
Practical Considerations for Non-Blocking Concurrent Objects

A version of this paper appears in the May 1993 Distributed Computing Systems Conference (DCS).

Brian N. Bershad
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
Brian.Bershad@CS.CMU.EDU

Abstract

An important class of concurrent objects are those
that are non-blocking, that is, whose operations are
not contained within mutually exclusive critical sec-
tions. A non-blocking object can be accessed by many
threads at a time, yet update protocols based on atomic
Compare-And-Swap operations can be used to guaran-
tee the object's consistency.

In this paper we take a practical look at the
Compare-And-Swap operation in the context of con-
temporary bus-based shared memory multiprocessors,
although our results generalize to distributed shared
memory multiprocessors. We �rst describe an oper-
ating system-based solution that permits the construc-
tion of a non-blocking Compare-And-Swap function on
architectures that only support more primitive atomic
primitives such as Test-And-Set or Atomic Exchange.
We then evaluate several locking strategies that can
be used to synthesize a Compare-And-Swap operation,
and show that the common techniques for reducing
synchronization overhead in the presence of contention
are inappropriate when used as the basis for non-
blocking synchronization. We then describe a simple
synchronization strategy that has good performance be-
cause it avoids much of the synchronization overhead
that normally occurs when there is contention.

This research was sponsored in part by a National Science
Foundation Presidential Young Investigator Award, the Dig-
ital Equipment Corporation, the Defense Advanced Research
Projects Agency, Information Science and Technology O�ce,
under the title \Research on Parallel Computing", ARPA Order
No. 7330, issued by DARPA/CMO under Contract MDA972-
90-C-0035, and by the Open Software Foundation (OSF).
The views and conclusions contained in this document are

those of the authors and should not be interpreted as repre-
senting the o�cial policies, either expressed or implied, of NSF,
DEC, DARPA, OSF, or the U.S. government.

1 Introduction

Programs running on multiprocessors rely on low-
level synchronization mechanisms and protocols to en-
sure controlled access to concurrent objects. An im-
portant class of concurrent objects are those that are
non-blocking, that is, whose operations are not con-
tained within mutually exclusive critical sections [Her-
lihy & Wing 90, Herlihy 91]. A non-blocking object
can be accessed by many processors at a time, yet
update protocols that use an atomic Compare-And-
Swap guarantee the object's consistency. In contrast,
a blocking object serializes access within critical sec-
tions where locks are used to control access.

Non-blocking concurrent objects have several qual-
ities that make them attractive for parallel processing.
Because processors are not forced to queue while ac-
cessing a non-blocking object, they are not vulnerable
to the e�ects of scheduling convoys, priority inversion,
and deadlock | all potential problems in parallel sys-
tems [Zahorjan et al. 88]. Convoying occurs when a
thread is descheduled, say due to its quantum expir-
ing, a page fault or an interrupt, forcing other proces-
sors to wait because the descheduled thread is holding
a lock. Priority inversion occurs when a low priority
thread holds a lock needed by a high priority thread,
but the low priority thread has been preempted by a
thread of medium priority. The high priority thread
cannot make progress because the medium priority
thread is preventing the low priority thread from re-
leasing its lock. Deadlock occurs when processors hold
locks while waiting for locks held by other processors.
All of these problems occur because processors block
waiting for a resource. Since there is no blocking with
non-blocking objects, their occurrence is prevented.

Several researchers have already demonstrated the
feasibility of non-blocking objects in concurrent algo-
rithms. Mellor-Crummey [Mellor-Crummey 87] and
Wing and Gong [Wing & Gong 90] have designed a
library of non-blocking concurrent objects and proven
them correct. Herlihy has shown several practical al-
gorithms for wait-free | a restricted form of non-

blocking | objects [Herlihy 90]. Massalin and Pu
have implemented an entire operating system kernel
for shared memory multiprocessors using only non-
blocking objects [Massalin & Pu 91].

In practice, two problems must be addressed by
the implementors of non-blocking objects. First, few
contemporary processors support Compare-And-Swap
directly. Instead, most support simpler atomic op-
erations such as Test-And-Set or Atomic Exchange.
For example, of eight production-quality shared mem-
ory multiprocessors (Encore's Multimax, Sequent's
Symmetry, SGI's MIPS-based multiprocessor, Om-
ron's Luna88k, Sony's NEWS, DEC SRC's Firey, and
DEC's 6380 and 433MP Corollary), only two (the 486-
based Corollary and the 68030-based NEWS) have a
processor that implements Compare-And-Swap.

The second problem with non-blocking algorithms
is their performance in the presence of contention. As
the number of processors concurrently accessing a non-
blocking object increases, there exists the danger of
degraded throughput due to the cost of global syn-
chronization operations. This degradation is similar
to that observed in the synchronization behavior of
blocking objects [Anderson 90, Graunke & Thakkar
90, Mellor-Crummey & Scott 91].

