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Abstract

Most computer architectures are moving to 64-bit

virtual address spaces. We first discuss how this

change impacts conventional linear, forward-

mapped, and hashed page tables. We then introduce

a new page table data structure—clustered page fa-

ble—that can be viewed as a hashed page table aug-

mented with subblocking. Specifically, it associates

mapping information for several pages (e.g., sixteen)

with a single virtual tag and next pointer. Simulation

results with several workloads show that clustered

page tables use less memory than alternatives with-

out adversely affecting page table access time.

Since physical address space use is also increas-

ing, computer architects are using new techniques—

such as superpages, complete-subblocking, and partial-

subblocking—to increase the memory mapped by a

translation lookaside buffer (TLB). Since these tech-

niques are completely ineffective without page table

support, we next look at extending conventional and

clustered page tables to support them. Simulation re-

sults show clustered page tables support medium-

sized superpage and subblock TLBs especially well.

1 Introduction

One long-standing computer trend is that pro-

grams’ memory usage doubles each year or two

[Henn90]. Theoretically therefore, systems that sup-

port paged virtual memory [Denn70] should in-

crease their virtual and physical address sizes

linearly each year. In practice, however, compatibili-
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ty issues force address spaces to grow discontinu-

ously, especially for virtual addresses. The industry

is currently undergoing such a discontinuity with

most processor architectures moving from 32- to 64-

bit virtual addresses (while more-modestly increas-

ing the size of physical addresses). All things being

equal, increasing address space size adversely affects

page table and translation lookaside buffer (TLB)

cost or performance. This paper explores the effect of

64-bit addresses on page tables. An address is a virtu-

al address unless we explicitly identify it as a physi-

cal address.

A page fable stores translation, protection, at-

tribute and status information for (virtual) addresses

[Huck93, Chan88, Levy82, Silh93, Lee89]. The infor-

mation for each page is called a page iable entry

(PTE). The TLB miss handler accesses the page table

on a TLB miss to load the appropriate PTE into the

TLB. An ideal page table would facilitate a fast TLB

miss handler, use little virtual or physical memory,

and flexibly support operating systems in page table

modifications. Section 2 reviews conventional page

tables—linear, forward-mapped, and hashed—and

discusses the challenges of extending conventional

page tables to support 64-bit address spaces. It ex-

plains why both linear and hashed page tables are

viable for 64-bit addresses, and why forward-

mapped page tables are probably impractical as each

TLB miss requires about seven memory references.

Many processors now support TLB miss handling in

software, e.g., MIPS [Kane92], Alpha [Site93], UltraS-

PARC [Yung95]. This makes page table design an op-

erating system issue and in this paper we explore

alternate operating system data structures for storing

page tables and servicing TLB misses.

Section 3 introduces the central contribution of

this paper: the clustered page fable. It is a new page ta-

ble data structure that can be viewed as a hashed

page table augmented with subblocking, a simple but
effective technique used in hardware caches and

TLBs [Lipt68, Good83, Hil184, Tal194]. Hashed page

tables associate a tag with every PTE. Clustered page
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tables associate a single tag for an aligned group of

consecutive pages (e.g., sixteen 4KB pages), called a

page block. Clustered page tables are effective when

spatial locality makes it likely that consecutive pages

are in contemporaneous use. For the assumptions

given in Section 3, for example, a clustered page ta-

ble with 16 pages per page block uses less memory

than a hashed page table if six or more pages are

populated. Experimental results (Figure 9) show that

clustered page tables use less memory than the best

conventional page tables—linear page tables for

dense address spaces and hashed page tables for

sparse address spaces.

Hardware designers are increasing the effective-

ness of TLBs for 64-bit systems using techniques

such as .wperpuges [Tal192] and subblocking [Kane92,

Tal194]. These techniques are very effective at im-

proving TLB performance, reducing the number of

TLB misses by 50% to 99%, and providing an aver-

age execution time speedup of upto 20% for the

workloads we use [Tal195]. However, without sup-

port in the page table to store such PTEs or in the

TLB handler to traverse such page tables, these TLB

techniques are completely ineffective. Page tables

that support conventional single-page-size TLBs also

can use superpage or subblock techniques to reduce

page table size by an order of magnitude (Figure 10)

and get better cache performance.

Sections 4 and 5 present the second contribution

of this paper: extending page tables to support su-

perpage and subblock PTEs. We suggest replicating

PTEs at each base site as a way to extend any con-

ventional page table to support the new PTE formats

without affecting TLB miss penalty. We also present

alternate solutions that have some drawbacks but

are usable in specific situations. Section 5 then shows

how clustered page tables are ideal for supporting

medium superpages or subblocks, as they result in

smaller page tables, while retaining fast TLB miss

handling time and flexibility.

Section 6 gives preliminary performance numbers

simulating ten 32-bit workloads. We show that clus-

tered page tables use less memory than any other

page table and are faster to access when using super-

page or subblock PTEs. Clustered page tables, for ex-

ample, use 50% of the memory required by hashed

page tables for our workloads (Figure 10). We simu-

late several TLB and page table organizations to cal-

culate the estimated page table access time. The

appendix includes formulae for estimating the num-
ber of cache misses during TLB miss handling and

page table size for different page tables.

Section 7 includes a discussion on some tradeoffs,
extensions, and optimizations to the page table orga-
nizations described in the paper. Section 8 reiterates
our contributions.

2 Extensions to Conventional Page Tables for 64-bit

Address Spaces

This section reviews commonly-used page ta-

bles—linear, forward-mapped, and hashed—and

discusses extending them to support 64-bit (virtual)

addresses. A detailed description can be found in

Huck and Hays [Huck93]. For all page table designs,

64-bit address mapping information will require

eight bytes (unless physical addresses are restricted

to less than about 36 bits). Figure 1 illustrates exam-

ple mapping information that contains one valid bit,

a 28-bit PPN (40-bit physical address with 4KB pag-

es), 12 bits of software and hardware attributes, and

reserves PAD bits for future use. We use little-endian

notation to number the bits, so the least significant

bit is bit O.

1VI PAD I PPN I ATTR I

63 40 12 0

Figure 1: Example PTE format for 64-bit address spaces

A linear page table conceptually stores all PTEs for

a process in a single array. The array is indexed by

the virtual page number(VPN), as depicted by

Figure 2. Complete linear page tables are very large

and are only partially populated. Consequently they

reside in virtual address space, using page faults to

dynamically populate the table (e.g., VAX-11

[Levy82], MIPS R4000 [Kane92]). Consequently,

PTEs are allocated a page at a time and space over-

head is high if an address space is used sparsely. A

separate data structure stores mappings to the page

table itself. Hardware or software searches this data

structure on a nested TLB miss when attempting to

access the linear page table with a virtual address. A

multi-level tree of linear page tables is commonly

used, e.g., Ultrix uses a two-level tree and OSF/ 1

uses a 3-level tree on the MIPS R3000 [Nag194]. The

straightforward extension of linear page tables to 64-

bit addresses uses a virtual array with four thousand

trillion entries and a 6-level tree. This design is prac-

tical, as a portion of the TLB is reserved for map-

pings to the page tables [Nag194] and the tree is

rarely traversed. Alternatively, some other data

structure can be used to store the mappings to the

linear page table itself (e.g., a hashed page table or a
forward-mapped page table, described below).

