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While many application service providers have proposed using thin-client computing to deliver

computational services over the Internet, little work has been done to evaluate the effectiveness

of thin-client computing in a wide-area network. To assess the potential of thin-client comput-

ing in the context of future commodity high-bandwidth Internet access, we have used a novel,

noninvasive slow-motion benchmarking technique to evaluate the performance of several popular

thin-client computing platforms in delivering computational services cross-country over Internet2.

Our results show that using thin-client computing in a wide-area network environment can de-

liver acceptable performance over Internet2, even when client and server are located thousands of

miles apart on opposite ends of the country. However, performance varies widely among thin-client

platforms and not all platforms are suitable for this environment. While many thin-client systems

are touted as being bandwidth efficient, we show that network latency is often the key factor in

limiting wide-area thin-client performance. Furthermore, we show that the same techniques used

to improve bandwidth efficiency often result in worse overall performance in wide-area networks.

We characterize and analyze the different design choices in the various thin-client platforms and

explain which of these choices should be selected for supporting wide-area computing services.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed

Systems; C.4 [Performance of Systems]:—Measurement techniques

General Terms: Performance, Measurement, Experimentation, Algorithms

Additional Key Words and Phrases: Thin-client, wide-area networks, Internet2, slow-motion bench-

marking

1. INTRODUCTION

Rapid improvements in network bandwidth, cost, and ubiquity, combined with
the high total cost of ownership of PC desktop computers have created a growing
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market for application service providers (ASPs). Going beyond just web host-
ing, ASPs operate, maintain, and deliver customer data and applications from
professionally managed data centers, sparing their customers the headache of
buying and maintaining their own hardware and software. To provide the in-
frastructure to deliver easier-to-maintain computational services anywhere on
the Internet, a growing number of ASPs are embracing a thin-client computing
model [Expertcity, Inc. 2000; Charon Systems ; Runaware.com ]. In addition to
ASPs, organizations have begun to use the thin-client computing model to pro-
vide remote access to applications that in the past were normally only available
when used on-site.

A thin-client computing system consists of a server and a client that com-
municate over a network using a remote display protocol. The protocol allows
graphical displays to be virtualized and served across a network to a client de-
vice, while application logic is executed on the server. Using the remote display
protocol, the client transmits user input to the server, and the server returns
screen updates of the user interface of the applications from the server to the
client. Many of these remote display protocols can effectively web-enable appli-
cations without application modification. Examples of popular thin-client plat-
forms include Citrix MetaFrame [Citrix Systems 1998; Mathers and Genoway
1998], Microsoft Terminal Services [Cumberland et al. 1999; Microsoft Cor-
poration 1998], AT&T Virtual Network Computing (VNC) [Richardson et al.
1998], and Tarantella [Santa Cruz Operation 1998; Shaw et al. 2000]. The re-
mote server typically runs a standard server operating system and is used for
executing all application logic. Because all application processing is done on
the server, the client only needs to be able to display and manipulate the user
interface. The client can either be a specialized hardware device or simply an
application that runs on a low-end personal computer.

While many ASPs have proposed using thin-client computing to deliver com-
putational services over the Internet, little work has been done to evaluate
the effectiveness of thin-client computing in a wide-area network (WAN). Thin-
client computing vendors often tout the bandwidth efficiency of their platforms,
but as network technologies improve and high-bandwidth Internet access be-
comes a commodity, bandwidth efficiency alone may not be a good measure
of wide-area thin-client performance. Existing ASPs have primarily focused on
supporting simple office-productivity tools. It is unclear if the remote display ap-
proach used in thin-client computing can effectively support the growing class
of graphics and multimedia-oriented applications. Because the importance of
thin-client computing will only continue to increase with the rapidly growing
ASP market, it is crucial to determine the effectiveness of thin-client computing
in WANs on the kinds of web-based and multimedia applications that users are
already using and will increasingly be using in the future.

To assess the limits of using thin clients to provide wide-area ubiquitous
computing, we have characterized the design choices of underlying remote dis-
play technologies and measured the impact of these choices on the performance
of thin-client computing platforms in delivering computational services cross-
country over Internet2. For our study, we considered a diversity of design choices
as exhibited by six of the most popular thin-client platforms in use today: Citrix
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MetaFrame, Microsoft Windows 2000 Terminal Services, AT&T VNC, Taran-
tella, Sun Ray [Schmidt et al. 1999; Sun Microsystems ], and X [Scheifler and
Gettys 1986]. These platforms were chosen for their popularity, performance,
and diverse design approaches. We focus on evaluating these thin-client plat-
forms with respect to their performance on web and multimedia applications,
which are increasingly populating the computing desktop. We conducted our
experiments using Internet2 because it provides the kind of high-bandwidth
network access that we expect will become increasingly cost-effective and ac-
cessible in future WAN environments. For example, the 100 × 100 Project aims
to bring 100 Mbps connection speed to 100 million homes in the United States
within the near future, with an experimental prototype ready by 2008 [100 ×
100 Project ]. In addition, South Korea has announced plans to build a nation-
wide Internet access infrastructure capable of speeds up to 100 Mbps to the
home by 2010 [Legard 2003].

We identified and isolated the impact of WAN environments by quantifying
and comparing the performance of thin-client systems in both WAN and local-
area network (LAN) environments. Because many thin-client systems are pro-
prietary and closed-source, we employed a slow-motion benchmark [Nieh et al.
2003] technique for obtaining our results, addressing some of the fundamen-
tal difficulties in previous studies of thin-client performance. Our results show
that thin-client computing in a WAN environment can deliver acceptable per-
formance over Internet2, even when client and server are located thousands of
miles apart on opposite ends of the country. However, performance varies widely
among different thin-client platform designs and not all approaches are suit-
able for this environment. We show that designing systems for WAN latencies is
crucial for overall performance. In particular, commonly used performance opti-
mizations that work well for reducing the network bandwidth requirements of
thin-client systems can degrade overall system performance due to the network
latencies associated with wide-area environments. Our results show that a sim-
ple pixel-based remote display approach can deliver superior performance com-
pared to more complex thin-client systems that are currently used. We analyze
the differences in the underlying mechanisms of various thin-client platforms
and explain their impact on overall performance.

This article is organized as follows. Section 2 details the experimental testbed
and methodology we used for our study. Section 3 describes our measurements
and performance results. Section 4 discusses related work. Finally, we present
some concluding remarks and directions for future work.

2. EXPERIMENTAL DESIGN

The goal of our research is to compare thin-client systems to assess their basic
display performance and their feasibility in WAN environments. To explore
a range of different design approaches, we considered six popular thin-client
platforms: Citrix MetaFrame 1.8 for Windows 2000, Windows 2000 Terminal
Services, Tarantella Enterprise Express II for Linux, AT&T VNC v3.3.2 for
Linux, Sun Ray I, and XFree86 3.3.6 (X11R6) on Linux. In this article we also
refer to these platforms by their remote display protocols, which are Citrix
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Table I. Thin-Client Computing Platforms

Max

Display Display Screen Display Transport

Platform Protocol Encoding Updates Compression Depth Protocol

Citrix

MetaFrame

ICA Low-level

graphics

Server-push,

lazy

RLE 8-bit

color ∗
TCP/IP

Microsoft

Terminal

Services

RDP Low-level

graphics

Server-push,

lazy

RLE 8-bit

color

TCP/IP

Tarantella AIP Low-level

graphics

Server-push,

eager or lazy

depending on

bandwidth,

load

Adaptively

enabled, RLE

and LZW at low

bandwidths

8-bit

color

TCP/IP

AT&T VNC VNC 2D draw

primitives

Client-pull,

lazy updates

between client

requests

discarded

Hextile (2D RLE) 24-bit

color

TCP/IP

Sun Ray Sun Ray 2D draw

primitives

Server-push,

eager

None 24-bit

color

UDP/IP

X11R6 X High-level

graphics

Server-push,

eager

None 24-bit

color

TCP/IP

∗Citrix MetaFrame XP now offers the option of 24-bit color depth, but this was not available at the time of our

experiments.

ICA (Independent Computing Architecture), Microsoft RDP (Remote Desktop
Protocol), Tarantella AIP (Adaptive Internet Protocol), VNC (Virtual Network
Computing), Sun Ray, and X, respectively.

To determine the characteristics of each of these platforms, we studied the
public literature for each of the platforms and when available, inspected the
source code. When source code was unavailable, we contacted the vendor of the
thin-client platform and discussed with their engineers the design character-
istics of their thin-client platform. Table I summarizes these findings. These
platforms span a range of differences in five different parameters:

—Display encoding: encoding of display primitives, which can range from using
low-level raw pixels to high-level graphics

—Screen updates: whether screen updates are sent from server to client using
a lazy or eager model, and whether the updates are pulled by the client or
pushed by the server

—Compression: the type of compression that was used on the screen updates,
which ranged from none to adaptive selection of a collection of compression
algorithms such as run-length encoding (RLE) and Lempel-Ziv Welch (LZW)
[Ziv and Lempel 1977; Ziv and Lempel 1978]

—Max display depth: the maximum color depth supported by the platform,
which ranged from 8 bit to 24 bit

—Transport protocol: the transport protocol used, which was either TCP/IP or
UDP/IP
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To evaluate their performance, we designed an experimental Internet2
testbed and various experiments to exercise each of the thin-client platforms on
single-user web-based and multimedia-oriented workloads. Section 2.1 intro-
duces the noninvasive slow-motion measurement methodology we used to eval-
uate thin-client performance. Section 2.2 describes the experimental testbed we
used. Section 2.3 discusses the mix of microbenchmarks and application bench-
marks used in our experiments.

