
Using Certes to Infer Client Response
Time at the Web Server

DAVID OLSHEFSKI
IBM T.J. Watson Research Center and Columbia University
JASON NIEH
Columbia University
and
DAKSHI AGRAWAL
IBM T.J. Watson Research Center

As businesses continue to grow their World Wide Web presence, it is becoming increasingly
vital for them to have quantitative measures of the mean client perceived response times of
their web services. We present Certes (CliEnt Response Time Estimated by the Server), an
online server-based mechanism that allows web servers to estimate mean client perceived re-
sponse time, as if measured at the client. Certes is based on a model of TCP that quanti-
fies the effect that connection drops have on mean client perceived response time by using
three simple server-side measurements: connection drop rate, connection accept rate and con-
nection completion rate. The mechanism does not require modifications to HTTP servers or
web pages, does not rely on probing or third party sampling, and does not require client-side
modifications or scripting. Certes can be used to estimate response times for any web content,
not just HTML. We have implemented Certes and compared its response time estimates with
those obtained with detailed client instrumentation. Our results demonstrate that Certes pro-
vides accurate server-based estimates of mean client response times in HTTP 1.0/1.1 environ-
ments, even with rapidly changing workloads. Certes runs online in constant time with very low
overhead. It can be used at websites and server farms to verify compliance with service level
objectives.

Categories and Subject Descriptors: D.4.8 [Operating Systems]: Performance—measurements,
models, operational analysis

Parts of this work appeared as OLSHEFSKI, D., NIEH, J., AND AGRAWAL, D. Inferring client response
time at the web server. In ACM Sigmetrics Conference Proceedings (Marina Del Rey, Calif.). ACM,
New York, 2002, pp. 160–171.
This work was supported in part by an NSF Career Award, NSF grant ANI-0117738, and an IBM
SUR Award.
Authors’ addresses: D. Olshefski, IBM T. J. Watson Research, 3S-F32, 19 Skyline Drive, Hawthorne,
N.Y. 10532, email: olshef@us.ibm.com; J. Nieh, Columbia University, 450 Computer Science
MC0401, 500 West 120th Street, New York, NY 10027; D. Agrawal, IBM T. J. Watson Research,
3S-E53, 19 Skyline Drive, Hawthorne, N.Y. 10532.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 0734-2071/04/0200-0049 $5.00

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004, Pages 49–93.

50 • D. Olshefski et al.

General Terms: Algorithms, Management, Measurement, Performance, Experimentation

Additional Key Words and Phrases: Web server, client perceived response time

1. INTRODUCTION

The focus of web server performance is shifting from throughput and utiliza-
tion benchmarks [Nahum et al. 1999; Barford and Crovella 1999; Nielsen et al.
1997] to guaranteeing delay bounds for different classes of clients [Lu et al.
2001; Voigt et al. 2001; Kanodia and Knightly 2000; Parekh et al. 2001; Eggert
and Heidemann 1999; Almeida et al. 1998; Pandey et al. 1998; Chen et al.
2001; Bhatti and Friedrich 1999]. Providers of web services are faced with the
challenge of providing differentiated services that guarantee bounds on client
perceived response times while at the same time maximizing throughput. In
order for a website to guarantee delay bounds for its clients, it should be able
to determine, in real-time, the client perceived response time. This informa-
tion can then be used to verify compliance with service-level objectives and to
identify potential problems that may exist on the server or in the network. Un-
fortunately, the problem of obtaining an accurate measure of client response
time remains a key factor preventing delay bounded web services from being
realized.