In this paper we present practical solutions to these
two problems. In Section 2 we describe an e�cient
software mechanism that can be used to build non-
blocking concurrent objects. Our approach transforms
a simple Test-And-Set operation into a non-blocking
Compare-And-Swap using a small amount of operat-
ing system support. In Section 3 we describe a set
of synchronization policies for the software implemen-
tation, and show that the established techniques for
reducing synchronization overhead in the presence of
contention are not appropriate for use in non-blocking
algorithms on multiprocessors. We then describe a
policy that works well in the presence of contention
by relaxing slightly the de�nition of Compare-And-
Swap so that it can conservatively fail. This has the
e�ect of reducing the frequency of global synchroniza-
tion, which is necessary for good performance in the
presence of contention. In Section 4 we discuss related
work. We present our conclusions in Section 5.

2 Compare-And-Swap

At the heart of many non-blocking concurrent algo-
rithms lies an atomic Compare-And-Swap instruction.
In its simplest form, Compare-And-Swap takes three
arguments: the address of a shared data item, an old
value of the shared data item, and a new value. A
processor reads a shared data value, computes a new
value based on the read (and now old) value, and then
tries to swap the old value with the new value. If the
current value of the shared data item is equal to the

old value, then it is replaced by the new value. If not
equal, Compare-And-Swap returns a failure code and
does not modify the shared data item. The failed com-
pare indicates that the old value is \too old" because
another processor had modi�ed the shared data. The
implication is that the new value is also invalid, since
it presumably had been computed based on the old
value. In e�ect, the failing processor discovers con-
tention for shared data after the fact, allowing it to
reread the shared data item's value and compute a
new value.1

The Compare-And-Swap must be both atomic and
non-blocking. It must also be available. As men-
tioned in the introduction, though, few contemporary
shared memory multiprocessors support a Compare-
And-Swap instruction. In the absence of an explicit
hardware instruction, it must be synthesized using
other available synchronization primitives. Unfortu-
nately, a straightforward simulation of Compare-And-
Swap using simpler primitives such as Test-And-Set
to implement a mutually exclusive lock as shown in
Figure 1 is not non-blocking. The operating system
can preempt a thread within the critical section, de-
laying other threads for a possibly unbounded length
of time.

int Compare_And_Swap(address, old_value, new_value)

int *address;

int old_value;

int new_value;

{

1 acquire_lock(); /* BEGIN CRITICAL SECTION */

2 if (*address == old_value) {

3 *address = new_value;
4 release_lock(); /* END CRITICAL SECTION */

5 return SUCCESS;

6 } else {

7 release_lock(); /* END CRITICAL SECTION */

8 return FAILURE;

9 }

}

Figure 1: Implementing Compare-And-Swap With
Locks

2.1 Implementing Compare-And-Swap
without direct hardware support

The problem with building Compare-And-Swap
from primitives oriented towards blocking synchro-
nization, such as Test-And-Set, is caused by the op-
erating system which schedules threads preemptively.
We can solve this problem using roll-out. With roll-
out, a thread can be preempted within the Compare-
And-Swap critical section, but the lock is released at

1A more general form of Compare-And-Swap is the
Compare-And-Swap-N operation, which allows N separate lo-
cations to be atomically compared and swapped. Compare-
And-Swap-N is helpful when implementing complicated shared
data structures such as doubly-linked lists.

the time of preemption. If the thread had not yet ex-
ecuted the swap, it resumes at the beginning of the
sequence, otherwise it resumes at the end. For ex-
ample, in the code in Figure 1, a thread preempted
after line 1, but before executing either the store at
line 3 or the lock release at line 7 would be resumed
at line 1. If the thread was preempted after executing
line 3 but before releasing the lock at line 4, it would
be rolled-out to resume at line 5. We assume here
that single instructions execute atomically (interrupts
are precise), meaning that a thread is never preempted
while executing an instruction. The preemption comes
entirely after one instruction and before the next.

Roll-out can be implemented with operating system
support. The machinery described in [Anderson et al.
92], for example, which gives control back to the ap-
plication at a �xed address immediately following the
preemption, can be used. Code at that address can
determine that the just preempted thread was execut-
ing a Compare-and-Swap and can then perform the
necessary cleanup. Alternatively, the kernel can per-
form the cleanup by discovering that the preempted
thread was in a Compare-And-Swap sequence. This
can be done through the use of code sequences at dis-
tinguished addresses, on-the-y inspection of the code
stream, or a designated per-thread variable that is tog-
gled on entry and exit from the sequence.

With operating system support for Compare-And-
Swap, the problems normally associated with lock-
based synchronization do not occur. Inde�nite con-
voying is impossible because a lock held by a pre-
empted thread is released immediately after the pre-
emption. Priority inversion is avoided because proces-
sors running lower priority threads cannot hold locks
inde�nitely after being preempted by higher priority
threads. Deadlock is avoided because it is not pos-
sible to execute arbitrary code while holding a lock;
lock acquisitions cannot be nested, so there can be no
cycles in the \waits-for" relationship of processors.