2.1 Measurement Methodology

Because thin-client systems are designed and used very differently from tra-
ditional desktop systems, quantifying and measuring their performance effec-
tively can be difficult. In traditional desktop systems, an application typically
executes and displays its output on the same machine. In thin-client systems,
an application executes on a server machine and sends its output over a net-
work to be displayed on a client machine. The output display on the client may
be completely decoupled from the application processing on the server such
that an application runs as fast as possible on the server without regard to
whether or not application output has been displayed on the client. Further-
more, display updates may be merged or even discarded in some systems to
conserve network bandwidth. Since the server processes all application logic in
thin-client systems, standard application benchmarks effectively measure only
server performance and do not accurately reflect user perceived performance
at the client. The problem is exacerbated by the fact that many thin-client sys-
tems, including those from Citrix, Microsoft, and Tarantella, are proprietary
and closed-source, making it difficult to instrument them to obtain accurate,
repeatable performance results.

To address these problems, we employed slow-motion benchmarking to eval-
uate thin client performance. This method employs two techniques to obtain ac-
curate measurements: monitoring client-side network activity and using slow-
motion versions of application benchmarks. We give a brief overview of this
technique below. For a more in depth discussion, see Nieh et al. [2003]. We
then extended this technique to compare relative performance across LAN and
Internet2 network environments.

We monitored client-side network activity to obtain a measure of user-
perceived performance based on latency. Since we could not directly peer into
the black box thin-client systems, our primary measurement technique was to
use a packet monitor to capture resulting network traffic on the client-side. For
example, to measure the latency of an operation from user input to client output,
we could use the packet monitor to determine when the user input is first sent
from client to server and when the screen update finished sending from server to
client. The difference between these times could be used as a measure of latency.
To accurately measure user-perceived thin-client performance, measurements
must be performed at the client-side; server-side measurements of application
performance are insufficient. For instance, a video application might deliver
smooth playback on the server-side only to deliver poor video quality on the
client-side due to network congestion.

ACM Transactions on Computer Systems, Vol. 24, No. 2, May 2006.
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It must be noted that this measurement technique does not include the time
from when the client receives a screen update from the network to the time the
actual image is drawn to the screen. The measurement also does not include
the time from when client input is made and the input is sent. If these client
processing times account for a significant part of overall system performance,
the use of packet captures for measuring thin-client performance may not be
accurate. For example, if the client were a much less powerful machine than
the server, client processing time would need to be accounted for more pre-
cisely to provide an accurate performance measure. However, as discussed in
Section 2.2, we used clients and servers of comparable performance for our ex-
perimental testbed. In this environment, using VNC, one of the few open-source
thin-client systems, we verified that measurements using packet monitoring of
slow-motion benchmarks are within five percent of internal client and server
source code instrumentation [Nieh et al. 2003]. We therefore assumed the client
input and display processing times were negligible in our experiments.

We employed slow-motion versions of application benchmarks to provide a
measure of user-perceived performance based on the visual quality of display
updates. While monitoring network activity provides a measure of the latency
of display updates, it does not provide a sufficient measure of the overall quality
of the performance. To address this problem, we altered the benchmark appli-
cations used by introducing delays between the separate visual components of
each benchmark, such as web pages or video frames, so that the display update
for each component is fully completed on the client before the server begins
processing the next display update. We monitored network traffic to make sure
the delays were long enough to provide a clearly demarcated period between
display updates where client-server communication drops to the idle level for
that platform. We then process the results on a per-component basis to obtain
the latency and data transferred for each visual component, and obtain overall
results by taking the sum of these results. Section 2.3 describes in further detail
how web and video application benchmarks were delayed for our experiments.

Because slow-motion benchmarking does introduce delays in how the appli-
cations are executed, it is possible that such delays can result in differences
in the qualitative behavior of a slow-motion benchmark versus its standard
version, particularly in terms of network performance when the TCP transport
protocol is used. For example, by introducing delays and thereby causing the
connection to potentially be idle for a few seconds, TCP may reset the congestion
window back to the initial value, causing the connection to go through slow-
start and reducing the effective connection bandwidth available when the next
display updates are sent [Allman et al. 1998]. As another example, consider the
TCP Nagle algorithm, which limits a sender by only being allowed to have one
outstanding segment that is less than a full segment size. The sender is allowed
to continue sending once the receiver ACK is received. By introducing delays,
the ACK timer is allowed to fire on the client, removing the impact of the Nagle
algorithm in the slow-motion case when it might cause a performance issue in
the no delay case.

We address this issue in two ways. First, as discussed in Section 2.3, we
incorporate slow-motion benchmarking in web and video applications in such
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a way that we do not compromise the qualitative effectiveness of the bench-
marks in measuring system performance. In fact, in the case of measuring in-
teractive web performance, we argue that our slow-motion technique provides
a better and more realistic measure of web performance than standard scripted
download approaches. Second, we directly considered the impact of slow-motion
benchmarking on TCP behavior. This is useful since all of the thin-client sys-
tems used in this study, except for Sun Ray, use TCP as the underlying trans-
port protocol. To do this, we selected two representative thin-client systems,
one on Linux and one on Windows, and ran the web benchmark discussed in
Section 2.3.2 on those systems with and without the artificially induced delay
of slow-motion benchmarking. X11 on Linux and ICA on Windows were used,
both with 8-bit color display as noted in Section 2.2. This was possible to do
in this case because neither X11 nor ICA merged or discarded any significant
amount of display updates for this benchmark, as verified by observing the
amount of data transferred with and without delays. The difference between
these measurements was less than one percent for X11 on Linux and less than
ten percent for ICA on Windows. This suggests that TCP congestion window
resets and the Nagle algorithm are unlikely to be significant factors in the per-
formance of these Linux and Windows thin-client systems in our experiments.
All of the thin-client systems in this study that were based on TCP were also
run on either Linux or Windows.

We compare relative performance across LAN and Internet2 network en-
vironments to isolate the impact of WAN environments on thin-client perfor-
mance. The impact can be quantified as the difference in performance between
LAN and Internet2 environments. Furthermore, this relative performance mea-
sure allows us to factor out effects of client processing time, which we cannot
directly measure because of the proprietary nature of most of the thin-client
systems. We assume that client processing time does not change in any signif-
icant way as a result of different network environments and we verified this
assumption in the few open-source platforms tested.

Our combined measurement techniques provide three key benefits. First, the
techniques ensure that display events reliably complete on the client so that
packet captures from network monitoring provide an accurate measure of sys-
tem performance. Ensuring that all clients display all visual components in the
same sequence provides a common foundation for making comparisons among
thin-client systems. Second, the techniques do not require any invasive modifi-
cation of thin-client systems. As a result, we are able obtain our results without
imposing any additional performance overhead on the systems measured. More
importantly, the techniques make it possible for us to measure popular but pro-
prietary thin-client systems, such as those from Citrix and Microsoft. Third, by
comparing performance in LAN and WAN environments, we are able to isolate
and analyze the impact of WAN effects on thin-client performance.

2.2 Experimental Testbed

Figure 1 shows our Internet2 testbed. The testbed consisted of two pairs of
thin-client/server systems, a packet monitor machine, and a web server used
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Fig. 1. Experimental testbed.

for testing web applications. The features of each system are summarized in
Table II. To ensure a level playing field, where possible we used the same hard-
ware for all of our tests; the only change we made to our configuration was for
testing the Sun Ray platform, which runs only on Sun machines. The machines
were logically grouped into West and East sites separated by a network, with
the thin-servers located at the West site and the remaining three machines lo-
cated at the East site. For the Internet2 experiments, we located the West and
East sites on opposite coasts of the United States at Stanford University and
Columbia University, respectively. We selected sites that were geographically
far apart as a measure of the limits of using thin-client computing in wide-area
environments.

The East site consisted of a PC thin-client, a Sun Ray thin-client, a packet
monitor machine, and a benchmark server. The packet monitor machine was
dedicated to running Etherpeek 4 [WildPackets, Inc. ], a software packet mon-
itor that time-stamps and records all packet traffic visible by the machine.
Except for the Sun Ray thin-client, all other East site machines were Micron
Client Pro PCs, each with a 450 MHz Pentium II CPU, 128 MB RAM, and 14.6
GB disk. The Sun Ray client was considerably less powerful than the PC client,
with only a 100 MHz uSPARC CPU and 8 MB of RAM. The West site consisted
of a PC server and a Sun server. The PC server was a Hi-Tech USA PC with
dual 500 MHz Pentium III CPUs, 160 MB RAM, and 22 GB disk. The Sun
server was an Ultra-10 Creator 3D with a 333 MHz UltraSPARC IIi, 384 MB
RAM, and 9 GB hard disk. All machines had 10/100BaseT NICs. As discussed
in Section 3.2, the slower Sun client and server hardware did not affect the
lessons derived from our experiments.

