buffer

will, on average, suffer this additional I/O service time, Thus.

Equation (11) is in terms of the common currency, magnitude of

change in I/O service time per buffer-access.

4.4 The cost of ejecting a hinted block

Though there is no benefit from prefetching beyond the

prefetch horizon, caching any block for reuse can avoid the cost of

prefetching it back later. Thus, ejecting a block increases the ser-

vice time for the eventual access of that block from a cache hit,

Thti, to the read of a prefetched block, TPf If the block is

prefetched back x accesses in advance, then the increase in J/O ser-

vice time caused by the ejection and subsequent prefetch is

ATejeC, (x) = Tpf (x) - Thit (12)

= Td,iv,, + T,,all (X) . (13)

Though the stall time, T$lal~x), is zero when x is greater than the

prefetch horizon, Tdnver represents the constsnt CPU overhead of

ejecting a block no matter how far into the future the block will be

accessed.

The cost of ejecting a block, ATejec~x), does not affect every

access; it only affects the next access to the ejected block. Thus, to

express this cost in terms of the common currency, we must aver-

age this change in I/O service over the accesses that a buffer is

freed. If the hint indicates the block will be read in y accesses, and

the prefetch happens x accesses in advance, then ejection frees one

buffer for a total of y-x buffer-accesses. Conceptually, if the block

is ejected and its buffer lent where it accrues an savings in average

I/O service time, then it will have y-x accesses to accrue a total

savings that exceeds the cost of ejecting the block.

Averaging over y-x accesses, the increase in service time per

buffer-access is

T
driver + ‘stall (x)

ATejecl (x, y) = y–~ ‘ (14)

where T~ti~x) is given by Equation (8). As we shall see in Section

5.3, our implementation simplifies this estimate further to elimi-

nate the dependence on the variable x.

4.S Putting it all togethe~ global min-max valuation

Figure 7 summarizes the absolute value of Equations (9),

(11), and (14) which the various estimators use to determine the

local value of a buffer. Before compting these values, the buffer

allocator must normalize these local estimates by the relative rates

of accesses to each estimator. Thus, the LRU cache estimate is

multiplied by the rate of unhinted demand accesses, rd, while the

estimates for each hint sequence are multiplied by the rate of

accesses to that sequence, r-k

The buffer allocator uses these normalized estimates to

decide when to take a buffer from a supplier and use it to service a

request for a buffer. For example, deallocating a buffer from the

LRU cache and using it to prefetch a bksck would cause a net

reduction in aggregate I/O service time if
r~ATLR ~ (n) I > rh /ATPf (x) 1. For the greatest reduction, though,

the globally least-valuable buffer should be allocated. Our algo-

rithm for identifying this buffer is as follows.

Each supply estimator determines the costs of losing any of

its buffers. If multiple estimators claim the same buffer, which

happens, for example, when a hint refers to a block already in the

LRU queue, then each estimators independently values the buffer.

The global value of a buffer is the maximum of the normalized

values provided by each of the independent supply estimators. The

global value is not the sum because it only takes one disk I/O to

fetch a block no matter how many times the block is accessed

thereafter.

84

Buffer Cmssumers Buffer Suppliers

demand miss LRU csche

00
(H(n) -H(n - 1)) (Tmi,$- Tfiit)

Q

w-
prefetch hinted cache

r=o TCPU+ T~/t + T~rjvc~

T
Tdriver + ‘sfal) (x)

C< P(TCPU) ~- y-x

r2P(TcPu) O

Figure 7. H value estimates. Shown above are the locally
estimated magnitudes of the change in I/O service time per buffer-

access for the buffer consumers and suppliers of Figure 2. Since

demand misses must be satisfied immediately, they are treated as
having infinite value. The remaining three formulas are the
absolute values of Equations (11), (14), and (9), for the LRU

cache, hinted cache, and prefetch estimates, respectively.

The globally least-valuable buffer is the one whose maximum

valuation is minimal over all buffers. Hence, our replacement pol-

icy employs a global min-max valuation of buffers. While the

overhead of this estimation scheme might seem high, in practice,

as we shall see in Section 5, the value of only a small number of

buffers needs to be determined to fmd the globally least-valuable.

4.6 An example: emulating MRU replacement

As an aid to understanding how informed caching ‘discovers’

good caching policy, we show how it exhibits MRU (most-

recently-used) behavior for a repeated access sequence. Figure 8

illustrates an example.

At the start of the f~st iteration through a sequence that

repeats every N accesses, the cache manager prefetches up to the

prefetch horizon. After the first block is consumed, it becomes a

candidate for repla~ment either for tiwther prefetching or to ser-

vice demand misses. However, if the bit-ratio function, H(n), indi-

cates that the least-recently-used blocks in the LRU queue don’t

get many hits, then these blocks will be less valuable than the

hinted block just consumed. Prefek%ing continues, replacing

blocks from the LRU list and leaving the hinted blocks in the

cache after consumption.

As this process continues, more and more blocks are devoted

to caching for the repeated sequence and the number of LRU buff-

ers shrinks. For most common hit-ratio functions, the fewer the

buffers in the LRU cache, the more valuable they are. Eventurdly,

the cost of taking another LRU buffer exceeds the cost of ejecting

the most-recently-consumed hinted block. At the next prefetch,

this MRU block is ejected because, among the cached blocks with

outstanding hints, its next use is furthest in the future.

At this point, a wave of prefetching, consumption, and eject-

ing moves through the remaining blocks of the first iteration.

cached prefetch
blocks horizon pattern repeats

- L - *rN-sws

Figure 8. MRU behavior of the informed cache manager on
repeated access sequences. The number of blocks allocated to

caching for a repeated access pattern grows until the caching

benefit is not sufficient to hold an additional buffer for the N
accesses before it is reused. At that point, the least-valuable buffer
is the one just consumed because its next access is furthest in the

future. This block is recycled to prefetch the next block within the
prefetch horizon. A wave of prefetching, consumption, and
recycling moves through the accesses until it joins up with the

blocks still cached from the last iteration through the data.

Because the prefetch horizon limits prefetching, there are never

more than the prefetch horizon, P(TCPU), buffers in this wave.

Even if a disk array delivers blocks faster than the application con-

sumes them, there is no risk that the cache manager will use the

cached blocks to prefetch further into the future. Thus, the MRU

behavior of the cache manager is assured. Further, the cache man-

ager strikes a balance in the number of buffers used for prefetch-

ing, caching hinted blocks, and LRU caching.

The informed cache manager discovers MRU caching with-

out being specifically coded to implement this policy. This behav-

ior is a result of valuing hinted, cached blocks and ejecting the

block whose next access is furthest in the future when a buffer is

needed. These techniques will improve cache performance for

arbitrary access sequences where blocks are reused with no prtic-

ular pattern. All that is needed is a hint that discloses the access

sequence.

5 Implementation of informed caching and
prefetching

Our implementation of informed prefetching and caching,

which we call TIP, replaces the unified buffer cache (UBC) in ver-

sion 2.OA of Digital’s OSF/1 operating system. To service

unhinted demand accesses, TIP creates an LRU estimator to man-

age the LRU queue and estimate the value of its buffers. In addi-

tion, TIP creates an estimator for every process that issues hints to

manage its hint sequence and associated blocks.

To fmd the globally least-valuable buffer, it is sufficient that

each estimator be able to identify its least-valuable buffer and

declare its estimated value. From the LRU estimator’s perspective,

the least-recently-used buffer is least valuable. For a hint estima-

tor, because all disk accesses are assumed to take the same amount

of time, the least-vrduable buffer contains the block whose next

access is furthest in the future. TIP takes these declared estimates,

normalizes them by the relative access rates, and ranks the estima-

tors by these normalized declared values.

