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Abstract 

Mobile code technologies such as Java, JavaScript, and ActiveX 
generally limit 911 programs to a single restrictive security policy. 
However, software-based protection can allow for more extensi- 
ble security models, with potentially significant performance im- 
provements over traditional hardware-based solutions. An extensi- 
ble security system should be able to protect subsystems and im- 
plement policies that are created after the initial system is shipped. 
We describe and analyze three implementation strategies for inter- 
posing such security policies in softwarebased security systems. 
Implementations exist for all three strategies: several vendors have 
adapted capabilities to Java, Netscape and Microsoft have exten- 
sions to Java’s stack introspection, and we built a name space man- 
agement system as an add-on to Microsoft Internet Explorer. The- 
oretically, all these systems are equivalently secure, but many pram- 
tical issues and implementation details favor some aspects of each 
system. 

1 Introduction 

As the World Wide Web has been used to build increasingly com- 
plex applications, developers have been constrained by the Web’s 
static document model. “Active” content can add simple anima- 
tions to a page, but it can also transform the Web into a “platform” 
for writing and distributing programs. A variety of mobile code sys- 
tems such as Java [18], JavaScript [12], ActiveX [30], and Shock- 
wave [40] make this possible. 

Users and developers love mobile code, but it raises serious secu- 
rity concerns. Software distribution over theInternet has been com- 
mon for years, but the risks are greatly amplified with Web plug- 
ins and applets by virtue of their ubiquity and seamless integration. 
Users are often not even aware of mobile code’s presence. Mobile 
code systems must have correspondingly stronger security to com- 
pensate for the increased exposure to potentially hostile code. 

This paper considers the problem of securely supporting mobile 
code on real-world systems. Unlike traditional operating systems, 
Web browsers must rely on software mechanisms for basic mem- 
ory safety, both for portability and performance. Currently, there 
is no standard for constructing secure services above basic mem- 
ory safety primitives. We explain three different strategies and their 
implementations in Java: several vendors [14, lo] have built capa- 
bility systems, Netscape and Microsoft have extensions to Java’s 
stack introspection, and we designed an add-on to Microsoft Inter- 
net Explorer which hides or replaces Java classes. We analyze these 
systems in terms of established security criteria and conclude with 
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a discussion of appropriate environments in which to deploy each 
strategy. 

1.1 The Advantages of Software Protection 
Historically, memory protection and privilege levels have been im- 
plemented in hardware: memory protection via base I limit regis- 
ters, segments, or pages; and privilege levels via user/kernel mode 
bits or rings [41]. Recent mobile code systems, however, rely on 
software rather than hardware for protection. The switch to soft- 
ware mechanisms is being driven by two needs: portability and 
performance. 

Portability The first argument for software protection is portabll- 
ity. A user-level software product like a browser must coexist with 
a variety of operating systems. For a Web browser to use hardware 
protection, the operating system would have to provide access to tho 
page tables and system’calls, but such mechanisms are not availnblc 
universally across platforms. Software protection allows a browser 
to have platform-independent security mechanisms. 

Performance Second, software protection offers significantly 
cheaper cross-domain calls’. To estimate the magnitude of the per- 
formance difference, we did two simple experiments. The results 
below sho$d not be considered highly accurate, since they mix 
measurements from different architectures. However, the effect wo 
are measuring is so large that these small inaccuracies do not affect 
our conclusions. 

First, we measured the performance of a null call between Com- 
mon Object .Model (COM) objects on a 180 MHz PentiumPro PC 
running Windows NT 4.0. When the two objects are in different 
tasks;the call takes 230psec; when the called object is in a dynam- 
ically linked library in the same task, the call takes only 0,2 psec 
- a factor of 1000 difference. While COM is a very different sys- 
tem from Java, the performance disparity exhibited in COM would 
likely also appear if hardware protection were applied to Java. This 
ratio appears to be growing even larger in newer processors [36,1], 

The time difference would be acceptable if cross-domain calls 
were very rare. But modem software structures, especially in mo- 
bile code systems, are leading to tighter binding between domains. 

To illustrate this fact, we then instrumented the Sun Java Virtual 
Machine (JVM) (JDK 1.0.2 interpreter running on a 167 MHz Ul- 
trasparc) to measure the number of calls across trust boundaries, 
that is, the number of procedure calls in which the caller is either 
more trusted or less trusted than the callee. We measured two work- 
loads. CaffeineMark is a widely used Java performance bench- 
mark, and SunExamples is the sum over 29 of the 35 programs3 on 
Sun’s sample Java programs page4. (Some of Sun’s programs run 

‘In Unix, a system-call crosses domains between user aad kernel pro- 
cesses. In Java, amethod oall between applet and system classes also crosses 
domains because system classes have additional privileges. 

‘http://www.webfayre.com/pendragon/cm2/ 
1 3We omitted internationalization examples and JDK 1.1 applets. 

4h~tp://www.javasoft.com/applets/applets.html 

116 



Workload time crossings crossingshec 

CaffeineMark 40.9 1135975 26235 
SunExamples 138.7 5483828 35637 

Figure 1: Number of trust-boundary crossings for two Java work- 
loads. Time is the total user+system CPU time used, in seconds. 
Crossings is the number of method calls which cross a trust bound- 
ary, The last column is their ratio: the number of boundary cross- 
ings per CPU-second. 

forever; we cut these off after 30 seconds.) Note that our measure- 
ments almost certainly underestimate the rate of boundary crossings 
that would be seen on a more current JVM implementation that used 
a just-in-time (JlT) compiler to execute much more quickly. 

Figure 1 shows the results. Both workloads show roughly 30000 
boundary crossings per CPU-second. Using our measured cost of 
0.2 psec for a local COM call, we estimate that these programs 
spend roughly 0.5% of their time crossing trust boundaries in the 
Java system with software protection (although the actual cost in 
Java may be significantly cheaper). 

Using our measured cost of 230 pet for a cross-task COM call, 
we can estimate the cost of boundary crossings for both workloads 
in a hypothetical Java implementation that used hardware protec- 
tion. The cost is enormous: for CaffeineMark, about 6 seconds per 
useful CPU-second of work, and for SunExamples, about 8 seconds 
per useful CPU-second. In other words, a ndive implementation of 
hardware protection would slow these programs down by a factor 
of 7 to 9. This is unacceptable. 

Why are there so many boundary crossings? Surely the designers 
did not strive to increase the number of crossings; most likely they 
simply ignored the issue, knowing that the cost of crossing a Java 
protection boundary was no more than a normal function call. What 
our experiments show, then, is that the natural structure of a mobile 
code system leads to very frequent boundary crossings. 

Of course, systems using hardware protection are structured dif- 
ferently; the developers do what is necessary to improve perfor- 
mance (i.e., buffering calls together). In other words, they deviate 
from the natural structure in order to artificially reduce the number 
of boundary crossings. At best, this neutralizes the performance 
penalty of hardware protection at a cost in both development time 
and the usefulness and maintainability of the resulting system. At 
worst, the natural structure is sacrificed and a significant perfor- 
mance gap still exists. 

1.2 Memory Protection vs. Secure Services 
Most discussions of software protection in the OS community fo- 
cus on memory protection: guaranteeing a program will not access 
memory or execute code for which it is not authorized. Software 
fault isolation [46], proof-carrying code [33], and type-safe lan- 
guages are three popular ways to ensure memory protection. 