2.2 Alternatives and advantages

An alternative to roll-out is roll-forward. With roll-
forward, at the point when the preemption occurs, the
remaining code in the Compare-And-Swap sequence is
executed and the lock is released. Roll-forward has
several problems, though, that make it less attrac-
tive than roll-out (which only requires that the lock
be released and the thread's instruction counter be
changed). Roll-forward requires executing code on be-
half of a thread within the context of another thread.
If roll-forward is being handled in the kernel, then the
kernel must be careful about any memory references it
makes during the roll-forward to ensure that they are
within the addressing domain of the stopped thread.
Page faults are another problem with roll-forward; if
the thread stopped because of a page fault, then it

might not be possible to perform the roll-forward at
all until the fault is satis�ed.

One advantage of a software approach to atomic-
ity is that it allows for arbitrary generalizations of
Compare-And-Swap. For example, the compare func-
tion can test any kind of binary relation, not just
equality. Additionally, software Compare-And-Swap
can operate on objects that span multiple words. In
contrast, Compare-And-Swap implemented in hard-
ware is generally limited to single word operations.2

Herlihy described implementable non-blocking algo-
rithms in which that single word was a pointer to the
actual shared data [Herlihy 90]. Much of the com-
plexity and cost of his algorithms, however, was due
to the overhead of having to use pointers and manage
memory. This complexity disappears with a multi-
word Compare-And-Swap (although the implementa-
tion of roll-out does become more complicated).

2.3 Drawbacks with the solution

Roll-out is a practical technique for implementing
non-blocking concurrent objects. It does have two
drawbacks, though, that could make it inappropriate
for use in some settings. First, it assumes that proces-
sors are non-stop. If a processor fails in the middle of
a synthesized Compare-And-Swap, then the roll-out
won't occur, and the lock will remain held. A non-
blocking object implemented with a \pure" Compare-
And-Swap instruction can be immune to processor
failure. In practice, however, very little else in a multi-
processor actually is, so this should not be a practical
de�ciency.

Pathological scheduling can create a more acute
problem since roll-out does not guarantee that a pro-
cessor makes forward progress. Speci�cally, a pro-
cessor preempted at line 2 in Figure 1 is backed up
to line 1. If the operating system quantum is just
a few cycles, it would be possible for all processors
to never make any forward progress. This situation
would prevent the implementation of wait-free con-
current objects, which guarantee that some processor
makes progress within a bounded number of steps. In
practice, scheduling quantums are much longer than
a few cycles, so we do not perceive this to be a seri-
ous practical problem. If it were to become one, then
roll-forward, rather than roll-back, would be more ap-
propriate.

3 Locking strategies

While operating system support can guarantee the
\non-blockingness" of a synthesized Compare-And-
Swap operation, proper locking strategies are neces-

2The Compare-And-Swap-2 operation found on the 680x0
series could be used to implement a 64 bit Compare-And-Swap.

sary to ensure good performance. This is especially
true during periods of high contention for shared data
objects.

In this section we examine strategies for implement-
ing the acquire lock operation from Figure 1. We
begin by demonstrating that a straightforward imple-
mentation based on spinlocks performs poorly even in
the presence of small amounts of contention. We then
show that software queueing [Anderson 90, Graunke
& Thakkar 90, Mellor-Crummey & Scott 91], a lock-
ing strategy designed to perform well in the presence
of contention, is inappropriate for use with Compare-
And-Swap. We then describe a strategy that allows
Compare-And-Swap to conservatively and inexpen-
sively fail. Our goal is to reduce the frequency with
which Compare-And-Swap fails after requiring an ex-
pensive atomic operation { a pattern that occurs com-
monly during periods of high contention.

3.1 Hardware platforms

We use two successive generations of shared mem-
ory multiprocessor architectures to evaluate synchro-
nization strategies for Compare-And-Swap. Both are
bus-based, cache coherent, and use a write-invalidate
coherency protocol. The older generation is repre-
sented by a Sequent Symmetry with 20 Intel 386 pro-
cessors running at 16.67 Mhz. The newer generation
is represented by an Omron Luna88k multiprocessor
workstation with 4 Motorola 88100 processors run-
ning at 25 Mhz. Neither supports a Compare-And-
Swap operation directly in hardware. The Symme-
try and the Luna88k each have an instruction that
allows a register and a memory location to be atom-
ically swapped. This is su�cient for implementing a
synchronizing lock operation.

Bus-based shared memory multiprocessors use the
system bus as an arbitration mechanism. A proces-
sor performs an atomic operation by asserting a spe-
cial signal on the bus. This prevents other processors
from performing atomic operations until the signal is
removed. On systems that use a write-invalidate pro-
tocol, the special signal can also invalidate data. In all
cases, however, the atomic operation involves at least
one bus transaction. On systems with write-through
caches, or on systems requiring that synchronization
operations be performed through to memory, the mod-
i�cation can involve an additional bus and memory
transaction.