When there is a demand for a buffer, TIP compares the nor-

malized benefit of servicing the demand to the normalized

declared cost of the lowest-ranked estimator. If there are multiple

consumers with outstanding requests, TIP considers the requests in

order of their expected normalized benefit. If the benefit exceeds

85

the cost, TIP asks the lowest-ranked estimator to give up its least-

valuable buffer. After doing so, the estimator stops tracking this

buffer. As far as it is concerned, the buffer is gone. It identifies a

new least-valuable buffer from among the buffers it is still tracking

and declares its value. TIP then reranks the estimators if necessary.

Before the block is actually ejected, TIP checks to see if any

other estimator would value the buffer more thn the cost of the

lowest-rmdwd estimator. If so, that estimator starts tracking the

buffer, including it when identifying its least-valuable buffer. ‘H-M

request for a buffer is then reconsidered from the start. At some

later time, when this new estimator picks this almost-ejected

buffer for replacement, the first estimator will get a chance to

revalue the buffer and resume tracking it. A data structure keeps

track of which estimators value a buffer at all to make this search

for another estimator fast.

Once TIP is sure that no estimator vrdues the buffer more than

the current global minimal amount, the block is ejected and the

buffer reallocated.

Since only tracked blocks are ever picked for replacement, all

blocks must be tracked by at least one estimator. If no estimator

considers a block valuable enough to track, then it is replaced. If

the block cannot be replaced immediately, for example because it

contains dirty data, then TIP uses a special orphan estimator to

track the block until it can be replaced,

5.1 Implementing LRU estimation

LRU block replacement is a stack algorithm, which means

that the ordering of blocks in the LRU queue is independent of the

size of the cache. By observing where, in a queue of N buffers,

cache hits occur, it is possible to make a history-based estimate of

H(n), the cache-hit ratio as a function of the number of buffers, n,

in the cache for any cache size less than N, 0< n <N. Specifically,

H(n) is estimated by the sum of the number of hits with stack

depths less then or equal to n divided by the total number of

accesses to the LRU cache, A.

In TIP, the number of buffers in the LRU stack varies dynam-

ically. ‘X’bus, to determine H(n) for caches larger than the current

size, TIP uses ghost buffers. Ghost buffers are dataless buffer

headers which serve as placeholders to record when an access

would have been a hit had there been more buffers in the cache

[Ebling94]. The length of the LRU queue, including ghosts, is lim-

ited to the total number of buffers in the cache.

To reduce overhead costs and estimate variation, hit counts

are recorded not by individual stack depths, but by disjoint inter-

vals of stack depths, called segments, Shown in Figure 9, this

allows a piecewise estimation of H(n).

The cost of losing an LRU buffer given in Equation (11)

requires an estimate of AH(n)=H(n)-H(n-1). Direct evaluation with

a piecewise estimate of H(n) yields a function that is zero every-

where, except at segment boundaries. Instead, we estimate AH(n)

with the marginal hit ratio, M (n), the slope of H(n). Given our

piecewise estimate of H(n), we can estimate AH(n),

where n falls within segment Si, A is the total number of accesses

to the LRU, and l~il represents the number of buffers in segment st

In Our implementation, lSil = 100.

A final complexity arises because, in general, H(n) may not

E-s similar to the smooth function suggested by Figure 9. There is

hit A
ratio

s

LRU list

tracked

L

ghost
buffers buffers least-valuable

tracked buffer

Figure 9. Piecewise estimation of H(n). The LRU list is broken
into segments, Sl, S2, S3, . . . Each buffer is tagged to indicate which
segment it is in. The tag is updated when a buffer passes from one

segment to the next. When there is a cache hit in segment i, the
segment hit count, hi, is incremented. That segment’s contribution

to the hit ratio is then h#A, where A is the total number of accesses

to the LRU cache.

often a large jump in the hit ratio when the entire working set of an

application tits into the buffer cache. TIP’s LRU estimator uses a

simple mechanism to avoid being stuck in a local minima that

ignores the benefit of a much larger cache: AH(n) is modified to be

maxi ~” {H (i) } ; that is, the value of the marginal hit ratio is

rounded up to the vrdue of any larger marginal hit ratio occurring

deeper in the LRU stack. Thus, if the LRU cache is currently

small, but a larger cache would achieve a much higher hit ratio,

this mechanism encourages the cache to grow.

This gives us the following expression for the cost of losing

an LRU buffer:

ATLRu(n) =maxikn {H’ (i) } (Tmi$$ - Thir) . (16)

5.2 Implementing informed prefetching estimations

Section 4 presents two expressions, Equation (7) for deter-

mining the prefetch horizon, and Equation (9) for estimating the

benefit of prefetching. To reduce estimation overhead and increase

tolerance to both variation in application inter-access computation,

TCPU, and the need to prefetch other blocks, TIP assumes TCPU =

O and discounts the overhead of prefetching other ‘blocks, Tdtiven

to arrive at a static, system-wide upper-bound on the prefetch hori-

zon, F,

(17)

To simplify the prefetcher’s estimate of the value of acquiring a

buffer, we recognize that it will obtain at least a few buffers and

use the following variant of Equation (9)

I

x = O –Tdi~k

ATPf (x) = ~< P ‘Tdisk
x~ “

(18)

86

Buffer Consumers Buffer Suppliers

demand miss LRU cache

w max~2n {H (i) } (T~iJJ- ‘hit)

@j

u-
prefetch hinted cache

X=Q T
y=l T

disk
d,i~.~ + ‘di$~

Tdisk
X<P —

l<)JS~ Tdriver+ ~

X(x+l)

X>p 1) Tdriver
y>fi —

y-~

Figure 10. Local value estimates in the implementation. Shown
ab&e are the local estimates of the value pe~ buffer-access for the

buffer consumers and suppliers of Figure 2. These estimates are
easy-to-compute approximations of the exact estimates of

Figure 7,

5S Implementing informed caching estimations

Equation (14) in Section 4 expresses the cost of ejecting a

hinted block in terms of y, the number of accesses till the hinted

read, and x, how far in advance the block will be prefetched back.

To eliminate the overhead of determining the value of x dynami-

cally, we simplify this expression by assuming that the prefetch

will occur at the (upper bound) prefetch horizon, ~. If the block is

already within the prefetch horizon, y <~, we assume that the

prefetch will occur at the next access. Then, in accordance with the

assumptions of Section 5.2 used to compute f’, we set Tcpu = O,

neglect Tdtier, and take T,tall (Y) = (Tdi~k – YThit) lY * for 1< Y

c F’. Plugging into Equation (14), we get, for 1< y < }

Tdi,k

‘Teject (y) = ‘driver+ — -
T

y–1 hit”
(19)

Unfortunately, using this equation could lead to prefetching a

Mock back shortly after ejecting it. To avoid this thrashing, there

should be hysteresis in the valuations; that is, we need

jATejec, (Y) I > IAT (Y-1) I = Tdi,k/y (y-1). Comparing
this expression to ~uation (1’3), we scc that the inequality does

not hold for all possible values of T~~ver, Tdj&, ~d Thip TO guiN-

rmtec robustness for all values of these parameters greater than

zero, we choose to add Thit tO ATejec&y) for 1< Y < ~. Thus, we

have,

1y=l Tdrive, + Tdi,k

1 T
driver

y>P —
y–P

Figure 10 summarizes the equations used to estimate buffer

values in our implementation.