We have created Certes (CliEnt Response Time Estimated by the Server),
an online mechanism that accurately estimates mean client perceived response
time using only information available at the web server. Certes combines a
model of TCP retransmission and exponential back-off mechanisms with three
simple server-side measurements: connection drop rate, connection accept rate,
and connection completion rate. The model and measurements are used to
quantify the time due to failed connection attempts and determine their ef-
fect on mean client perceived response time. Certes then measures both time
spent waiting in kernel queues as well as time to retrieve requested web data.
It achieves this by going beyond application-level measurements to using a
kernel-level measure of the time from the very beginning of a successful con-
nection until it is completed. Our approach does not require probing or third
party sampling, and does not require modification of web pages, HTTP servers,
or client-side modifications. Certes uses a model that is inherently able to de-
compose response time into various server and network components to help de-
termine whether server or network providers are responsible for performance
problems. Certes can be used to measure response times for any web content,
not just HTML.

We have implemented Certes and verified its response time measurements
against those obtained via detailed client-side instrumentation. Our results
demonstrate that Certes provides accurate server-based measurements of
mean client response times in HTTP 1.0/1.1 environments, even with rapidly
changing workloads. Our results show that Certes is particularly useful under
overloaded server conditions when web server application-level and kernel-
level measurements can be grossly inaccurate. We further demonstrate the
need for Certes measurement accuracy in web server control mechanisms that

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Using Certes to Infer Client Response Time at the Web Server • 51

manipulate inbound kernel queuing or that perform admissions control to
achieve response time goals.

This article is outlined as follows: Section 2 provides some necessary back-
ground on the components of response time discusses related work. Section 3
presents an overview of the Certes approach, the mathematical construction
of the Certes model focusing on how it accounts for time attributed to failed
connection attempts, and a fast online implementation of the Certes model.
Section 4 describes our implementation of Certes on Linux. Section 5 presents
experimental results demonstrating the effectiveness of Certes in estimating
mean client response time at the server with various dynamic workloads for
both HTTP 1.0/1.1. Finally, we present some concluding remarks.

2. BACKGROUND AND RELATED WORK

To understand the issues involved in measuring response time, we begin
by presenting an anatomical view of the client/server behavior that occurs
when a web client accesses a remote Internet website. Once a URL, such as
http://www.cnn.com/US/index.html, is entered into a web browser, the follow-
ing ten steps occur to download and display the web page:

(1) URL parsing. The client browser parses the URL to obtain the name
of the remote host, www.cnn.com, from which to obtain the web page,
/US/index.html. Web browsers maintain a cache of web pages, so if the
web page is in cache and has not expired, processing can be performed
locally and Steps (2)–(7) below can be skipped.

(2) DNS lookup. In order to contact the website (i.e., www.cnn.com), the browser
must first obtain its IP address from DNS [Mockapetris 1987a, 1987b].
Since the browser maintains a local cache containing the IP addresses
of frequently accessed websites, contacting the DNS server for this infor-
mation is only performed on a cache miss, which often implies that the
website is being visited for the first time.

(3) TCP connection setup. The client establishes a TCP connection with the
remote web server. Before a client can send the HTTP request to the web
server, a TCP connection must first be established, via the TCP three-way
handshake mechanism [Cardwell et al. 2000; Almeida et al. 1998]. First,
the client sends a SYN packet to the server. Second, the server acknowl-
edges the client request for connection by sending a SYN/ACK back to the
client. Third, the client responds by sending an ACK to the server, com-
pleting the process of establishing a connection. Note that if the client’s
web browser already had an established TCP connection to the server and
persistent HTTP connections are used, the browser may reuse this con-
nection, skipping this step.

(4) HTTP request sent. The browser requests the web content, /US/index.
html, from the remote site by sending an HTTP request over the estab-
lished TCP connection.

(5) HTTP request received. When the web server machine receives an HTTP
packet, the operating system determines which application should receive

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

52 • D. Olshefski et al.

the message. The HTTP request is then passed to an HTTP server appli-
cation such as Apache which is typically executing in user space.

(6) HTTP request processed. The HTTP server application processes the re-
quest by obtaining the content either from a disk file, CGI script or other
such program.

(7) HTTP response sent. The HTTP server application passes the content to
the operating system, which in turn, sends the content to the client.

