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Abstract 
General-purpose operating systems provide inade- 

quate support for resource management in large-scale 
servers. Applications lack sufficient control over 
scheduling and management of machine resources, 
which makes it difficult to enforce priority policies, and 
to provide robust and controlled service. There is a fun- 
damental mismatch between the original design assump- 
tions underlying the resource management mechanisms 
of current general-purpose operating systems, and the 
behavior of modern server applications. In particular, the 
operating system’s notions of protection domain and re- 
source principal coincide in the process abstraction. This 
coincidence prevents a process that manages large num- 
bers of network connections, for example, from properly 
allocating system resources among those connections. 

We propose and evaluate a new operating system ab- 
straction called a resource container, which separates the 
notion of a protection domain from that of a resource 
principal. Resource containers enable fine-grained re- 
source management in server systems and allow the de- 
velopment of robust servers, with simple and firm control 
over priority policies. 

1 Introduction 
Networked servers have become one of the most im- 

portant applications of large computer systems. For many 
users, the perceived speed of computing is governed by 
server performance. We are especially interested in the 
performance of Web servers, since these must often scale 
to thousands or millions of users. 

Operating systems researchers and system vendors 
have devoted much attention to improving the perfor- 
mance of Web servers. Improvements in operating sys- 
tem performance have come from reducing data move- 
ment costs [2, 35, 431, developing better kernel algo- 
rithms for protocol control block (PCB) lookup [26] and 
file descriptor allocation [6], improving stability under 
overload [15, 301, and improving server control mech- 
anisms [5, 211. Application designers have also at- 
tacked performance problems by making more efficient 

use of existing operating systems. For example, while 
early Web servers used a process per connection, recent 
servers [41, 491 use a single-process model, which re- 
duces context-switching costs. 

While the work cited above has been fruitful, it has 
generally treated the operating system’s application pro- 
gramming interface (API), and therefore its core abstrac- 
tions, as a constant. This has frustrated efforts to solve 
thornier problems of server scaling and effective con- 
trol over resource consumption. In particular, servers 
may still be vulnerable to “denial of service” attacks, in 
which a malicious client manages to consume all of the 
server’s resources. Also, service providers want to exert 
explicit control over resource consumption policies, in 
order to provide differentiated quality of service (QoS) to 
clients [I] or to control resource usage by guest servers 
in a Rent-A-Server host [45]. Existing APIs do not al- 
low applications to directly control resource consump- 
tion throughout the host system. 

The root of this problem is the model for resource 
management in current general-purpose operating sys- 
tems. In these systems, scheduling and resource man- 
agement primitives do not extend to the execution of sig- 
nificant parts of kernel code. An application has no con- 
trol over the consumption of many system resources that 
the kernel consumes on behalf of the application. The 
explicit resource management mechanisms that do exist 
are tied to the assumption that a process is what consti- 
tutes an independent activity’. Processes are the resource 
principals: those entities between which the resources of 
the system are to be shared. 

Modern high-performance servers, however, often use 
a single process to perform many independent activities. 
For example, a Web server may manage hundreds or 
even thousands of simultaneous network connections, all 
within the same process. Much of the resource consump- 
tion associated with these connections occurs in kernel 

1 We use the term independent acfiviiy to denote a unit of compu- 
tation for which the application wishes to perform separate resource 
allocation and accounting; for example, the processing associated with 
a single H’lTP request. 
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mode, making it impossible for the application to control 
which connections are given priority2. 

In this paper, we address resource management in 
monolithic kernels. While microkernels and other novel 
systems offer interesting alternative approaches to this 
problem, monolithic kernels are still commercially sig- 
nificant, especially for Internet server applications. 

We describe a new model for fine-grained resource 
management in monolithic kernels. This model is based 
on a new operating system abstraction called a resource 
container. A resource container encompasses all system 
resources that the server uses to perform a particular in- 
dependent activity, such as servicing a particular client 
connection. All user and kernel level processing for an 
activity is charged to the appropriate resource container, 
and scheduled at the priority of the container. This model 
allows fairly arbitrary interrelationships between protec- 
tion domains, threads and resource containers, and can 
therefore support a wide range of resource management 
scenarios. * 

We evaluate a prototype implementation of this model, 
as a modification of Digital UNIX, and show that it is ef- 
fective in solving the problems we described. 

2 Qpical models for high-performance 
servers 

This section describes typical execution models for 
high-performance Internet server applications, and pro- 
vides the background for the discussion in following sec- 
tions. To be concrete, we focus on HTTP servers and 
proxy servers, but most of the issues also apply to other 
servers, such as mail, file, and directory servers. We as- 
sume the use of a UNIX-like API; however, most of this 
discussion is valid for servers based on Windows NT. 

An HTTP server receives requests from its clients via 
TCP connections. (In HTTP/l. 1, several requests may be 
sent serially over one connection.) The server listens on 
a well-known port for new connection requests. When a 
new connection request arrives, the system delivers the 
connection to the server application via the accept ( ) 
system call. The server then waits for the client to send 
a request for data on this connection, parses the request, 
and then returns the response on the same connection. 
Web servers typically obtain the response from the local 
file system, while proxies obtain responses from other 
servers; however, both kinds of server may use a cache 
to speed retrieval. Stevens [42] describes the basic oper- 
ation of HTTP servers in more detail. 

The architecture of HTTP servers has undergone rad- 
ical changes. Early servers forked a new process to han- 
dle each HTTP connection, following the classical UNIX 

21n this paper, we use the term priorify loosely to mean the cur- 
rent scheduling precedence of a resource principal, as defined by the 
scheduling policy based on the principal’s scheduling parameters. The 
scheduling policy in use may not be priority based. 
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Fig. 1: A process-per connection HTTP server with a 
master process. 

model. The forking overhead quickly became a problem, 
and subsequent servers (such as the NCSA httpd [32]), 
used a set of pre-forked processes. In this model, shown 
in Figure 1, a master process accepts new connections 
and passes them to the pre-forked worker processes. 