5.4 Exploiting OSF/1 clustering for prefetches

OSF/1 derives significant performance benefits from cluster-

ing the transfer of up to eight contiguous blocks into one disk

access. One might ask of the informed prefetcher: when should

buffers be allocated to prefetch secondary blocks as part of a clus-

ter?

If the decision to prefetch a block has already been made,

then the cost, TdtiveP of performing a disk read will be paid. Any

blocks that could piggyback on this read avoid most of the disk

related CPU costs. If there are hinted blocks that can cluster with

the required block, and they are not prefetched now in such a clus-

ter, their later prefetch will incur the full overhead of performing a

disk access and possibly the cost of any unmasked disk latency.

These are exactly the costs considered when deciding whether to

eject a hinted block. Thus, the decision to include an additional

hinted contiguous block in a cluster is the same as the decision not

to eject this additional hinted block once the prefetch is complete.

If the informed cache would decide not to eject the block if it were

in cache, then a buffer is allocated and the additional block is

included in the pending cluster read.

6 Experimental testbed

Our testbed is a Digital 3000/500 workstation

(SPECint92=84.4; SPECfp92=127.7), containing a 150 MHz

Alpha (21064) processor, 128 MB of memory and five KZTSA

fast SCSI-2 adapters each hosting t@e HP2247 lGB disks. This

machine mns version 2.OA of Digital’s OSF/1 monolithic kernel.

OSF/1’s tile system contains a unified buffer cache (UBC) module

that dynamically trades memory between its tile cache and virtual

memory. To eliminate buffer cache size as a factor in our experi-

ments, we fixed the cache size at 12 MB (1536 8 KB buffers).

The system’s 15 drives are bound into a disk array by a strip-

ing pseudo-device with a stripe unit of 64 KB. This device driver

maps and forwards accesses to the appropriate per-disk device

driver. Demand accesses are forwarded immediately, while

prefetch reads are forwarded whenever there are fewer than two

outstanding requests at the drive. We forward two prefetch

requests to reduce disk idle time between requests, and we don’t

forward more than two to limit priority inversion of prefetch over

demand requests. The striper sorts queued prefetch requests

according to C-SCAN.

System ptuameters for the TIP estimators were: Td~~ = 15

milliseconds, Thit = 243 microseconds, and Td~ver = 580 microseco-

nds. Thit was measured by repeatedly reading a cached, hinted

file, and dividing the elapsed time by the number of blocks read.

TdtiVer was derived by measuring the non-ide time of a trivial

application that hinted, then read, 2000 unique, non-sequential

blocks of a 500MB file with the assumption that non-idle time

equak 2ooo*(T~it+Tdnver). Td~k W= estimated from direct mea-

surements on a variety of applications.

In addition to the clustering fetches described in Section 5.4,

the default OSF/1 file system implements an aggressive readahead

mechanism that detects sequential accesses to a file. The longer

the run of sequential accesses, the further ahead it prefetches up to

a maximum of eight clusters of eight blocks each. For large

sequential accesses, such as “cat 1GB_file > Idevfnull;’ OSF/1

achieves 18.2 MB/s from 15 disks through our striper.

We report results from two modified OSF/1 systems. TIP-1

and TIP-2, in addition to the default OSF/1 system. TIP-I, our first

87

Kernel CPU Time Elapsed Time

OSF/1 , TIP-1 3,463 I 4,236

TIP-2 1 3,546 4,357

‘Table 1. Kernel build times. This table shows the total (non-

hinting) build time for an OSF/1 2.0 kernel on an OSF/1 or TIP- I
kernel aud on a TfP-2 kernel. All times are in seconds, and all

kernels bad the buffer cache size fixed at 12MB. TIP-2 is about

2.5% slower than OSF/1.

prototype, does informed prefetching but does not exploit hints for

caching. It is integrated with the unified buffer cache in OSF/1,

requiring only a few small hooks in the standard code. It uses a

simple mechanism to manage resources: it uses up to ~ =62 cache

buffers to hold hinted but still unread data. Whenever the number

of such buffers is below the limit, TIP-1 prefetches according to

the next available hint. If the hinted block is already in the cache,

the block is promoted to the tail of OSF/1’s LRU list and counted

as an unread buffer. When an application accesses a hinted block

for the first time, TIP-1 reduces the count of unread buffers and

resumes prefetching. Hinted but unread blocks may age out of the

cache, triggering further prefetching, though this does not occur

with any of our test applications.

TIP-1 has been running since mid 1993 in the 4.3 BSD FFS

of Mach 2.5. Soon thereafter, it was ported to the UX server in a

Mach 3.0 system on a DECstation 5000/200. Equipped with four

disks and a user-level striper, this system was able to reduce the

elapsed time of a seek-intensive data visualization tool

(xDataSlice) by up to 70% [Patterson94]. During the summer of

1994 we ported TIP-1 to the current Alpha testbed to exploit its

greater CPU and disk performance.

During 1994, we designed and began implementation of a

second test system, TIP-2, which exploits hints for both informed

prefetching and informed caching. It completely replaces the uni-

fied buffer manager in OSF/1 as described in Sections 3,4, and 5.

To estimate the overhead of our TIP-2 system, we timed the

complete build of an OSF/1 kernel Table 1 summarizes the

results. TIP-2 adds about 2.4~o CPU overhead and 2.8% elapsed

time for the build. CPU overhead for TIP-2 is dependent on I/O

intensity. Therefore, overheads for our suite of I/O-intensive

benchmarks, tend to be higher than this. They are Davidson. 7%;

XDataSlice, 13%; Sphinx, 1.9%; Agrep, 13%; Gnuld, 10%; and

Postgres, 1.8% and 3.5% respectively for the low-match and high-

match joins. The current system is tuned only for fidelity in the

estimation of H(n), and not for low overhead.

our goal with informed prefetching is to exploit unused disk

ptmdlelism and convert our benchmark applications from being

I/O-bound to being CPU-hound. Informed caching tries to further

reduce the number of I/Os, The key performance metrics are

elapsed time, I/O stall time, and CPU busy time. To obtain accu-

rate measures of elapsed time, we used the Alpha processor cycle

counter, To measure idle time, we kept a running counter of the

number of processor cycles spent in the idle loop, taking care to

exclude time spent servicing interrupts that occurred during the

idle loop.

‘7 Single-application performance

In this section, we evaluate the performance of our informed

prefetching and caching systems with a suite of six I/O-intensive

benchmtwks. All are single-threaded, synchronous, and I/O-bound

in common usage. Five derive substantial benefit from prefetching

alone. Three benefit from informed caching, especially when there

is insufficient disk bandwidth available.

We report the results of each application run without compe-

tition on arrays of 1 to 10 disks (performance with 15 disks is

essentially the same as with 10 disks). We report execution and

I/O stall time for each application when not giving hints and when

giving hints to the TIP-1 and TIP-2 systems. Each test was run on

a system with a cold cache. Before each sequence of five runs, the

tile system was formatted (block size = fragment size = 8192,

inter-block rotational delay = O, maximum blocks per file per cyl-

inder group = 10000, bytes per inodes = 32K, all other parameters

default), and the run’s data was copied into the tile system. The

standard deviation for both the elapsed time and stall time was less

than 3% of the mean for all of these measurements.

7.1 MCHF Davidson algorithm

The Multi-Conflation Hartree-Fock, MCHF, is a suite of

computational-physics programs which we obtained from Vander-

bilt University where they are used for atomic-physics calcula-

tions. The Davidson algorithm [Stathopoulos94] is an element of

the suite that computes, by successive refinement, the extreme

eigenvalue-eigenvector pairs of a large, sparse, real, symmetric

matrix stored on disk. In our test, the size of ttik matrix is 16.3

MB.