For the Internet2 experiments, the East and West sites were connected by
the Abilene Internet 2 backbone, an OC-48 operating at 2.5 Gbps, typically very
lightly loaded with line utilization usually below 10% on any given link of the
backbone [The Trustees of Indiana University]. A total of 14 hops separate the
machines at the East site from those at the West site. The East site is three hops
away from a network provider that connects to the Abilene Internet2 backbone
via an OC-12 (622 Mbps), with all links being OC-3 (155 Mbps) or greater. The
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West site is three hops away from a GigaPOP that connects to the Abilene In-
ternet2 backbone via an OC-12, with all links being OC-3 (155 Mbps) or greater.
The machines at each site are connected to a 100Base-T hub that is uplinked
to the respective core networks via 100Base-T full-duplex switches. Since the
minimum available bandwidth along any edge of the network was 100 Mbps,
the theoretical maximum bandwidth of our connection was 100 Mbps. Based on
our own measurements and a month of sampled data obtained by the National
Laboratory for Applied Network Research (NLANR), ping results have shown
the mean round trip time (RTT) latency to be approximately 66.35 ms with a
standard deviation of 4.52 ms and a minimum RTT of 64 ms [National Labora-
tory for Applied Network Research a, b]. The measured percentage packet loss
over this Internet2 connection was less than 0.05%.

Because all of the thin-client systems tested, except for Sun Ray, used TCP
as the underlying network transport protocol, we were careful to consider the
impact of TCP window sizing on performance. TCP windows should be adjusted
to at least the bandwidth delay product size to maximize bandwidth utilization
[Mahdavi ] shown in Equation 1.

minimum TCP Window = bandwidth × RTT. (1)

Otherwise, the effective bandwidth available can be severely limited because
the largest amount of data that can be in transit without acknowledgement is
the TCP window size being used. When at the default window size of 16 KB
under Windows [Microsoft Corporation ] and at our average RTT latency of
66 ms, there is a maximum theoretical bandwidth availability of only 1.9 Mbps.
By applying Equation 1, one can see with an RTT latency of 66 ms, in order to
take full advantage of the 100 Mbps Internet2 network capacity available, the
optimal TCP window size is 825 KB. Because of this, we decided to test with
the operating system defaults as well as a high network latency-optimized large
TCP window setting. To make things simple and ensure that the window size
was large enough even if the network latency increased, a large TCP window
size of 1 MB was used. After making this optimization, iperf [Tirumala and
Ferguson] was used to determine that the actual bandwidth available to us
over Internet2 was approximately 45 Mbps.

To verify our results in a more controlled network environment and to provide
a basis for comparison, we constructed a local isolated testbed for comparison
purposes, also shown in Figure 1. The local testbed structure was similar to the
Internet2 testbed, except that a network simulator was used instead of Inter-
net2 for the network connection between the East and West site. The network
simulator used was a Micron Client Pro PC with two 100BaseT NICs running
The Cloud [Shunra Software ], a network simulator that has the ability to adjust
the bandwidth, latency, and packet loss rate between the East and West sites.
We used the local testbed in two ways. First, we used the local testbed network
as a 100 Mbps low latency LAN testbed environment to allow us to compare
thin-client performance over Internet2 versus a LAN environment. Second, we
adjusted the local testbed network characteristics to match the measured char-
acteristics of the Internet2 testbed so that we could verify our Internet2 testbed
measurements in a more controlled network environment. All platforms were
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Fig. 2. Application benchmarks.

evaluated in both Internet2 and the simulated Internet2 testbed, except for
Sun Ray, which was only evaluated in the simulated Internet2 testbed due to
the difficulty of configuring its dynamic authentication over Internet2. There
was no significant difference in our measurements in this simulated Internet2
testbed compared to our measurements during periods of light network load
over Internet2. We therefore assume that Sun Ray would also have no signifi-
cant performance difference between the two testing environments.

To minimize application environment differences, we used common thin-
client configuration options and common applications across all platforms
whenever possible. Where it was not possible to configure all the platforms
in the same way, we generally used default settings for the platforms in ques-
tion. In particular, unless otherwise stated, the video resolution of the client
was set to 1024 × 768 resolution, compression, and memory caching were left
on for those platforms that used it, and disk caching was turned off by default in
those platforms that supported it. We tested each at the maximum supported
color depths: ICA, RDP, and AIP at 8-bit color and Sun Ray, X, and VNC at
24-bit color. In order to compare 24-bit platforms with platforms that only sup-
ported 8-bit color, we also tested X and VNC at 8-bit. Sun Ray does not support
8-bit color, therefore was only tested at 24-bit color. A study on the impact of
caching on thin-client systems in WAN environments is beyond the scope of this
article. For an analysis of caching on thin-client systems in LAN environments,
see Yang et al. [2002]. For each thin-client system, we used the server operat-
ing system that delivered the best performance for the given system: Terminal
Services only runs on Windows; Citrix ran best on Windows; Tarantella, VNC,
and X ran best on UNIX/Linux; and Sun Ray only runs on Solaris.

2.3 Application Benchmarks

To measure the performance of the thin-client platforms, we used three ap-
plication benchmarks: a latency benchmark for measuring response time, a
web benchmark for measuring web browsing performance, and a video bench-
mark for measuring video playback performance. Figure 2 shows screenshots
of these three benchmarks in operation. The latency benchmark was used
as a microbenchmark to measure simple operations while the web and video
benchmarks were used to provide a more realistic measure of real application
performance. We describe each of these benchmarks in further detail below.
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In particular, the web and video benchmarks were used with the slow-motion
benchmarking technique described in Section 2.1 to measure thin client perfor-
mance effectively.

2.3.1 Latency Benchmark. The latency benchmark used was a small Java
applet that permitted us to run five separate tests:

—Letter: a character typing operation that took a single keystroke as input
and responded by displaying a 12-point capital letter ’A’ in sans serif font.

—Scroll: a text scrolling operation that involved scrolling down a page con-
taining 450 words in 58 lines in 12-point sans serif font, with 14 of the lines
displayed in a 320 × 240 pixel area at any one time.

—Fill: a screen filling operation in which the system would respond to a mouse
click by filling a 320 × 240 pixel area with the color red.

—Red Bitmap: a bitmap download operation in which the system would respond
to a mouse click by displaying a 1.78 KB JPEG red bitmap at 320 × 240 pixels
in size.

—Image: an image download operation in which the system would respond to
a mouse click by displaying a 15.5 KB JPEG image at 320 × 240 pixels in
size.

For our experiments, we measured the latency of each test from the time of
user input until the time that the client receives the last screen update from
the server. This time is measured using packet trace data collected by the packet
monitor. The time is calculated as the difference between the timestamp of the
first client-to-server packet and the timestamp of the last server-to-client packet
for the respective test.

2.3.2 Web Benchmark. The web benchmark we used was based on the Web
Text Page Load test from the Ziff-Davis i-Bench benchmark suite [Ziff-Davis,
Inc.]. The original i-Bench web benchmark is a JavaScript-controlled load of a
sequence of 54 web pages from the web benchmark server. Normally, as each
page downloads, a small script contained in each page starts off the subsequent
download. The pages contain both text and bitmap graphics, with some pages
containing more text while others contain more graphics. The JavaScript cycles
through the page loads twice, resulting in a total of 108 web pages being down-
loaded during this test. When the benchmark is run from a thin-client, the thin
server would execute the JavaScript that sequentially requests the test pages
from the i-Bench server and relay the display information to the thin-client.

For the web benchmark used in our tests, we modified the original i-Bench
benchmark for slow-motion benchmarking by introducing delays of several sec-
onds between pages using the JavaScript, sufficient in each case to ensure that
the thin client received and displayed each page completely and there was no
temporal overlap in transferring the data belonging to two consecutive pages.
We used the packet monitor to record the packet traffic for each page, and then
used the timestamps of the first and last packets associated with each page
to determine the download time for each page. We used Netscape Navigator
4.72 to execute the web benchmark, as it is available on all the platforms in

ACM Transactions on Computer Systems, Vol. 24, No. 2, May 2006.



On the Performance of Wide-Area Thin-Client Computing • 187

question. The browser’s memory cache and disk cache were enabled but cleared
before each test run. In all cases, the Netscape browser window was 1024 × 768
in size, so the region being updated was the same on each system.

Introducing delays between the web pages does qualitatively change the
behavior of the benchmark from one that downloads a scripted sequence of
web pages in rapid succession with no delays to one that has delays between
the pages that are longer than the page downloads themselves. However, we
argue that the slow-motion version of this benchmark is more representative
of real-world web browsing because real users do not simply download pages
one after another without pausing. Instead, users need time to read and digest
the content available on those pages, and the user time required to do so is
typically much longer than the web page download times. As a result, the slow-
motion web benchmark not only provides a better basis for measuring thin-
client performance, it also provides a more realistic measure of web browsing
performance.