(8) HTTP response processed. Upon receiving the response to the HTTP re-
quest, the client processes the web content. If the content consists of an
HTML page, the browser parses the HTML, identifies any embedded ob-
jects such as images, and begins rendering the web page on the display.

(9) Embedded objects retrieved. The browser opens additional connections to
retrieve any embedded objects, allowing the browser to make multiple, si-
multaneous requests for the embedded objects. This parallelism helps to
reduce overall latency. Depending on where the embedded objects are lo-
cated, connections may be to the same server, other web servers, or content
delivery networks (CDNs). If the connections are persistent and embed-
ded objects are located on the same server, then several embedded objects
will be obtained over each connection. Otherwise, a new connection will
be established for each embedded object.

(10) Rendering. Once all the embedded objects have been obtained, the browser
can fully render the web page on the display.

This ten-step process may repeat itself at any point in time, preempting any
of the Steps (2) through (10). For example, the user may click on a hyperlink
when the web page is not fully rendered. Such behavior causes an immediate
halt to the current activity and a jump to Step (1).

A complete measure of the time to download and display a web page would
account for the time spent across all ten steps. The only way to completely
measure the actual client perceived response time is to measure the response
time on the client machine. This requires the ability to instrument the web
browser on every client, and requires that most users use the instrumented
browser. Furthermore, for websites to use such information, clients would need
to include mechanisms to send the measurements back to the respective web-
sites for them to use this information to verify compliance with service-level
objectives. Unfortunately, this direct browser instrumentation is not possible
in practice. As a result, several pragmatic approaches have been developed to
determine client response time without requiring client browser modification.
These approaches must be considered as methods to estimate client perceived
response time, though some may be more accurate than others. We provide an
overview of these approaches and how they account for response time associ-
ated with each of the ten steps for downloading and displaying a web page. We
also discuss other related work below.

One approach being taken by a number of companies [KeyNote; Mercury
Interactive; Exodus; StreamCheck] is to periodically measure response times
obtained by a geographically distributed set of monitors. These monitors can

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Using Certes to Infer Client Response Time at the Web Server • 53

be fully instrumented to provide a complete measurement of response time
across all of the ten steps previously discussed, as perceived by the monitors.
However, this approach suffers from five important limitations. First, no actual
client transactions are being measured—only the response time for transactions
generated by the monitors are reported. Second, any approach based on coarsed-
grained sampling may suffer from statistical biases. Third, monitors are limited
to performing transactions that do not affect other users or modify state in
backend databases. For example, it would be unwise to configure a monitor to
actually purchase an airline ticket or trade stock on an open exchange. Fourth,
the information gathered by monitors is generally not available at the web
server in real-time, limiting the ability of a web server to respond to changes
in response time to meet delay bound guarantees. Lastly, CDN providers are
known to place servers near monitors used by these companies to artificially
improve their own performance measurements [Danzig 2001].

A second approach is to instrument existing web pages with client-side script-
ing in order to gather client response time statistics [Rajamony and Elnozahy
2001]. The approach can be used to account for actual client transactions. How-
ever, client-side scripting will always consider the start of the transaction to
be sometime after the first byte of HTTP data is received by the client and the
client begins processing the HTTP response. A “post-connection” approach as
this does not account for any delays that occur in Steps (1) through (7), includ-
ing time due to TCP connection setup or waiting in kernel queues on the web
server. Client-side scripting also cannot be applied to non-HTML files that can-
not be instrumented, such as PDF and Postscript files. It may also not work for
older browsers or browsers with scripting capabilities disabled. Client browser
measurements cannot accurately decompose the response time into server and
network components and therefore provide no insight into whether server or
network providers would be responsible for problems.