185



Virtual Address 7

T

Offset

12

:=M

.:,
Base VPN 000

Base Address

Data structure

( )for mappings to
page tables

I t
Array of PTEs

Figure 2: Linear Page Table (4KB page size)

Forward-mapped page tables store PTEs in n-ary

trees, with each level of the tree indexed using fixed

address fields in the VPN (Figure 3). The leaf nodes

store PTEs while intermediate nodes store pointers

(PTPs) to the next level (e.g., SPARC Reference W

[S1’AWll). Extending to a 6A-W address space ex-
tends the number of levels to seven. Forward-

mapped page tables are impractical for 64-bit ad-

dress spaces, because the overhead of seven memory

accesses on every TLB miss is not acceptable. Tech-

niques to short-circuit some levels, e.g., guarded

page tables [Lied951 or Region Lookaside Buffers

[Chan951, are partially effective but still require
man y levels.

16TB 64* 256K PTPs Level 7 tables
64* 4K pTEs

PTP— page table pointer
PTE—page table entry

Figure 3: Forward-mapped page table

Large address space systems often use hashed (in-

verted) page tables [Lee89, Chan88, Rose85, Huck931.

The simplest implementation uses an open hash ta-

ble with a hash function that maps a VPN to a buck-

et. Each PTE in the hash table, stores the mapping

information for one page, a tag identifying the VPN,

and a next pointer. The hash tables use chaining to

handle overflows (Figure 4). During page table look-

up, the hash function indexes into an array of hash

nodes—the first elements of the hash buckets,

traverses the hash bucket until a PTE is found with a

tag matching the faulting address.

for (ptr = &hash_tablek(VPN)]; ptr != NULL; ptr =
ptr->next)

if (tag_match(ptr, faulting_tag))

retum(ptr->mapping);

pagefauho;

Virtual Address

VPN Offset

hash

— .

n

Y F1 Open Hash Table
Hash Base -

I I

k%5Eii#’=:~:’e
Figure 4: Hashed Page Table

Extending hashed page tables to 64-bit addresses

is straightforward. A drawback is that the tag and

next pointers are now eight bytes each, resulting in

sixteen bytes of overhead for each eight bytes of

mapping information.

Variations on hashed tables include inverted page

tables and software TLBs. h-wet-fed page fables, e.g., in

IBM System/38 [IBM78], hash to an array of pointers

that when dereferenced obtain the first element of

the hash bucket. Software TI,Bs (e.g., swTLB[Huck93],

TSB [Yung95], STLB[Bala94], PowerPC’s page table

[Silh931) eliminate a hashed page table’s next point-
ers by pre-allocating a fixed number of PTEs per

bucket. They are so-named, because they can be

viewed as memory-resident level-two TLBs with

overflow handled in many ways [Agar88, Silh93,
Thak86]. The innovations we develop for hashed

page tables are applicable to inverted page tables or

software TLBs also. Due to space constraints, in this

paper we only describe hashed page tables. Inverted

page tables and software TLB variations are de-

scribed in [Tal195].

Multi-level linear page tables and forward-

mapped page tables are both n-ary trees with some

important differences. Multi-level linear page tables
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are accessed in a bottom-up fashion, require each in-

termediate node to be a page, and accessed with vir-

tual addresses. Forward-mapped page tables are

accessed in a top-down fashion, can have different

branching factors at intermediate nodes, and can be

accessed with physical addresses.

Which page table should 64-bit systems use? Lin-

ear page tables work well when most PTEs in each

page of the page table are used, but perform poorly

for sparse address spaces. Hashed page tables have

fixed overhead—regardless of whether address

space use is dense or sparse—but this overhead is

200% (sixteen bytes for eight bytes). What we would

like is the low-overhead of linear page tables in the

common case of dense address space use, while re-

taining the more graceful degradation of hashed

page tables for sparse use. We next introduce clus-

tered page tables to achieve this goal.

3 Clustered Page Table

The central contribution of this paper is the intro-

duction of clustered page tables. They are a variant of

hashed page tables that store mapping information

for several consecutive pages (e.g., sixteen) with a

single tag and next pointer. Thus, for dense address

space use, spatial overheads are much less than with

hashed page tables. For sparse address space use,

overheads are much less than with linear page ta-

bles, because few (e.g., sixteen) not many (e.g, 512 =

4KB/8B) mappings need be allocated. In addition,

clustered page tables perform ideally in cases where

several consecutive pages are used together (e.g., me-

dium-sized objects and buffers). The section intro-

duces clustered page tables for pages of a single

page size (4KB), base pages. Section 5 extends them to

work with superpage and subblock TLBs.

A clustered page table uses subblocking [Good83]

to extend a hashed page table; Each node in the hash

table stores one tag but stores mappings for multiple

base pages that belong to the same page block—an

aligned group of consecutive pages. The number of

base pages in a page block is the subblock factor.

Figure 5 shows the format of a clustered PTE with

subblock factor of four and an open hash table con-

structed using them.

Subblocking for page tables is effective when pro-

grams store mappings to groups of contiguous virtu-

al pages. Many programs map objects into their

address space that are few to many pages long.
These objects may be scattered anywhere in the ad-

dress space. Thus, the address space of many pro-

grams is “bursty” and not arbitrarily sparse with

mappings to isolated base pages. Clustered page ta-

bles exploit this property by storing mappings to a

set of contiguous virtual pages in a single PTE and

using a hash table to support a sparse distribution of

these objects.

VPBN_tag
next

Virtual Address

Has~ base ~
❑

Figure 5: Format of Clustered PTE (subblock factor 4)

and a Clustered Page Table

Many page table operations in a clustered page

table are similar to those in a hashed page table.

During page table lookup, for example, the virtual

page number is split into a virtual page block num-

ber (VPBN) and a block offset (Boff). The VPBN par-

ticipates in the hash function and the block offset

indexes into the array of mappings in the PTE with a

matching tag. TLB miss handling is identical to that

for a hashed page table when traversing the hash list

but differs afier finding a PTE with matching tag:

for (ptr = &hash_table~(VPBN)]; ptr != NULL; ptr =

ptr->next)

if (tag_match(ptr, faulting_tag))

return(ptr-xnapping[B off]);

pagefaulto;

Figure 5 uses a subblock factor of four to simplify

the illustration. Real implementations might use a

larger subblock factor (e.g., sixteen) determined by

two issues. First, larger subblock factors reduce over-

head when most entries are used, but increase over-

head when mappings are sparse. Second, larger

subblock factors pack mappings for consecutive pag-
es close together, improving their spatial locality and

potentially reducing cache misses while servicing

TLB misses. If the size of the block of mappings is
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larger than a cache line, however, it may place the

VPBN tag and mapping information in two different

cache lines, potentially causing an additional cache

miss on a TLB miss.

We next compare clustered and hashed page ta-

bles. Clustered page tables amortize the per-PTE

overhead over many potential mappings. Page table

size is smaller if enough mappings are used. For sub-

block factor sixteen, for example, a clustered page ta-

ble uses the same memory as a hashed page table

when six mappings are used, and about one-third

the memory if all are used. Clustered page tables can

require more memory than hashed page tables, how-

ever, if address space use is very sparse. The choice

of the subblock factor can take into account the de-

gree of sparseness. Further, to support address spac-

es with varying degree of sparseness, clustered page

tables generalize to include PTEs with varying sub-

block factors with only a small increase in page table

access time (a few extra instructions in the TLB miss

handler) but with better memory utilization [Tal1951.