2.3.3 Video Benchmark. The video benchmark used, processes and dis-
plays an MPEG1 video file containing a mix of news and entertainment pro-
gramming. The video is a 34.75 second clip that consists of 834 352 × 240 pixel
frames with an ideal frame rate of 24 frames/sec. The total size of the video file
is 5.11 MB. The thin server executed the video playback program to decode the
MPEG1 video then relayed the resulting display to the thin client. In systems
that have a lazy screen update mechanism, acting as frame buffer scrapers,
frames that are drawn to the virtual framebuffer on the server between screen
update requests are simply not relayed to the client. In systems that have an
eager update mechanism where the display updates are encoded and sent at
the time the server window system command occurs, the video application mea-
sures the time differential between the time the frame update was issued and
completed. If the time differential is too great, the application then drops the
intermediate frames to compensate.

Because of this behavior, we measured video performance using slow-motion
benchmarking by monitoring resulting packet traffic at two playback rates,
1 frame/second (fps) and 24 fps. Although no user would want to play video at
1 fps, we took the measurements at that frame rate to ensure all data packets
from the thin-server to the client were recorded in order to establish the refer-
ence data size transferred from the thin-server to the client, which corresponds
to a “perfect” playback. To measure the normal 24 fps playback performance
and video quality, we monitored the packet traffic delivered to the thin-client
at the normal playback rate and compared the total data transferred to the ref-
erence data size. This ratio multiplied by 24 fps would yield the real effective
frame rate of the playback [Nieh et al. 2003]. This results in the Video Quality
equation shown in Equation 2.

Video Quality =

(
DataTransferred(24 fps)/PlaybackTime(24 fps)

IdealFPS(24 fps)

)
(

DataTransferred(1 fps)/PlaybackTime(1 fps)

IdealFPS(1 fps)

) . (2)
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For the video benchmark, we used two different players capable of playing
MPEG1 files. We used Microsoft Windows Media Player version 6.4.09.1109 for
the Windows-based thin clients and MpegTV version 1.1 for the Unix-based
thin-clients. Both players were used with non-video components minimized so
that the appearance of the video application was similar across all platforms.

Introducing delays between the video frames does qualitatively change the
behavior of the benchmark from one that plays video in a normal way that
users watch to a slow-motion version that no users watch in practice. However,
the slow-motion video benchmark here is used only to provide additional in-
formation regarding the performance of the standard video benchmark. The
additional information provided is a measure of how much video data is dis-
carded and never displayed on the client. In this case, the qualitatively different
behavior of the slow-motion video benchmark versus the standard version is
inherently necessary to obtain useful additional information to provide a better
overall measure of video performance.

3. EXPERIMENTAL RESULTS.

We ran the three benchmarks on each of the six thin-client platforms and mea-
sured their resulting performance in both the Internet2 testbed and the local
LAN testbed environments. Results for both 8-bit and 24-bit color configura-
tions are reported for X and VNC (X, X 24, VNC, and VNC 24 respectively).
The results reported here for the local testbed were with the network simula-
tor configured to represent a 100BaseT LAN network environment. For each
of the thin-client systems, results are shown for the respective latencies as an
indicator of overall user-perceived performance. In addition, we provide results
for the amount of data transferred and bandwidth utilization of the thin-client
systems to demonstrate their respective bandwidth efficiencies. For thin-client
systems based on TCP/IP, we report results over Internet2 for both the default
TCP window sizes and the large 1 MB window sizes used. Section 3.1 presents
an overview of the measurements obtained, and provides some metrics of per-
formance for each application benchmark. These measurements provide the
first quantitative performance comparisons of thin-client systems in WAN en-
vironments. Section 3.2 discusses the implications for how thin-client systems
should be designed for WAN environments.

3.1 Measurements

Figures 3 to 9 show the results of running the latency benchmark on each of
the six thin-client systems. The figures refer to the thin-client systems based
on their remote display protocols. Figure 3 (in log scale) shows the amount of
data transferred for each operation on each thin-client system over Internet2.
The data transferred for the LAN and Internet2 with large TCP window
sizes was similar for almost all platforms and is not shown. Tarantella AIP
was an exception and is discussed further in Section 3.2.4. Figure 4 (in log
scale) shows the amount of bandwidth utilized for each operation over a LAN
connection. The bandwidth utilized for Internet2 and Internet2 with large TCP
window sizes was less than that of LAN for all operations and is not shown.
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Fig. 3. Data transfer of operations.

Fig. 4. Bandwidth of operations.

Fig. 5. Letter latency.

Fig. 6. Scroll latency.
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Fig. 7. Fill latency.

Fig. 8. Red bitmap latency.

Fig. 9. Image latency.

Figures 5 to 9 show the latency of the letter, scroll, fill, red bitmap, and image
operations on each system, respectively. Generally, for simple tasks such as
typing, cursor motion, or mouse selection, system response should be less than
the 50–150 ms threshold of human perception to keep users from noticing any
delay [Shneiderman 1992]. Figures 5 to 9 show that several of the systems
performed better than the 150 ms threshold for many of the operations. Sun
Ray stands out as having less than 100 ms latency for both LAN and Internet2
environments for almost all operations. Only the image operation took a little
longer than 150 ms, and the 150 ms threshold used for simple tasks arguably
does not apply for such a complex operation.
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Fig. 10. Web data transfer.

Fig. 11. Web bandwidth utilization.

Fig. 12. Web latency.

Figures 10 to 12 show the results of running the web benchmark on each
of the six thin-client systems. Figure 10 shows the average amount of data
transferred per web page over a LAN, Internet2, and Internet2 with 1 MB
TCP window sizes. The amount of data transferred for each platform was ap-
proximately the same in each of the network conditions tested. Tarantella AIP
transferred slightly less data over Internet2 compared to the LAN. However,
the difference was less than ten percent and is attributable to the adaptive com-
pression capabilities of the platform, as discussed in Section 3.2.4. Figure 11
shows the average amount of bandwidth utilized for the web benchmark over
each of the network conditions tested. Figure 12 shows the average latency per
web page. Usability studies have shown that web pages should take less than
one second to download for the user to experience an uninterrupted browsing
process [Nielsen 2000]. Our results show that while VNC achieved the best
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Fig. 13. Video data transfer.

Fig. 14. Video bandwidth.

Fig. 15. Video playback time.

Internet2 web performance, most of the platforms performed well over Inter-
net2, with each web page taking less than a second on average to download and
display. Only X and X 24 showed poor performance over Internet2, taking over
six seconds on average to display each web page.

Figures 13 to 15 show the results of running the video benchmark on each
of the six thin-client systems over a LAN, Internet2, and Internet2 with 1 MB
TCP window sizes. Figure 13 shows the amount of data transferred during nor-
mal video playback at 24 fps. Unlike the latency and web benchmark results,
there are substantial differences in the amount of data each platform trans-
ferred among the different network conditions tested. Figure 13 also shows the
amount of data transferred during video playback when the playback rate was
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Fig. 16. Video quality.

set to 1 fps. At 1 fps, all of the video frames were rendered completely on the
client, and the data transferred for each platform was similar over LAN, Inter-
net2, and Internet2 with 1 MB TCP windows. Figure 14 shows the bandwidth
utilization of the video benchmark over each of the network conditions tested.
Figure 15 shows the video playback time on each system. Except for X, there
was relatively little variation in playback time across different network envi-
ronments. Figures 13 and 15 taken together indicate that when the thin-client
systems cannot deliver the video at the desired playback rate, most of them
simply discard data rather than slowing down the video. Figure 16 shows the
quality of video delivered on each thin-client system, calculated as described in
Section 2.3.3 by comparing the measured results at 24 fps versus the slowed
down playback at 1 fps. Unlike the web benchmark, in which most of the
thin-client systems delivered reasonable performance, Figure 16 shows that
most of the thin-client systems performed poorly on the video benchmark over
both LAN and Internet2 environments. Only Sun Ray’s performance was rea-
sonable over Internet2, delivering roughly 70% video quality. The video qual-
ity achieved on all of the other platforms was below 35% and generally not
usable.