HTTP Sewer HTTP 
Thread 

-c\ User level 

Fig. 2: A single-process event-driven server. 

Multi-process servers can suffer from context- 
switching and interprocess communication (IPC) over- 
heads [ 11, 381, so many recent servers use a single- 
process architecture. In the event-driven model (Fig- 
ure 2), the server uses a single thread to manage all con- 
nections at the server. (Event-driven servers designed 
for multiprocessors use one thread per processor.) The 
server uses the select ( ) (or poll ( )) system call 
to simultaneously wait for events on all connections it 
is handling. When select ( ) delivers one or more 
events, the server’s main loop invokes handlers for each 
ready connection. Squid [41] and Zeus [49] are examples 
of event-driven servers. 

Alternatively, in the single-process multi-threaded 
model (Figure 3), each connection is assigned to a unique 
thread. These can either be user-level threads or kernel 
threads. The thread scheduler is responsible for time- 
sharing the CPU between the various server threads. 
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Fig. 3: A single-process multi-threaded server. 

Idle threads accept new connections from the listening 
socket. The AZtuVistu front-end uses this model [8]. 

So far, we have assumed the use of static documents 
(or “resources”, in H’lTP terms). HTTP also supports 
requests for dynamic resources, for which responses are 
created on demand, perhaps based on client-provided ar- 
guments. For example, a query to a Web search engine 
such as AltaVista resolves to a d,ynamic resource. 

Dynamic responses are typically created by auxiliary 
third-party programs, which run as separate processes to 
provide fault isolation and modularity. To simplify the 
construction of such auxiliary programs, standard inter- 
faces (such as CGI [lo] and FastCGI [ 161) support com- 
munication between Web servers and these programs. 
The earliest interface, CGI, creates a new process for 
each request to a dynamic resource; the newer FastCGI 
allows persistent CGI processes. Microsoft and Netscape 
have defined library-based interfaces [29, 341 to allow 
the construction of third-party dynamic resource mod- 
ules that reside in the main server process, if fault isola- 
tion is not required; this minimizes overhead. 

In summary, modem high-performance HlTP servers 
are implemented as a small set of processes. One main 
server process services requests for static documents; dy- 
namic responses are created either by library code within 
the main server process, or, if fault isolation is desired, 
by auxiliary processes communicating via a standard in- 
terface. This is ideal, in theory, because the overhead 
of switching context between protection domains is in- 
curred only if absolutely necessary. However, structur- 
ing a server as a small set of processes poses numerous 
important problems, as we show in the next section. 

3 Shortcomings of current resource man- 
agement models 

An operating system’s scheduling and memory allo- 
cation policies attempt to provide fairness among resource 
principals, as well as graceful behavior of the system un- 
der various load conditions. Most operating systems treat 
a process, or a thread within a process, as the schedulable 

entity. The process is also the “chargeable” entity for the 
allocation of resources, such as CPU time and memory. 

A basic design premise of such process-centric sys- 
tems is that a process is the unit that constitutes an in- 
dependent activity. This give the process abstraction a 
dual function: it serves both as a protection domain and 
as a resource principal. As protection domains, processes 
provide isolation between applications. As resource prin- 
cipals, processes provide the operating system’s resource 
management subsystem with accountable entities, be- 
tween which the system’s resources are shared. 

We argue that this equivalence between protection do- 
mains and resource principals, however, is not always ap- 
propriate. We will examine several scenarios in which 
the natural boundaries of resource principals do not co- 
incide with either processes or threads. 

3.1 The distinction between scheduling entities and 
activities 

I Application Threads 

n / 
Single Independent 

Activity 

Application Process 
(Protection Domain 
+ Resource Principal) 

Kernel 

Fig. 4: A classical application. 

A classical application uses a single process to per- 
form an independent activity. For such applications, the 
desired units of isolation and resource consumption are 
identical, and the process abstraction suffices. Figure 4 
shows a mostly user-mode application, using one process 
to perform a single independent activity. 

In a network-intensive application, however, much of 
the processing is done in the kernel. The process is the 
correct unit for protection isolation, but it does not en- 
compass all of the associated resource consumption; in 
most operating systems, the kernel generally does not 
control or properly account for resources consumed dur- 
ing the processing of network traffic. Most systems do 
protocol processing in the context of software interrupts, 
whose execution is either charged to the unlucky process 
running at the time of the interrupt, or to no process at 
all. Figure 5 shows the relationship between the applica- 
tion, process, resource principal and independent activity 
entities for a network-intensive application. 

Some applications are split into multiple protection 
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Fig. 5: A classical network-intensive application. 

domains (for example, to provide fault isolation between 
different components of the application). Such applica- 
tions may still perform a single independent activity, so 
the desired unit of protection (the process) is different 
from the desired unit of resource management (all the 
processes of the application). A mostly user-mode multi- 
process application trying to perform a single indepen- 
dent activity is shown in Figure 6. 

Application’Process 
(Protection Domain 
+ Resource Principal) 

Independent 
Activities , 

Application 
Threads 

User level 
I Kerne 

8 

&f 
Q 

Y ,%“’ 
Application domair 
extends into the / 

-IlTP C&Zions kernel, but is 
uncontrolled. 

J 

Fig. 7: A single-process multi-threaded server. 

In yet another scenario, an application consists of a 
single process performing multiple independent activi- 
ties. Such applications use a single protection domain, to 
reduce context-switching and IPC overheads. For these 
applications, the correct unit of resource management is 
smaller than a process: it is the set of all resources being 
used by the application to accomplish a single indepen- 
dent activity. Figure 7 shows, as an example, a single- 
process multi-threaded Internet server. 