The Davidson algorithm iteratively improves its estimate of

the extreme eigenpairs by computing the extreme eigenpairs of a

much smaller, derived matrix. Each iteration computes a new

derived matrix by a matrix-vector multiplication involving the

large, on-disk matrix. Thus, the algorithm repeatedly accesses the

same large file sequentially. Annotating this code to give hints was

straightforward. At the start of each iteration, the Davidson algo-

rithm discloses the whole-file, sequential read anticipated in the

next iteration.

Figure 11(a) reports the elapsed time of the entire computa-

tion on OSF/1 (TIP-1 without hints is just OSF/1), when not giving

hints to TIP-2, and when giving hints to TIP-1 and TIP-2. As with

most of the ilgures in this section, data is striped over 1 to 10

disks, and the cache size is 12 MB. With or without hints, David-

son benefits significantly from the extra bandwidth of a second

disk but then becomes CPU-bound. Because the hints disclose

only sequential access in one large file, OSF/1’s aggressive reada-

head matches the performance of TIP-1’s informed prefetching

and, in fact, performs slightly better because it incurs less over-

head.

Neither OSF/1 nor informed prefetching in TIP-1 uses the 12

MB of cache buffers well. Because the 16.3 MB matrix does not fit

in the cache, the LRU replacement algorithm ejects all of the

blocks before any of them are reused. The informed cache man-

ager in TIP-2, however, effectively reuses cache buffers, reducing

the number of blocks fetched from 125,340 to 53,200. On one

disk, this reduces elapsed time by over 30%. When disk bandwidth

is inadequate, improved caching avoids disk latency. On more

disks, prefetching masks disk latency, but informed caching still

reduces execution time more than 15~o by avoiding the CPU over-

head of extra disk accesses, as can be seen by comparing TIP-2 no

88

Davidson on one disk

t300——=———w
~ 250 -

:200 -

.-
: 150 -
a)
8100 -
Q HHinting

u 50 - 13-EIUnhinted

1 23 4 10 TOO 12001700220027003200

#of disks Cache size (8KB buffers)

(a) (b)

FigMre 11. Benefit of informed caching for repeated accesses. Figure (a) shows the performance of the Davidson algorithm applied to a

computational-physics problem. The algorithm repeatedly reads a large file sequentially. OSF/1’s aggressive readahead algorithm performs
about the same as TIP-1 with hints for this access pattern, Informed caching in TIP-2 reduces elapsed time by more than 3090 on one disk by

avoiding disk latency. On more disks, prefetching masks disk latency, but informed caching still reduces execution time more than ls~o by

avoiding the overhead of going to disk. Figure (b) shows that informed caching in TIP-2 discovers an MRU-like policy which uses
additional buffers to increase cache hits and reduce execution time. TIP-2 takes advantage of a 16 MB cache to reduce execution time by
42%. In contrast, LRU caching derives no benefit from additional buffers until there are enough of them to cache the entire dataset, which is

16.3 MB (20898K blocks).

hint and hint CPU times. Figure 1l(b) shows Davidson’s elapsed

time with one disk on TIP-2 with and without hints as a function of

cache size. Without hints, extra buffers are of no use until the

entire dstaset fits in the cache. In contrast, TIP-2’s rnin-max global

valuation of blocks yields the smooth exploitation of additional

cache buffers that is expected from an MRU replacement policy.

The prefetch horizon limits the use of buffers for prefetching, even

when there is more than enough disk bandwidth to flush the cache

with prefetched blocks. TIP-2 effectively balances the allocation

of cache buffers between prefetching and caching.

7.2 XDataSIice

XDataSlice (XDS) is an interactive scientific visualization

tool developed at the National Center for Supercomputer Applica-

tions at the University of Illinois [NCSA89]. Among other fea-

tttres, XDS lets scientists view arbitrary planar slices through their

3-dimensioned data with a false color mapping. The datasets may

originate from abroad range of applications such as airflow simu-

lations, pollution modelling, or magnetic resonance imaging, and

tend to be very large.

It is often assumed that because disks are so slow, good per-

formance is only possible when data is in main memory. Thus,

many applications, including XDS, require that the entire dataset

reside in memory. Because memory is still expensive, the amount

available often constrains scientists who would like to work with

higher resolution images and therefore larger datasets. Informed

prefetching invalidates the slow-disk assumption and makes out-

of-core computing practical, even for interactive applications. To

demonstrate this, we added an out-of-core capability to XDS.

To render a slice through an in-core dataset, XDS iteratively

determines which data point maps to the next pixel, reads the

datum from memory, appties fake coloring, end writes the pixel in

the output pixel array. To render a slice from an out-of-core

dataset, XDS splits this loop in two. Both to manage its internal

cache and to generate hints, XDS first maps all of the pixels to

data-point coordinates and stores the mappings in an army. Having

determined which data blocks will be needed to render the cumettt

slice, XDS ejects unneeded blocks from its cache, gives hints to

TIP, and reads the needed blocks from disk. In the second half of

the split loop, XDS reads the cached pixel mappings, reads the cor-

responding data from the cached blocks, and applies the false col-

oring [Patterson94].

Our test dataset consists of 5123 32-bit floating point values

requiring 512 MB of disk storage. The dataset is organized into

8 KB blocks of 16x16x8 data points and is stored on the disk in Z-

major order. Our test renders 25 random slices through the dataset.

Figure 12(a) reports the average elapsed time per slice on OSF/1,

TIP-1 and TIP-2.

While OSF/1 readahead is effective for the sequential access

pattern of Davidson, it is detrimental for XDS. XDS frequently

reads a short sequential run, which triggers an equal amount of

readahead by OSF/1. Only slices closely aligned with the Z-axis

read long mns of sequential blocks for which the readahead is

effective. Consequently, for this set of 25 slices, the nonhinting

version of XIX reads 1.86 times as much data from disk as the

application actually consumes. This combination of false resda-

head and lack of I/O parallelism causes XDS to take about 12 sec-

onds to render an arbitrary slice without hints, leading to

unacceptable interactive performance.

In contrast, informed prefetching both avoids false readahead

and exploits the concurrency of a disk array. TIP-1 eliminates ‘70~o

of the I/O stall time on four disks, and 92% on 10 disks. On 10

disks, TIP- 1 reduces the time to render a random slice by a factor

of 6 to about 2 seconds, resulting in a much more tolerable interac-

tive latency.

TIP-1 and TIP-2 perform similarly. However, because TIP-2

mm use hints to coalesce into one disk read blocks that are contigu-

ous on disk but widely separated in the access sequence, TIP-2

reduces the number of distinct disk reads from 18,700 to 15,000.

89

XDataSlice

400 ~

?!
“= 200
-0

g- ,00
u-l

n.
1 2 3 4!0 ,

Sphinx

300 I 40

n

#of disks

(a)

.
123 4 10— .

#of disks

(b)

0

Agrep

1 23410

#of disks

(c)

Figure 12. Elapsed time of visualization. speech recormition and search. Fizure (a) shows the elamed time for renderiruz 25 random. .
sli& through ~ 512 MB dataset. Without ~, OSF/1 m-&es poor use of the dis~ array. But, informed by hints, TIP is able to prefetch in

parallel and mask the latency of the many seeks. There is very little data reuse, so the informed caching does not decrease elapsed time
relative to the simple prefetching in TIP- 1. Figure (b) shows the benefits of informed prefetching for the Sphinx speech-recognition program.

Sphinx is almost CPU-bound, so the improvements are less dramatic. As for XDataSlice, there is little data reuse so informed caching
provides no benefit over TIP-1, and, in fact, incurs some additional overhead. Figure (c) reports the elapsed time for searches through tiles in

three different directories and shows the benefit of prefetching across files. Again, informed caching provides no improvement ovex

informed prefetching.