Using two generations of multiprocessors helps to
illustrate that the relative cost of performing atomic
operations is increasing substantially with processor
speed. This is because of the growing imbalance be-
tween processor speed, bus speed, and memory speed.
The Intel 386 in the Sequent Symmetry takes about
twice as long to execute an atomic exchange to a
cached memory location as it does to increment a
cached memory location. In contrast, the Motorola

88100, a RISC-based microprocessor, takes about 6
times longer for the atomic exchange than for the in-
crement. At the far end of the spectrum are machines
like Stanford's DASH multiprocessor; its processors
take about sixty times longer to synchronize using a
shared memory location as they do to execute simple
instructions [Lenoski et al. 90].

Two points are implied by this trend. First, it is be-
coming increasingly important to reduce the frequency
of synchronization because its cost is no longer negligi-
ble. We will see later in this section that a straightfor-
ward implementation of Compare-And-Swap can in-
volve a large number of unnecessary synchronizations.
Second, because synchronization operations run rela-
tively more slowly on faster processors, the synchro-
nized component of a non-blocking object will have a
greater e�ect on performance on faster processors than
on slower ones. For example, code that implements a
non-blocking data structure e�ciently on older gen-
eration shared memory multiprocessors, will be less
e�cient when executed on a newer machine because
of the divergence in the relative performance of syn-
chronizing and non-synchronizing operations.

3.2 Measuring the performance of
synchronization alternatives

We use throughput as the primary measurement for
evaluating the performance of synchronization strate-
gies for non-blocking concurrent objects. We compute
throughput by having a �xed number of processors ex-
ecute a loop that contains a Compare-And-Swap. The
code, which executes for �ve seconds (wall-clock), is
shown in Figure 2. The variable should stop is set
by a special thread that wakes when a timer expires.
The array success is used to keep track of the num-
ber of times that each thread successfully updates the
variable shared data (we use a per-thread data struc-
ture for collecting statistics to avoid extra locking and
contention). Throughput is simply the total number
of successes that occur during the test.

1: while (should_stop == FALSE) {

2: do {

3: old_value = shared_data;

4: new_value = compute_new_value(old_value);

5: res = Compare_And_Swap(&shared_data,

old_value, new_value);

6: } while (res != SUCCESS);

7: success[me] = success[me] + 1;

8: }

Figure 2: Code loop for measuring throughput

Clearly, if the function compute new value takes
a long time relative to the Compare-And-Swap, then
the impact of the Compare-And-Swap on throughput
will be small, since processors will be executing non-
synchronizing code most of the time. As the time
to execute compute new value decreases relative to

the Compare-And-Swap, the e�ects of synchronization
will begin to dominate. For the measurements pre-
sented in this paper, the function compute new value

is implemented as a loop that cycles for a �xed num-
ber of times, and returns a di�erent value for each
thread. An \execution time" of w corresponds to w
passes through the loop.

Throughput measurements with one processor
reveal the basic latency of the Compare-And-
Swap operation when paired with the function
compute new value. Throughput measurements with
many processors reveal behavior in the presence of
contention.

3.3 Simple spinlocks

We �rst examine the e�ect of contention on
throughput when the acquire lock operation is im-
plemented using spinlocks. Spinlocks, in turn, are
implemented using an atomic Test-And-Set operation
(Figure 3) built from the atomic exchange provided
by the processor. The function Test-And-Set atomi-
cally sets a memory location and returns its previous
value. The non-destructive read loop before the Test-
And-Set creates a Test-And-Test-And-Set operation
that allows a processor to read-spin on a cached value
of the lock, rather than generate bus activity during
each pass through the spin loop. This is a common
spinlock optimization [Rudolph & Segall 84].

acquire_lock()

{
while (1) {

while (lock != 0)

; /* wait until lock is free */

if (Test_And_Set(lock) == 0)

return;

}

}

Figure 3: Simple Test-And-Test-And-Set Spinlock

Throughput for the code in Figure 2 on both mul-
tiprocessors is shown in Figure 4. The x-axis repre-
sents the number of processors and the y-axis repre-
sents the total number of successful operations that
occurred. We ran our experiments out to 18 of the Se-
quent's 20 processors as that o�ered a wide enough
range without introducing background activity into
the experiment. A small amount of background ac-
tivity is included, though, in the Omron experiments.
Each graph contains a family of curves, where each
curve represents a di�erent \compute" time, ranging
from w = 1 to w = 1000. The w = 1 case corresponds
to a \worst case" ratio of compute to synchronization
time, whereas w = 1000 corresponds to the case where
compute time dominates synchronization time.

As expected, smaller compute times result in higher
throughput because it takes less time to make one pass
of the code in Figure 2. Except for the w = 1 case on

the Luna88k, throughput increases slightly as proces-
sors are added and then drops o�. The small initial
rise in throughput is due to the fact that not all of
the code in the measured loop is strictly sequential.
In particular, the code at lines 1,2,3,6,7 and 8 in Fig-
ure 2 can execute in parallel. The improvement due to
this parallelism is o�set by the increased overhead of
lock and data contention that comes with more pro-
cessors. As a result, the curves for smaller w turn
down more quickly than those for larger w. At small
w, lock and data contention are high, therefore the
bene�t due to the parallelism in the loop disappears
quickly as processors are added (and doesn't exist at
all on the Luna88k when w = 1). When w is large,
however, lock and data contention are reduced so the
bene�cial e�ect of the loop's parallelism takes longer
to undermine.