For most of the TCP-based thin-client platforms, there was not a significant
performance difference when running the benchmarks over Internet2 with de-
fault TCP window sizes versus the 1 MB TCP window sizes. Figures 12 and
16 show that Tarantella AIP, VNC, and X 24 performed better with the larger
TCP window sizes on the web and video benchmarks, respectively. This effect
is magnified in the greater bandwidth requirements of VNC 24 and X 24 com-
pared to those of VNC and X respectively. The more pronounced performance
difference occurred with the video benchmark. The use of larger TCP window
sizes made a bigger difference there, due to the higher data bandwidth require-
ments of video. In some cases, using larger window sizes resulted in slightly
higher overhead. When using increased window sizes, RFC1323 options must
be used, which increases the sequence number field from 2 bytes to 4 bytes
per packet and adds an additional window scaling field. These additional fields
may add some overhead to the processing of each packet, the effect of which is
exaggerated when the payload of the packet is small. These additional fields
also resulted in slightly more data being transferred when using large window
sizes, but the difference was only a few percent in all cases.
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Because the measured packet loss over our Internet2 connection was less
than 0.05%, as noted in Section 2.2, our experiments did not focus on the impact
of loss on thin-client performance. However, we did perform some additional ex-
periments to confirm that this level of loss could be considered negligible in our
measurements. Using VNC and Citrix, we compared measurements of the web
benchmark with both 0% and 1% random packet loss on our simulated Inter-
net2 testbed. In all cases, there was no significant difference. This is not surpris-
ing given that the measurements in Figure 11 show that the web benchmark
is not particularly bandwidth-intensive. If more bandwidth-intensive applica-
tions are used with thin clients in more bandwidth-constrained environments,
we would expect loss to have a larger impact on performance. We also performed
some preliminary testing with these thin clients with a 10% random packet loss
in our simulated Internet2 testbed. At this high packet loss rate, we observed
very low link utilization as expected [Lakshman and Madhow 1997; Lakshman
et al. 2000].

Given the centrality of the network in thin-client systems, one might expect
that thin-clients would exhibit significantly poorer performance when used in
high packet loss scenarios, particularly for systems that rely upon TCP for data
transmission. Some related research has shown that thin-client performance
may not be significantly impacted until approximately 4% packet loss [Yang
et al. 2003], which is fairly high compared to those seen on the commodity
Internet today. Indications are that packet loss rates are decreasing by 40–50%
per year and there are reports that rates of packet loss in the U.S. are less than
0.5% [Cottrell 2005; Bradner 2005]. Furthermore, related work suggests that
differences in how thin-clients use the network versus the traditional desktop
computing model, can result in thin-clients providing superior performance in
lossy networks for network applications such as web browsing [Yang et al. 2003].
However, the implications of loss and congestion on thin-client performance still
requires further study and is beyond the scope of this article.

3.2 Interpretation of Results

The measurements presented in Section 3.1 show that using thin-client comput-
ing in a WAN environment can deliver acceptable performance over Internet2,
even when client and server are located thousands of miles apart on opposite
ends of the country. In particular, Sun Ray delivered excellent performance
on all of the application benchmarks measured. However, performance varies
widely among thin-client platforms, and not all platforms are suitable for this
environment. We discuss six principles that should serve as guidelines in de-
signing thin-client systems for supporting wide-area computing services: opti-
mize latency over bandwidth, partition client/server functionality to minimize
synchronization, use simpler display primitives for speed, compress display
updates, push display updates, and optimize transport protocol.

3.2.1 Optimize Latency versus Bandwidth. Although thin-client comput-
ing vendors often tout the bandwidth efficiency of their platforms, our mea-
surements show that the bandwidth efficiency of a thin-client system is not a
good predictor of performance over Internet2. Figures 3, 10, and 13 show that
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Citrix ICA and Microsoft RDP usually transferred less data overall for each
benchmark compared to the other systems while Sun Ray typically transferred
the most amount of data overall for each benchmark. However, in terms of
user-perceived performance, our measurements show that overall Sun Ray sig-
nificantly outperformed both ICA and RDP over Internet2 for both the latency
and video benchmarks, and was comparable for the web benchmark. For the
latency benchmark, Figures 5 to 9 show that ICA and RDP have response times
that balloon to over 400 ms over Internet2 while Sun Ray response times remain
near 150 ms or less. For the video benchmark, Figure 16 shows that Sun Ray
delivered video quality that was more than four times better than either ICA
or RDP. For the web benchmark, the web browsing latency for Sun Ray was
comparable to ICA and better than RDP, despite sending almost an order of
magnitude more data. Furthermore, while ICA and RDP sent the least amount
of data per page, 30 KB and 41 KB respectively, VNC had the lowest latency
over Internet2 with an average page latency of 410 ms, 50 percent faster than
ICA and twice as fast as RDP. In addition, when using large TCP windows,
despite transferring nearly 3 times as much data, VNC 24 suffered very little
additional latency when compared to VNC.

Our measurements show that bandwidth availability in LAN or Internet2
environments was not the main performance limitation for both the latency and
web benchmarks, assuming appropriately sized TCP windows. For the latency
benchmark, the most bandwidth consumed over Internet2 for any of the oper-
ations was 11 Mbps for the image operation on Sun Ray, as seen in Figure 4.
For the web benchmark, Figure 11 shows that over Internet2, no platform con-
sumed more than 5 Mbps on average. Only in the video benchmark, shown in
Figure 14, did one of the platforms, Sun Ray, approach the limits of bandwidth
available over Internet2, consuming roughly 33 Mbps. However, despite using
the most bandwidth for the video benchmark, Sun Ray delivered by far the best
video performance over Internet2.

Instead of network bandwidth being the primary bottleneck, our measure-
ments comparing thin-client performance over Internet2 versus the LAN show
that network latency had a significant impact on thin-client performance. For
the latency benchmark, Figures 5 to 9 show that the latency of operations over
Internet2 for almost all of the thin-client systems were roughly 65 ms or more
longer than the results for the same operation over the LAN testbed. AIP was
an exception to this, which we discuss further in Section 3.2.4. The reason for
the added latency is because each operation requires the client to send input
to the server, and the server to reply with the display update, which entails at
least one round trip across the network. Since the RTT for Internet2 is roughly
65 ms longer than the LAN, it should be expected that the operations would
take 65 ms longer over Internet2 versus the LAN. What was not expected, is
that only Sun Ray and VNC took no more than one RTT longer for each oper-
ation over Internet2 versus the LAN. All of the other systems incurred more
than one RTT of additional latency over Internet2 versus the LAN for some of
the operations. This implies that X, X 24, ICA, RDP, and AIP in some cases re-
quired multiple round trip times to complete a simple operation, making them
less tolerant of the increased network latencies found in WAN environments.
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For the web benchmark, our measurements also show the impact of network
latency on thin-client performance. Figure 12 shows that the average per web
page download latency over Internet2 was roughly 65 ms or more longer than
the same latency over a LAN for a given platform. In our Internet2 testbed
shown in Figure 1, the thin-client server was located across the Internet2 net-
work from the web server. Since the thin-client server is local to the web server
in the LAN, we can expect an extra Internet2 RTT delay in downloading a web
page over Internet2 versus the LAN because of extra delay between getting the
container HTML page to the thin-client server and the subsequent retrieval of
the images. In addition, the Netscape status widgets also induce an additional
Internet2 RTT over Internet2. Since the web browser caches the web pages, the
second run through the 54 web pages does not cause the browser to rerequest
the web pages from the web server. As a result, there is at best a two RTT
additional delay for the first 54 pages only, or an average of one RTT additional
delay per page. Only Sun Ray, VNC, and ICA incurred this minimum increased
delay for the Internet2 versus LAN web benchmark results. While these three
platforms performed the best over Internet2, the amount of data transferred for
these systems varied from the smallest to the largest amount of data transfer
for all of the platforms, showing no correlation with bandwidth consumption.

Our results demonstrate the importance of designing wide-area thin-client
systems with a focus on tolerating network latency as opposed to just minimiz-
ing network bandwidth. As network technologies improve and high-bandwidth
Internet access becomes a commodity, the fundamental physical limits of prop-
agation delay lead us to believe that the ability of thin-client systems to tol-
erate latency will be an increasingly dominant factor in determining their
performance.

3.2.2 Partition Client/Server to Minimize Synchronization. The design of
a thin-client system requires that the functionality of the system be partitioned
in some manner between the client and the server. An important partitioning
issue is to what extent is the client’s graphical user interface functionality sup-
ported on the client versus the server. For instance, Sun Ray and VNC do not
support any windowing functions on the client but instead maintain all thin-
client window system state at the server. On the other hand, X maintains sig-
nificant window system state at the client to allow the client to locally manage
window positioning, colormap information, font libraries, and so on. X stands
apart from the other thin-client systems in the degree in which it uses local
client window system state, which also makes the client-side of an X system
more heavyweight than those of other thin-client systems. Compared with Sun
Ray and VNC, the partitioning of functionality between client and server in X
potentially allows X to perform more operations locally at the client, but may
require more coordination between the client and server for display updates
sent from the server.

While the X approach performs quite well over a LAN, overall it performs far
worse over Internet2 than all of the other thin-client systems. For the latency
benchmark, Figures 5 to 9 show that X incurred two to three Internet2 RTT
of additional latency over Internet2 versus a LAN for all operations except the
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letter operation. X 24 suffered even more greatly, especially in the red bitmap
and image latency tests, with many RTT of additional latency. This is in stark
contrast with the other platforms, which for many of the operations only suf-
fered the minimum of one RTT of additional latency over Internet2 versus a
LAN. Given the Internet2 RTT of 66 ms, X has over 130 ms of additional la-
tency for operations over Internet2, resulting in slower response time that is
very noticeable to the user. For the web benchmark, Figure 12 shows that X
provides the best performance over a LAN, but the absolute worst performance
over Internet2. X and X 24 on average took well over 6 seconds per web page
over Internet2. For the video benchmark, Figure 16 shows again that X provides
the best video quality over a LAN but only 11% video quality over Internet2,
the worst video quality of all the platforms assuming large TCP windows. Our
results suggest that this partitioning of client/server display functionality in X
requires a higher degree of synchronous coordination between client and server
than systems that do not employ as much local client window system function-
ality. The better performance results with thin-client systems such as Sun Ray
surprisingly suggest that minimizing the amount of local client window system
functionality can result in better overall performance in WAN environments.