Clustered page tables store mappings for multi-

ple base pages in a single PTE. This reduces the

number of PTEs in the page table and results in

shorter hash table lists, a hash table with fewer buck-

ets, or both. Shorter hash table lists reduce hash table

search time on TLB misses [Knut68, Morr681. Clus-

tered page tables can have a worse page table access

time if cache performance on TLB misses is worse

when tag and mapping information reside in sepa-

rate cache lines.

3.1 Clustered Page Table support for Page Table

Manipulations

Page tables must support several operations.

Much of this paper emphasizes supporting address

translation on TLB misses. This section qualitatively

discusses some advantages and disadvantages of

clustered page tables relative to hashed page tables

for other operations important to operating systems,

including adding a mapping, changing mappings for

a virtual address range, and synchronization in

multi-threaded operating systems. A quantitative
evaluation is not possible with our simulation meth-

odology (Section 6.1), and must await a full-fledged

operating system implementation.

Page tables must support adding a mapping. For

hashed page tables, adding a mapping incurs a fixed

overhead of memory allocation, list insertion and tag
initialization for each PTE added to the page table.

Clustered page tables amortize the overhead of allo-

cating memory for a PTE and inserting in the hash

list over multiple PTE insertions for the same page

block. This is an important benefit as programs show

spatial locality in their access patterns.

A second operation that operating systems often

use is modifying the PTEs for a virtual address space

range. In hashed page tables this requires searching

the hash table once per base page. Clustered page ta-

bles require searching the hash table only once per

page block and is more efficient.

Page tables must support multi-threaded operat-

ing systems with a synchronization protocol to coor-

dinate concurrent page table operations. The

synchronizi~tion protocol can significantly affect per-

formance [Kha194]. Hashed and clustered page ta-

bles may associate a lock with each hash bucket.

When executing a range operation, clustered page

tables require the operating system to acquire a sin-

gle lock for an entire page block instead of one per

base page as in hashed page tables. While this allows

for efficient range operations, it can restrict concur-

rent page t,able lookups on neighboring base virtual

pages, e.g., during TLB miss handling in a multipro-

cessor system. However, this is not critical as TLB

miss handlers typically access page tables and up-

date reference and modified bits without acquiring

any locks. PowerPC, for example, defines a synchro-

nization algorithm for page table updates that ac-

counts for this unorthodox behavior of TLB miss

handlers [May94]. Systems that require TLB miss

handlers to acquire locks can use readers-writer

locks that allow multiple TLB lookups in parallel.

We next review recent proposals for new TLB

techniques that require page table support to be ef-

fective. We discuss extending page tables to support

such TLBs. This will demonstrate additional advan-

tages of clustered page tables.

4 Adapting Conventional Page Tables for

Superpage and Subblock PTEs

This section and Section 5 present the second con-

tribution of this paper: discussing the page table
changes needed to make superpa~e and subblock
TLBs (described below) effective. There are two po-

tential advantages of adding such support. First, us-

ing the new TLBs reduces the number of TLB misses

by 50% to 99% and provides an average execution

time speedup of upto 20’%. for the workloads we use

[Tal195]. Second, superpage and partial-subblock

PTEs (described below) store mapping information
more compactly than conventional PTEs, thus de-

creasing page table memory usage. We next review
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the new TLB techniques and then examine adapting

conventional page tables to support superpages, par-

tial-subblocking, and prefetching into complete-sub-

block TLBs.

4.1 Superpage and Subblock TLBs

A TLB is a cache whose entries hold recently-

used PTEs [Mile90]. A conventional TLB entry has

VPN (and process ID, etc.) for a tag and physical

page number (PPN) (and protection information,

page-modified bit, etc.) as data. With 64-bit address-

es, hardware designers are increasing the effective-

ness of TLBs with support for superpages [Tal192]

and subblocking [Tal194].

Superpages use the same linear address space as

conventional paging, have sizes that must be power-

of-two multiples of the base page size, and must be

aligned in both virtual and physical memory

[Tal194]. Many processors now support superpages,

e.g., MIPS [Kane92], UltraSPARC [Yung95], Alpha

[Site931, PowerPC [Silh931 etc. Supporting superpag-
es is easier than supporting segments, which use a

two-dimensional address space, may be arbitrarily

long, and may start at arbitrary physical addresses

[Orga721. The MIPS R4000 [Kane92], for example,

supports a 4KB base page size and superpages of

16KB, 64KB, 256KB, lMB, 4MB, and 16MB. Large su-

perpages, e.g., 256KB and larger, are useful for kernel

data, frame buffer, database buffer pools, etc. Since

there are usually few large superpages in use, their

mappings may be setup with limited changes to ex-

isting operating systems. Medium superpages, e.g.,

16KB or 64KB, require more substantial operating

system changes to provide the mechanisms to sup-

port them and the policies for choosing appropriate

page sizes [Tal194, Kha193, Rome95].

Szdddocking associates multiple PPNs with each

TLB tag [Tal194]. With a subblock factor of sixteen and

4KB pages, for example, each tag covers an aligned

64KB block of (virtual) addresses. The MIPS R4XO0

[Kane921 processors support a subblock factor of two
in the TLB. Subblocking is effective when spatial lo-

cality makes it likely that consecutive pages are in

contemporaneous use. A disadvantage of subblock-

ing is that the TLB data area is much larger than in

conventional TLBs, because the data contains multi-

ple PPNs. One way to reduce the area is to store a

single PPN and require physical pages mapped by a
single TLB entry be placed in a single, aligned block

of physical memory, i.e., properly placed. Pages not

properly placed use multiple TLB entries. We call

this TLB design partial-subblockingl, and use complete-

subblockirzg to refer to the first subblock design

[Tal194]. A partial-subblock TLB entry is like a super-

page TLB entry but allows a subset of the base page

)
mappings to be va (d—specified by a valid bit vector

(bottom of Figure 6). While a superpage can be used

only when all base pages are valid and properly

placed, a partial-subblock PTE can be used even ,

when some base pages are not in memory, e.g., when

only fifteen of sixteen pages are memory resident.

Superpages and partial-subblocking are effective

only when operating systems often properly place

virtual pages in physical memory. We have proposed

one algorithm, page reservation, that is described in

[Tal194, Tal195]. Superpages and partial-subblocking

also require support from the page table to store

such mappings and in the TLB miss handler to

traverse such page tables. Page tables must support

finding a PTE on a TLB miss using the faulting ad-

dress (without knowing the page size when starting

the access) and without significantly increasing the

TLB miss penalty. To the best of our knowledge, cur-

rent commercial operating systems do not include ei-

ther such memory allocation or page table support,

rendering the hardware TLB extensions useless.

Vlszl PAD ,9PPN 1.......{ ATTR

63 59 40 12 0
Superpage Mapping
(any power of two size - SZ)

vpj.~ PAD I PPN I::i I ATTR I
63 48 40 12 0

Partial-Subblock Mapping ;’.; Unused bi~ in ppN

subblock factor 16 ❑
Figure 6: Superpage and Partial-subblock mapping

format

A naive way of supporting superpage and sub-

block TLBs with a single-page-size page table would

be to construct superpage and subblock PTEs in the

TLB miss handler if PTEs are compatible to use the

new TLB formats. This requires the TLB miss han-

dler to search the page table for the PTEs for base

virtual pages that are in the same virtual page block

as the faulting virtual address. For hashed page ta-

bles this is very expensive as PTEs for neighboring

base virtual pages will be in different hash buckets.