1.2.1 Software Memory Protection 
Lucco, et al., introduced sofnvarefad# isolation [46] in 1993. They 
showed they could rewrite load, store, and branch instructions to 
validate all memory access with an aggregate 5-30% slowdown. By 
eliminating these checks where possible, and optimizing the place- 
ment of the remaining checks, a perhaps acceptable slowdown is 
achieved in a software-only implementation. The theory is still the 
same as hardware-based protection: potentially dangerous opera- 
tions are dynamically checked for safety before their execution. 

Necula and Lee introduced proof-carrying code [33] in 1996. 
Proof-carrying code eliminates the slowdown associated with soft- 
ware fault isolation by statically verifying a proof that a program re- 
spects an agreed upon security policy when the program is loaded. 

After the proof is verified, the program can run at full speed. Few 
limits are put on the form of the program; it can be hand-tuned as- 
sembly language. The major difficulty at the moment is generating 
the proofs: for now, they are written by hand with the help of anon- 
interactive theorem prover. Research is underway to automate proof 
generation. One promising idea is to have the compiler for a safe 
language generate a proof of memory safety during the compilation 
process. 

The language-based protection model, exemplified by Java, can 
be traced back at least to the Burroughs B-5000 in 1961 1271 and 
is also used in current research operating systems such as SPIN [3]. 
Memory accesses can be controlled with a safe language [31]. If 
the language has a mechanism for enforcing abstraction boundaries 
(in Java, this means ensuring that private variables and meth- 
ods are not accessible outside their class), then the system can force 
control to flow through security checks before executing any dan- 
gerous code. Language-based safety can use either dynamic type 
checking [38, 61 or static type checking (as is mostly the case in 
Java [IS, 91). The major tradeoff is performance versus theoreti- 
cal complexity. The static system should be faster, because it only 
checks safety once, before the program starts. Dynamic checking 
is simpler, because there is no need to prove a type soundness the- 
orem: at each step during execution, a local check is sufficient to 
ensure the absence of type errors. Note that while static type check- 
ing may be theoretically complex, the implementation can be quite 
simple. 
1.2.2 Secure Services 
While memory protection is necessary and important, there is much 
more to security than memory protection. Memory protection is 
sufficient for programs that do calculations without invoking sys- 
tem services, but more interesting programs use a rich set of oper- 
ating system services such as shared files, graphics, authentication, 
and networking. The operating system code implementing these 
services must define and correctly enforce its own security policy 
pertaining to the resources it is managing. For example, the GUI 
code must define and enforce a policy saying which code can ob- 
serve and generate which GUI events. Memory protection can keep 
hostile code from directly reading the GUI state, but it cannot keep 
a hostile program from tricking the GUI code into telling it about 
events it shouldn’t sees. 

Seltzer, et al. [42], studied some of the security problems in- 
volved in creating an extensible operating system. They argue that 
memory protection is only part of the solution; the bulk of their pa- 
per is concerned with questions of how to provide secure services. 
Consider the security flaws that have been found in Unix. Very few 
are related to hardware memory protection: almost all of the flaws 
have been in trusted services such as sendmail and f ingera. 
Perfect memory protection would not prevent these flaws. 

The challenge, then, is not only getting memory protection but 
providing secure system services. This paper considers how secure 
services can be built solely with software protection. 

2 Security in Java 
Though we could in principle use any of several mobile code tech- 
nologies, we will base our analysis on the properties of Java. Java is 
a good choice for several reasons: it is widely used and analyzed in 
real systems, and full source code is available to study and modify. 

Java uses programming language mechanisms to enforce mem- 
ory safety. The JVM enforces the Java language’s type safety, pre- 
venting programs from accessing memory or calling methods with- 
out authorization [28]. Existing JVM implementations also enforce 

5GUI event manipulation may seem harm&. but observing GUI events 
could allow an attacker to see passwords or other sensitive information while 
they are typed. Generated GUI events would allow aa attacker to create 
keystrokes to execute dangerous commands. 

117 



a simple “sandbox” security model which prohibits untrusted code 
from using any sensitive system services. 

The sandbox model is easy to understand, but it prevents many 
kinds of useful programs from being written. All file system access 
is forbidden, and network access is only allowed to the host where 
the applet originated. While untrusted applets are,successfully pre- 
vented from stealing or destroying users’ files or snooping around 
their networks, it is also impossible to write a replacement for the 
users’ local word processor or other common tools which rely on 
more general networking and file system access. 

Traditional security in Java has focused on two separate, fixed se-. 
curity policies. Local code, loaded from specific directories on the 
same machine as the JVM, is completely trusted. Remote code, 
loaded across a network connection from an arbitrary source, is 
completely untrusted. 

Since local code and remote code can co-exist ‘in the same JVM, 
and can in fact call each other, the system needs a way to determine 
if a sensitive call, such as a network or file system access, is exe- 
cuting “locally” or “remotely.” Traditional JVMs have two inherent 
properties used to make these checks: 

l Every class’in the JVM which came from the network was 
loaded by a ClassLoader, and includes a reference to its Class- 
Loader. Classes which came from the local file system have a 
special system ClassLoader. Thus, local classes can be distin- 
guished from remote classes by their ClassLoader. 

l Every frame on the call stack includes a reference to the class 
running in that frame. Many language features, such as the 
default exception handler, use these stack frame annotations 
for debugging and diagnostics. ’ 

Combined together, these two JVM implementation properties al- 
low the security system to search for remote code on the call stack. 
If a ClassLoader other than the special system ClassLoader exists 
on the call stack, then a policy for untrusted remote code is applied. 
Otherwise, a policy for trusted local code is used. 

To enforce these policies, all the potentially dangerous methods 
in the system were designed to call a centralized SecurityManager 
class which checks if the action requested is allowed (using the 
mechanism described above), and throws an exception if remote 
code is found on the call stack The SecurityManager is meant to 
implement a reference monitor [25,32] -always invoked, tamper- 
proof, and easily verifiable for correctness. 

III practice, this design proved insufficient. First, when an appli- 
cation written in Java (e.g., the HotJava Web browser) wishes to run 
applets within itself, the low-level file system and networking code 
has a problem distinguishing between direct calls from an applet 
and system functions being safely run on behalf of an applet. Sun’s 
JDK 1.0 and JDK 1.1 included specific hacks to support this with 
hard-coded “ClassLoader depths” (measuring the number of stack 
frames between the low-level system code and the applet code). 

In addition to a number of security-related bugs in the first im- 
plementations [8], many developers complained that the sandbox 
policy, applied equally to all apple& was too inflexible to imple- 
ment many desirable “real” applications. The systems presented 
here can all distinguish between different “sources” of programs 
and provide appropriate policies for each of them. 

3 Approaches 
We now present three different strategies for resolving the inflex- 
ibility of the Java sandbox model. All three strategies assume the 
presence of digital signatures to identify what principal is respon- 
sible for the program. This principal is mapped to a security policy. 
After that, we have identified three different ways to enforce the 
policy: 

Capabilities A number of traditional operating systems were 
based on unforgeable pointers which could be safely given to 
user code. Java provides a perfect environment for implement- 
ing capabilities. 

Extended stack introspection The current Java method of in- 
specting the stack for unprivileged code can be extended to 
include principals on the call stack. 

Name space management An interesting property of dynamic 
loading is the ability to create an environment where different 
applets see different classes with the same names. By restrlct- 
ing an applet’s name space, we can limit its activities. 

&I this section, we will focus on how each method implements in- 
terposition of protective code between potentially dangerous prim- 
itives and untrusted code. In section 4, we will compare these sysq 
tems against a number of security-relevant criteria. 