The graphs also illustrate that throughput drops o�
more rapidly on the Luna88k's faster processors where
the cost of synchronization is much higher relative to
the Symmetry. For example, the w = 1 case shows a
factor of 3 reduction in throughput at four processors
on the Luna88k, whereas the reduction is only a factor
of 1.3 on the Symmetry.

At least two e�ects are responsible for the rapid
dropo� in throughput. First, there is the commonly
observed degradation that occurs when many threads
try to simultaneously synchronize. Although threads
spinwait on a cached value of the lock, the release of
the lock is broadcast to all waiting processors. Each
then tries to reacquire the lock. Although one will
succeed, the others will execute a synchronizing Test-
And-Set, placing a load on the bus.

A second reason for the slowdown is that a failed
compare incurs a synchronization cost that a�ects
all processors, but that contributes nothing to total
throughput. We can factor out synchronization and
failure e�ects and just look at behavior due to the
locking protocol by modifying the loop so that each
thread does a Compare-And-Swap on a di�erent mem-
ory location. In this way, every Compare-And-Swap
succeeds and there is no bus contention due to keeping
shared data consistent. Threads interact only because
they use the same lock to gain access to the Compare-
And-Swap sequence.

The resulting curves are shown in Figure 5. (The
scale of the y-axis is di�erent than than in the previous
�gure for reasons of resolution.) Because only part of
the loop is sequential, increasing the number of pro-
cessors also increases throughput. Eventually, though,
the sequential Compare-And-Swap limits throughput.
For smaller compute times the limit is reached with
fewer processors because most of the code is serial.
Throughput then drops o� because of the bus con-
tention that arises when many processors simultane-
ously compete for the same spinlock. There is a urry
of bus activity when the spinlock is released, e�ectively

0

50000

100000

150000

200000

250000

300000

2 4 6 8 10 12 14 16 18

F
i
v
e

s
e
c
o
n
d

T
h
r
o
u
g
h
p
u
t

Number of processors

Compare-And-Swap Symmetry

1
5
10
50

100
1000

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

1 2 3 4

F
i
v
e

s
e
c
o
n
d

T
h
r
o
u
g
h
p
u
t

Number of processors

Compare-And-Swap Luna88k

1
5
10
50
100

1000

Figure 4: Compare-And-Swap using spinlocks. The numbers in the legend reect runs using di�erent values of w.
The graphs for both system con�gurations clearly show that throughput drops o� signi�cantly under contention
when the compute time is small.

slowing down all processors. The behavior demon-
strated in Figure 5 closely matches that observed by
Anderson, and Graunke and Thakkar in their studies
of spinlock performance.

3.4 Contention-tolerant locking with soft-
ware queueing

The degradation in throughput shown in Figures 4
and 5 suggests that a locking strategy that reduces
bus contention due to synchronization might improve
performance. In this subsection, we examine behavior
when Compare-And-Swap is implemented with queue-
locks [Anderson 90, Graunke & Thakkar 90, Mellor-
Crummey & Scott 91].

Queuelocks have been shown to be e�ective at re-
ducing bus contention, and at maintaining near con-
stant throughput out to large numbers of processors
for algorithms that use traditional lock-based synchro-
nization. With queuelocks, each processor waits for
one other processor to release the lock, rather than
waiting for the lock itself. For example, the �rst wait-
ing processor would wait for the actual lock holder to
release the lock, while the second waiting processor
would wait for the �rst waiting processor to acquire
and then release the lock. This relationship permits
each processor to poll a di�erent memory location. A
processor releases a lock by depositing a new value into
the memory location associated with the next waiting
thread. Queuelocks reduce bus contention because the
number of synchronization operations equals the num-
ber of successful synchronizing bus operations, even in
the presence of high lock contention.

Figure 6 shows throughput when queuelocks are
used to implement the acquire lock function from

Figure 2. By comparing the curves to those in Fig-
ure 4, several things become apparent. First, at low
contention, queuelocks have lower throughput because
they are more complicated to implement (our imple-
mentation follows that of Graunke and Thakkar). Rel-
ative to the spinlock solution with one processor, for
example, throughput with queuelocks is reduced by
factor of 2. More importantly, however, the perfor-
mance pro�le for queuelocks is not much di�erent than
for spinlocks. There is a slight rise in throughput at
small numbers of processors, and then a dropo� as the
number of processors increases. This behavior contra-
dicts that seen when queuelocks are used to manage
critical sections for lock-based concurrent objects.