Even in linear, forward-mapped, and clustered page

tables where the PTEs are stored contiguously the

compatibility check is expensive [Tal195]. A more ef-
ficient way would be to modify the page tables to

store superpage and partial-subblock PTEs (Figure 6)

1,We only recently proposed partial-subblock TLBs and we are not

awme of commercial processors that implement them tcuiay.
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preconstructed by the operating system. In the next

few subsections, we show some ways to modify con-

ventional page tables. In Section 5 we show the addi-

tional advantages of clustered page tables for storing

superpage and partial-subblock PTEs.

4.2 Supporting Superpages

Here we discuss adapting conventional page ta-

bles to support superpage PTEs (the top of Figure 6).

There are, at least, two solutions for supporting su-

perpages that work for any page table: Replicate PTEs

and Multiple Page Tables.

Replicate PTEs. This solution stores a superpage

PTE at the page table site of every base page PTE

covered by the superpage. Thus, the information for

a 64KB superpage gets repeated at sixteen base PTE

sites. On a TLB miss, the handler finds the mapping

as if the address was contained in a base page, but

ends up loading a mapping for the whole superpage.

This solution is satisfactory. It is simple. It facili-

tates better TLB performance than for a conventional

TLB by permitting superpage PTEs to reduce the fre-

quency of TLB misses, while having no affect on the

TLB miss penalty. It has two drawbacks. First, it does

not allow the use of superpages to make page tables

smaller. Second, replicated PTEs make adding or

atomic update of superpage PTEs more complex in

multi-threaded operating systems [Eykh92].

Multiple Page Tables. This solution creates a

page table for each page size (or a set of page sizes)

in use. On a TLB miss, the handler first accesses one

of these page tables. If a mapping is not present, it

examines the next page table and so on. The page ta-

bles probably should be sequenced from the page

size most- to least-likely to cause a TLB miss, e.g., the

smallest to the largest page size.

This solution appears less good than the first so-

lution. Its principal disadvantage is that it will make

TLB miss handling slower, unless most TLB misses

go to one page size. Furthermore, the spatial over-

head of supporting many page tables mitigates its

potential to improve page table size. With linear

page tables, PTEs for different page sizes cannot

share page table pages. With hashed page tables,

hash buckets must be setup for each page size.

A simple variation of the multiple page table ap-

proach uses the same page table to store PTEs of dif-

ferent page sizes and examines it multiple times

with different page sizes. This is feasible with

hashed and clustered page tables, where all logical

page tables could share the same buckets at a cost of

longer hash chains. All PTEs in a linear page table,

by definition, are of the same page size and multiple

page tables cannot be combined.

There are also some superpage strategies that

only work for specific page tables.

Linear Intermediate Nodes. Linear page tables

that use a multi-level tree structure can store super-

page PTEs at intermediate tree nodes. With 4KB base

pages and eight byte PTEs, for example, each entry

in the last level of intermediate nodes points to a

page of 512 PTEs. This solution allows the interme-

diate node entry to point to a superpage covering

the same virtual space (2MB = 512”4KB).

This solution supports superpages with a modest

increase in TLB miss handling time (to decide

whether an intermediate node is a superpage PTE or

points to the next level). The TLB miss handler

would, however, still access the base PTE site and in-

cur a nested TLB miss. Its key disadvantage is the

lack of flexibility. It only supports page sizes that

correspond to intermediate nodes—in our example

these are 2MB, lGB, 512GB, 256TB and 64PB. In par-

ticular, it supports no medium-size superpages.

Forward-Mapped Intermediate Nodes. Forward-

mapped page tables are a multi-level tree structure

and also can store superpage PTEs at intermediate

tree nodes, e.g., SPARC Reference MMU [SPAR91]

and HaL [Chan95] support a few fixed superpage

sizes in this fashion. It is possible to extend forward-
mapped page tables to support any arbitrary super-

page size by varying the tree’s branching factor dy-

namically. A software-traversed forward-mapped

page table is flexible and can support this (unlike lin-

ear page tables where the number of PTEs per page

fixes the branching factor or hardware traversed

page tables that have fixed branching factors). This

solution may increase the levels in the tree and will

likely make the already too-long TLB miss handling

time of forward-mapped page tables even longer.

SuperPage-Index Hashed. One way to support
superpages in a conventional hashed page table is to

always assume a specific superpage size in the hash

function and to associate with a bucket all appropri-

ate superpage and base page PTEs. Talluri et al.

[Tal1921 describe a similar scheme for hardware
TLBs, where set-associative TLBs support two page

sizes using the superpage index. If we hash on 64KB

superpages, for example, we could find that a partic-

ular 64KB region mapped by (a) one 64KB super-

page, (b) sixteen 4KB base pages, (c) two 16KB
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superpages and eight base pages, etc. This would re-

sult in one, sixteen, or ten PTEs chained to the same

bucket (besides any other PTEs mapping to the same

bucket). This solution is not so good, because the

longer hash chains will increase TLB miss handling

time. In addition, superpages larger than the size se-

lected for hashing must be handled another way.

In summary the replicate PTE method is proba-

bly the best method so far for supporting medium-

sized superpages in conventional page tables—it de-

creases frequency of TLB misses without increasing

the TLB miss penalty. Large superpages (e.g., lMB),

on the other hand, may be handled on an ad hoc ba-

sis, since there are few such mappings and they miss

less often in a TLB.

4.3 Supporting Partial-subblocking

This subsection applies superpage page tables to

supporting partial-subblock PTEs (bottom of

Figure 6). The advantages of supporting partial-sub-

block PTEs over superpage PTEs are four-fold. First,

partial-subblock TLBs are more effective than super-

page TLBs [Tal1951. Second, partial-subblock PTEs
reduce page table size more effectively than super-

pages (Figure 10). Third, partial-subblocking re-

quires simpler operating system support than

superpages [Tal194]. Fourth, a partial-subblock PTE

is a natural intermediate format for page tables that

construct superpage PTEs in an incremental fashion.

The disadvantage is that large subblock factors, e.g.,

32 or larger, are not practical due to the limited num-

ber of valid bits in a PTE.

Page table support for partial-subblock PTEs is

similar to supporting a base page size and one medi-

um superpage size equal to the base page size times

the subblock factor. A partial-subblock PTE resides

in a page table exactly where a corresponding super-

page PTE would have resided. Page blocks that can-

not use partial-subblock PTEs use base page PTEs.

More complex optimizations are possible [Tal195].

The extensions described in Section 4.2 for super-

page PTEs are mostly applicable to storing partial-

subblock PTEs also. The differences include: When

using replicated PTEs, adding or deleting a mapping

that is part of a partial-subblock PTE always requires

modification of multiple PTEs, whereas superpage

PTEs tend to use explicit operating system directed

page promotion or demotion. When using multiple
page tables, the order of searching the page tables
should favor the partial-subblock PTEs over the base
page table if partial-subblock PTEs will be accessed

more often than base page PTEs. In superpage-index

hashed page tables, partial-subblock PTEs reduce the

length of the hash lists. When superpages could not

be used, multiple base page PTEs are added to the

same hash bucket—typically one or two partial-sub-

block PTEs can replace the base page PTEs.

4.4 Prefetch support for complete-subblock TLBs

Another hardware technique for increasing the

memory mapped by a TLB is complete-subblocking.

A complete-subblock TLB entry has one tag but has

a subblock-factor-number of PPNs and attribute

fields, similar to a clustered PTE. A complete-sub-

block TLB requires no special operating system or

page table support. On a TLB miss, the handler

merely searches any page table for the base page

PTE and loads it into the TLB—exactly as in a single-

page-size system.