This improved I/O efficiency contributes to the slight performance

advantage of TIP-2 over TIP-1.

7.3 Sphinx

Sphinx [Lee90] is a high-quality, speaker-independent, con-

tinuous-voice, speech-recognition system. In our experiments,

Sphinx is recognizing an 18-second recording commonly used in

Sphinx regression testing.

Sphinx represents acoustics with Hidden Markov Models and

uses a Viterbi beam search to prune unpromising word combina-

tions from these models. To achieve higher accuracy, Sphinx uses

a language model to effect a second level of pruning. The language

model is a table of the conditional probability of word-pairs and

word-triples. At the end of eaeh 10 ms acoustical frame, the sec-

ond-level pinner is presented with the words likely to have ended

in that frame. For each of these potential words, the probability of

it being recognized is conditioned by the probability of it occurring

in a triple with the two most reeently recognized words, or occnr-

ring in a pair with the most reeently recognized word when there is

no entry in the kmguage model for the current triple. To further

improve accuracy, Sphinx makes three similar passes through the

search data structure, each time restricting the kmgnage model

based on the results of the previous pass.

Sphinx, like XDS, came to us as an in-core only system.

Since it was commonly used with a dictionary containing 60,000

words, the kmguage model was several hundred megabytes in size.

With the addition of its internal caches and search data structures,

virh.m-memory paging occurs even on a machine with 512 MB of

memory. We modified Sphinx to fetch from disk the language

model’s word-pairs and word-triples as needed. This enables

Sphinx to run on our 128 MB test machine 90% as fast asona512

MB machine.

We additionally modified Sphinx to disclose the word-pairs

and word-triples that will be needed to evaluate each of the poten-

tkd words offered at the end of each frame. Because the language

model is sparsely populated, at the end of each frame there are

about 100 byte ranges that must be consulted, of which all but a

few are in Sphinx’s internal cache. However, there is a high vari-

ance on the number of pairs and triples consulted and fetched, so

storage parallelism is often employed.

Figure 12(b) shows the elapsed time of Sphinx recognizing

the 18-seeond recording. Sphinx starts with one sequential read of

the 200MB language model which benefits from the array without

hints. But, with informed prefetching, it takes advantage of the

array even for the many small accesses and thereby reduces exeeu-

tion time by as much as 17%.

Sphinx’s internal cache and large datasets lead to little Ioeal-

ity in its file system accesses. Thus, the informed caching in TIP-2

does not improve upon the performance of simple informed

prefetching in TIP- 1.

‘7.4 Agrep

Agrep, a variant of grep, was written by Wu and Manber at

the University of Arizona [WU92]. It is a full-text pattern matching

program that allows errors. Invoked in its simplest form, it opens

the tiles specified on its command line one at a time, in argument

order, and reads each sequentially.

Since the arguments to Agrep completely determine the tiles

it will access, Agrep can issue hints for all accesses upon invoca-

tion. Agrep simply loops through the argument list and informs the

file system of the tiles it will read. When searching data collec-

tions such as software header files or mail messages, hints from

Agrep frequently specify hundreds of tiles too small to benefit

from history-based readahead. In such cases, informed prefetching

has the advantage of being able to prefetch across files aud not just

within a single tile.

In our benchmark, Agrep searches 1349 kernel source files

occupying 2922 disk blocks for a simple string that does not occur

in any of the files.

90

Gnuld

140

g 120

: 100

~ 80

: 60

~ 40

20

0
1 23410

H

;A;ix:i’ 10
1 23410

#of disks CPU # of disks

(a) (b)

Postgres, 80% Match
400 l—

n.
1 23410

#of disks

(c)

Figure 13. Elapsed time of Gnuld and Postgres. Figure (a) shows the elapsed time for Gnuld to link an OSF/1 TIP-1 kernel. Fimnws (b)

and (c) show the elapsed time for two different joins in the standard Postgr& relational database, a restructured Postgres that pr~-omputes

offsets for the inner relation, and in the restructured Postgres when it gives hints. The restructuring improves access locality and therefore
cache performance, allowing it to run faster than standard Postgres. Delivering hints then dramatically reduces I/O stall time.

Figure 12(c) reports the elapsed time for this search. As was

the case for XDataSlice and Sphinx, there is little parallelism in

Agrep’s I/O workload. The tiles are searched serially and most are

small, so even OSF/1’s readahead does not achieve parallel tmns-

fer, However, Agrep’s disclosure of future accesses exposes

potential I/O concurrency. On our testbed, amays of as few as four

disks reduce execution time by 73% and 10 disks reduce execution

time by 83%.

7.5 GnuM

Gnuld version 2.5.2 is the Free Software Foundation’s object

code linker which supports ECOFF, the default object file format

under OSFII. Gnuld performs many passes over input object tiles

to produce the output linked executable. In the first pass, Gnuld

reads each tile’s primary header, a secondary header, and its sym-

bol and string tables. Hints for the primary header reads are easily

given by replicating the loop that opens input files. The read of the

secondary header, whose location is data dependent, is not hinted.

Its contents provide the location and size of the symbol and string

tables for that file. A loop splitting technique similar to that in

XDataSlice is used to hint the symbol and string table reads.

After verifying that it has all the data needed to produce a

fully linked executable, Gnuld makes a pass over the object tiles to

read and process debugging symbol information. This involves up

to nine small, non-sequential reads from each tile, Fortunately, the

previously read symbol tables determine the addresses of these

accesses, so Gnuld loops through these tables to generate hints for

its second pass.

During its second pass, Gnuld constructs up to five shuffle

lists which specify where in the executable file object-file debug-

ging information should be copied. When the second pass com-

pletes, Gnuld finalizes the link order of the input tiles, and thus the

organization of non-debugging ECOFF segments in the executable

file. Gnuld uses this order information and the shuffle lists to give

hints for the finat passes.

Our test links the 562 object files of our TIP-1 kernel. These

objects file comprise approximately 64 MB, and produce an

8.8MB kernel. Figure 13(a) presents the elapsed and I/O stall time

for this test.

Like XDataSliee, Gnuld without hints incurs a substantial

amount of false readahead, causing it to read 125 MB from disk. In

contrast, Gnuld reads only 95 MB with hints on TIP-1. The

informed caching of TIP-2 tlrther reduces the read volume to 85

MB. With hints, Gnuld eliminates 77% of its stall time with 4

disks and 87% with 10 disks. The remaining stall time is mostly

due to the remaining unhinted accesses that Gnuld performs.

7.6 Postgres

Postgres version 4.2 [Stonebraker86, Stonebrakefl] is an

extensible, object-oriented relational database system from the

University of California at Berkeley. In our test, Postgres executes

a join of two relations. The outer relation contains 20,000 unin-

dexed tuples (3.2 MB) while the inner relation has 200,000 tuples

(32 MB) and is indexed (5 MB). We run two cases. In the first,

20% of the outer relation tuples find a match in the inner relation.

In the second, 80% find a match. One output tuple is written

sequentially for every tuple match.

TO perform the join, Postgres reads the outer relation sequen-

tially. For each outer tuple, Postgres checks the inner relation’s

index for a matching inner tuple and, if there is one, reads that

tuple from the inner relation. From the perspective of storage,

accesses to the inner relation and its index are random, defeating

sequential readahead, and have poor locality, defeating caching,

Thus, most of these inner-relation accesses incur the full latency of

a disk read.