3.1 Common Underpinnings 
Security mechanisms can be defined by how they implement inter- 
posirion: the ability to protect a component by routing all calls to 
it through a reference monitor. The reference monitor either rejects 
each call, or passes it through to the protected component; the refcr- 
en& monitor can use whatever policy it likes to make the decision, 
Since a wide variety of policies may be desirable, it would be nice if 
the reference monitor were structured to be extensible without bc- 
ingrewritten. As new subsystems need to be protected, they should 
be easy to add to the reference monitof. 

Traditionally, extensible reference monitors are built using 
trusted subsystems. For example, the Unix password tile is read- 
only, and only a setuid program can edit it. In a system with do- 
main and type enforcement [2], the password database would have 
a type that is only editable by programs in the appropriate domain, 
In either case, the operating system has no CI priori knowledge of 
the password database or password-changing utilities, but instead 
has security mechanisms general enough to protect the data by only 
allowing a small number of programs access to it. Clark and Wil- 
son [7] offer a particularly cogent argument in favor of the use of 
trusted subsystems and abstraction boundaries in the security of 
commercial systems. 
3.1.1 Digital Signatures as Principals 
To implement any security policy, Java needs a notion of principal. 
III a traditional operating system, every user is a principa16. For 
Java, we wish to perform access control based on the “source” of 
the code, rather than who is running it. This is solved by digitally 
signing the applet code. These signatures represent endorsettrerlts 
of the code by the principal who signed it’ asserting that the code 
is not malicious and behaves as advertised. When a signature is 
verified, the principal may be attached to the class object withln 
the JVM. Any code may later query a class for its principal, This 
allows a group of classes meant to cooperate together to query each 
others’ principal and verify that nothing was corrupted. 

There is no reason a program cannot have multiple signatures, 
and hence multiple principals. This means we must be able to com- 
bine potentially conflicting permissions granted to each principal, 
much as a traditional operating system must resolve permissions 
when a user belongs to multiple groups. One way to solve this 
problem is to choose a dominating principal, generally the prlnci- 
pal about whom the user has the strongest feelings, and treat the 
program as though it were signed only by the dominating principal, 
Some systems also define an algebra for combining policies. 

6Principul and target, as used in this paper, arc the same as srrbfect arid 
object, as used in the security lltemture, but are more clear for discussing 
security in object-oriented systems. 

‘Because a signature can be stripped or replaced by a third-party, there 
is no strong way for a signatunz to guarantee authorship. 
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3.1.2 Policies and Users 

Each system needs a policy engine which can store security pol- 
icy decisions on stable storage, answer questions about the current 
policy, and query the user when an immediate decision is neces- 
sary, The details of what is stored, and what form user queries take, 
depend on the specific abstractions defined by each system. 

To clarify the policy engine’s role, consider the file system pro- 
tection mechanisms in Unix: The “policy decisions” in a Unix file 
system are the file permission bits for each directory and file; these 
are stored on disk. The role of policy engine is played by code 
in the kernel that maintahrs the permission bits and uses them to 
decide which file access requests to allow. 

In Java, a critical issue with the policy engine is how to help non- 
technical users make security-relevant decisions about who they 
trust to access particular resources. To simplify the user inter- 
face, we want to pre-define groups of common privileges and given 
them user-friendly names. For example, a “typical game privileges” 
group might refer to specific limited file system access, full-screen 
graphics, and network access to the game server. Such groupings 
allow a single dialog box to be presented to a user which does not 
burden the user with a long series of individual privilege decisions 
and their corresponding dialog boxes. 

3.1.3 Site Administration 

Another way to remove complexity from users is to move the work 
to their system administrators. Many organizations prefer to cen- 
trally administrate their security policy to prevent users from acci- 
dentally or maliciously violating the policy. 

These organizations need hooks into the Web browser’s pol- 
icy mechanism to either pre-install and “lock down” all security 
choices or at least to pre-approve applications used by the organi- 
zation. If an organization purchases a new product, all users should 
not be burdened with dialogs asking them to grant it privileges. 
Likewise, if a Web site is known to be malicious, an administra- 
tor could block it from ever asking any user for a privilege. 

Both Netscape and Microsoft have extensive support for central- 
ized policy administration in their Web browsers. While malicious 
users may not necessarily be prevented from reinstalling their Web 
browser (or operating system) to override the centralized security 
policies, normal users can at least benefit from their site administra- 
tors’ work to pre-determine which applications should and should 
not be trusted. 

3.2 First Approach: Capabilities 
In many respects, Java provides an ideal environment to build a 
traditional capability system [ll, 271. Electric Communities [lo] 
and JavaSoft [14]* have implemented such systems. This section 
discusses general issues for capabilities in Java, rather than specifics 
of the Electric Communities or JavaSoft systems. 

Dating back to the 1960% hardware and software-based capa- 
bility systems have often been seen as a good way to structure a 
secure operating system [19,34,44]. Fundamentally, a cupubiZity 
is an unforgeable pointer to a controlled system resource. To use a 
capability, a program must have been first explicitly given that ca- 
pability, either as part of its initialization or as the result of calling 
another capability. Once a capability has been given to a program, 
the program may then use the capability as much as it wishes and 
(in some systems) may even pass the capability to other programs. 
This leads to a basic property of capabilities: any program which 
lms a capability must have been permitted to use its. 

8The Jaw Electronic Commerce Framework (JECF) uses a eapabiity- 
style interface, extending the signed applet support in JDK 1.1. More 
information about JavaSoft’s security architeetom plans can be found in 
Gong [16]. 

gFor example, the combination to open a safe represents a capability. 

3.2.1 capabmtles rn Java 

In early machines, capabilities were stored in tagged memory. A 
user program could load, store, and execute capabilities, but only 
the kernel could create a capability [27l. In Java, a capability is 
simply a reference to an object. Java’s type safety prevents object 
references from being forged. It likewise blocks access to methods 
or member variables which are not labeled public. 

The current Java class libraries already use a capability-style in- 
terface to represent open files and network connections. However, 
static method calls are used to acquire these capabilities. In a more 
strongly capability-based system, all system resources (including 
the ability to open a file in the first place) would be represented 
by capabilities. In such a system, an applet’s top-level class would 
be passed an array of capabilities when initialized. In a tlexible 
security model, the system would evaluate its security policy be- 
fore starting the applet, then pass it the capabilities for whatever 
resources it was allowed. If an applet is to be denied all file system 
access, for example, it need only not receive a file system capabil- 
ity. Alternately, a centralized “broker” could give capabilities upon 
request, as a function of the caller’s identity. 

3.2.2 Interposition 

Java capabilities would implement interposition by providing the 
exclusive interface to system resources. Rather than using the File 
class, orthepublic constructorofFileInputStream,aprogram 
would be required to use a file system capability which it acquired 
on startup or through a capability broker. If a program did not re- 
ceive such a capability, it would have no other way to open a file. 

Since a capability is just a reference to a Java object, the ob- 
ject can implement its own security policy by checking arguments 
before passing them to its private, internal methods. In fact, one 
capability could contain a reference to another capability inside it- 
self. As long as both objects implement the same Java interface, the 
capabilities could be indistinguishable from one another. 

For example, imagine we wish to provide access to a subset of 
the file system - only files below a given subdirectory. One possi- 
ble implementation is presented in figure 2. A SubFS represents a 
capability to access a subtree of the file system. Hidden inside each 
SubFS is a FileSystem capability; the SubFS prepends a fixed 
string to all pathnames before accessing the hidden FileSys tern 
Any code which already possesses a handle to a FileSys tern can 
create a SubFS, which can then be passed to au untrusted sub- 
system. Note that a SubFS can also wrap another SubFS, since 
SubFS implements the same interface as FS. 