A closer look at complete-subblock TLBs reveals,

however, that there are block misses and subblock

misses. Block misses allocate a new TLB entry, often

replacing an old entry (and its associated mappings).

Subblock misses add a new PPN and attribute infor-

mation to an existing TLB entry, without causing a

replacement. Subblock misses can be eliminated,

however, if each block miss loads (prefetches) all

mappings associated with its taa as the MIPS R4000

does for two PTEs [Kane92]. For example, on a TLB

miss to virtual address OX41O34 the TLB miss han-

dler for MIPS R4000 would prefetch mappings to

virtual pages 0x40000 and OX41OOO. Subblock

prefetching never pollutes the TLB by replacing

more useful mappings, because it never causes extra

replacements [Hil187], but reduces the number of

TLB misses significantly-50% or more [Tal195].

A drawback of subblock prefetching is the in-

creased time to service TLB block misses. This penal-

ty is large for hashed page tables, because multiple
hash probes are needed. This penalty is reasonable

for linear, forward-mapped, and clustered page ta-

bles, because the additional mappings reside in adja-

cent page table memory. In addition, the penalty can

be reduced even further by modifying the clustered

PTE format to match the format of the corresponding

complete-subblock TLB entry exactly.

5 Partial-subblock and Superpage PTEs in

Clustered Page Tables

The section first examines incorporating partial-

subblocking into clustered page tables. This step is
natural, since a node in a clustered page table (for

base pages only) resembles a complete-subblock TLB
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entry. This section then incorporates

into clustered page tables.

superpages

I VPBN_tag
nexf I

v PAD s PPNO ATTRO

v PAD s ppNl ATTR1

,V pm s PPN2 ATTR2

v PAD s ppN3 ATTR3

Clustered PTE (or Complete-subblock PTE)

Fz?asa
Partial-subblock PTE

=
Superpage PTE

Figure 7: Clustered PTE variations

The match between partial-subblock TLBs and

clustered page tables is best when both use the same

subblock factor. Figure 7 (top) illustrates a clustered

PTE with subblock factor four, and, therefore, has an

array of four base page mappings. A clustered page

table is essentially a “complete-subblock hashed

page table” and a clustered PTE can also be called a

complete-subblock PTE. Figure 7 (center) illustrates

a partial-subblock PTE. Figure 8 shows how a par-

tial-subblock PTE fits in a clustered page table. On a

TLB miss, the handler hashes on the VPBN and

walks the hash chain as usual. If a match is found,

the handler consults the new S field and then reads

the appropriate mapping. The S field—for Sub-

block/Superpage—distinguishes a partial-subblock

(and superpage, discussed next) PTE from base page
PTEs, since both reside in the same page table. The

key here is that the TLB miss handler sees no differ-

ence from a regular clustered page table while tra-

versing the hash list matching tags and only differs

when reading the mapping. Thus we are able to ser-

vice TLB misses to both partial-subblock and base

page PTEs without increasing the TLB miss penalty
while using less memory for partial-subblock PTEs.

for (ptr = &hash_table~(VPBN)]; ptr != NULL; ptr =

ptr->next)

if (tag_match(ptr, faulting_tag))

return(ptr->mapping [O].S ? ptr-

xnapping[O] : ptr->mapping~off]);

pagefaulto;

L VPBN Boff Offset Virtual Address

(-)h Open Hash Table

Hash”Base ~

Figure 8: Storing partial-subblock and superpage PTEs
in clustered page tables

Superpage support is also straightforward.

Figure 7 (bottom) illustrates support for a medium-

sized superpage, whose size is the same as the virtu-

al page block. The superpage PTE is similar to a par-

tial-subblock PTE, except it only has one valid bit.

Smaller superpages can be supported using the SZ

field to identify them. The above example could al-

low a node with two 8KB superpages. We also can

support one 8KB superpage and two 4KB base pages

in one 16KB page block by using two nodes on the

same hash chain—one with one of two 8KB super-

pages valid and the other with two of four base pag-

es valid. This support also requires that the TLB miss

handler continue searching the hash chain after a tag

match that fails to find a valid mapping [Tal195].

Larger superpages can be supported in at least

two ways. First, one can use the “Replicate PTEs” so-

lution, but replicate once per clustered PTE instead

of once per base page PTE. For subblock factor six-

teen, for example, a clustered page table supports

large superpages with a factor of sixteen less over-

head than conventional page tables. Second, one can

continue to use any ad hoc method previously devel-

oped for conventional page tables—in particular, the
multiple page table approach is reasonable if TLB

misses to large superpages are not frequent.

Supporting superpages and partial-subblocks in

clustered page tables offers several advantages over

extending hashed page tables. First, its hash chain

remains short, whereas hashed page tables require
longer hash chains when using base pages. Second,

partial-subblock and superpage PTEs reduce both

hashed and clustered page table size but clustered

page tables do not increase TLB miss penalty where-

as hashed page tables do. In adding superpage or

partial-subblock PTEs, clustered page tables do not

change the hash table structure but only modify the

size of some PTEs. Hashed page tables, on the other

hand, either require multiple page tables/probes or
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have suboptimal hash functions when storing super-

page and partial-subblock PTEs. Third, clustered

page tables simplify incremental creation of partial-

subblock and superpage PTEs by storing mappings

for consecutive base pages together. If the operating

system, notices that all base page mappings in a

node are valid, it could decide to promote them to a

superpage. Gathering this information in other page

tables is less efficient.

In summary clustered page tables for base pages

use less memory than hashed page tables by combin-

ing mappings for neighboring base virtual pages

that have nearly identical fags into a single PTE with

a single tag. In this section, we took clustered page

table one step further to support superpages and

partial-subblocking by combining mappings for

neighboring base virtual pages that also have nearly

identical PPNs into a single PTE. It is also straight-

forward to support both superpages and partial-sub-

blocking in the same clustered page table [Tal195].

6 Performance Evaluation

This section presents simulated performance re-

sults for the page tables discussed so far. We use esti-

mates of page table size and page table access time

(the TLB miss penalty) as metrics. Our numbers are

approximate, for example, because we do not com-

pute the cache misses saved by a smaller page table.

Nevertheless, we find that clustered page tables use

less space and can be accessed faster than conven-

tional page tables. Further, their performance rela-

tive to conventional page tables improves further

when supporting superpages or partial-subblocking.

6.1 Simulation Methodology and Metrics

The ultimate measure of performance is program

execution time. We are, however, unable to measure

execution time on a real system for two reasons.

First, it requires implementing all the different page

table organizations in a commercial operating sys-

tem. Implementing even a single page table organi-

zation is a multi-man-year project and is beyond the

scope of this paper. Second, we are evaluating TLBs

and page tables that support medium-sized super-

pages, complete- and partial-subblock TLBs. We did

not have access to a SPARC machine that supports

medium-sized superpages and no current processor

includes the subblock-TLBs we study here. We in-

stead include a TLB simulator in the kernel to simu-
late these TLBs and count the number of TLB misses.

We perform our study on a SparcServer10 run-

ning Solaris 2.1. We modified the operating system

in three ways. First, we implemented policies and

mechanisms in the operating system to support me-

dium-sized superpages and partial-subblock TLBs.