To disclose these inner-relation accesses, we employ a lMp-

spfitting technique similar to that used in XDS. In the precomputa-

tion phase, Postgres reads the outer relation (disclosing its sequen-

tial access), looks up each outer-relation tuple address in the index

(unhinted), and stores the addresses in an array. Postgres then dis-

closes these precomputed block addresses to TIP. In the second

pass, Postgres rereads the outer relation but skips the index lookup

and instead directly reads the inner-relation tuple whose address is

stored in the array.

91

Figures 13(b) and 13(c) show the elapsed time required for

the two joins under three conditions: standard Postgres, Postgres

with the precomputation loop but without giving hints, and Post-

gres giving hints with the precomputation loop. Simply splitting

the loop reduces elapsed time by about 20%. When the loop is

split, the buffer cache does a much better job of caching the index

since it is not polluted by the inner-relation data blocks. Even

though Postgres reads the outer relation twice, there are about 900

and 6,100 fewer total disk VOS in the precomputation-based runs

of the fiwst and second cases, respectively.

Invoking informed prefetching by issuing hints from the pre-

computation runs in TIP-1 allows concurrency for reads of inter-

relation blocks and reduces elapsed time by up to 45~0 and 64’%

for the two cases, respectively. Compared to standard Post~es,

precomputation and informed prefetching in TIP-1 reduce execu-

tion time by up to 55% and 75%.

Enabling informed caching with hints in TIP-2 in general has

little effect on elapsed time because most I/O accesses are random

reads from the inner relation. However, on one disk, in the 80%

match case, TIP-2 gets an 1I’%oreduction in elapsed time. WMe

part of this benefit arises from informed caching, a large fraction

arises from TIP-2’s exploitation of clustering described in Section

5.4. The availability of hints allows contiguous blocks to be read in

one disk I/O even though accesses to the two blocks may be

widely separated in time. Informed chstenng allows Postges on

TIP-2 to perform only 4,700 disk reads in the 20% match case and

8,600 disk reads in the 80% match case as compared to 6,700 and

12,300 on TIP-I, respectively. Chsstering disk I/Os makes better

use of disk bandwidth, so the benefit of informed clustering, like

informed caching, is greatest when disk bandwidth is scarce (one

disk).

8 Nlultiple-application performance

Multiprogramming I/O-intensive applications does not gener-

ally lead to equitable or efficient use of resources because these

programs flush each other’s working set and disturb each other’s

disk head hcxdity. However, it is inevitable that I/O-intensive pro-

grams will be multiprogrammed. In the rest of this section, we

present the implications of informed prefetching and caching on

multiprogrammed I/O-intensive applications.

When multiple applications are running concurrently, the

informed prefetching and caching system should exhibit three

basic properties. First and foremost, hints should increase overall

throughput. Second, an application that gives hints should improve

its own performance, Third, in the interest of fairness, non-hinting

applications should not suffer unduly when a competing applica-

tion gives hints. Our cost-benefit model attempts to reduce the sum

of the I/O overhead and stall time for all executing applications,

and thus, we expect our resonrce management algorithms to also

benefit multiprogrammed workloads.

To explore how well our system meets these performance

expectations, we repotl three pairs of application executions:

GnukVAgrep, Sphinx/Davidson, and XDS/Postgres. Here, Post-

gres performs the join with 80% matches and, precomputes its data

accesses even when it does not give hints. For each pair of applica-

tions, we ran all four hinting and non-hinting combinations on

TIP-2 starting the two applications simultaneously with a cold

cache. Figures 14 through 16 show selected results.

Figure 14 shows the impact of hints on throughput for the

three pairs of applications. We report the time until both ap@ica-

tions complete, broken down by total CPU time and simultaneous

stall time. In all cases, the maximum elapsed time decreases when

one application gives hints, and decreases further still when both

applications give hints. Simultaneous I/O stall time is virtually

eliminated for two out of the three pairs when both applications

give hints and the parallelism of 10 disks is available.

Figure 15 and Figure 16 show each named application’s indi-

vidual elapsed time after being initiated in parallel with another

application (whose name is in parentheses). While vertical col-

umns of graphs in Figures 14, 15, and 16 correspond to the same

test runs, the middle two bars in any quartet of Figure 16 are

swapped relative to the middle two bars in the corresponding quar-

tets of Figures 14 and 15. So, for example, in Figure 15(a), ‘hint-

nohint’ means Gnuld hints while Atgep does not, whereas in Fig-

ure 16(a) ‘hint-nohint’ means Agrep hints while Gnuld does not.

To see the impact of giving hints on an individual applica-

tion’s execution time when a second non-hinting application is run

concurrently, compare bars one and two in Figures 15 and 16

Comparing bars three and four reveals the impact when the second

application is giving hints. In most cases, giving hints substantially

improves an application’s execution time. A notable exception is

Davidson when run with Sphinx as shown in Figure 16(b). When

Davidson gives hints, informed caching reduces its I/O require-

ments so Sphinx’s I/Os are serviced more quickly. Consequently,

Sphinx demands more CPU time at the expense of Davidson and

Davidson slows down. Recall, from Figure 14(b) that overall

throughput increases when Davidson gives hints.

To see the impact on a non-hinting application of another

application giving hints, compare the first and third bars in Figures

15 and 16. Comparing the second to fourth bars shows the impact

on a hinting application. In two of six applications, a non-hinting

application’s execution time is increased by another application’s

hints. For example, in Figure 16(b), when Sphinx gives hints, it

increases the execution time of a non-hinting Davidson. This is

because, by giving hints, Sphinx stalls less often for I/0, so it com-

petes more aggressively for the CPU at the expense of Davidson.

A more dramatic example is a non-hinting Agrep running

with Gnuld shown in Figure 16(a). Here, CPU utilization is low

even when the two applications run togethe~ disk bandwidth

determines performance. When neither application gives hints,

they both usually have only one outstanding disk access at a time.

From a single disk, about 40% of the accesses and 35% of the data

transferred are attributable to Agrep over the course of its run.

When Gnuld gives hints, prefetches queue up at the drive. Even

though there is a limit of two prefetches queued in front of a

demand request, Agrep’s I/Os are more likely to be third in line

instead of second. Agrep’s share of disk accesses drops to about

24% and of data transferred to about 22%. Since Agrep is disk-

bound and getting a smaller fraction of disk utilization, it takes

longer to run.
1ssother cases, however, an application’s hints benefit the

other running application. For example, if either Postgres or XDS

gives hints, the non-hinting other’s elapsed time is substantially

reduced. Multiprogramming this pair of applications causes both

to run longer than the sum of their stand-alone elapsed times

because interleaving their accesses dramatically reduces disk

locality. So, when either gives hints, its UOS are processed more

efficiently. This allows it to finish more quickly, getting out of the

way of the other, whose disk accesses are then more efficient. This

does not happen for Agrep when Gnuld runs because even when

92

Gnuld and Agrep
200

~
* 150
E.-
i-
s 100
w
jj
w 50
g

0

Sphinx and Davidson

E“”lm m

1 23410
v

1 23410

#of disks

(a)

#of disks

(b)

IJ 1250
(n
~ 1000
.-
; 750
at

jj 500
Lu
$ 250

0

XDS and Postgres

1 23410

#of diska

(c)

Figure 14. Elapsed time for both applications to complete. Three pairs of mttltiprogrammed workloads, (a) Gnttld and Agrep, (b) Sphinx
and Davidson, and (c) XDataSlice and Postgres (80% of outer tuples match), are run on TIP-2 in parallel and the elapsed time of the last to

complete is reported along with the total CPU busy time. For each number of disks, four bars are shown. These represent the four hinthohint
cases. For example, the second bar from the left in any quartet of (a) is Gnuld hinting and Agrep not hinting.