The video benchmark perhaps most clearly shows the problems that result
from synchronization of the client and server with the X protocol. In comparing
the amount of data X transferred over Internet2 versus the LAN as shown
in Figure 13, we can see that the primary problem is that most of the video
data does not get sent to the client. The X display command does not complete
until the client actually receives the video frame from the server and returns
an acknowledgement, incurring a cross-country round trip delay for each video
frame displayed. Because the application realizes that it cannot display the next
video frame on time, it skips ahead in the video stream until it finds a video
frame that can be displayed on time. The intermediate video frames are dropped
and not displayed, resulting in degraded video quality, effectively showing only
one out of every 10 frames. A secondary factor for X’s poor video quality is that it
takes much longer to playback the video stream. The 17 seconds of extra delay
is due to the level of synchronized coordination between X client and server in
allocating the color map used throughout the playback of the video. We verified
that this was not just an artifact of MpegTV by testing the popular Berkeley
Multimedia Research Center’s mpeg play, which also exhibited the same extra
delay.

Because X is an application-level protocol, its performance depends heavily
on what X primitives an application is programmed to use. X does have the have
the ability to support client/server display functions that are more decoupled
between client and server. However, our experiments with widely-used com-
mercial X applications such as Netscape show that it is not uncommon to find a
high proportion of synchronous display functions used. In particular, whenever
there is a return value that reports the status of a request, the operation must
be completed synchronously and the application waits for the return value.
Unfortunately in Netscape, all of the routines that draw the toolbar and the
page load status bar create a significant number of GetWindowAttributes and
GetGeometry requests, which are both synchronous functions. If widely-used

ACM Transactions on Computer Systems, Vol. 24, No. 2, May 2006.



198 • A. M. Lai and J. Nieh

commercial X applications can so easily have performance problems in WAN
environments, it seems clear that the X system itself is at least partially to
blame even if X primitives may exist that allow more decoupled client-server
interactions.

We can quantify to some extent, the degree of synchronization in a system’s
display protocol by the amount of extra delay, experienced running each system
over Internet2 versus a LAN. For the latency benchmark, Sun Ray and VNC in-
cur the minimum delay as discussed in Section 3.2.1. ICA and VNC 24 provide
the next best performance, incurring the minimum delay except for the image
operation. RDP does a little worse, requiring two extra RTT of delay on both
the red bitmap and image operations. X and X 24 do the worst. From inspecting
the packet captures in the latency benchmark, it appears that ICA and RDP
perform some sort of synchronized operation after approximately every 8 KB
of data being sent. When this occurs, the protocols each wait a full RTT before
continuing with the remaining data transfer. This synchronized execution also
limits the utility of using larger TCP window sizes, as is evidenced by the lack
of improvement in performance when using larger TCP window sizes versus
default TCP window sizes. In contrast, as shown in Figure 9, some additional
synchronization in VNC 24 is removed when using appropriately sized TCP
windows, which will be discussed further in Section 3.2.6. For the web bench-
mark, Sun Ray, VNC and ICA incur the minimum extra delay over Internet2,
as discussed in Section 3.2.1. They are followed in best-to-worst relative perfor-
mance order by RDP, AIP, X, and X 24. Unfortunately, due to the proprietary
nature of ICA, RDP, and AIP, it was not possible to examine in detail the mech-
anisms behind the synchronization of the protocols.

Overall, the degree of synchronization in the display protocol has a much
more significant impact over Internet2 than bandwidth efficiency. Our results
demonstrate that to optimize performance for the larger latencies in WAN en-
vironments, the functionality in a thin-client system should be carefully par-
titioned between the client and server to minimize synchronization between
client and server. If the client and server need to send messages back and forth
several times to perform an operation, the much higher round trip latencies over
Internet2 will result in significant increases in latency for the given operation.

3.2.3 Use Simpler Display Encoding Primitives. Different thin-client sys-
tems use different display primitives for encoding display updates that are
sent from the server to the client. Four types of display encoding primitives
are high-level graphics, low-level graphics, 2D draw primitives, and raw pixels.
Higher-level display encodings are generally considered to be more bandwidth
efficient, but require more complexity on the client and may be less platform-
independent. For instance, graphics primitives such as fonts require the thin-
client system to separate fonts from images, while using pixel primitives
enables the system to view all updates as just regions of pixels without any se-
mantic knowledge of the display content. X takes a high-level graphics encoding
approach and supports a rich set of graphics primitives in its protocol, includ-
ing windowing and color mapping commands. ICA, RDP, and AIP are based
on lower-level graphics primitives that include support for fonts, icons, and
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drawing commands, as well as images. Sun Ray and VNC employ 2D draw
primitives such as fills for filling a screen region with a single color or a two-
color bitmap for common text-based windows. VNC can instead be configured
to use raw pixels only, but none of the systems we considered used raw pixels
by default.

Our results show that higher-level display encodings are not necessarily
more bandwidth efficient than lower-level primitives. For the latency bench-
mark, Figure 3 shows that the low-level graphics encodings such as ICA, RDP,
and AIP generally required less data transfer than the pixel-based approaches
such as VNC and Sun Ray, but the high-level X encoding format required the
highest data transfer on two of the five latency operations regardless of color
depth. For the web benchmark, Figure 10 shows that while the higher-level
encoding formats used by ICA and RDP require less data transfer than the
lower-level pixel-based encoding format used by VNC, VNC sends less data
than either X or AIP, which also use higher-level encoding formats. For the web
benchmark, Figure 10 shows that Sun Ray, which encodes pixel values in 24-bit
color [Schmidt et al. 1999], using lower-level pixel-based encoding sends less
data than X 24, with its higher level encoding.

In Figure 10, we see that the amount of data transferred in X 24 and VNC 24
are approximately 3 times greater than X and VNC respectively. Therefore, in
order to compare 24-bit displays with 8-bit color displays, the data transfers can
be normalized by the number of bits used for pixel color in the protocol. When
we normalize the data transferred in Sun Ray, this would reduce the amount of
data sent using the 24-bit color Sun Ray encoding by a factor of three less than
shown in Figure 10. The normalized Sun Ray data transfer would be about 110
KB per web page, less than both X (which is consistent with the X 24 result)
and AIP, but still more than ICA. However, ICA achieves some of its bandwidth
efficiency by using compression. When we turned off compression in ICA to
reveal the performance of its basic display encoding on the web benchmark, the
data transfer requirement for ICA ballooned to about 100 KB per web page,
only 10 percent less than Sun Ray.

A key reason why the higher-level display encoding primitives are often no
better, if not worse, than the lower-level display encoding primitives, is that
many of these encodings were optimized for text-based displays. Much of the
complexity of the higher-level encoding formats used by X, ICA, RDP, and AIP
relates to keeping track of text-based primitives. But relative to images, graph-
ics, and video, text generally does not require much bandwidth to begin with.
Even for the web benchmark, which consisted of mostly text-based web pages,
text-oriented display accounts for much less than half of the data in the original
HTML pages. In addition, for platforms such as X, one needs to maintain font
libraries on the client that can take up many megabytes. Figure 13 shows that
for the video benchmark, which involves no text-oriented display, the higher-
level encoding formats are not more bandwidth efficient than the lower-level
formats. If we again normalize for the number of bits used for pixel color in
the protocol, we see that X, AIP, and Sun Ray all require roughly the same
amount of data transfer. Similarly, ICA, RDP, and VNC all require roughly the
same amount of data transfer. ICA, RDP, and VNC require less data transfer

ACM Transactions on Computer Systems, Vol. 24, No. 2, May 2006.



200 • A. M. Lai and J. Nieh

than the other platforms simply because they use compression, as discussed
in Section 3.2.4. As applications become more multimedia-oriented and band-
width increases, the efficiency with which an encoding supports graphics and
images is more important and additional complexity for text may in fact reduce
performance.

More importantly, our measurements indicate that simpler lower-level dis-
play primitives as used by Sun Ray and VNC resulted in better overall user-
perceived performance than higher-level display encoding primitives. Our re-
sults suggest that the higher-level primitives used in ICA, RDP, AIP, and X have
higher latencies over Internet2 that may be due to their added complexity. For
both the web and video benchmarks, Sun Ray and VNC outperformed all of
the other higher-level encoding platforms. Figure 12 shows that Sun Ray and
VNC had the lowest average web page latencies, with VNC being 50 percent
better than any of the higher-level encoding platforms. Figure 16 shows that
Sun Ray had the best video quality followed by VNC, with Sun Ray being more
than two times better than any of the higher-level encoding platforms. While
VNC’s performance benefits substantially from compression, as discussed in
Section 3.2.4, Sun Ray’s good performance is simply due to a good balance
between computing and communication costs in its display encoding format.
Note that the good performance results for Sun Ray were achieved despite
using slower client and server hardware as compared to the other thin-client
systems. When network bandwidth is sufficient and network latency is the pri-
mary issue, the simpler pixel-based encoding approaches provide better overall
performance.