Also note that with the current Java class libraries, 
a program wishing to open a tile can directly construct 
its own FileInputStream. To prevent this, either 
FileInputStream must have non-public constructors, 
or the FileInputStrearn class must be hidden from programs. 
This restriction would also apply to other file-related Java classes, 
such as RandomAccessFile. While the Java language can 
support capabilities in a straightforward manner, the Java runtime 
libraries (and all code depending on them) would require significant 
changes. 

3.3 Second Approach: Extended Stack 
Introspection 

This section presents an extension to Java’s current stack- 
introspection mechauismlO. This approach is taken by both 

The safe has no way to verify if the combination has been stolen; any person 
entering the correct combination can open the door. The seeority of the safe 
depends upon the combination not being leaked by an authorized holder. 

loThis approach is sometimes ineont~tly referred to as “capability-based 
secnri~ in some marketing literature. 
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// In this example, any code wishing to open 
// a file must first obtain an object which 
// implements FileSystem. 

interface FileSystem { 
public FileInputStream 
getInputStream(String path); 

I 

// This is the primitive class for accessing 
// the file system. Note that the constructor 
// is not public -- this restricts creation 
// of these objects to other code in the 
// same package. 

public class FS implements FileSystem { 
FSO 0 

public FileInputStream 
getInputStream(String path) { 

return internalOpen(path); 
1 

private native FileInputStream 
internalOpen(path); 

I 

// This class allows anyone holding 
// FileSystem to export a subset of 

a 

// file system. Calls to getInputStream0 
// are prepended with the desired file system 
// root, then passed on to the internal 
// FileSystem capability. 

public class SubFS implements FileSystem { 
private FileSystem fs; . 
private String rootpath; 

public SubFS(String rootPath, 
FileSystem fs) { 

this.rootPath = rootPath; 
this.fs = fs; 

1 

public FileInputStream 
getInputStream(String path) ( 

// to work safely, this would need 
// to properly handle I..' in path 
return fs.getInputStream(rootPath + 

n/u + path); 

I 
1 

Figure 2: Interposition of a restrict,ed file system root in a 
capability-based Java system. Both FS and SubFS implement 
FileSystem,theinterfaceexport& toallcodewhi~hreadsfiles. 

Netscape” and Microsoft12 in version 4.0 of their respective 
browsers. JavaSoft is working on a similar design [17]. Although 
the designs of Netscape and Microsoft differ in many ways, there is 
a core of similarity. Accordingly, we will first describe the common 
elements and then discuss the differences. 

As in the other approaches, extended stack introspection uses 
digital signatures to match pieces of incoming byte code to prln- 
cipals, and a policy engine is consulted to determine which code 
has permission for which targets. 

33.1 Basic Design 

Three fundamental primitives are necessary to use extended stack 
introspection: 

l enableprivilege (target) 

l disablePrivilege ( target) 

l checkprivilege (target) 

When a dangerous resource (such as the file system) needs to be 
protected, two steps are necessary: a target must be defined for the 
resource, and the system must call checkprivilege ( 1 on the 
targetbeforeaccessingtheprotectedresource. 

When code wishes to we the protected resource, it must first 
call enablePrivilege on thetargetassociated withthatre- 
source. This will consult the policy engine to see whether the prln- 
cipal of the caller is permitted to use the resource. If permitted, 
it will create an enabled privilege. After accessing the resource, 
thecodewillcalldisablePrivilege 0 todiscardtheenabled 
privilege. 
checkprivilege (target) searches for an enabled prlvi* 

lege to the given target. If one is not found, an exception is thrown. 

3.3.2 Improved Design 

The design as described so far is simple, but it requires a few refine- 
ments to make it practical. First, it is clear that enabled privileges 
must apply only to the thread that created them. Otherwise, an un- 
fortunately timed thread switch could leak privileges to untrusted 
code. 

Second, the basic design is flawed in that an enabled privilege 
could live forever if the programmer neglected to disable it on all 
paths out of the method that created it. This error is easy to make, 
especially in the presence of exceptions, so the design is refined 
to attach enabled privileges to a hidden and protected field of the 
stack frame of the method that created them. This would cause s 
the privileges to be discarded automatically when the method that 
created them exits. 

The design has one more serious weakness: it is subject to luring 

attacks in which trusted code that has some privileges enabled Is 
tricked into calling into untrusted code. This would have the effect 
of delegating the enabled privileges to the untrusted code, which 
could exploit them to do damage. Calls from trusted to untrusted 
code are common, for example in callbacks associated with Java’s 
system library functions such as the Abstract Windowing Toolklt. 

The solution to luring attacks is to use a more restricted stack- 
frame searching algorithm in checkprivilege ( 1. This algo- 
rithm, which both Netscape and Microsoft use, is shown in figure 3. 
The algorithm searches the frames on the caller’s stack in sequence, 
from newest to oldest. The search terminates, allowing access, upon 
finding a stackframethathas anappropriateenabled privilege. The 
search terminates, forbidding access (and throwing an exception), 

l~http://developer.netscape.com/library/ 
documentation/signedobj/ 
'2http://www.microsoft.com/ie/ie4Q/browser/ 

security/sandbox.htm 
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checkPrivilege(Target target) { 
// loop, newest to oldest stack frame 

// this class shows how to implement a trusted 

foreach stackFrame { 
// subsystem with stack introspection 

if(stackFrame has enabled 
privilege for target) return Allow; 

public class FS implements FileSystem { 
private boolean usePrivs = false; 

if(policy engine forbids access 
to target by class executing 
in stackFrame) return Forbid; 

1 

// if we get here, we fell off the end 
// of the stack 
if (Netscape) return Forbid; 
if (Microsoft) return Allow; 

I 

Figure 3: The stack walking algorithm used by Netscape and Mi- 
crosoft. 

upon finding a stack frame which is forbidden by the policy engine 
from accessing the target. 

This neatly eliminates luring attacks: untrusted code cannot ex- 
ploit the privileges of its caller, because the stack search will ter- 
minate upon finding the untrusted stack frame. A callee can some- 
times use the privileges of its caller, but only those privileges that 
the callee could have requested for itself. 

We note that Netscape and Microsoft take different actions when 
the search reaches the end of the stack uneventfully: Netscape de- 
nies permission and Microsoft allows it. The Netscape approach 
follows the principle of least privilege, since it requires that privi- 
leges be explicitly enabled before they can be used. The Microsoft 
approach, on the other hand, may be easier for developers, since 
no calls to enableprivilege ( ) are required in the common 
case where independent untrusted or semi-trusted applets are using 
more-trusted system libraries. It also allows local, trusted Java ap- 
plications to use the same JVhl without modification: they run as a 
trusted principal so all of their accesses are allowed by default13. 

33.3 Example: Creating a Busted Subsystem 

A trusted subsystem can be implemented as a class that enables 
some privileges before calling a system method to access the pro- 
tected resource. Untrusted code would be unable to directly access 
the protected resource, since it would be unable to create the nec- 
essary enabled privilege. Figure 4 demonstrates how code for a 
trusted subsystem may be written. 

Several things are notable about this example. The classes in 
figure 4 do not need to be signed by the system principal (the all- 
powerful principal whose privileges are hard-wired into the JVM). 
They could be signed by any trusted principal. This allows third 
parties to gradually extend the security of the JVM without opening 
the entire system to attack. 