Real-world single-process Internet servers typically 
combine the last two scenarios: a single process usually 
manages all of server’s connections, but additional pro- 
cesses are employed when modularity or fault isolation 
is necessary (see section 2). In this case, the desired unit 
of resource management includes part of the activity of 
the main server process, and also the entire activity of, 

I Application Threads Single 
Independent 

Activity 

Application Process 
(Protection Domain 

Application Process 
+ Resource Principal) 

(Protection Domain 
+ Resource Principal ) 

Fig. 6: A multi-process application. 

for example, a CGI process. 
In some operating systems, e.g., Solaris, threads as- 

sume some of the role of a resource principal. In these 
systems, CPU usage is charged to individual threads 
rather than to their parent processes. This allows threads 
to be scheduled either independently, or based on the 
combined CPU usage of the parent process’s threads. 
The process is still the resource principal for the alloca- 
tion of memory and other kernel resources, such as sock- 
ets and protocol buffers. 

We stress that it is not sufficient to simply treat threads 
as the resource principals. For example, the processing 
for a particular connection (activity) may involve mul- 
tiple threads, not always in the same protection domain 
(process). Or, a single thread may be multiplexed be- 
tween several connections. 

3.2 Integrating network processing with resource 
management 

As described above, traditional systems provide little 
control over the kernel resources consumed by network- 
intensive applications. This can lead to inaccurate ac- 
counting, and therefore inaccurate scheduling. Also, 
much of the network processing is done as the result of 
interrupt arrivals, and interrupts have strictly higher pri- 
ority than any user-level code; this can lead to starvation 
or livelock [ 15,301. These issues are particularly impor- 
tant for large-scale Internet servers. 

Lazy Receiver Processing (LRP) [ 151 partially solves 
this problem, by more closely following the process- 
centric model. In LRP, network processing is integrated 
into the system’s global resource management. Re- 
sources spent in processing network traffic are associated 
with and charged to the application process that caused 
the traffic. Incoming network traflic is processed at the 
scheduling priority of the process that received the traf- 
fic, and excess traffic is discarded early. LRP systems 
exhibit increased fairness and stable overload behavior. 

LRP extends a process-centered resource principal 
into the kernel, leading to the situation shown in Fig- 
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Fig. 8: A network-intensive application in a LRP system. 

ure 8. However, LRP maintains the equivalence between 
resource principal and process; it simply makes it more 
accurate. LRP, by itself, does not solve all of the prob- 
lems that arise when the process is not the correct unit of 
resource management. 

3.3 Consequences of misidentified resource princi- 
pals 

Our fundamental concern is to allow an application to 
explicitly allocate resource consumption among the inde- 
pendent activities that it manages. This is infeasible if the 
operating system’s view of activity differs from that of 
the application, or if the system fails to account for large 
chunks of consumption. Yet it is crucial for a server to 
support accurately differentiated QoS among its clients, 
or to prevent overload from denial-of-service attacks, or 
to give its existing connections priority over new ones. 

With a single-process server, for example, traditional 
operating systems see only one resource principal - the 
process. This prevents the application from controlling 
consumption of kernel CPU time (and other kernel re- 
sources) by various network connections wirhin this re- 
source principal. The application cannot control the or- 
der in which the kernel delivers its network events; nor, 
in most systems, can it control whether it receives net- 
work events before other processes do. 

It is this lack of a carefully defined concept of re- 
source principal, independent from other abstractions 
such as process or thread, that precludes the application 
control we desire. 

4 A new model for resource management 
To address the problems of inadequate control over 

resource consumption, we propose a new model for fine- 
grained resource management in monolithic kernels. We 
introduce a new abstraction, called a resource container, 
for the operating system’s resource principal. 

Sections 4.1 through 4.7 describe the resource con- 
tainer model in detail. Section 4.8 then discusses its use 
in Internet servers. 

4.1 Resource containers 
A resource container is an abstract operating system 

entity that logically contains all the system resources be- 
ing used by an application to achieve a particular inde- 
pendent activity. For a given HTTP connection managed 
by a Web server, for example, these resources include 
CPU time devoted to the connection, and kernel objects 
such as sockets, protocol control blocks, and network 
buffers used by the connection. 

Containers have attributes; these are used to provide 
scheduling parameters, resource limits, and network QoS 
values. A practical implementation would require an ac- 
cess control model for containers and their attributes; 
space does not permit a discussion of this issue. 

The kernel carefully accounts for the system re- 
sources, such as CPU time and memory, consumed by 
a resource container. The system scheduler can access 
this usage information and use it to control how it sched- 
ules threads associated with the container; we discuss 
scheduling in detail in Section 4.3. The application pro- 
cess can also access this usage information, and might 
use it, for example, to adjust the container’s numeric pri- 
ori ty. 

Current operating systems, as discussed in Section 3, 
implicitly treat processes as the resource principals, 
while ignoring many of the kernel resources they con- 
sume. By introducing an explicit abstraction for resource 
containers, we make a clear distinction between protec- 
tion domains and resource principals, and we provide for 
fuller accounting of kernel resource consumption. This 
provides the flexibility necessary for servers to handle 
complex resource management problems. 

4.2 Containers, processes, and threads 
In classical systems, there is a fixed association be- 

tween threads and resource principals (which are either 
the threads themselves, or the processes containing the 
threads). The resource consumption of a thread is charged 
to the associated resource principal, and this information 
is used by the system when scheduling threads. 

With resource containers, the binding between a 
thread and a resource principal is dynamic, and un- 
der the explicit control of the application; we call this 
the thread’s resource binding. The kernel charges the 
thread’s resource consumption to this container. Mul- 
tiple threads, perhaps from multiple processes, may si- 
multaneously have their resource bindings set to a given 
container. 