We use a dynamic page-size assignment policy that

chooses between a base page size of 4KB and a su-

perpage size of 64KB (detailed description is avail-

able in [Tal1941 and [Tal195]). We also use a physical

memory allocation algorithm, page reservation, that

allocates aligned physical pages for virtual pages

(detailed description is available in [Tal194] and

[Tal195]). This memory allocation makes partial-sub-

block TLBs effective and makes superpage creation

efficient. Second, we added a mechanism to trap on

TLB misses (trap-driven simulation). We use this

mechanism to drive a TLB simulator that counts the

number of TLB misses for different target TLBs—

TLB configurations that are different from the hard-

ware TLB. Third, we include a page table simulator

that builds hashed and clustered page tables. It

counts the number of cache lines that would have

been accessed if the hardware TLB was identical to

the target TLB and the simulated page table was ful-

ly implemented in the kernel. Note that we do not

replace Solaris’ native page table implementation

with the new page tables.

Our base cases assume 64-entry fully-associative

TLBs, 4KB base pages, and—as appropriate—sub-

block factor sixteen and superpage size 64KB. We as-

sume a 256-byte (level-two) cache line size for

accessing page tables. We assume 4096 hash buckets

in hashed and clustered page tables. We also discuss

sensitivity analysis for these assumptions, but space

limitations prevent a full presentation [Tal1951.

We first study page table size. Page table size has

significant affect on cache behavior, even when page

tables are much smaller than available physical

memory (i.e., when their affect on page faults is neg-

ligible). Smaller page tables are expected to result in

a higher cache hit rate and lower cache pollution

that can significantly improve overall system perfor-

mance. Yoo and Rogers [Yo093], for example, ob-

served a 10% improvement in execution time mostly

due to cache/TLB effects of reducing page table size

for a commercial database workload. Further, when

using a private address space model and per-process

page tables, a smaller page table size for each pro-

cess on a large server system with thousands of ac-

tive processes translates to significant savings.

Our metric for page table size is page table size

normalized by hashed page table size. We estimate

page table size in a two step process. First, we take a

snapshot of each workload’s mappings at a point
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near the program’s maximum memory use. Second,

we use this information to generate alternate page

tables using the following additional assumptions.

Mapping information takes eight bytes. Linear page

tables use the minimum possible six-level tree. We

also show “l-level” numbers that assume intermedi-

ate nodes are stored in a data structure that takes

zero space. Forward-mapped page tables use a sev-

en-level tree as in Figure 3. Hashed and clustered

page tables have an overhead of sixteen bytes per

PTE to store tag and next pointers. We compute page

table size for a multiprogrammed workload as the

sum of page table sizes for the constituent programs.

We next study page table access time. Regrettably

our simulation environment does not allow us to

measure it directly. Instead we use the average num-

ber of cache lines accessed to handle one TLB miss as

an indirect metric. This metric would be proportion-

al to page table access time if the (level two) cache

rarely contains page table data and other overheads

are minimal. There are at least three drawbacks to

this metric. First, and most important, it ignores that

some page table data may still be in cache, particu-

larly for page tables that are smaller and store PTEs

to exploit spatial locality. Thus, we would expect the

access times for clustered page tables, which use less

page table memory, to be better than the results we

report. Second, the metric ignores the initial over-

head of a TLB miss, but this penalty is independent

of page table type. Third, it neglects the time to exe-

cute TLB miss handler instructions. This allows the

metric to account for hardware TLB miss handlers

that typically take time proportional to the number

of memory accesses. Even with software TLB miss

handling, the instruction overhead for hand-coded

TLB miss handlers is expected to be small on next

generation superscalar processors that can execute

three, four, or more instructions per cycle, compared

to a main memory access of about a hundred cycles.

We estimate the average number of cache lines

accessed on a TLB miss as follows. We modified the

operating system to simulate hashed and clustered

page tables. On each TLB miss, our evaluation sys-
tem traps to the operating system, providing us the

faulting address. We do a page table traversal to cal-

culate the number of cache lines accessed. We esti-

mate the cache lines by further assuming each PTE

starts on a cache line boundary. Linear page tables

always access one cache line and occasionally access

higher tree levels. We approximate this by reserving

eight of 64 TLB entries for higher tree level map-

pings and assuming each TLB miss to the remaining

56 entries only accesses one cache line. For our 32-bit

workloads, the eight reserved TLB entries are suffi-

cient and we never take a nested trap2. We assume

forward-mapped page tables access one cache line

for each tree level. When storing superpage and par-

tial-subblock PTEs, we assume that linear and for-

ward-mapped page tables use the replicate PTE

approach and hashed page tables use separate page

tables for 4KB and 64KB page blocks, with the 4KB

page table searched first. We normalize the number

of cache lines accessed by the number of TLB misses

incurred by a 64-entry TLB, which is independent of

the page table type. For linear page tables we esti-

mate the number of cache lines accessed when using

56 TLB entries and normalize with the number of

TLB misses for a 64-entry TLB. Our metric thus in-

cludes the opportunity cost for reserved TLB entries.

6.2 Workloads

We selected ten 32-bit workloads that spend sig-

nificant time in TLB miss handling. Nasa7, com-

press, wave5, spice, and gcc are from the SPEC92

suite [SPEC91]; fftpde is a NAS benchmark [Bai191 ]

operating on a 64X64X64 matrix; mp3d and pthor

are uniprocessor versions from the SPLASH bench-

mark suite [Sing92]; coral [Rama93] is a deductive

database executing a nested loop join; ML [Appe91]

is executing a stress test on the garbage collector

[Repp941. Compress and gcc are multiprogrammed
workloads. Many programs have negligible TLB

miss ratios and would not benefit from page table

enhancements. By emphasizing workloads for which

TLB miss handling is important our results overesti-

mate the potential benefit for workloads with small

processes. We expect future 64-bit workloads and

object-oriented programs to have larger and sparser

address spaces. Such workloads would make TLB

and page table effects more important and both

hashed and clustered page tables more attractive.

Workload

~

coral
nasa7

compress
fftpde
wave5
mp3d
spice
pthor

gcc
kernel space

1

total time “~ ‘

(user time) ~sws J

in seconds
(000s) mllluurlg page

177 (172) 85974 50% 1

.. . . ?70user Memory

time irr for

ILB miss Hashed
1-. ..-11.--- ‘---- table

19KB
387 (385)
104 (82)

55 (53)
110 (107)

36 (36)
620 (617)

48 (35)
950 (919)

152357
21347
11280
14511

4050
41922

2580
38423

40% 21KB
26% 8KB
21% 88KB
14% 86KB
11% 29KB
7% 22KB
7% 92K13
4T0 194KB

159 (133) 2440 2% 34KB
N/A NjA N/A 186KB

lble 1: Workload characteristics

2. We save the reserved TLB entries across context switches.

194



Table 1 displays workload data, with the work-

loads sorted from most to least percent of user time

spent on TLB miss handling. Column two gives total

execution time, with user time in parenthesis show-

ing that these workloads spend most of their time in

user mode. Columns three and four give the number

of user TLB misses (for a 64-entry fully-associative

single-page-size TLB) and the percent of user time

spent servicing these misses (assuming a 40 cycle

TLB miss penalty), showing that user TLB miss han-

dling time is significant. Finally column five shows

the amount of memory used by a hashed page table

to map the workload.