With the trusted subsystem, an applet has two ways to open a 
file: call through TrustedService, which will restrict it to a 
subset of the file system, or request UniversalFileReadprivi- 
leges for itself. There are no other ways to enable privileges for the 
UniversalFileReadtarget,sotherearenootherwaystoopen 
a file, Note that, even should the applet try to create an instance 
of FS and then call getInputStream ( ) directly, the low-level 
file system call (inside java. io . FileInputStream) will still 
fail. 

*3Netscape’s stack intmspection is currently only used in their Web 
browser, so compatibility with existing Java applications is not an issue. 

public FS() { 

try 1 
PrivilegeManager.checkPrivilege( 

“UniversalFileReadW); 
usePrivs = true; 

} catch (ForbiddenTargetException e) { 
usePrivs = false; 

1 
1 

public FileInputStream 
getInputStream(String path) { 

// only enable privileges if they were 
// there when we were constructed 

if(usePrivs) 
PrivilegeManager.enablePrivilege( 

“UniversalFileRead”); 
return new 

java.io.FileInputStream(path); 
I 

I 

// this class shows how a privilege is enabled 
// before a potentially dangerous operation 

public class TrustedService { 
public static FileSystem getScratchSpace(){ 

PrivilegeManager.enablePrivilege( 
WniversalFileRead"); 

// SubFS class from the previous example 
return new SubFS("/tmp/TrustedServicen, 

new FSO); 
I 

I 

Figure 4 ThisexampleshowshowtobuildaFileSystemcapa- 
biity (see figure 2) as an example of a protected subsystem using 
extended stack introspection. Note that figure 2’s SubFS can work 
munodifitxl with this example. 

user UntrustedApplet() 

SK&n SubFS.aetlnoutStream~~ < - . 
System F~,,getlnputStreamO--^‘“--‘l~] 

Svsfem new FilelnputStfeam~ 

System SecuriiManager.checkFtead() 

System PrivilegeManager.checkPrivilege() 

Figure 5: This figure shows the call stack (growing downward) 
for a file system access by an applet using the code in fig- 
ure 4. The grey areas represent stack frames running with the 
UniversalFileReadptivilegeenabled. Notethatthetopsys- 
tern frames on the stack can run unprivileged, even though those 
classes have the system principal. 
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3.3.4 Details 
The Netscape and Microsoft implementations have many additional 
features beyond those described above. We will attempt to describe 
a few of these enhancements and features here. 

“Smart Targets” Sometimes a security decision depends not 
only on which resource (the file system, network, etc.) is being 
accessed, but on which specific part of the resource is involved, 
for example, on exactly which file is being accessed. Since there 
are too many files to create targets for each one, both Microsoft and 
Netscape have a form of “smart targets” which have internal param- 
eters and can be queried dynamically for access decisions. Details 
are beyond the scope of this paper. 

Who can define targets? The Netscape and Microsoft systems 
both offer a set of predefined targets that represent resources that 
the JVM implementation wants to protect; they also offer ways to 
define new targets. The Microsoft system allows only fully trusted 
code to define new targets, while the Netscape system allows any- 
one to define new targets. In the Netscape system, targets are named 
with a (principal, string) pair, and the system requires that theprin- 
cipal field match the principal who signed the code that created the 
target. Built-in targets belong to the predefined principal System. 

Allowing anyone to define new targets, as Netscape does, al- 
lows third-party library developers to define their own protected 
resources and use the system’s stack-introspection mechanisms to 
protect them. The drawback is that users may be asked questions 
regarding targets that the Netscape designers did not know about. 
This makes it harder to give the user guidance. Guidance from the 
principal that defined the target is probably safe to use, since the 
defining principal is the one whose security depends on proper use 
of the target. Still, it may be questionable to rely on third-party 
developers for part of the security user interface. 

Signing Details Microsoft and Netscape also differ over their 
handling of digital signatures. In the Microsoft system, each bundle 
of code carries at most one signature14, and the signature contains a 
list of targets that the signer thinks the code should be given access 
to. Before the code is loaded, the browser asks the policy engine 
whether the signer is authorized to access the requested targets; if 
so, the code is loaded and given the requested permissions. 

In the Netscape system, code may have several signers, and sig- 
natures mention no targets. Instead, once the code is loaded, the 
code itself must tell the policy engine which targets it will want 
access to. The decision whether to grant access to those targets 
is made by the policy engine, based on the identities of the sign- 
ers. Applets are strongly advised to request their privileges at 
startup, though this rule is not enforced. Failure to request privi- 
leges on startup might lead, for example, to the user working with 
a document-editing applet and then discovering that he cannot save 
his work without violating his security policy. 

Since the Netscape system allows a class to be signed by several 
principals, there must be a way to combine the policy engine’s opin- 
ions about each of the signers into a single policy decision. This is 
done by using a “consensus voting” rule. Intuitively, consensus vot- 
ing means that one negative vote can force access to be forbidden, 
while at least one positive vote (and no negative votes) is required 
in order to allow access. Since the local user and site administrator 
may not know all of the signers, the policy engine can be told to 
vote “abstain” for an unknown signer. 

Allowing multiple signers, as Netscape does, seems better than 
requiring a single singer. Since different users and sites may trust 

“ActuaUy, a sequence of signatures is allowed, but the present imple- 
mentation recognizes only the first one. 

different signers, multiple signatures are required in order to pro- 
duce a single signed object that everyone will accept. With a single- 
signature scheme, the server has to have multiple versions of the 
code (one for each signer) and must somehow figure out which ver- 
sion to send to which client. Also, one signer might sign a subset 
of the classes, creating a trusted subsystem within a potentially un- 
trusted applet. 

Putting the target-access requests in the signature, as Microsoft 
does, provides superior flexibility in another dimension. It allows 
a signature to be a partial endorsement of a piece of code. For 
example, a site administrator might sign an outside applet, saying 
(in effect), ‘The local security policy allows this applet to access 
outside network addresses, but nothing more!’ 

Many other details of the Microsoft and Netscape designs arc 
omitted here for brevity. 

3.4 Third Approach: Name Space Management 
This section presents a modification to Java’s dynamic linking 
mechanism which can be used to hide or replace the classes seen 
by an applet as it runs. 

We have implemented a full system based on name space man- 
agement, as an extension to Microsoft Internet Explorer 3.0. Our 
implementation did not modify the JVh4 itself, but changed several 
classes in the Java library. The full system is implemented in 4500 
lines of Java, most of which manages the user interface. 

We first give an overview of what name space management 1s 
and how it can be used as a security mechanism. Then we describe 
our implement&on in detail. 

3.4.1 Design 

With name space management, we enforce a given security policy 
by controlling how names in a program are resolved into runtime 
classes. We can either remove a class entirely from the name space 
(thus causing attempts to use the class to fail), or we can cause 
its name to refer to a different class which is compatible with the 
original. This technique is used in Safe-Tel [6] to hide commands 
in an untrusted interpreter. Plan 9 [37] can similarly attach different 
programs and services to the file system viewed by an untrusted 
process. 

In an object-oriented language, classes represent resources WC 
wish to control. For example, a File class may represent the 
file system and a Socket class may represent networking oper- 
ations. If the File class, and any other class which may refer to 
the file system, is not visible when the remote code is linked to local 
classes, then the file system will not be available to be attacked. In- 
stead, an attempt to reference the file system would be equivalent to 
a reference to a class which did not exist at all; an error or exception 
would be triggered. 