A thread starts with a default resource container bind- 
ing (inherited from its creator). The application can re- 
bind the thread to another container as the need arises. 
For example, a thread time-multiplexed between several 
connections changes its resource binding as it switches 
from handling one connection to another, to ensure cor- 
rect accounting of resource consumption. 
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4.3 Resource containers and CPU scheduling to include only the container to which it currently has a 
CPU schedulers make their decisions using informa- resource binding. 

tion about both the desired allocation of CPU time, and 
the recent history of actual usage. For example, the tra- 
ditional UNIX scheduler uses numeric process priori- 
ties (which indicate desired behavior) modified by time- 
decayed measures of recent CPU usage; lottery schedul- 
ing [48] uses lottery tickets to represent the allocations. 
In systems that support threads, the allocation for a 
thread may be with respect only to the other threads of 
the same process (“process contention scope”), or it may 
be with respect to all of the threads in the system (“sys- 
tem contention scope”). 

4.4 Other resources 
Like CPU cycles, the use of other system resources 

such as physical memory, disk bandwidth and socket 
buffers can be conveniently controlled by resource con- 
tainers. Resource usage is charged to the correct activity, 
and the various resource allocation algorithms can bal- 
ance consumption between principals depending on spe- 
cific policy goals. 

Resource containers allow an application to associate 
scheduling information with an activity, rather than with 
a thread or process. This allows the system’s scheduler to 
provide resources directly to an activity, no matter how it 
might be mapped onto threads. 

The container mechanism supports a large variety of 
scheduling models, including numeric priorities, guaran- 
teed CPU shares, or CPU usage limits. The allocation 
attributes appropriate to the scheduling model are asso- 
ciated with each resource container in the system. In our 
prototype, we implemented a multi-level scheduling pol- 
icy that supports both fixed-share scheduling and regular 
time-shared scheduling. 

We stress here that resource containers are just a 
mechanism, and can be used in conjunction with a large 
variety of resource management policies. The container 
mechanism causes resource consumption to be charged 
to the correct principal, but does not change what these 
charges are. Unfortunately, policies currently deployed 
in most general-purpose systems are able to control 
consumption of resources other than CPU cycles only 
in a very coarse manner, which is typically based on 
static limits on total consumption. The development of 
more powerful policies to control the consumption of 
such resources has been the focus of complimentary re- 
search in application-specific paging [27,20,24] and file 
caching [9], disk bandwidth allocation [46,47], and TCP 
buffer management [39]. 

A thread is normally scheduled according to the 
scheduling attributes of the container to which it is 
bound. However, if a thread is multiplexed between 
several containers, it may cost too much to reschedule 
it (recompute its numeric priority and decide whether 
to preempt it) every time its resource binding changes. 
Also, with a feedback-based scheduler, using only the 
current container’s resource usage to calculate a multi- 
plexed thread’s numeric priority may not accurately re- 
flect its recent usage. Instead, the thread should be sched- 
uled based on the combined resource allocations and us- 
age of all the containers it is currently handling. 

4.5 The resource container hierarchy 
Resource containers form a hierarchy. The resource 

usage of a child container is constrained by the schedul- 
ing parameters of its parent container. For example, if 
a parent container is guaranteed at least 70% of the sys- 
tem’s resources, then it and its child containers are col- 
lectively guaranteed 70% of the system’s resources. 

To support this, our model defines a binding, called 
a scheduler binding, between each thread and the set 
of containers over which it is currently multiplexed. A 
priority-based scheduler, for example, would construct a 
thread’s scheduling priority from the combined numeric 
priorities of the resource containers in its scheduler bind- 
ing, possibly taking into account the recent resource con- 
sumption of this set of containers. 

Hierarchical resource containers make it possible to 
control the resource consumption of an entire subsys- 
tem without constraining (or even understanding) how 
the subsystem allocates and schedules resources among 
its various independent activities. For example, a system 
administrator may wish to restrict the total resource us- 
age of a Web server by creating a parent container for all 
the server’s resource containers. The Web server can cre- 
ate an arbitary number of child containers to manage and 
distribute the resources allocated to its parent container 
among its various independent activities, e.g. different 
client requests. 

A thread’s scheduler binding is set implicitly by the 
operating system, based on the system’s observation of 
the thread’s resource bindings. A thread that services 
only one container will therefore have a scheduler bind- 
ing that includes just this container. The kernel prunes 
the scheduler binding set of a container, periodically re- 
moving resource containers that the thread has not re- 
cently had a resource binding to. In addition, an appli- 
cation can explicitly reset a thread’s scheduler binding 

The hierarchical structure of resource containers 
makes it easy to implement fixed-share scheduling 
classes, and to enforce a rich set of priority policies. 
Our prototype implementation supports a hierarchy of 
resource principals, but only supports resource bindings 
between threads and leaf containers. 

4.6 Operations on resource containers 
The resource container mechanism includes these op- 

erations on containers: 

50 Third Symposium on Operating Systems Design and Implementation (OSDI ‘99) USENIX Association 



Creating a new container: A process can create a new 
resource container at any time (and may have mul- 
tiple containers available for its use). A default 
resource container is created for a new process as 
part of a fork ( ) , and the first thread of the new 
process is bound to this container. Containers are 
visible to the application as file descriptors (and so 
are inherited by a new process after a fork ( ) ). 

Set a container’s parent: A process can change a con- 
tainer’s parent container (or set it to “no parent”). 

Container release: Processes release their referendes to 
containers using close ( ) ; once there are no such 
descriptors, and no threads with resource bindings, 
to the container, it is destroyed. If the parent P of 
a container C is destroyed, C’s parent is set to “no 
parent.” 

Sharing containers between processes: Resource con- 
tainers can be passed between processes, analo- 
gous to the transfer of descriptors between UNIX 
processes (the sending process retains access to the 
container). When a process receives a reference to 
a resource container, it can use this container as a 
resource context for its own threads. This allows 
an application to move or share a computation be- 
tween multiple protection domains, regardless of 
the container inheritance sequence. 

Container attributes: An application can set and read 
the attributes of a container. Attributes include 
scheduling parameters, memory allocation limits, 
and network QoS values. 