The dropo� in throughput is not due to synchro-
nization overhead, which queuelocks eliminate, but to
the fact that processors delay before executing the
Compare-And-Swap. When a processor waits on a
queuelock, it delays until all processors ahead of it ac-
quire the queuelock, execute the Compare-And-Swap,
and release the lock. If a waiting processor succeeds,
then the processors that were waiting ahead of it must
have failed, and those waiting behind will fail. Speci�-
cally, with n processors queued, a successful Compare-
And-Swap can be performed only once every nt cycles,
where the Compare-And-Swap takes t cycles. (We ig-
nore the bene�cial e�ects of the loop's parallelism,
which accounts for an initial rise in throughput at
small numbers of processors.)

We can again separate the e�ects of failure from
those of synchronization by having each processor do
its Compare-And-Swap to a di�erent memory loca-
tion. In this case, shown in Figure 7, throughput
does not drop o� as the number of processors in-
creases. Bus contention due to synchronization is min-

0

100000

200000

300000

400000

500000

600000

2 4 6 8 10 12 14 16 18

F
i
v
e

s
e
c
o
n
d

T
h
r
o
u
g
h
p
u
t

Number of processors

Private Compare-And-Swap Symmetry

1
5
10
50

100
1000

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

1 2 3 4

F
i
v
e

s
e
c
o
n
d

T
h
r
o
u
g
h
p
u
t

Number of processors

Private Compare-And-Swap Luna88k

1
5
10
50
100

1000

Figure 5: Compare-And-Swap using spinlocks. Each thread accesses a di�erent location. Throughput drops o�
less signi�cantly than when each processor manipulates the same location. Contention exists only for the lock,
not for the data value.

imized and every Compare-And-Swap contributes to
total throughput. Real concurrent objects, though,
require updates to common data, so this experiment
is only useful for understanding the e�ects of queueing
and failure.

3.5 Reducing the frequency of wasted
synchronization

The problem with Compare-And-Swap based on
spinlocks and queuelocks is that threads go through
a global synchronization protocol only to then fail by
discovering data contention. Throughput, the total
number of successful accesses to the shared value, is ul-
timately limited by the time to execute the Compare-
And-Swap sequence itself. As more processors are
added, however, the total number of attempts in-
creases. Since the number of successes is limited, this
results in an increase in the number of failures. Be-
cause failures have a non-local cost in terms of bus
synchronization and queueing delay, throughput nec-
essarily drops o�.

With blocking concurrent objects, that is, those
built using traditional locks and critical sections, each
synchronization operation is followed by a successful
update operation, so synchronization operations are
never \wasted." An implementation for Compare-
And-Swap should exhibit the same property. Ideally,
the rate of synchronization operations for Compare-
And-Swap should be equal to the throughput, that is,
the rate of successful compares followed by a swap.

We can build a Compare-And-Swap operation that
reduces the cost of failure by changing the de�nition
of Compare-And-Swap so that it becomes advisory
rather than prescriptive. A failed Compare-And-Swap
only means that no swap occurred, but not necessarily

that the old value and the current value are di�erent.
This enables a Compare-And-Swap to fail before hav-
ing to execute an expensive synchronization operation.
We can implement the advisory Compare-And-Swap
by having a processor poll the old value for equal-
ity with the new value while attempting to acquire
the lock. A waiting processor can abort its Compare-
And-Swap at any time before it acquires the lock if
it detects that the shared value and the old value are
not equal. This has the e�ect of purging from the
set of waiting processors those processors whose syn-
chronized Compare-And-Swap would most likely fail.
Successful processors therefore only wait for other suc-
cessful processors; failure incurs no global queueing
delay.

The throughput of this strategy, which we call
Compare*-And-Compare-And-Swap, is shown in �g-
ure 8. The graphs were generated using Test-And-
Test-And-Set spinlocks in which the initial test loop
also included a check for equality between the new
value and the old value. Compared to the previous
techniques, the additional compare substantially re-
duces the rate at which throughput degrades when
processors are added. Moreover, absolute performance
in the case of low contention is comparable to the
straightforward Compare-And-Swap implementation
using simple spinlocks (Figure 4).

3.6 Summary

Synchronization protocols appropriate for non-
blocking concurrent objects are inappropriate in terms
of performance when used as the basis for a non-
blocking concurrent objects. In the presence of con-
tention, simple spinlocks generate excessive bus con-
tention. Queuelocks, which are e�ective at reducing

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

2 4 6 8 10 12 14 16 18

F
i
v
e

s
e
c
o
n
d

T
h
r
o
u
g
h
p
u
t

Number of processors

Queuelock Compare-And-Swap Symmetry

1
5
10
50

100
1000

0

100000

200000

300000

400000

500000

600000

700000

1 2 3 4

F
i
v
e

s
e
c
o
n
d

T
h
r
o
u
g
h
p
u
t

Number of processors

Queuelock Compare-And-Swap Luna88k

1
5
10
50
100

1000

Figure 6: Compare-And-Swap using queuelocks. Throughput drops o� as with the simple spinlock-based imple-
mentation.