To implement interesting security policies, we can create envi- 
ronments which replace sensitive classes with compatible ones that 
check their arguments and conditionally call the original classes. 
These new classes can see the original sensitive classes, but the mo- 
bile code cannot. For example, a File class could be replaced with 
one that prepended the name of a subdirectory (see figure 6), much 

Original name Alice Bob 
java.net.Socket security.Socket java.net.Socket 
javaio.File - security.File 

Figure 6: Different principals see different name spaces. In this 
example, code signed by Alice cannot see the File class, and for 
Bob it has been replaced with compatible subclasses. 
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Figure 7: A Clusshder resolves every class in an applet. If these classes reference more classes, the same ClassLoader is used. 

like the capability-based example in figure 2. In both cases, only a 
sub-tree of the file system is visible to the untrusted mobile code. 
In order for the program to continue working correctly, each sub- 
stituted class must be compatible with the original class it replaces 
(i.e., the replacement must be a subclass of the original). 

To make name space management work as a flexible and general 
access control scheme, we introduce the notion of a conjiguration, 
which is a mapping from class names to implementations (i.e., Java 
class files). These configurations correspond to the privilege groups 
discussed in section 3.1.2. When mobile code is loaded, the policy 
engine determines which configuration is used for the code’s name 
space, as a function of its principal. If the principals have not yet 
been seen by the system, the user is consulted for the appropriate 
configuration. 

An interesting property of this system is that all security deci- 
sions are made statically, before the mobile code begins execution. 
Once a class has been hidden or replaced, there is no way to get it 
back. 

3.4.2 Implementation in Java 
Name space management in Java is accomplished through modi- 
fying the Java ClassLoader. A ClassLoader is used to provide the 
name + implementation mapping. Every class keeps a reference 
to a ClassLoader which is consulted for dynamic binding to other 
classes in the Java runtime. Whenever a new class is referenced, 
the ClassLoader provides the implementation of the new class (see 
figure 7). 

Usually in a Web browser, an AppletChsLoader is created 
for each applet. The AppletClassLoader will normally first try 
to resolve a class name against the system classes (such as 
j ava. io . File) which ship with the browser. If that fails, it will 
look for other classes from the same network source as the applet. If 
two applets from separate network locations reference classes with 
the same name that are not system classes, each will see a different 
implementation because each applet’s AppletClassLoader looks to 
separate locations for class implementations. 

Our implementation works similarly, except we replace each ap- 
plet’s AppletClassLoader with a PrincipalClassLoader which en- 
forces the configuration appropriate for the principals attached to 
that cIass (see figure 8). When resolving a class reference, a Princi- 
palClassLoader can 

1. throw a ClassNotFoundExceptionif the calling princi- 
pal is not supposed to see the class at all (exactly the same 
behavior that the applet would see if the class had been re- 
moved from the class library - this is essentially a link-time 
error), 

2. return the class in question if the calling principal has full ac- 
cess to it, or 

3. return a subclass, as specified in the configuration for the ap- 
plet’s principal. 

In the third case we hide the expected class by binding its name 
to a subclass of the original class. Figure 9 shows a class, 
security.File, which can replace java.io.File. When 
an applet calls new java. io .File ( q foo* 1, it will actually 
get an instance of security.File, which is compatible in ev- 
ery way with the original class, except it restricts file system ac- 
cess to a subdirectory. It might appear that this could be circum- 
vented by using Java’s super keyword. However, Java bytecode 
has no notion of super, which is resolved entirely at compile time. 
Note that, to achieve complete protection, other classes such as 
FileInputStream, RandomAccessFile, etc. need to be re- 
placed as well, as they also allow access to the file system. 

Name space management also allows third-party trusted subsys- 
tems to be distributed as part of untrusted applets (see section 3.3.3). 
The classes of the trusted subsystem will have different principals 
from the rest of the applet. Thus, those classes may be allowed to 
see the “real” classes which are hidden from other applet classes. 

The viability of name space management is unknown for fu- 
ture Java systems. New Java features such as the reflection API 
(a feature of JDK 1.1 which allows dynamic inquiry and invoca- 
tion of a class’s methods) could defeat name space management 
entirely. Also, classes which are shared among separate subsys- 
tems may be impossible to rename without breaking things (e.g., 
both file system and networking classes use Inputstream and 
Outputstream). Both reflection and the class libraries could be 
redesigned to work properly with name space management. 

4 Analysis 

Now that we have presented three systems, we need a set of 
criteria to evaluate them. This list is derived from Saltzer and 
Schroeder [39]. 

Economy of mechanism Designs which are smaller and simpler 
are easier to inspect and trust. 

Fall-safe defaults By default, access should be denied unless it is 
explicitly granted. 

Completemediation Every access to every object should be 
checked. 

Least privilege Every program should operate with the minimum 
set of privi1ege.s necessary to do its job. This prevents acciden- 
tal mistakes becoming security problems. 

Least common mechanism Anything which is shared among dif- 
ferent programs can be a path for communication and a poten- 
tial security hole, so as little data as possible should be shared. 

Accountabiity The system should be able to accurately record 
“who” is responsible for using a particular privilege. 
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HThlLpagewilhJava appler, 

Figure 8: Changing the name space: A PrincipalClassLoader (PCL) replaces the original class loader. The class implementation returned 
depends on the principal associated with the PrincipalClassLoader and the configuration in effect for that principal. 

p 
package securitv: i 
public 

// 
// 
// 
// 
// 
// 
// 
// 
// 

class Fiie extends java.io.File 1 
Note that System.getUser() would not 
be available in a system purely based 
on name space management. In the 
current implementation, getUser 
examines the call stack for a 
PrincipalClassLoader. A cleaner 
implementation would want to generate 
classes on the fly with different 
hard-coded prefixes. 

private String fixPath(String path) { 
// to work safely, this would need 
// to properly Fandle '..I in path 

return "/tmp/m + 
System.getUser().getName() + 
W/" + path; 

I 

public File(String path) 1 
super(fixPath(path)); 

I 

public File(String path, String name) 1 
super (fixPath(path1, name) ; 

I 
I 

Figure 9: Interposition in a system with name space management. 
We assume that at runtime we can find out who the currently run- 
ning principal is. 

Psychological acceptability The system should not place an un- 
due burden on its users. 

Several other practical issues arise when designing a security sys- 
tem for Java. 

Performance We must consider how our designs constrain system 
performance. Security checks which must be performed at 
run-time will have performance costs. 

Compatibility We must consider the number and depth of changes 
necessary to integrate the security system with the existing 
Java virtual machine and standard libraries. Some changes 
may be impractical. 

‘,, 

Remote calls If the security system can be extended cleanly to rc- 
mote method invocation, that would be a beneflt for building 
secure, distributed systems. 

We will now consider each criterion in sequence. 

4.1 Economy of Mechanism 

Of all the systems presented, name space management is possibly 
the simplest. The i,mplementation requires redesigning the Class- 
Loader as well as tracking the different name space configurations. 
The mechanisms that remove and replace classes, and hence pro- 
vide for interposition, are minimal. Hbwever, they affect crltlcnl 
parts of the JVM and a bug in this code could open the system to 
attack. 

Extended stack introspection requires some complex changes to 
the virtual machine. As before, changes to the JVM could desta- 
bilize the whole system. Each class to be protected must explicitly 
consult the security system to. see if it has been invoked by an au- 
thorized party. This check adds exactly one line of code, so its 
complexity is analogous to the configuration table in name space 
management. And, as with name space management, any security- 
relevant class which has not been modified to consult the security 
system can be an avenue for system compromise. 