Container usage information: An application can ob- 
tain the resource usage information charged to a 
particular container. This allows a thread that 
serves multiple containers to timeshare its execu- 
tion between these containers based on its particu- 
lar scheduling policy. 

These operations control the relationship between con- 
tainers, threads, sockets, and files: 

Binding a thread to a container: A process can set the 
resource binding of a thread to a container at any 
time. Subsequent resource usage by the thread 
is charged to this resource container. A process 
can also obtain the current resource binding of a 
thread. 

Reset the scheduler binding: An application can reset 
a thread’s scheduler binding to include only its cur- 
rent resource binding. 

Binding a socket or file to a container: A process can 
bind the descriptor for a socket or file to a con- 
tainer; subsequent kernel resource consumption on 

behalf of this descriptor is charged to the container. 
A descriptor may be bound to at most one con- 
tainer, but many descriptors may be bound to one 
container. (Our prototype currently supports bind- 
ing only sockets, not disk files.) 

4.7 Kernel execution model 
Resource containers are effective only if kernel pro- 

cessing on behalf of a process is performed in the re- 
source context of the appropriate container. As discussed 
in Section 3, most current systems do protocol process- 
ing in the context of a software interrupt, and may fail to 
charge the costs to the proper resource principal. 

LRP, as discussed in Section 3.2, addresses this prob- 
lem by associating arriving packets with the receiving 
process as early as possible, which allows the kernel to 
charge the cost of received-packet processing to the cor- 
rect process. We extend the LRP approach, by associat- 
ing a received packet with the correct resource container, 
instead of with a process. If the kernel uses threads for 
network processing, the thread handling a network event 
can set its resource binding to the resource container; a 
non-threaded kernel might use a more ad-hoc mechanism 
to perform this accounting. 

When there is pending protocol processing for multi- 
ple containers, the priority (or other scheduling param- 
eters) of these containers determines the order in which 
they are serviced by the kernel’s network implementa- 
tion. 

4.8 The use of resource containers 
We now describe how a server application can use re- 

source containers to provide robust and controlled behav- 
ior. We consider several example server designs. 

First, consider a single-process multi-threaded Web 
server, that uses a dedicated kernel thread to handle each 
HTTP connection. The server creates a new resource 
container for each new connection, and assigns one of a 
pool of free threads to service the connection. The appli- 
cation sets the thread’s resource binding to the container. 
Any subsequent kernel processing for this connection is 
charged to the connection’s resource container. This sit- 
uation is shown in Figure 9. 

If a particular connection (for example, a long file 
transfer) consumes a lot of system resources, this con- 
sumption is charged to the resource container. As a re- 
sult, the scheduling priority of the associated thread will 
decay, leading to the preferential scheduling of threads 
handling other connections. 

Next, consider an event-driven server, on a uniproces- 
sor, using a single kernel thread to handle all of its con- 
nections. Again, the server creates a new resource con- 
tainer for each new connection. When the server does 
processing for a given connection, it sets the thread’s re- 
source binding to that container. The operating system 
adds each such container to the thread’s scheduler bind- 
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Fig. 9: Containers in a multi-threaded server. Fig. 10: Containers in an event-driven server. 

ing. Figure 10 depicts this situation. 
If a connection consumes a lot of resources, this usage 

is charged to the corresponding container. The server 
application can obtain this usage information, and use 
it both to adjust the container’s numeric priority, and to 
control how it subsequently expends its resources for the 
connection. 

Both kinds of servers, when handling a request for 
a dynamic (CGI) document, pass the connection’s con- 
tainer to the CGI process. This may either be done by 
inheritance, for traditional CGI using a child process, or 
explicitly, when persistent CGI server processes are used. 
(If the dynamic processing is done in a module within 
the server process itself, the application simply binds its 
thread to the appropriate container.) 

with a listening socket to set the priority of accepting 
new connections relative to servicing the existing ones. 
In particular, to defend against a denial-of-service at- 
tack from a specific set of clients, the server can cre- 
ate a socket whose filter matches this set, and then bind 
it to a resource container with a numeric priority of 
zero. (This requires the network infrastructure to reject 
spoofed source addresses, a problem currently being ad- 
dressed [ 331.) 

A server may wish to assign different priorities to re- 
quests from different sources, even for processing that 
occurs in the kernel before the application sees the con- 
nection. This could be used to defend against some 
denial-of-service attacks, and could also be used by an 
ISP to provide an enhanced class of service to users who 
have paid a premium. 

A server administrator may wish to restrict the total 
CPU consumption of certain classes of requests, such as 
CGI requests, requests from certain hosts, or requests for 
certain resources. The application can do this by creat- 
ing a container for each such class, setting its attributes 
appropriately (e.g., limiting the total CPU usage of the 
class), and then creating the resource container for each 
individual request as the child of the corresponding class- 
specific container. 

Because resource containers enable precise account- 
ing for the costs of an activity, they may be useful to 
administrators simply for sending accurate bills to cus- 
tomers, and for use in capacity planning. 

To support this prioritization, we define a new 
sockaddr namespace that includes a “filter” specify- 
ing a set of foreign addresses, in addition to the usual 
Internet address and port number. Filters are specified 
as tuples consisting of a template address and a CIDR 
network mask [36]. The application uses the bind ( 1 
system call to bind multiple server sockets, each with the 
same <local-address, local-port> tuple but with a dif- 
ferent <template-address, CIDR-mask> filter. The sys- 
tem uses these filters to assign requests from a particular 
client, or set of clients, to the socket with a matching fil- 
ter. By associating a different resource container with 
each socket, the server application can assign different 
priorities to different sets of clients, prior to listening for 
and accepting new connections on these sockets. (One 
might also want to be able to specify complement filters, 
to accept connections except from certain clients.) 

Resource containers are in some ways similar to many 
resource management mechanisms that have been devel- 
oped in the context of multimedia and real-time operat- 
ing systems [17, 19,22,28,31]. Resource containers are 
distinguished from these other mechanism by their gen- 
erality, and their direct applicability to existing general 
purpose operating systems. See Section 6 for more dis- 
cussion of this related work. 