200

Ei=100
u
a)
tn

* 50
❑

o

Gnuld (with Agrep) Sphinx (with Davidson)

cehint.notint

IThint.mhnt
rmhmt-hint

r

hint-hint

23 4 10

#of disks

(a)

750 r

OL

1

nohmt-nchint

k

hmt.nohint
ndmt.hint

r

hint-hint

23 4 10

#of disks
(b)

XDS (with Postgres)

t- .- noiunt-nchht

1250
g
~ 1000

g 750

u
$ 500
g
w 250

n
“

123410

#of disks

(c)

Fkure 15. Elamed time for one of a t)air of abdications. ‘1’hesefhntres reoort data t~en from the same runs on ~-2 as reported in

Fi@re 14, How>ver, the elapsed time s~own repr&ents only the name~ application’s execution. The hinthtohint combinations are-identical

to Figure 14. Compare bars one and two or three and four to see the impact of giving hints when the other application is respectively hinting

or non-hinting. Compare bars one and three or two and four to see the impact of the second application giving hints.

Agrep (with GnuId) Davidson (with Sphinx) Postgres (with XDS)

“% L
G
i= 100
u
a)

$ 50

0
1234!0

750 r

#of disks

(a)

g 75tJ

u

j
500

LIJ 250

0
123410 123 4 10

#of disks #of disks

(b) (c)

Figure 16. Elapsed time for the other of a pair of applications. These figures report data from the same set of runs as reported in Figures
14-and 15. However, the inner two bars are swapped relative to ttte itmer two bars of the other figures. For example, the second bar from the
left in any quartet of (a) is Gnuld not hinting and Agrep hinting. Compare bars one and two or three and four to see the impact of giving hints
when the other application is respectively hinting or non-hinting. Compare bars one and three or two and four to see the impact of the second

application giving hints.

93

Gnttki gives hints, it runs longer than Agrep and so never gets out

of the way.

9 Future work

Together, informed caching and informed prefetching pro-

vide a powerful resource management scheme that takes advan-

tage of available storage concurrency and adapts to ars

application’s use of buffers.

Although the results reported in this paper are taken from a

running system, there remain many interesting related questions.

h the area of hint generation, richer hint languages might sig-

nificantly improve the ability of programmers to disclose future

accesses. Even easier on the programmer would be the automatic

generation of high quality hints.

When all accessed devices have the same average access

time, as in our experiments, blocks should be prefetched in the

order they will be accessed [Cao95]. However, in the general case,

some data is on a local disk while other data may be on the far side

of a network. For the remote blocks, Twmork + T~ewer + Tdi~k COUld

be substituted for Tdtik when determining the benefit of prefetch-

ing and the prefetch horizon. This will cause the benefit of

prefetching later, remote blocks to exceed that of prefetching ear-

lier, local blocks. This has far-reaching implications for informed

device scheduling, the third and unaddressed point of leverage for

hints based on disclosure.

Perhaps the most exciting future work lies in exploiting the

extensibility of our resource management framework. Because

value estimates are made independently with local information,

and then compared using a common currency, it should be possi-

ble to add new types of estimators. For example, a virtual-memory

estimator could track VM pages, thereby integrating V&i and

buffer-cache management.

10 Conclusions

Traditional, shallow readahead and LRU file caching no

longer provide satisfactory resouxce management for the ~owing

number of I/O-bound applications. Disk parallelism and cache

buffers are squandered in the face of serial I/O workloads and

large working sets. We advocate the disclosure of application

knowledge of future accesses to enable informed prefetching and

informed caching. Together, these proactive resource managers

can expose workload parallelism to exploit storage parallelism,

and adapt caching policies to the dynamic needs of running appli-

cations. The key to achieving these goals is to strike a bakmce

between the desire to prefetch and the desire to cache.

We present a framework for informed caching based on a

cost-benefit model of the vrdue of a buffer. We show how to make

independent locaI estimates of the value of caching a block in the

LRU queue, prefetching a block, and caching a block for hinted

reuse. We define a basis for comparing these estimates: the time

gained or lost per buffer per I/O-access interval, and we develop a

global min-max algorithm to arbitrate among these estimates and

maximize the global usefulness of every buffer.

Our results are taken from experiments with a suite of six I/O-

intensive applications executing on a Digital 3000/500 with an

array of 10 disks. Our applications include text search, data visual-

ization, database join, speech recognition, object linking, and com-

putational physics. With the exception of computational physics,

none of these applications, without hints, exploits the parallelism

of a disk array well. Informed prefetching with at least four disks

reduces the elapsed time of the other five applications by 20% to

85%. For the computational physics application, which repeatedly

reads a large file sequentially, OSF/1’s aggressive readahead does

as well as informed prefetching. However, informed caching’s

adaptive policy values this application’s recently used blocks

lower than older blocks and so “discovers” an MRU-like policy

that improves performance by up to 42%. Finally, our experimen-

tal multiprogramming results show that introducing hints always

increases throughput.

Instructions for obtaining access to the code in our TIP proto-

type can be found in our Intemet World Wide Web pages:

http:/lwww.cs.cmu. edu/afslcslWeblGroupslPDL.

11 Acknowledgments

We wish to thank a number of people who contributed to this

work including: Chrwlotte Fischer and the Atomic Structure Calcu-

lation Group in the Department of Computer Science at Vanderbilt

University for help with the Davidson algorithm, Ravi Mosur and

the Sphinx goup at CMU; Jiawen Su, who did the initial port of

TIP to OSF/1 from Mach; David Golub for his debugging and cod-

ing contributions; Chris Demetriou, who wrote the striping drive~

Alex Wetmore, who ported our version of XDataSlice to the

AlphW LeAnn Neal for help with words and graphics; M. Satya-

narayrman for his early contributions to our ideas; and the rest of

the members of the Parallel Data Libratory for their support during

this work.

12 References

[J3aker91] Baker, M.G., Hartman, J.H., Kupfer, M.D., Shirriff,

K.W., Ousterhout, J.K., “Measurements of a Distributed File
System:’ Pmt. of the 13th Symp. on Operating System Prin-

ciples, Pacific Grove, CA, Oct. 1991, pp. 198-212.
[Cao94] Cao, P., Felten, E.W., Li, K., “Implementation and Perfor-

mance of Application-Controlled File Caching,” Proc. of ~he

First USENLX Symp. on Operating Systems Design and
Implementation, Monterey, CA, Nov., 1994, pp. 165-178.

[Cao95a] Cao, P., Felten, E.W., Kariin, A., Li, K., “A Study of Inte-

~ated Prefetching and Caching Strategies;’ Pmt. of lhe Joint
ht. Confi on Measurement& Modeling of Computer Systems

(SIGMETRICS), Ottawa, Canada, May, 1995, pp. 188-197.

[Cao95b] Cao, P., Felten, E.W., Karlin, A., Li, K., “Implementation

and Performance of Integrated Application-Controlled Cach-

ing, Prefetching and Disk Scheduling:’ Computer Science

Technical Report No. TR-CS-95-493, Princeton University,
1995.

[Chen93] Chen, C-M.M., Roussopoulos, N., “Adaptive Database

Buffer Allocation Using Query Feedback; Proc. of the 19th
Int. Con$ on Very Large Data Bases, Dublin, Ireland, 1993,
pp. 342-353.

[Chou85] Chou, H. T., DeWitt, D. J., “An Evaluation of Buffer
Management Strategies for Relational Database SystemsY
Pmt. of the llth Int. Corf on Very Large Data Bases, Stock-
holm, 1985, pp. 127-141.