Unmodified capabilities are also quite simple, but they have well- 
known problems with confinement (see section 4.3). A capability 
system modified to control the propagation of capabilities would 
have a more complex implementation, possibly requiring stack in- 
trospection or name space management to work properly. A fully 
capability-based Java would additionally require redesigning the 
Java class libraries to present a capability-style interface - a sig- 
nificant departure from the current APIs, although capability-style 
classes (“factories”) are used internally in some Java APIs. 

An interesting issue with all three systems is how well they en- 
able code ,auditing -how easy it is for an implementor to study 
the code and gain confidence in its correctness. Name space man- 
agementincludes anicelistofclasseswhich mustbeinspectcd for 
correctness. With both capabilities and stack introspection, simple 
text searching tools such as grep can locate where privileges arc 
acquired, and the propagation of these privileges must be carefully 
studied by hand. Capabilities can potentially propagate anywhcrc 
in the system. Stack annotations, however, are much more limited 
in their ability to propagate. 

4.2 Fail-safe Defaults 

Name space management and stack introspection have similar fail- 
safe behavior. If a potentially dangerous system resource has been 
properly modified to work with the system, it will default to deny 
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access. With name space management, the protected resource can- 
not be named by a program, so it is not reachable. With stack in- 
trospection, requests to enable a privilege will fail by default. Like- 
wise, when no enabled privilege is found on the stack, access to 
the resource will be denied by default. (Microsoft sacrifices this 
property for compatibility ieasons.) 

In a ti~lly capability-based system, a program cannot do anything 
unless an appropriate capability is available. In this respect, a capa- 
bility system has very good fail-safe behavior. 

4.3 Complete Mediation 
Barring oversights or implementation errors (discussed in sec- 
tions 4.1 and 4.2), all three systems provide mechanisms to in- 
terpose security checks between identified targets and anyone who 
tries to use them. 

However, an important issue is conjnement of privileges [26]. It 
should not generally be possible for one program to delegate a priv- 
ilege to another program (that right should also be mediated by the 
system). This is the fundamental flaw in an unmodified capability 
system; two programs which can communicate object references 
can share their capabilities without system mediation. This means 
that any code which is granted a capability must be trusted to care 
for it properly. In a mobile code system, the number of such trusted 
programs is unbounded. Thus, it may be impossible to ever trust a 
simple capability system. Likewise, mechanisms must be in place 
to revoke a capability after it is granted. Many extensions to ca- 
pabilities have been proposed to address these concerns. Kain and 
Landwehr [23] propose a taxonomy for extensions and survey many 
systems which implement them. 

Fundamentally, extended capability systems must either place re- 
strictions on how capabilities can be used, or must place restric- 
tions on how capabilities can be shared. Some systems, such as 
ICAP [15], make capabilities aware of “who” called them; they can 
know who they belong to and become useless to anyone else. The 
IBM System/38 [4] associates optional access control lists with its 
capabilities, accomplishing the same purpose, Other systems use 
hardware mechanisms to block the sharing of capabilities [24]. For 
Java, any such technique would be problematic. To make a capa- 
bility aware of who is calling it, a certain level of introspection into 
the call stack must be available. To make a capability object un- 
shareable, you must either remove its class from the name space 
of potential attackers, or block all communication channels that 
could be used for an authorized program to leak it (either blocking 
all inter-program memory-sharing or creating a complex system of 
capability-sharing groups). 

Name space management can potentially have good confine- 
ment properties. For example, if a program attempts to give 
an open FileInputStrem to another program which is for- 
bidden access to the file system, the receiving program will 
not be able to see the FileInputStream class. Unfortu- 
nately, it could still likely see InputStream (the superclass of 
FileInputStream), which has all thenecessary methods touse 
the object. If InputStream were also hidden, then networking 
code would break, as it also uses Inputstream. This problem 
could possibly be addressed by judicious redesign of the Java class 
libraries. 

Stack introspection has excellent confinement. Because the stack 
annotations are not directly accessible by a program, they can nei- 
ther be passed to nor stolen by another program. The only way to 
propagate stack annotations is through method calls, and every sub- 
sequent method must also be granted sufficient privilege to use the 
stack annotation. The system’s access control matrix can thus be 
thought of as mediating delegation rights for privileges. Because 
the access matrix is consulted both at creation and at use of privi- 
leges, privileges are limited to code which is authorized to use them. 

4.4 Least Privilege 
The principle of least privilege applies in remarkably different ways 
to each system we consider. 

With name space management, privileges are established when 
the program is linked. If those privileges are too strong, there is no 
way to revoke them later - once a class name is resolved into an 
implementation, there is no way to unlink it. 

In contrast, capabilities have very desirable properties. If a pro- 
gram wishes to discard a capability, it only needs to discard its ref- 
erence to the capability. Likewise, if a method only needs a subset 
of the program’s capabilities, the appropriate subset of capabilities 
may be passed as arguments to the method, and it will have no way 
of seeing any others. If a capability needs to be passed through the 
system and then back to the program through a call-back (a com- 
mon paradigm in GUI applications), the capability can be wrapped 
in another Java object with non-public access methods. Java’s 
package scoping mechanism provides the necessary semantics to 
prevent the intermediate code from using the capability. 

Stack introspection provides an interesting middle-ground. A 
program which enables a privilege and calls a method is implicitly 
passing a capability to that method. If a privilege is not enabled, the 
corresponding target cannot be used. This allows straightforward 
auditing of system code to verify that privileges are enabled only for 
a limited time and used safely. If a call path does not cross a method 
that enables its privileges, then that call path cannot possibly use the 
privilege by accident. Also, there is a disableprivilege ( ) 
method which can explicitly remove a privilege before calling into 
untrusted code. Most importantly, when the method which enabled 
a privilege exits, the privilege disappears with it. This limits the 
lifetime of a privilege. 

4.5 Least Common Mechanism 
The principle of least common mechanism concerns the dangers of 
sharing state among different programs. If one program can corrupt 
the shared state, it can then corrupt other programs which depend on 
it. This problem applies equally to all three Java-based systems. An 
example of this problem was Hopwood’s interface attack [8], 
which combined a bug in Java’s interface mechanism with a shared 
public variable to ultimately break the type system, and thus cir- 
cumvent system security. 

This principle is also meant to discuss the notion of covert stor- 
age channeZs [26], an issue in the design of multi-level secure sys- 
tems [32]. Java presently makes no effort to limit or control covert 
channels, but this could be an interesting area for future work. 

4.6 Accountability 
In the event that the user has granted trust to a program which then 
abuses that trust, logging mechanisms will be necessary to prove 
that damages occurred and then seek recourse. 

In each system, the interposed protection code can always record 
what happened, but it requires more effort to identify the principal 
responsible. 

In the stack introspection system, every call to enable a privilege 
can be logged, an administrator can learn which principal enabled 
the privileges to damage the system. 

In a capability system, a capability can remember the principal to 
which it was granted and log this information when invoked. If the 
capability can be leaked to another program (see section 4.3), the 
principal logged will not be the same as the principal responsible 
for using the capability. A modified capability system would be 
necessary for strong accountability. 

With name space management, information about principals is 
not generally available at run-time. This information could possibly 
be associated with Java threads or stored in static variables behind 
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interposed classes. Likewise, capabilities could store a principal in 
a private variable. 

This is all hypothetical, unfortunately, since current browsers do 
not provide the tamper-resistant logging necessary for trustworthy 
auditing. Once available, any of these architectures should be able 
to use it. 

4.7 Psychological Akceptability 
The user interface is the most important aspect of the security sys- 
tem. If a Web browser shows its security dialog box too often, users 
will learn to ignore its contents and hit “OK” to continue what they 
were doing. 