A third approach is to have the web server application track when requests
arrive and complete service [Li and Jamin 2002; Lu et al. 2001; Kanodia and
Knightly 2000; Almeida et al. 1998]. This approach has the desirable proper-
ties that it only requires information available at the web server and can be
used for non-HTML content. However, this approach only measures Step (6)
of the total response time. Server latency measures at the application-level
do not properly include network interactions and provide no information on
network problems that might occur and affect client perceived response time.
They also do not account for overheads associated with the TCP protocol un-
derlying HTTP, including the time due to TCP connection setup or waiting in
kernel queues. These times can be significant, especially for servers which dis-
card connection attempts to avoid overloading the server [Voigt et al. 2001],
or for servers which limit input queue lengths of an application server [Eggert
and Heidemann 1999] in order to provide a bound on the time spent in the
application layer.

A fourth approach is to capture network packet traffic to the web server
and use those traces to reconstruct the client response time. This can be done
either offline, by analyzing packet trace logs [Smith et al. 2001], or online as the
network packets are passively captured from the communication line [NetQoS].

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

54 • D. Olshefski et al.

To use packet traces to determine web page response time, EtE [Fu et al. 2002]
provides an offline server-side approach for obtaining a value for client response
time, based on correlating the activity across multiple connections.

This approach does account for Steps (4) to (9), but does not account for TCP
connection setup time. Since EtE is a server-based approach like Certes, it also
does not account for DNS lookup times and browser rendering times.

The approach also does not account for any delays that may be due to web
objects that reside outside of the web server, such as objects stored on other
servers or CDNs. Scalability can also be a drawback with the offline approach
since the packet capturing and analysis may not be able to keep pace with the
high traffic rate entering and leaving a busy server farm, requiring a number
of packet monitoring machines. The cost of buying and managing monitoring
machines may be prohibitive. In addition to the above, offline analysis fails to
provide information in real-time.

In addition to the above approaches that focus on web performance, a
number of analytical models have been proposed for modeling TCP behavior
[Pahdye and Floyd 2001; Padhye et al. 1998; Cardwell et al. 2000]. For example,
Padhye et al. [1998] derived steady state throughput of a TCP bulk transfer for
a given like loss rate and round trip time. This model is further extended in
Cardwell et al. [2000] to include the effects of TCP three-way handshake and
TCP slow start. The extended model can accurately estimate throughput for
TCP transfers of any length. These analytical models focus on estimating TCP
transfer throughput instead of estimating client perceived response time. They
also assume a fixed packet loss rate that remains constant over time and is
known a priori. These assumptions are often not valid in measuring web server
performance. For example, SYN packet loss rates may change frequently due to
server load or if a web server uses SYN drops to manipulate its quality of service
(QoS). Appendix 6 discusses further some of the queuing modeling issues.

Many recent approaches have proposed methods for controlling QoS at web
servers. One approach entails implementing kernel mechanisms that differ-
entiate among TCP connections of different service classes during the TCP
connection establishment phase. For example, Voigt et al. [2001] proposed TCP
SYN policing and prioritized accept queues to support different service classes.
Another approach is to dynamically manage a system resource by using a con-
trol feedback that depends on the measurements of client perceived response
time [Parekh et al. 2001; Chen and Mohapatra 1999]. Such approaches can
result in a high probability of TCP SYN drops, resulting in failed connection
attempts that increase the client perceived response time. For these QoS mech-
anisms to work as desired, it is important that the effect of TCP SYN drops
on the client perceived response time is measured accurately by accounting for
the time in Step (3) above. Unfortunately, previous response time measurement
methods, including client-side scripting, web server application-level measure-
ments, and using packet traces, do not accurately account for the time due to
TCP connection setup in the presence of failed connection attempts.

If failed connection attempts did not contribute significantly to client per-
ceived response time, omitting the time due to TCP connection setup would
not be an issue. However, Figures 1 and 2 illustrate that failed connection

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Using Certes to Infer Client Response Time at the Web Server • 55

Fig. 1. Typical TCP client–server interaction.

attempts can contribute to substantial increases in response time. The figures
show a TCP-oriented view of the process of downloading and displaying a web
page with a focus on TCP connection establishment. URL parsing and web page
rendering do not usually account for a significant portion of response time and
DNS lookups are often cached to reduce their impact on response time. As a
result, Figures 1 and 2 only illustrate Steps (3) to (9) with a single client and
server to simplify our discussion.