0

50000

100000

150000

200000

250000

300000

350000

400000

2 4 6 8 10 12 14 16 18

F
i
v
e

s
e
c
o
n
d

T
h
r
o
u
g
h
p
u
t

Number of processors

Queuelock Private Compare-And-Swap Symmetry

1
5
10
50

100
1000

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1 2 3 4

F
i
v
e

s
e
c
o
n
d

T
h
r
o
u
g
h
p
u
t

Number of processors

Queuelock Private Compare-And-Swap Luna88k

1
5
10
50
100

1000

Figure 7: Compare-And-Swap using queuelocks. Each thread accesses a di�erent location. Throughput does not
drop o� as processors are added because there is neither lock-contention nor useless lock acquisitions.

contention with lock-based concurrent objects, are not
e�ective when used with non-blocking concurrent ob-
jects. They create a situation in which threads queue
on the lock only to fail on the compare. Through-
put decreases as processors are added because the
number of failed Compare-And-Swaps grows. We
can eliminate the e�ect of failure on queueing delay
and therefore throughput by prematurely aborting the
Compare-And-Swap if the shared value and old value
become unequal while trying to acquire the lock.

4 Related work

Our use of roll-out is patterned after the optimistic
synchronization policies described for Trellis [Moss &

Kohler 87], Mach and Taos [Bershad et al. 92], but
di�ers in that it is intended for use on a multipro-
cessor. As such, performance, as well as progress,
is important. Herlihy [Herlihy 90] has shown how to
implement non-blocking concurrent objects using the
load-linked/store-conditional operation found on ar-
chitectures such as the MIPS R4000 [Mirapuri et al.
92] and Digital's Alpha [Sites 92]. Herlihy shows that
the load-linked/store-conditional operation is more ef-
�cient and simpler to use in non-blocking algorithms
than Compare-And-Swap (although they are equiva-
lently powerful). As in our work, he examines per-
formance in the presence of contention and in the
absence of hardware support for the \right" atomic
primitive. He does not suggest a strategy for deal-
ing with inopportune preemption when simulating

0

50000

100000

150000

200000

250000

300000

2 4 6 8 10 12 14 16 18

F
i
v
e

s
e
c
o
n
d

T
h
r
o
u
g
h
p
u
t

Number of processors

Compare* and Compare and Swap Symmetry

1
5
10
50

100
1000

0

200000

400000

600000

800000

1e+06

1.2e+06

1 2 3 4

F
i
v
e

s
e
c
o
n
d

T
h
r
o
u
g
h
p
u
t

Number of processors

Compare* and Compare and Swap Luna88k

1
5
10
50
100

1000

Figure 8: Compare*-And-Compare-And-Swap. Throughput drops o� only gradually or not at all as processors
are added. Unnecessary synchronization operations have been eliminated.

the primitive on architectures that do not provide it.
He uses an exponential backo� strategy at the ob-
ject level, rather than at the synchronization level,
to introduce delays during periods of contention and
shows that this prevents throughput from dropping
o� with contention. It is unclear whether the same ef-
fect could be obtained by implementing the simulated
load-linked/store-conditional with exponential back-
o�.

Our results do not depend on the fact that
Compare-And-Swap is the atomic primitive being sim-
ulated. Non-blocking objects based on Herlihy's pre-
scription for load-linked/store-conditional could be
built using the techniques described in this paper.
The polling aspect of our �nal policy, Compare*-And-
Compare-And-Swap, could be used to implement a
store-conditional using synchronization primitives ori-
ented towards blocking synchronization.

While the experiments presented in this paper have
been performed on conventional bus-based shared
memory multiprocessors, our results and conclusions
can be applied to distributed shared memory mul-
tiprocessors as well, such as DASH [Lenoski et al.
90] and Alewife [Agarwal et al. 88]. Functionally,
these systems are similar to shared memory multipro-
cessors, in that a parallel program distributed across
many processors executes within a single, shared ad-
dress space. Architecturally, bus-based shared mem-
ory machines di�er from distributed shared memory
machines in that remote memory references (cache
misses) generally take substantially fewer processor
cycles in a bus-based machine. Since a primary con-
tributor to synchronization overhead in the presence
of contention stems from the cost of having to perform
operations globally (out of cache), we believe that our
results, which reduce the frequency and increase the

usefulness of such global operations, apply directly to
distributed shared memory multiprocessors.

5 Conclusions

Non-blocking concurrent objects have the potential
to become powerful and e�cient tools for use in paral-
lel programs. In this paper, we have explored several
practical aspects for systems that rely on non-blocking
concurrent objects. We have described a simple oper-
ating system mechanism with which to build a non-
blocking Compare-And-Swap out of blocking primi-
tives such as Test-And-Set. This enables the use of
non-blocking objects on a wide range of multiproces-
sor systems, including both shared memory and dis-
tributed shared memory architectures. We have eval-
uated a set of synchronization policies for implement-
ing the non-blocking mechanisms, and have shown
that throughput is vulnerable to contention. Speci�-
cally, we have shown that it is the cost of failure with
Compare-And-Swap that inuences throughput when
contention is high. We have shown that it is possi-
ble to reduce this cost by relaxing the de�nition of
Compare-And-Swap so that failures can occur with-
out synchronization.