3.2.4 Compress Display Updates. As summarized in Table I, many of
the thin-client systems employ low-level compression techniques such as run-
length encoding (RLE) and Lempel-Ziv Welch (LZW) compression to reduce the
data size of display updates. For our experiments, compression was by default
enabled on all of the thin-client systems that supported it. ICA, AIP, and VNC all
provide a simple user option to enable or disable compression. To evaluate the
impact of compression, we also ran the same benchmarks on these three thin-
client systems with compression explicitly disabled and measured the resulting
performance. As expected, all three platforms transferred less data on all of the
benchmarks with compression enabled, though compression was least effective
with the video benchmark. Furthermore, all three platforms performed better
overall on the benchmarks with compression enabled as opposed to without it.

We identified three reasons why enabling compression improved perfor-
mance. First, some of the thin-client systems, particularly VNC, were band-
width limited when compression was disabled and default TCP window sizes
were used. Enabling compression reduced the amount of data transferred and
removed this bandwidth limitation. Second, two of the thin-client systems, ICA
and RDP, require some synchronization between client and server after ap-
proximately every 8 KB of display update data that is sent, as discussed in
Section 3.2.2. Enabling compression reduced the amount of data transferred
and therefore reduced the frequency at which this synchronization occurred,
thereby improving performance for WAN environments. Third, some of the
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thin-client systems may employ different client rendering functions depend-
ing upon whether compression is enabled. We discovered that when hextile
compression is enabled, the VNC client rendering function renders blocks of
pixels at one time. When compression is not used, the rendering function ren-
ders pixels individually, one at a time. Our measurements on the web and video
benchmark showed that the rendering function applied when compression was
used was 6 to 24 times faster per pixel displayed. As discussed further in Section
3.2.5, because the VNC server waits until the client has completely rendered the
last display update before sending the next display update, the shorter client
rendering times with compression enabled result in better performance.

Our results also show that low-level compression applied to a simple pixel-
based display encoding as used in VNC can perform surprisingly well. The VNC
24 red bitmap operation outperformed VNC, as shown in Figure 8. When in 8
bit color, the red bitmap appeared as a dithered red area. In 24 bit color, the red
bitmap was rendered as a solid uniform red area. Because of the combination of
simple pixel-based encoding as well as low-level combination, rendering of this
screen updated is reduced to a fill, sending less data than for the original JPEG
red bitmap file. The web benchmark results show that effective compression
can compensate for a less efficient display encoding and dramatically reduce
the amount of data that needs to be transferred without incurring significant
additional overhead. This is most apparent from the data transfer and latency
measurements for VNC. Figure 10 shows that VNC requires about 50% less
data transfer than the higher-level X and AIP approaches, neither of which
employed much if any compression over the network conditions considered for
the web benchmark. Furthermore, Figure 12 shows that VNC had the lowest
latency over Internet2 of any of the thin-client platforms for the web benchmark.
The simple design of combining a low-level compression method with a simple
pixel-based encoding provided very good performance on the web benchmark.

Because thin-client systems may operate in different network environments,
adaptive compression mechanisms have been proposed to optimize the perfor-
mance of these systems. AIP uses such an adaptive compression mechanism to
turn on increasingly efficient compression algorithms as the available network
bandwidth decreases. However, this adaption mechanism in some cases results
in worse performance than expected. For instance, Figure 6 shows that AIP
surprisingly has lower latency on the scroll operation over Internet2 than a
LAN. The amount of data transferred over the LAN for this operation is many
times larger than that which is transferred over Internet2, transferring ap-
proximately 92KB and 2KB respectively. The reason for this is because AIP
adaptively disabled compression over the LAN but enabled compression over
Internet2. When we manually enabled compression over the LAN, the scroll
operation performance over the LAN was better than Internet2.

However, the use of compression does not always improve performance. In
experiments conducted over LAN, enabling compression for video does not im-
prove performance, but in contrast often decreases it. With VNC, the video
quality remained constant, with or without compression. With RDP, the video
quality is slightly reduced, but the data transfer size is significantly smaller.
Despite the fact that these results were determined for performance over LAN,
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we believe that these results may also be applicable to WANs. Because of the
amount of data that needs to be transmitted and the time sensitivity of video,
we believe that it is much more difficult to compress appropriately. Because
we are working with high bandwidth networks, the amount of time needed
to compress a large amount of data may be longer than the amount of time
needed to transmit the uncompressed data. This will cause the video quality
to decrease. Because of these issues, a mechanism that adaptively enables and
disables compression may be appropriate. However, in most cases, our experi-
mental results show that simple low-level compression can be used effectively
to improve the performance of thin-client systems.

3.2.5 Push Display Updates Eagerly. The policy used to determine when
display updates are sent from the server to the client is an important issue that
does not receive the attention it deserves; when the display update is sent can
be as important as what is sent. Two important display update policy issues are
eager versus lazy display updates, and server-push versus client-pull models.

The first display update policy issue is whether display updates are sent ea-
gerly with the server window system graphics commands or lazily as a frame-
buffer scraper. In the eager case, the display update is encoded and sent at the
time the server window system command occurs. X and Sun Ray both do eager
updates. In the lazy case, the window system command is queued in an inter-
mediate representation, such as keeping track of regions of pixels that have
been modified. Old modifications that are overwritten by newer modifications
are discarded. Screen updates are then sent at regular intervals depending
on available bandwidth, with only the latest modifications encoded and sent to
the client. VNC, ICA, and RDP all perform lazy updates [Mathers and Genoway
1998].

While lazy update mechanisms can be used to merge multiple display up-
dates at the server for bandwidth efficiency, our measurements indicate that
these mechanisms are often incompatible with the needs of multimedia applica-
tions such as video. For the video benchmark, Figure 16 shows that even over a
LAN, all of the platforms that used lazy display updates delivered much worse
quality video than those that used eager display updates. The problem that
occurs in platforms such as ICA and RDP is that the rate of their lazy update
mechanisms is too slow to keep up with the 24 fps delivery rate required by the
video benchmark. This is despite the fact that neither the client nor server was
heavily loaded when running the video benchmark using ICA or RDP.

The second display update policy issue is whether a server-push or client-
pull model drives the display update policy. In the server-push model, the server
determines when to send a screen update to the client. In the client-pull model,
the client sends a request to the server when it wants a screen update. A benefit
of the client-pull model is that it provides a simple mechanism for adapting to
the client processing speed and network speed available. Of the systems we
considered, only VNC uses the client-pull model while all the other platforms
use the server-push model.

Our measurements suggest that a server-push display update model is bet-
ter at tolerating WAN latencies than a client-pull model. The problems with
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the client-pull model are illustrated by the performance of VNC on the video
benchmark over Internet2. Over Internet2, the server must wait until the last
display update is sent to the client and the client responds back requesting the
next display update, which imposes a 66 ms RTT penalty. Even if the client were
infinitely fast, the client-pull model would not allow the video to be delivered at
24 fps. VNC’s client-pull model is the primary reason why its video benchmark
performance is twice as bad over Internet2 versus a LAN, as shown in Figure 16.
In contrast, Sun Ray avoids these problems by using an eager server-push dis-
play update model to send display updates immediately as video frames are
rendered on the server for the video benchmark, resulting in the best video
performance over Internet2. As multimedia applications become increasingly
common and network bandwidth becomes increasingly available, we expect
that the benefits of higher fidelity performance with a eager server-push dis-
play update policy will increasingly outweigh the benefits of bandwidth savings
from lazy or client-pull display update models.

3.2.6 Optimize Transport Protocol. The sixth issue to consider is what un-
derlying transport protocol is used below the remote display protocol. Most
thin-client systems are based on TCP/IP, which provides the benefits of flow
control and reliable delivery. However, it is not clear if the mechanisms pro-
vided by TCP/IP are best suited for supporting remote display protocols. All
the thin-client systems examined except Sun Ray use TCP/IP. Sun Ray uses
UDP/IP, which provides a more lightweight mechanism, but requires the re-
mote display protocol to provide flow control and address reliable delivery is-
sues. As we saw in Section 3.1, the choice of underlying transport protocol and
how that protocol is used can have a significant impact on wide-area thin-client
performance.