5 Performance 
We performed several experiments to evaluate 

whether resource containers are an effective way for a 
Web server to control resource consumption, and to pro- 
vide robust and controlled service. 

The server can use the resource container associated 

5.1 Prototype implementation 
Our prototype was implemented as modifications to 

the Digital UNIX 4.OD kernel. We changed the CPU 
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scheduler, the resource management subsystem, and the 
network subsystem to understand resource containers. 

We modified Digital UNIX’s CPU scheduler sched- 
uler to treat resource containers as its resource princi- 
pals. A resource container can obtain a fixed-share guar- 
antee from the scheduler (within the CPU usage restric- 
tions of its parent container), or can choose to time-share 
the CPU resources granted to its parent container with its 
sibling containers. Fixed-share guarantees are ensured 
for timescales that are in the order of tens of seconds or 
larger. Containers with fixed-share guarantees can have 
child containers; time-share containers cannot have chil- 
dren. In our prototype, threads can only be bound to leaf- 
level containers. 

We changed the TCP/IP subsystem to implement LRP- 
style processing, treating resource containers as resource 
principals. A per-process kernel thread is used to per- 
form processing of network packets in priority order of 
their containers. To ensure correct accounting, this thread 
sets its resource binding appropriately while processing 
each packet. 

Implementing the container abstraction added 820 
lines of new code to the Digital UNIX kernel. About 
1730 lines of kernel code were changed and 4820 lines 
of code were added to integrate containers as the sys- 
tem’s resource principals, and to implement LRP-style 
network processing. Of these 6550 lines (1730 + 4820) 
of integration code, 2342 lines (142 changed, 2200 new) 
concerned the CPU scheduler, 2136 lines (205 changed, 
1931 new) were in the network subsystem, and the re- 
mainder were spread across the rest of the kernel. 

Code changes were small for all the server applica- 
tions that we considered, though they were sometimes 
fairly pervasive throughout the application. 

5.2 Experimental environment 
In all experiments, the server was a Digital Personal 

Workstation 500au (5OOMhz 21164, 8KB I-cache, 8KB 
D-cache, 96KB level 2 unified cache, 2MB level 3 uni- 
fied cache, SPECint95 = 12.3,128MB of RAM), running 
our modified version of Digital UNIX 4.OD. The client 
machines were 166MHz Pentium Pro PCs, with 64MB 
of memory, and running FreeBSD 2.2.5. All experiments 
ran over a private 1OOMbps switched Fast Ethernet. 

Our server software was a single-process event-driven 
program derived from thttpd [44]. We started from a 
modified version of thttpd with numerous performance 
improvements, and changed it to optionally use resource 
containers. Our clients used the S-Client software [41. 

5.3 Baseline throughput 
We measured the throughput of our HTTP server run- 

ning on the unmodified kernel. When handling requests 
for small files (1 KByte) that were in the filesystem cache, 
our server achieved a rate of 2954 requests/set. using 

connection-per-request HTTP, and 9487 requests/set. us- 
ing persistent-connection HTTP. These rates saturated the 
CPU, corresponding to per-request CPU costs of 338,~s 
and 105~s respectively. 

5.4 Costs of new primitives 
We measured the costs of primitive operations on re- 

source containers. For each new primitive, a user-level 
program invoked the system call 10,000 times, measured 
the total elapsed time, and divided to obtain a mean 
“warm-cache” cost. The results, in Table 1, show that 
all such operations have costs much smaller than that of 
a single HTTP transaction. This implies that the use of 
resource containers should add negligible overhead. 

1 Operation 1 cost (/As) 1 

obtain container resource usage 

move container between processes 3.15 
obtain handle for existing container 1.90 

Table 1: Cost of resource container primitives. 

We verified this by measuring the throughput of our 
server running on the modified kernel. In this test, the 
Web server process created a new resource container for 
each HTTP request. The throughput of the system re- 
mained effectively unchanged. 

5.5 Prioritized handling of clients 
Our next experiment tested the effectiveness of re- 

source containers in enabling prioritized handling of 
clients by a Web server. We consider a scenario where a 
server’s administrator wants to differentiate between two 
classes of clients (for example, based on payment tariffs). 

Our experiment used an increasing number of low- 
priority clients to saturate a server, while a single high- 
priority client made requests of the server. All requests 
were for the same (static) 1 KB file, with one request per 
connection. We measured the response time perceived 
by the high-priority client. 

Figure 11 shows the results. The y-axis shows the re- 
sponse time seen by the high-priority client (Thigh) as a 
function of the number of concurrent low-priority clients. 
The dotted curve shows how (Thigh) varies when using 
the unmodified kernel. The application attempted to give 
preference to requests from the high-priority client by 
handling events on its socket, returned by select ( ) , 
before events on other sockets. The figures shows that, 
despite this preferential treatment, (Thigh) increases sharply 
when there are enough low-priority clients to saturate the 
server. This happens because most of request processing 
occurs inside the kernel, and so is uncontrolled. 
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Fig. 11: How Thigh varies with load. 

5.6 Controlling resource usage of CGI processing 
Section 2 described how requests for dynamic re- 

The dashed and the solid curve in Figure 11 shows 
the effect of using resource containers. Here, the server 
uses two containers, with different numeric priorities, as- 
signing the high-priority requests to one container, and 
the low-priority requests to another. The dashed curve, 
labeled “With containers/select ( ) “, shows the effect 
of resource containers with the application still using 
select ( ) to wait for events. Tj,is,j increases much 
less than in the original system. Resource containers al- 
low the application to control resource consumption at 
almost all levels of the system. For example, TCP/IP 
processing, which is performed in FIFO order in classi- 
cal systems, is now performed in priority order. 

sources are typically handled by processes other than 
the main Web server process. In a system that time- 
shares the CPU equally between processes, these back- 
end (CGI) processes may gain an excessive share of the 
CPU, which reduces the throughput for static documents. 
We constructed an experiment to show how a server can 
use resource containers to explicitly control the CPU 
costs of CGI processes. 