All three systems here can present the same fundamental inter- 
face to a user. When signed mobile code arrives in the Web browser, 
the user can be queried whether they trust the signatory. The-orig- 
inal version of Microsoft’s Authenticode [30] followed a “shrink- 
wrap” model - once the software was installed, it had unrestricted 
access to the user’s machine. The systems here can provide the 
user more fine-grained control over which privileges are granted. 
One promising strategy is for the Web browser to allow common 
“profiles” of privileges with intuitive-sounding names (e.g., “typical 
game privileges”) rather than a low-level list of primitives (limited 
file access, limited network access, full-screen video, etc.). 

The user must become involved in security decisions at some 
point. The important question is ,when. There are two choices: ei- 
ther when the applet is loading or when the applet attempts a priv- 
ileged operation. Both times have advantages and disadvantages. 
The advantages of asking early are that the user does not spend 
time working in .an applet only to find out that they cannot save 
their work, and the applet cannot generate a series of fake security 
dialogs to get the user in the habit of clicking “OK”.15 The dis- 
advantage is that the user must decide what privileges to grant an 
applet before the applet starts running, so a user camrot try out an 
applet first. The advantage of asking the user later is that the applet 
has done as much as it can without privilege, so the user may quit 
the applet first, and never see a security dialog. The disadvantages 
are the vulnerability to the spoofing outlined above, and the fact that 
the user may be stuck with no way to save their last hour of work. 
It is not clear that either strategy is always correct. 

All of the architectures discussed in this paper potentially allow 
for security dialogs to occur either early or late. The dialog can 
always be presented early, and the answer remembered for later. 
A capability system could use the late strategy by displaying the 
dialog only when a privileged capability is requested The stack 
introspection model naturally accommodates the late strategy, by 
presenting the dialog when checking whether a privilege is enabled, 
i.e., as a privileged operation is requested. For name space manage- 
ment, implementing the late strategy would be based on the lazy na- 
ture of dynamic linking in Java: a class does not have to be loaded 
until it is actually needed. Netscape’s implementation of stack in- 
trospection uses the late strategy, while Microsoft’s stack introspec- 
tion and our name space management use the early strategy. 

In all cases, the user’s security preferences can be saved persis- 
tently, to prevent repeated dialog boxes. Additionally, these per- 
sistent privileges could be preset by the user’s site administrator, 
further reducing the need for dialog boxes. 

4.8 Performance 
As discussed in section 1, performance is one of the attractions 
of language-based protection. Because hardware protection is so 
much slower than any of the systems presented in this paper, we 
will instead discuss the performance differences among the three 

tsWbile the sandbox model puts up a warning strip on windows opened 
by untrusted code, windows opened by JavaScript have no such warning. 

software systems. In all cases, we are assuming that the JVM uses 
a JIT compiler to generate and execute efficient machine code. 

The stack introspection system has the highest runtime costs. At 
runtime, system classes must check whether the current enabled 
privileges allow them to proceed. At worst, this will have cost pro- 
portional to the current stack depth. These checks occur less often 
then one might think. Currently, stack introspection is used only to 
guard when a file or network connection is opened (an already exd 
pensive operation). The input and output streams act as capabilities 
for the open file or network connection and need no further security 
checks on read and write operations. While a specific input or out- 
put stream could leak, the general ability to open a file or network 
connection would still be contained. 

Name space management does not incur any overhead at runtimc, 
nor do unmodified capability systems. However, all systems must 
pay similarruntime costs when they implement interposition layers 
(i.e., to validate or limit arguments to low-level system routines), 

4.9 Compatibility 
One lesson we learned from the implementations of both nnmc 
space management and extended stack introspection is that lan- 
guage based protection can be implemented on top of a type-snfe 
language without diverging much from the original specification of 
that language. For both name space management and stack intro- 
spection, old apple& those written against the original Java API and 
unaware of the new security mechanisms, will continue to run un- 
modified in browsers equipped with the new authorization scheme, 
As long as they only use features allowed by the traditional sandbox 
security policy, they will notice no difference. 

A notable exception are capability systems. As mentioned in 
section 4.1, a capability system would require a new library API 
and thus completely break compatibility with traditional Java APIs, 

4.10 Remote Calls 
Recent systems are beginning to offer convenient distributed pro- 
gramming in Java, using a distributed object model similar to that 
of SRC network objects [5] or CORBA [43]. It would be highly 
desirable for language based security schemes to easily extend to 
a distributed environment. A single security policy and implcmen- 
tation mechanism could deal naturally with both local and remote 
code. 

Capabilities extend quite naturally across a network. If remote 
object references include an unguessable string of bits (i.e., 128 
random bits), then a remote capability reference has all the security 
properties of a local capability [44,15] (assuming all communlcn- 
tion is suitably encrypted to prevent eavesdropping). Unfortunately, 
the confinement issues discussed in section 4.3 become even more 
problematic. If the capability is leaked to a third party, then the 
third party has just as much power to use the capability as its in- 
tended holder. By themselves, networked capabilities offer no way 
for an object to identify its remote caller. However, if the remote 
method invocation used a cryptographically authenticated channel 
(as provided by SSL [I31 or Taos [47]), the channel’s remote idcn- 
tity might be useful. Gong [15] and van Doom, et al. [45] describe 
implementations of this. 

Name space management is comparable to the directory services 
offered by most RPC systems. The directory server, which CM be 
reached through a well-known mechanism, is used to map names to 
objects. An interesting possrbility would be for a secure directory 
server to provide different objects to different remote identities. 

Stack introspection is interesting because it helps answer the 
question “on whose behalf is this request running?“. This can be- 
come very complex to answer when RPCs pass through a num- 
ber of different systems,, calling one another. Secure RPC Stan- 
dards [20,35] refer to this as delegation. When Java code is rcceiv- 
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ing a remote method call and invoking another one, the stack anno- 
tations could possibly help mediate the delegation information. 

Actually building a secure RPC system using any of the mecha- 
nisms in Java is future work. Current Java RPC systems, with the 
possible exception of Electric Communities [lo], have no provi- 
sions for flexible security policies. 

5 Conclusion 

Software-based protection systems are coming into common use, 
driven by their inherent advantages in both performance and porta- 
bility. Software fault isolation, proof-carrying code, or language- 
based mechanisms can be used to guarantee memory-safety. Secure 
system services cannot be built without these mechanisms, but may 
require additional system support to work properly. 

We have described three designs which support interposition of 
security checks between untrusted code and important system re- 
sources. Each design has been implemented in Java and both ex- 
tended stack introspection and name space management have been 
integrated in commercial Web browsers. 

All three designs have their strengths and weaknesses. For ex- 
ample, capability systems are implemented very naturally in Java. 
However, they are only suitable for applications where programs 
are not expecting to use the standard Java APIs, because capabili- 
ties require a stylistic departure in API design. 

Name space management offers good compatibility with existing 
Java applets but Java’s libraries and newer Java mechanisms such 
as the reflection API may limit its use. 

Extended stack introspection also offers good compatibility with 
existing Java applets and has reasonable security properties, but its 
complexity is troubling and it relies on several artifacts of Sun’s 
Java Virtual Machine implementation. 

We believe the best solution is to combine elements of these tech- 
niques. Name space management allows transparent interposition 
of security layers between system and applet code with no run-time 
performance penalty. Stack introspection can allow legacy system 
code to run with less than full privileges without being rewritten in 
a capability style, Yet, capabilities provide a well understood exten- 
sion to remote procedure calls. Understanding how to create such a 
hybrid system is a main area for future research. 
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