As shown in Figure 9, there is a significant difference in performance when
using appropriately sized TCP windows. An improvement with larger TCP win-
dow sizes indicates that the system configurations are effectively bandwidth
limited when using the default TCP window sizes. This is due to the flow con-
trol and reliable delivery mechanisms built into TCP. The TCP window size
is the amount of data that can be sent before requiring an acknowledgment.
When the amount of data transported in an operation exceeds the size of the
TCP window, additional round trips are required to complete the data transfer.
Therefore, using appropriately sized TCP windows can increase performance.
However, the larger TCP window sizes consume more memory resources on the
server and the client. The memory consumption can be significant for a server
delivering WAN thin-client service for many users. Just supporting the TCP/IP
connections for a hundred thin-clients with 1 MB window sizes would consume
at least 100 MB of memory in the implementations that were inspected. How-
ever, it appears that the theoretically optimal TCP window size is not necessary
due to the fact that none of the protocols actually use the full available network
bandwidth. Some optimization may be possible by tuning the TCP window
sizes for each thin-client depending upon the amount of network latency along
the respective network path as well as the maximum bandwidth utilization of
the protocol. However this adds additional complexity to the management of
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the transport protocol. In contrast, the performance of the UDP/IP-based Sun
Ray system is affected to a much lesser extent by higher network latencies, de-
livering much more comparable performance over a LAN and Internet2. In this
case, no TCP window tuning is required. Instead, flow control issues are better
addressed at the thin-client protocol level instead of the underlying transport
protocols. In addition, because UDP/IP does not guarantee reliable delivery of
data, data can be lost in transport. However, this is not always a bad situation
with thin-client operation. The Sun Ray protocol can detect when data is lost
and request a more recent screen update for the damaged area of the screen
that has been lost. This is similar in many respects to the techniques used in
common streaming video platforms. We further hypothesize that in situations
with loss and congestion, mechanisms that can be implemented over UDP/IP
such as those previously described will provide better performance than those
implemented over TCP/IP.

4. RELATED WORK

Many systems for remote display have been developed. Modern thin-client sys-
tems evolved from the X Window system [Scheifler and Gettys 1986], which
was developed in the 1980s. In the mid-1990s, Citrix introduced the ICA pro-
tocol and WinFrame client/server software for using ICA to provide remote
access to Windows-based servers [Mathers and Genoway 1998]. As a result of
an agreement with Microsoft, the integrated multi-user capability of WinFrame
was removed and evolved into Metaframe in 1998, the current generation ICA
client/server software [Citrix Systems 1998; Mathers and Genoway 1998]. Af-
ter the deal with Citrix, Microsoft introduced Windows NT Terminal Server
Edition, a separate version of Windows NT with multi-user and remote ac-
cess capability using Microsoft’s Remote Display Protocol (RDP) [Cumberland
et al. 1999; Microsoft Corporation 1998]. This functionality was integrated into
Windows 2000 and renamed Terminal Services. In 1996, a low-bandwidth X
(LBX) proxy server extension [broadwayinfo.com ] was developed and released
as part of X11R6.3. SCO Tarantella [Santa Cruz Operation 1998] was intro-
duced in 1997 and recently resulted in a U.S. Patent on its underlying Adaptive
Internet Protocol (AIP) [Shaw et al. 2000]. Several products such as Laplink
[LapLink 1999] and PC Anywhere [Symantec Corporation ] were developed for
Windows-based platforms in the late 1990s, which enabled users to remotely
control a PC by sending screen updates to the remote clients, but these sys-
tems perform much worse than more general thin-client solutions such those
from Citrix and Microsoft [Nieh et al. 2000]. In 1998, researchers at Cambridge
Olivetti Research Laboratories, now Cambridge AT&T Research, introduced
Virtual Network Computing (VNC) [Richardson et al. 1998; AT&T Laboratories
Cambridge ]. Extensions to VNC have also been introduced, such as Kaplinsk’s
tight encoding [Kaplinsk]. More recently in 1999, Sun Microsystems intro-
duced the Sun Ray I [Sun Microsystems ] hardware thin-client device for LAN
workgroup environments that also used a pixel-based display protocol [Schmidt
et al. 1999]. Because of previous work [Nieh and Yang 2000; Wong and Seltzer
2000] showing that LBX, Laplink, and PC Anywhere perform worse than
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Microsoft Terminal Services for single-user workloads, we did not examine
these systems and extensions as part of this study.

While thin-client systems have primarily been employed in LAN workgroup
environments, a growing number of ASPs are employing thin-client technol-
ogy to attempt to host desktop computing sessions that are remotely delivered
over WAN environments. Examples include services from FutureLink [Charon
Systems ], Runaware [Runaware.com ], and Expertcity [Expertcity, Inc. 2000].

Several studies have examined the performance of a single thin-client sys-
tem, in some cases in comparison to the X protocol. Danskin conducted an early
study of the X protocol [Danskin and Hanrahan 1994] by gathering traces of
X requests. Wong and Seltzer [1999; 2000] have studied the performance of
Windows NT Terminal Server, focusing on office productivity tools and web
browsing performance. Tolly Research [2000] has conducted similar studies for
Citrix MetaFrame. Schmidt, Lam, and Northcutt examined the performance of
the Sun Ray platform in comparison to the X protocol [Schmidt et al. 1999] and
reported results for Sun Ray focusing on office productivity application perfor-
mance at various network bandwidths. None of these studies consider perfor-
mance issues in WAN environments, nor do they compare across the range of
thin-client platforms discussed here.

Many of the thin-client systems developed employ lossless data compres-
sion techniques in their remote display protocols. Lossless data compression
techniques can be largely classified into three categories: static/dynamic pat-
tern substitution (dictionary based), predictive encoding and entropy encoding
[Sayood 2000]. Most adaptive-dictionary-based techniques have their roots in
LZ77 [Ziv and Lempel 1977] and LZ78/LZW [Ziv and Lempel 1978]. GIF, PNG,
UNIX Compress, and the zip family compression tools all belong to this cate-
gory. Predictive encoding method tries to predict the pixels to be encoded based
on the history of the encoding. Still image compression algorithms developed
recently such as JPEG-LS [Weinberger et al. 2000] and CALIC [Weinberger
et al. 2000] belong to this category. Entropy encoding is often used together
with other compression techniques. The well-known Huffman and Arithmetic
coding are representative entropy encoding methods. Research is ongoing in
developing more efficient compression algorithms for the kind of discrete-tone
synthetic images generated by thin-client systems. For example, both TCC
[Christiansen et al. 2000] and PWC [Ausbeck 1999] proposed in recent years,
have good compression performance for this type of data. FABD [Cleary et al.
1995] is designed specially for the compression of screen dump data. Because
of the open source nature of VNC, several new compression algorithms have re-
cently been proposed and implemented in that platform, including Kaplinsk’s
tight encoding [Kaplinsk]. Our results show that efficient display encodings
and compression algorithms are just one component of thin-client system
performance.

Few studies have been done that compare the performance of several thin-
client systems. Howard [2000] presented performance results for various hard-
ware thin-clients based on tests from the i-Bench benchmark suite. This work
suffers from two significant problems in measurement methodology. First, the
experiments only measure benchmark performance at the server-side. They
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do not measure data transferred at the client-side and do not account for ac-
tual client-side performance. Second, the work was based on Microsoft Internet
Explorer 5.01, which does not properly interpret the JavaScript OnLoad com-
mand used in the i-Bench web page load test. This causes successive pages to
start loading before previous pages have completed loading, resulting in unpre-
dictable measurements of total web page download latencies. Nieh and Yang
[2000], Nieh et al. [2000], Yang and Nieh [2000], and Yang et al. [2002] examined
the performance of several thin-client systems at various network bandwidths.
This work does not consider the impact of network latency in WAN environ-
ments on thin-client systems. Our work addresses latency measurement issues
not addressed in previous work: examining the broad space of underlying design
choices that impact system performance. Previous work has also focused on the
bandwidth efficiency of these systems. Our results show that efficient display
encodings and compression algorithms are just one component of thin-client
system performance. In addition, our work also addresses the effects of TCP
buffer tuning with respect to thin-client systems. There is ongoing research
in the area of automatic TCP buffer tuning [Semke et al. 1998], which may
alleviate the difficulties in efficiently tuning window sizes.

While technology has changed, the vision of customers simply being able
to rent their computing services from a public computer utility harkens back
to the days of Multics [Corbato and Vyssotsky 1965]. Unlike Multics, ASPs
are faced with supporting applications that are not just simple text programs
but increasingly graphics and multimedia-oriented. However, further research
needs to be done to enable computer utilities to effectively support multimedia
applications in wide-area environments.

5. CONCLUSIONS AND FUTURE WORK

We performed the first quantitative measurements to examine the impact of
WAN latency on thin-client computing performance. We addressed the diffi-
cult problem of measuring proprietary, closed-source thin-client systems by
using slow-motion benchmarking, which combines network monitoring with
slow-motion versions of application benchmarks to provide accurate measure-
ments of thin-client performance. While our results demonstrate the feasibil-
ity of using thin-client computing for delivering computing services in a WAN
environment, they also reveal that many of the design tradeoffs used in ex-
isting thin-client systems are inappropriate for such network environments.
Our results demonstrate the importance of focusing on optimizing for network
latency as opposed to bandwidth issues in designing thin-clients. In this con-
text, we show that minimizing the need for synchronized local client window
system state, simpler, pixel-based display primitives, eager server-push dis-
play updates, and low-level forms of compression are surprisingly effective
design choices. We examined these issues across a broad range of platforms
and provide the first comparative analysis of the performance of these sys-
tems. These quantitative measurements provide a basis for future research in
developing more effective thin-client systems to deliver wide-area computing
services.
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