We measured the throughput of our Web server (for 
cached, 1 KB static documents) while increasing the num- 
ber of concurrent requests for a dynamic (CGI) resource. 
Each CGI request process consumed about 2 seconds of 
CPU time. These results are shown in the curve labeled 
“Unmodified System” in Figure 12. 

The remaining increase in response time is due to some As the number of concurrent CGI requests increases, 
known scalability problems of the select ( ) system the CPU is shared among a larger set of processes, and 
call [5, 61. These problems can be alleviated by a smart the main Web server’s share decreases; this sharply re- 
implementation described in [6], but some inefficiency duces the throughput for static documents. For exam- 
is inherent to the semantics of the select ( ) API. The ple, with only 4 concurrent CGI requests, the Web server 

Unmodified Syslem 2 
I 

.&o - LRP System --X- - 
3 RCSystem 1 --m-- 

RC System 2 .-.-8---. 

0 1 2 3 4 5 
Number of concurrent CGI requests 

problem is that each call to select ( ) must specify, via 
a bitmap, the complete set of descriptors that the appli- 
cation is interested in. The kernel must check the status 
of each descriptor in this set. This causes overhead linear 
in the number of descriptors handled by the application. 

The solid curve, labeled “With containers/new event 
API”, shows the variation in Thigh when the server uses 
a new scalable event API, described in [5]. In this 
case, Thigh increases very slightly as the number of low- 
priority clients increases. The remaining slight increase 
in Thigh reflects the cost of packet-arrival interrupts from 
low-priority connections. The kernel must handle these 
interrupts and invoke a packet filter to determine the pri- 
ority of the packet. 
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itself gets only 40% of the CPU, and the static-request 
throughput drops to 44% of its maximum. 

The main server process actually gets slightly more of 
the CPU than does each CGI process, because of misac- 
counting for network processing. This is shown in Fig- 
ure 13, which plots the total CPU time used by all CGI 
processes. 

In Figures 12 and 13, the curves labeled “LRP Sys- 
tem” show the performance of an LRP version of Digital 
UNIX. LRP fixes the misaccounting, so the main server 
process shares the CPU equally with other processes. 
This further reduces the throughput for static documents. 

To measure how well resource containers allow fine- 
grained control over CGI processes, we modified our 
server so that each container created for a CGI request 
was the child of a specific “CGI-parent” container. This 
CGI-parent container was restricted to a maximum frac- 
tion of the CPU (recall that this restriction includes its 
children). In Figures 12 and 13, the curves labeled “RC 
System 1” show the performance when the CGI-parent 
container was limited to 30% of the CPU; the curves la- 
beled “RC System 2” correspond to a limit of 10%. 

Figure 13 shows that the CPU limits are enforced al- 
most exactly. Figure 12 shows that this effectively forms 
a “resource sand-box” around the CGI processes, and so 
the throughput of static requests remains almost constant 
as the number of concurrent CGI requests increases from 
1 to5. 

Note that the Web server could additionally impose 
relative priorities among the CGI requests, by adjusting 
the resource limits on each corresponding container. 

5.7 Immunity against SYN-flooding 
We constructed an experiment to determine if resource 

containers, combined with the filtering mechanism de- 
scribed in Section 4.7, allow a server to protect against 
denial-of-service attacks using “SYN-flooding.” In this 
experiment, a set of “malicious” clients sent bogus SYN 
packets to the server’s HTTP port, at a high rate. We then 
measured the server’s throughput for requests from well- 
behaved clients (for a cached, 1 KB static document). 

Figure 14 shows that the throughput of the unmodified 
system falls drastically as the SYN-flood rate increases, 
and is effectively zero at about 10,000 SYNs/sec. We 
modified the kernel to notify the application when it 
drops a SYN (due to queue overflow). We also modi- 
fied our server to isolate the misbehaving client(s) to a 
low-priority listen-socket, using the filter mechanism de- 
scribed in Section 4.8. with these modifications, even 
at 70,000 SYNs/sec., the useful throughput remains at 
about 73% of maximum. This slight degradation results 
from the interrupt overhead of the SYN flood. Note that 
LRP, in contrast to our system, cannot protect against 
such SYN floods; it cannot filter traffic to a given port 
based on the source address. 
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Fig. 14: Server behavior under SYN-flooding attack. 

5.8 Isolation of virtual servers 
Section 5.6 shows how resource containers allow “re- 

source sand-boxes” to be put around CGI processes. This 
approach can be used in other applications, such as con- 
trolling the total resource usage of guest servers in a Rent- 
A-Server [45] environment. 

In current operating systems, each guest server, which 
might consist of many processes, can appear to the sys- 
tem as numerous resource principals. The number may 
vary dynamically, and has little relation to how much 
CPU time the server’s administrator wishes to allow each 
guest server. 

We performed an informal experiment to show how 
resource containers solve this problem. We created 3 
top-level containers and restricted their CPU consump- 
tion to fixed CPU shares. Each container was then used 
as the root container for a guest server. Subsequently, 
three sets of clients placed varying request loads on these 
servers; the requests included CGI resources. We ob- 
served that the total CPU time consumed by each guest 
server exactly matched its allocation. Moreover, because 
the resource container hierarchy is recursive, each guest 
server can itself control how its allocated resources are 
re-divided among competing connections. 

6 Related Work 
Many mechanisms have been developed to support 

fine-granted research management. Here, we contrast 
these with our resource container abstraction. 