6.3 Results

We first discuss page table size. Figure 9 displays

relative page table sizes—normalized to hashed page

table size—for various workloads in a single-page-

size system with base page size of 4KB. Figure 9

truncates values above 5.0. The important observa-

tion is that clustered page tables (asterisk marked)

use less memory than the best conventional page ta-

bles for all the workloads. For dense address spaces,

e.g., coral, ML, kernel, clustered page tables are
comparable or better than linear and forward-

mapped page tables. For sparse address spaces, e.g.,

gcc and compress 3, clustered page tables use less

memory than hashed page tables.

❑ ❑

4.0 -

3.0 - ❑

2.0

1

A

o

II Linear ‘Ii-lever A Forward-mapped
O Linear “l-level” x Clustered

Figure 9: Page table size for single-page-size page tables.
Normalized to hashed page table size.

3. Gcc snd compress had multiple processes, e.g., make, sh,

script, mrmy of which were small and had sparse address spaces.

For other workloads we measure page table usage of only the main

program,

Figure 10 zeroes in on page tables that use less

memory than hashed page tables, i.e., normalized

page table size less than 1.0. It also adds variations

that use superpages and partial-subblocking to store

mappings to multiple base pages in a single PTE.

Use of superpage PTEs in the clustered page tables

reduces memory usage upto 7.5~0 (comparing circles

and asterisks in F@.me 10) and with partial-subblock

PTEs by upto 80% (comparing triangles and aster-

isks in Figure 10). Use of superpage mappings simi-

larly improves hashed page table size also (squares

in Figure 10). Corresponding improvements are not

possible in linear or forward-mapped page tables as

we assume replication of PTEs.

1.0

0.8

0.6

0.4

0.2

0.0

* *

*
* *

* *** **Au

A
❑ m

❑ Hashed+Superpage A Clustered+Partial-subblwk

O Clustemd+Superpage * Clustered

Figure 10: Hashed and clustered page table sizes for
4KB base pages and 64KB superpagesl partial-

subblocking with subblock factor 16.
Normalized to hashed page table size.

We next discuss page table access time (on TLB

misses) for various workloads and page tables using

the coarse metric: average number of cache lines access-

ed on a TLB miss, Each graph in Figure 11 assumes a

different fully-associative 64-entry TLB design.

Figure lla assumes a single-page-size TLB, i.e., no

TLB support for superpages or subblocks. Results

show that forward-mapped page tables perform un-

acceptably but other designs are similar. This is not

surprising since our metric does not reward the

more-compact clustered page tables. Clustered page
tables have shorter hash lists relative to hashed page

tables reducing the number of accesses in some cas-

es, e.g., ML. Results for linear page tables are opti-

mistic due to assumptions discussed in Section 6.1.
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Figure llc: Partial-subblock TLB (subblock factor 16)
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Figure 11: Average number of cache lines accessed per TLB miss (64-entry fully-associative TLBs)

Figure llb present results when the TLB and page Figure llc presents results for a partial-subblock

tables support superpages. Not shown is that use of TLB. To the first order, they are similar to results us-

superpages reduces TLB miss frequency by 50% to ing a superpage TLB. As these workloads use par-

99% [Tal195], which is the main reason for support- tial-subblock entries more often than superpages, the
ing superpage PTEs in the page table. What is shown hashed page tables have worse performance. For

is the number of cache lines accessed by the remain- these workloads and with proper operating system

ing misses. Results are modestly worse for linear support, doing the page traversals in the reverse or-

page tables as the opportunity cost of fewer TLB en- der—the 64KB page table followed by the 4KB page
tries is higher, unchanged for forward-mapped, and table—would be a better option.
much worse for hashed page tables. Hashed page ta-

bles take longer to access superpage PTEs as we first Finally Figure lld gives complete-subblock TLB

search the 4KB page table and then the 64KB page results, assuming the prefetching described in

table, e.g., poor performance of hashed page tables Section 4.4. As expected, hashed page tables perform
for coral is due to a higher fraction of TLB misses to terribly due to the high cost of multiple probes (six-

superpage PTEs than for gee. Results for clustered teen). Note that Figure 11 d uses a different scale
page tables continue to be close to 1.0, showing that from the other graphs. Linear and clustered page ta-
they handle the remaining TLB misses without in- bles continue to be close to 1.0 as they place the map-
creasing TLB miss penalty. pings for consecutive base pages nearby.
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In summary clustered page tables improve sig-

nificantly on hashed page tables by supporting su-

perpage and subblock TLB architectures without

increasing the TLB miss penalty. Clustered page ta-

bles are, however, sensitive to the cache line size. A

superpage or partial-subblock clustered PTE occu-

pies 24 bytes but a clustered PTE occupies 144 bytes

(subblock factor sixteen) and can span multiple

cache lines. This would increase the average number

of cache lines accessed when using clustered PTEs —

e.g., by 0.125 for 128 byte cache lines or 0.625 for 64

byte cache lines. However, the good news is that us-

ing superpage or partial-subblock PTEs in a clus-

tered page table, irrespective of the hardware TLB,

eliminates most of this penalty [Tal195]. Another so-

lution is to use a smaller subblock factor, e.g., 4 or 8,

which makes the space/time tradeoff of increasing

memory usage to reduce TLB miss penalty.

7 Discussion

With the increasing popularity of software TLB

miss handling, page table design is now completely

an operating system issue. The transition to 64-bit

address spaces and need for supporting superpages

and subblocking gives us reasons to reevaluate tradi-

tional hardware page table designs.

Linear page tables are generally an acceptable so-

lution with fast and simple TLB miss handling.

However, hashed page tables are better suited for

sparse address spaces, as 64-bit address spaces are

expected to be. Clustered page tables improve the

memory overhead of hashed page tables while effi-

ciently supporting medium-size superpages and

subblocking. We emphasize again that it is important

to support such TLBs as they reduce the number of

TLB misses dramatically for large working set sizes.

An important limitation of our workloads is that

we do not stress the TLB with multiprogrammed

workloads. Multiprogramming can increase the

number of TLB misses and make TLB miss handling

more significant [Agar88]. Multiprogramming can

also affect physical memory allocation in superpage

and partial-subblock systems. When physical memo-

ry demand is high, the operating system may not be

able to use superpages or partial-subblocklng as ef-

fectively as our simulations show.

Multi-level linear page tables do not scale to 64-

bit address spaces due to a high overhead in the up-

per levels of the six-level tree that are sparse (the “6-

level” numbers in Figure 9). Linear page tables are,

4. Except compress with runs two processes in parallel. Gcc is mul-

tiprogrammecl also but runs multiple processes sequentially.

however, still attractive as they have low overhead

for dense address spaces and fast page table access if

the mappings hit in the reserved TLB entries. The “l-

Ievel” numbers in Figure 9 and the average number

of cache lines accessed estimates in Section 6.3 as-

sume this optimistic assumption. In practice, it is

possible to efficiently store the data structure for the

mappings to the linear page tables in a hashed page

table. This would result in a performance only

slightly worse that reported in Section 6.3.

Many processors support more than one super-

page size, e.g., the MIPS R4000 processor supports

pages sizes of 4KB, 16KB, 64KB, 256KB, lMB, 4MB,

and 16MB [Kane92]. While our quantitative mea-

surements include the effect of only two page sizes—

4KB and 64KB—clustered page tables support multi-

ple page sizes more effectively then other page ta-

bles. Superpage PTEs for page sizes smaller than the

page block size (64KB) coreside in a clustered page

table without replication and are accessed without

any increase in TLB miss penalty (Section 5). Super-

page PTEs for page sizes larger than the page block

size involve a space/time tradeoff as in conventional

page tables but are more efficient. With the replicate

PTE approach, clustered page tables are better be-

cause the large superpage size PTEs are replicated

into fewer 64KB superpage PTEs instead of sixteen

times as many 4KB PTEs. With the multiple page ta-

ble approach, clustered page tables require fewer ta-

bles. Two clustered page tables suffice for all page

sizes between 4KB and lMB, for example, one clus-

tered page table stores mappings for page sizes from

4KB to 64KB and another for larger page sizes upto

lMB. Conventional page tables may require as many

page tables as the number of page sizes supported,

e.g., five in the MIPS R4000.