Acknowledgements

Dan Stodolsky helped in evaluating the tradeo�s
between various synchronization policies. He, Greg
Morrisett, Steve Schwab, and Jeannette Wing pro-
vided valuable feedback on this paper's presentation.
A conversation with Maurice Herlihy helped me to

convince myself that the ideas in this paper were worth
pursuing.

References

[Agarwal et al. 88] Agarwal, A., Simoni, R., Hen-
nessy, J., and Horowitz, M. An Evaluation
of Directory Schemes for Cache Coherence.
In Proceedings of the 15th Annual Sympo-
sium on Computer Architecture, pages 280{
289, June 1988.

[Anderson 90] Anderson, T. E. The Performance of
Spin Lock Alternatives for Shared-Memory
Multiprocessors. IEEE Transactions on
Parallel and Distributed Systems, 1(1):6{
16, January 1990.

[Anderson et al. 92] Anderson, T. E., Bershad, B. N.,
Lazowska, E. D., and Levy, H.M. Scheduler
Activations: E�ective Kernel Support for
the User-Level Management of Parallelism.
ACM Transactions on Computer Systems,
9(1), February 1992.

[Bershad et al. 92] Bershad, B. N., Redell, D., and El-
lis, J. Fast Mutual Exclusion for Uniproces-
sors. In Proceedings of the 5th ACM Con-
ference on Architectural Support for Pro-
gramming Languages and Operating Sys-
tems, October 1992.

[Graunke & Thakkar 90] Graunke, G. and Thakkar,
S. Synchronization Algorithms for Shared-
Memory Multiprocessors. IEEE Computer,
23(6):60{69, June 1990.

[Herlihy & Wing 90] Herlihy, M. P. and Wing, J. M.
Linearizability: A Correctness Condition
for Concurrent Objects. ACM Transactions
on Programming Languages and Systems,
12(3):463{492, July 1990.

[Herlihy 90] Herlihy, M. A Methodology for Imple-
menting Highly Concurrent Data Struc-
tures. In Second ACM SIGPLAN Sym-
posium on Principles & Practice of Paral-
lel Programming (PPOPP), pages 197{206,
March 1990.

[Herlihy 91] Herlihy, M. Wait-free Synchronization.
ACM Transactions on Programming Lan-
guages and Systems, 13(1), January 1991.

[Lenoski et al. 90] Lenoski, D., Laudon, J., Ghara-
chorloo, K., Gupta, A., and Hennessy,
J. The Directory-Based Cache Coherence
Protocol for the DASH Multiprocessor. In
Proceedings of the 17th Annual Symposium

on Computer Architecture, pages 148{159,
May 1990.

[Massalin & Pu 91] Massalin, H. and Pu, C. A Lock-
Free Multiprocessor OS Kernel. Technical
Report CUCS-005-91, Department of Com-
puter Science, Columbia University, 1991.

[Mellor-Crummey & Scott 91] Mellor-Crummey,
J. M. and Scott, M. L. Algorithms for Scal-
able Synchronization on Shared-Memory
Multiprocessors. ACM Transactions on
Computer Systems, 9(1), February 1991.

[Mellor-Crummey 87] Mellor-Crummey, J. M. Con-
current Queues: Practical Fetch-and-� Al-
gorithms. Technical Report 229, Depart-
ment of Computer Science, University of
Rochester, November 1987.

[Mirapuri et al. 92] Mirapuri, S., Woodacre, M., and
Vasseghi, N. The MIPS R4000 Processor.
IEEE Micro, 12(4), April 1992.

[Moss & Kohler 87] Moss, J. and Kohler, W. Con-
currency Features for the Trellis/Owl Lan-
guage. In European Conference on Object-
Oriented Programming, June 1987. Ap-
pears in Springer-Verlag's Lecture Notes in
Computer Science #276.

[Rudolph & Segall 84] Rudolph, L. and Segall, Z. Dy-
namic Decentralized Cache Schemes for
MIMD Parallel Processors. In Proceedings
of the 11th Annual Symposium on Com-
puter Architecture, pages 340{347, 1984.

[Sites 92] Sites, R. L. Alpha Architecture Reference
Manual. Digital Press, 1992.

[Wing & Gong 90] Wing, J. M. and Gong, C. A
Library of Concurrent Objects and Their
Proofs of Correctness. Technical Report
CMU-CS-90-151, School of Computer Sci-
ence, Carnegie Mellon University, July
1990.

[Zahorjan et al. 88] Zahorjan, J., Lazowska, E., and
Eager, D. Spinning Versus Blocking in Par-
allel Systems with Uncertainty. In Pro-
ceedings of the International Seminar on
the Performance of Distributed and Parallel
Systems, pages 455{472, December 1988.