The Scout operating system [3 I] is based on the path 
abstraction, representing an I/O channel (such as a TCP 
connection) through a multi-layered system. A path en- 
capsulates the specific attributes of an I/O channel, and 
allows access to these attributes across layers. Paths have 
been used to implement fine-grained resource manage- 
ment in network appliances, including Web server ap- 
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pliances [40]. Resource containers, in contrast to paths, 
allow the application to treat the resources consumed by 
several I/O channels as being part of the same activity. 
Moreover, the composition of a path is limited by the 
router graph specified at kernel-build time; resource con- 
tainers encompass arbitrary sets of resources at run-time. 

Mercer et al. [28] introduced the reserve abstraction in 
the context of Real-Time Mach. Reserves insulate pro- 
grams from the timing and execution characteristics of 
other programs. An application can reserve system re- 
sources, and the system ensures that these resources will 
be available, when needed, to threads associated with the 
reserve. Like a resource container, a reserve provides a 
thread with a resource context, may be passed between 
protection domains, and may be bound to one thread or 
multiple threads. Thus, reserves can be used to charge 
to one resource principal the resources consumed by an 
activity distributed across protection domains. Unlike re- 
source containers, reserves neither account for, nor con- 
trol, kernel-mode processing on behalf of an activity (RT 
Mach is a microkernel system, so network processing is 
done in user mode [25]). Moreover, resources containers 
can be structured hierarchically and can manage system 
resources other than CPU. 

The activity abstraction in Rialto [22] is similar to re- 
source containers. Like a resource container, an activity 
can account for resource consumption both across pro- 
tection domains and at a granularity smaller than a pro- 
tection domain. However, Rialto is an experimental real- 
time object-oriented operating system and was designed 
from scratch for resource accountability. In contrast to 
Scout, RT Mach and Rialto, our work aimed at devel- 
oping a resource accounting mechanism for traditional 
UNIX systems with minimal disruption to existing APIs 
and implementations. 

The migrating threads of Mach [ 171 and Al- 
phaOS [13], and the shuttles of Spring [ 191 allow the re- 
source consumption of a thread (or a shuttle) performing 
a particular independent activity to be charged to the cor- 
rect resource management entity, even when the thread 
(or shuttle) moves across protection domains. However, 
these systems do not separate the concepts of thread and 
resource principal, and so cannot correctly handle appli- 
cations in which a single thread is associated with mul- 
tiple independent activities, such as an event-driven Web 
server. Mach and Spring are also microkernel systems, 
and so do not raise the issue of accounting for kernel- 
mode network processing. 

The reservation domains [7] of Eclipse and the Soft- 
ware Petiormance Units of Verghese et al. [46] allow the 
resource consumption of a group of processes to be con- 
sidered together for the purpose of scheduling. These 
abstractions allow a resource principal to encompass a 
number of protection domains; unlike resource contain- 
ers, neither abstraction addresses scenarios, such a single- 

process Web server, where the natural extent of a re- 
source principal is more complicated. 

A number of mainframe operating systems [14, 37, 
121 provide resource management at a granularity other 
than a process. These systems allow a group of processes 
(e.g. all processes owned by a given user) to be treated as 
a single resource principal; in this regard, they are similar 
to resource containers. Unlike our work, however, there 
are no provisions for resource accounting at a granular- 
ity smaller than a process. These systems account and 
limit the resources consumed by a process group over 
long periods of time (on the order of hundreds of min- 
utes or longer). Resource containers, on the other hand, 
can support policies for fine-grained, short-term resource 
scheduling, including real-time policies. 

The resource container hierarchy is similar to other 
hierarchical structures described in the scheduling liter- 
ature [ 18,481. These hierarchical scheduling algorithms 
are complementary to resource containers, and could be 
used to schedule threads according to the resource con- 
tainer hierarchy. 

The exokernel approach [23] gives application soft- 
ware as much control as possible over raw system re- 
sources. Functions implemented by traditional operating 
systems are instead provided in user-mode libraries. In 
a network server built using an exokemel, the applica- 
tion controls essentially all of the protocol stack, includ- 
ing the device drivers; the storage system is similarly ex- 
posed. The application can therefore directly control the 
resource consumption for all of its network and file I/O. 
It seems feasible to implement the resource container 
abstraction as a feature of an exokernel library operat- 
ing system, since the exokernel delegates most resource 
management to user code. 

Almeida et al. [l] attempted to implement QoS sup- 
port in a modified Apache [3] Web server, running on 
a general-purpose monolithic operating system. Apache 
uses a process for each connection, and so they mapped 
QoS requirements onto numeric process priorities, ex- 
perimenting both with a fully user-level implementation, 
and with a slightly modified Linux kernel scheduler. They 
were able to provide differentiated HTTP service to dif- 
ferent QoS classes. However, the effectiveness of this 
technique was limited by their inability to control kernel- 
mode resource consumption, or to differentiate between 
existing connections and new connection requests. Also, 
this approach does not extend to event-driven servers. 

Several researchers have studied the problem of con- 
trolling kernel-mode network processing. Mogul and Ra- 
makrishnan [30] improved the overload behavior of a 
busy system by converting interrupt-driven processing 
into explicitly-scheduled processing. Lazy Receiver Pro- 
cessing (LRP) [ 151 extended this by associating received 
packets as early as possible with the receiving process, 
and then performed their subsequent processing based 
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on that process’s scheduling priority. Resource contain- 
ers generalize this idea, by separating the concept of a 
resource principal from that of a protection domain. 

7 Conclusion 
We introduced the resource container, an operating 

system abstraction to explicitly identify a resource prin- 
cipal. Resource containers allow explicit and fine-grained 
control over resource consumption at all levels in the sys- 
tem. Performance evaluations demonstrate that resource 
containers allow a Web server to closely control the rel- 
ative priority of connections and the combined CPU us- 
age of various classes of requests. Together with a new 
sockaddr namespace, resource containers provide im- 
munity against certain types of denial of service attacks. 
Our experience suggests that containers can be used to 
address a large variety of resource management scenar- 
ios beyond servers; for instance, we expect that container 
hierarchies are effective in controlling resource usage in 
multi-user systems and workstation farms. 
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