The performance of hashed and clustered page

tables can be improved further in two ways. First,

the load factor of the hash table can be reduced by

increasing the number of hash buckets. Reducing the

load factor reduces the average number of hash

nodes searched during a traversal but slightly in-

creases the amount of memory used if some buckets

are empty. Second, constructing hashed or clustered

page tables as a software TLB can reduce the number

of cache lines accessed. We describe how clustered

page table techniques can be applied to software

TLBs in [Tal195]. A disadvantage of hashed and clus-

tered page tables is the unpredictability of the hash

table distribution that depends on the state of the

current set of active processes. One solution is to use

a per-process or per-process group page table in-

stead of a single shared page table.
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In Section 2, we described set-associative soft-

ware TLBs as an alternate native page table struc-

ture, e.g., page tables for the PowerPC [Silh93] are of

this type. Software TLBs, which can have thousands

of entries, are also effective as a cache of recently

used translations and may reside between the TLB

and a native page table. They reduce the TLB miss

penalty to a single memory access on a hit but in-

crease the TLB miss penalty on a miss. The use of

software TLBs reduces the frequency of page table

accesses and the importance of page table access

time in determining overall performance. A software

TLB allows the choice of a larger subblock factor in

clustered page tables than the cache line size dictates

or makes it practical to use a slower forward-
mapped page table [Huck93]. The flexibility and effi-

ciency of implementing operating system page table

algorithms (Section 3.1) then becomes the overriding

factor in choosing a page table structure.

A typical multiprogramming operating system,

e.g., UNIX [Thom74], maintains one page table per

process or associates a process id with each PTE in a

shared page table. The page table techniques de-

scribed in this paper are equally applicable to single

address space systems, e.g., Opal [Chas94] or
MONADS [Rose85], and segmented systems that use

global effective virtual addresses, e.g, HP [Lee89]

and a single shared page table. Hashed and clustered

page tables are especially suited to single address

space and segmented systems as they tend to have a

very sparse but “bursty” address space.

Any set of experiments is finite and many varia-

tions and hybrid page table implementations are

possible that we do not study or discuss in detail in

this paper. For example, hashed page tables can be

optimized by packing both the tag and next pointer

into eight bytes by using a shorter next pointer and

not storing tag bits that can be inferred from index-

ing the table [Huck93]. This reduces hashed page ta-

ble size by 33%. This, however, does not change our

results as clustered page tables are more effective

with page table size reductions of 50% or more over

the unoptimized hashed page table (Figure 10). The

average number of cache lines per TLB miss access-
ed by the optimized version remains unchanged. A
shorter next pointer also restricts page table place-
ment in memory and operating system flexibility.

8 Conclusion

As the computer industry makes the transition

from 32-bit to 64-bit systems, TLBs and page tables

are affected. While linear and hashed page tables are

still practical, forward-mapped page tables are not,

because accessing them is too slow. Linear page ta-

bles have significant memory overhead and TLB pol-

lution for sparse address spaces. Hashed page tables

seem to be the logical choice for sparse 64-bit ad-

dress spaces, but have a large per-PTE memory over-

head. This paper makes two key contributions in the

area of page table design.

The central contribution of this paper is a new

page table organization, the clustered page table,

which augments hashed page tables with subblock-

ing to address their disadvantages. Specifically y, clus-

tered page tables are hashed page tables that store

mapping information for several consecutive pages

(e.g., sixteen) with a single tag and next pointer.

Clustered page tables use less memory than other

page table organizations, are often faster to access

during TLB miss handling and are flexible to sup-

port custom operating system needs.

The second contribution of this paper is a study

of how to store superpage and partial-subblock PTEs

in different page tables. Hardware architects are us-

ing (or considering) superpages and subblocking in

TLBs to increase the memory size that can be

mapped by a TLB entry. These TLB enhancements

are largely useless if the page tables and the operat-

ing system does not support them with proper mem-

ory allocation and TLB miss handling. We showed

that there exists a straightforward way to store such

mappings in a page table—replicate the mappings—

that uses the new TLB architectures to reduce the

number of TLB misses and does not increase the TLB

miss penalty. We also show that clustered page ta-

bles support medium superpage and partial-sub-

block TLBs without increasing the TLB miss penalty

and—at the same time-reduce page table size.

It remains to be seen if commercial operating sys-

tems will incorporate the memory allocation and

page-size assignment support needed for these new

TLBs. Nevertheless, we suggest the use of superpage

and partial-subblock PTEs in a page table even if the

TLB does not require such support. The advantage

being that using these mappings can result in small-

er page tables that are faster to access. Clustered
page tables provide natural support to store such
PTEs and get the memory savings without increas-
ing TLB miss penalty.

Finally, clustered page tables are the native page

tables in Solaris 2.5, a commercial operating system,

on UltraSPARC-based computers.
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Appendix: Formulae

This appendix includes formulae for approximat-
ing the number of cache accesses during TLB miss
handling and page table size for different page tables
(Table 2). Note, however, that the results presented
in Section 6.3 do not use these formulae but instead
present results of simulations. We assume 4KB base

pages, 8-byte mapping information per PTE, 64-bit
virtual addresses, and 64-bit pointers.

The formulae for average number of cache lines
accessed when searching hashed and clustered page
tables assumes random, uniform distribution of vir-
tual addresses [Knut68]. In practice, spatial locality
causes non-random insertion- and look~p patterns. “

Page Table TWe
I

Term

All Nactive(P)

Linear (all variations)
+

Hashed la

Clustered (all variations)
+

Definition/Explanation

Number of virtual address regions of size P base pages that have one or more

valid mappings in the page table

TLE miss ratio for accesses to translations to the first-level linear page table

Average number of cache lines accessed per TLB miss to first-level liierrr page table

Number of levels in page table tree

Number of base pages mapped by a node at level i of the page table tree I
Number of PTEs or PTPs in a node at level i of the page table tree

Load factor on hash table= Nactiue(l)/#buckets

Load factor on hash table= iVactive(s)/#buckets

Subblock factor

Fraction of page blocks (Native) that use superpage or partial-subblock clus-

tered PTEs

Average number of

Page Table Type cache lines accessed Page Table Size (in bytes) Notes

per TLB miss

Multi-level Linear l+r*m ~ 4KB xNactive @bi) pbi = 29i

J= l,~~evel$

Linear with Hashed l+r*m (4KB + 24) x Nactive (512)
A hash table (24 byte PTEs) stores trans-

lations to the first-level linear page table

Forward-mapped nlevels
z

n, x 8 x Nactive @bi) i“J
z= 1, nlevels pbi = 2’=’

Hashed 1+ C2J2 24x Nactive (1) Each PTB is 24 bytes

Clustered l+crJ2 (8s + 16) x Nactive (s)

;:::-$b:l:?age ‘ I+&
(24 x Nactive (s) xfss) +

( (8s + 16) x Nactive (s) x (1 -fss) )

Table 2: Formulae
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