[Cornel189] Cornell, D. W., Yu, P. S., “Integration of Buffer Man-

agement and Query Optimization in Relational Database

Environment;’ Proc. of the 15th Int. Conf on Very Zzwge
Data Bases, Amsterdam, Aug. 1989, pp. 247-255.

[Curewitz93] Cnrewitz, K.M., Krishnan, P., Vitter, J.S., “Practicat

Prefetching via Data Compression.” Proc. of the 1993 ACM
Corf on Management of Data (SIGMOD), Washington, DC,

May 1993, pp. 257-66.

94

[Ebling94] Ebling, M.R., Mummert, L.B., Steere, D.C., “Overcomi-
ng the Network Bottleneck in Mobile Computing;’ Proc. of

the Workshop on Mobile Computing Systems and Applica-
tions, Dec. 1994.

[Feiertag71] Feiertag, R. J., Organisk, E. 1., “The Multics
InputJOutput System;’ Prac. of the 3rd Symp. on Operating

System Principles, 19’71, pp. 35-41.

[Griffioen94] Griffioen, J., Appleton, R,, “Reducing File System

Latency using a Predictive Approach:’ Pmt. of the 1994

Summer USENIX Conference, Boston, MA, 1994.

[Grimshaw91] Grimshaw, A. S., Loyot Jr., E.C., “ELFS: Object-
Oriented Extensible File Systems:’ Computer Science Tech-

nical Report No. TR-91-14, University of Virginia, 1991.
[Korner90] Komer, K., “Intelligent Caching for Remote File Ser-

vice, Pmt. of the IOth Int. Con$ on Distn”buted Computing

Systems, 1990, pp.220-226.

[Kotz91] Kotz, D., Ellis, C. S., “practical Prefetching Techniques
for Parallel File Systerns~’ Proc. First International Con$ on

Parallel and Distributed Information Systems, Miami Beach,
Florida, Dec. 4-6,1991, pp. 182-189.

[Kot.z94] Kotz, D., “Disk-directed I/O for MIMD Multiproces-

sors: Pmt. of the Ist USENIX Symp. on Operating Systems

Design and Implementation, Monterey, CA, Nov. 1994, pp.
61-74.

[Lampson83] Lampson, B.W., “Hints for Computer System

Design: Proc. of the 9th Symp. on Operating System Princi-
pks, Bretton Woods, N. H., 1983, pp. 33-48.

[Lee90] Lee, K.-F., Hen, H.-W., Reddy, R.”An Overview of the

SPHINX Speech Recognition System;’ IEEE Transactions
on Acoustics, Speech and Signal Processing, (USA), V 38

(~), Jam 1990, pp. 35-45.

[A4cKusick84] McKusick, M. K., Joy, W. J., Leffler, S. J., Fabry, R.
S., “A Fast File System for Unix:’ ACM Trans. on Compu[er

Systems, V 2 (3), Aug. 1984, pp. 181-197.

[NCSA89] National Center for Supercomputing Applications.
“XDataSlice for the X Window System:’ http://www.

ncsa.uiuc.edu/, Univ. of Illinois at Urbana-Champaign, 1989.
[Ng91] Ng, R., Faloutsos, C., Sellis, T., “Flexible Buffer Allocation

Based on Marginal Gains;’ Proc. of the 1991 ACM ConJ on

Management of Data (SIGMOD), pp. 387-396.

[Ousterhout85] Ousterhout, J.K., Da Costa, H., Harrison, D.,
Kunze, J.A., Kupfer, M., Thompson, J.G., “A Trace-Driven

Analysis of the UNIX 4.2 13SD File System:’ Proc. of the

10th Symp. on Operaling System Principles, Orcas Wind,
WA, ~~C. 1985, pp. 15-24.

[Palmer91] Palmer, M.L., Zdonik, S.B., “FJDO: A Cache that

Learns to Fetch: Brown University Technical Report CS-90-
15,1991.

[Patterson88] Patterson, D., Gibson, G., Katz, R., A, “A Case for

Redundant Arrays of Inexpensive Disks (RAID):’ Pmt. of

the 1988 ACM Confi on Management of Data (SIGMOD),

Chicago, IL, Jun. 1988, pp. 109-116.
[Patterson93] Patterson, R.H., Gibson, G., Satyanarayanan, M., “A

Status Report on Research in Transparent Informed Prefetch-

ing~’ ACM Operating Systems Review, V 27 (2), Apr. 1993,

pp. 21-34.

[Patterson94] Patterson, R. H., Gibson, G., “Exposing J/O Concur-

rency with Informed Prefetching;’ Ptuc. of the 3rd Int. ConJ
on Parallel and Distn”buted Information Systems, Austin, TX,

Sept. 28-30, 1994, pp. 7-16.

[Rosenblum91] Rosenblum, M., Ousterhout, J.K., “The Design and
Implementation of a Log-Structured File System:’ Pmt. of

the 13th Symp. on Operating System Principles, Pacific
Grove, CA, Oct. 1991, pp. 1-15.

[Sacco82] Sacco, G.M., Schkolnick, M., “A Mechanism for Man-

aging the Buffer Pool in a Relational Database System Using
the Hot Set Model: Pmt. of the 8th Int. Con$ on Very Latge

Data Bases, Sep. 1982, pp. 257-262.

[Salem86] Salem, K. Garcia-Molina, H., “Disk Striping: Pruc. of
the 2nd IEEE Int. Confi on Data Engineering, 1986.

[Smith85] Smith, A.J., “Disk Cache — Miss Ratio Analysis and

Design Considerations:’ ACM Trans. on Computer Systems,

V 3 (3), Aug. 1985, pp. 161-203.
[Solworth90] Solwonh, J.A., Orji, C. U., “Write-Only Disk

Caches: Ptvc. of the 1990 ACM Int. Conj on Management

of Data (SIGMOD), pp. 123-132.
[Stathopoulos94] Stathopoulos, A., Fischer, C. F., “A Davidson

program for fmdirtg a few selected extreme eigenpairs of a

large, sparse, real, symmetric matrix;’ Computer Physics
Communications, vol. 79, 1994, pp. 268-290.

[Steere95]Steere, D., Satyrmarayanan, M., “Using Dynamic Sets to

Overcome High I/O Latencies during Search:’ Proc. of the

5th Workshop on Hot Topics in Operating Systems, Orcas

Island, WA, May 4-5, 1995, pp. 136-140.

[Stonebraker86] Stonebraker, M., Rowe, L, “The Design of Post-
gres~’ Pmt. of 1986 ACM Int. Confi on Management of Data
(SIGMOD), Washington, DC, USA, 28-30 May 1986.

[Stonebraker90] Stonebraker, M., Rowe, L.A., Hirohama, M., “The
implementation of POSTGRES,” IEEE Trans. on Knowledge
and Data Engineen’ng, V 2 (l), Mar. 1990, pp. 125-42

[SUU88] Sun Microsystems, Inc., Sun OS Refenmce Manual, Part
Number 800-1751-10, Revision A, May 9, 1988.

[Tait91] Tait, C.D., Duchamp, D., “Detection and Exploitation of

File Working Sets: Proc. of the llth Znt. Conf on Distributed
Computing Systems, Arlington, TX, May, 1991, pp. 2-9.

[Trivedi79] Trivedi, K. S., “An Analysis of Prepaging”, Computing,

V 22 (3), 1979, pp. 191-210.
[WU92] Wu, S. and Manber, U. “AGREP-a fast approximate pat-

tern-matching tool:’ Proc. of the 1992 Winter USENIX Con-

ference, San Francisco, CA, Jan. 1992, pp. 20-24.

95