Figure 1 shows the more common case in which there is no packet loss. Here,
the TCP connection is established via the TCP three-way handshake mecha-
nism, then a series of HTTP requests are sent to the web server to request
data. In this scenario, the time due to TCP connection setup for transmitting
and processing the initial SYN, SYN/ACK, and ACK is likely to be small com-
pared to the time for processing the HTTP requests and may not contribute
much to the overall client perceived response time. Figure 2 shows the same
client-server interaction in the presence of SYN drops at the server due to
server overload or admissions control [Stevens 1994]. When the initial SYN is
dropped, the server does not send the corresponding ACK packet. As a result,
the client incurs a TCP timeout and retransmits the initial SYN to the server.
Due to TCP timeout and exponential back-off mechanisms, the client may have
to wait 3 seconds, 9 seconds, 21 seconds, etc., before its SYN packet is accepted
by the server [Braden 1989]. This wait time to initiate a TCP connection is of-
ten larger than the time required to transfer the actual web data and will be a
dominant factor in the overall client perceived response time. Dropping a SYN
does not represent a denial of access in this case, but rather a delay in estab-
lishing the connection. The latency associated with this behavior needs to be
quantified.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

56 • D. Olshefski et al.

Fig. 2. Effect of SYN drops on client response time.

3. THE CERTES MODEL

The main contribution of Certes is to provide a server-side measure of mean
client perceived response time that includes the impact of failed TCP connection
attempts on web server performance. To simplify our discussion and focus on the
issue of failed TCP connection attempts, we make the following assumptions:

(1) We focus on measuring the response time due to TCP connection setup
through retrieving embedded objects, Steps (3) through (9) in Section 2. We
do not consider Steps (1), (2), and (10). We assume that URL parsing and
web page rendering times are small and DNS lookups are generally cached
to reduce their impact on response time.

(2) We focus on determining the contribution to client perceived response time
due to the performance of a given web server. We do not quantify delays
that may be due to web objects residing on other servers or CDNs.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Using Certes to Infer Client Response Time at the Web Server • 57

(3) We limit our discussion to an estimate of response time based on the dura-
tion of a TCP connection. For nonpersistent connections where each HTTP
request uses a separate TCP connection, this estimate corresponds to mea-
suring the response time for individual HTTP requests. For persistent con-
nections where multiple HTTP requests may be served over a single con-
nection, this estimate will include the time for multiple requests. Since
web page with embedded objects may require multiple HTTP requests in
order to be displayed, determining the response time for downloading a
web page may require correlating the response times of multiple HTTP re-
quests. Complementary work [Fu et al. 2002] on correlating connections to
web pages can be used for this purpose. Although important, these issues
are orthogonal to the focus of this article.

Given these assumptions, a measure of client-perceived response time should
include the time starting from when the first SYN packet is sent from the client
to the server until the last HTTP response data packet is received from the
server by the client. For a given connection, we define CONN-FAIL as the time
between when the first SYN packet is sent from the client and when the last
SYN packet is sent from the client. This is the time due to failed TCP connection
attempts. When there are no failed connection attempts, CONN-FAIL is zero.
For a given connection, we define SYN-to-END as the time between when the
server receives the last SYN packet until the time when the server sends the
last data packet. This is essentially the server’s perception of response time
in the absence of SYN drops. The client perceived response time is equal to
CONN-FAIL and SYN-to-END plus one round trip time (RTT) to account for
the the time it takes to send the SYN packet from the client to the server plus
the time it takes to send the last data packet from the server to the client. The
client perceived response time over the connection is:

CLIENT RT = CONN-FAIL+ SYN-to-END+RTT. (1)

Determining client perceived response time then reduces to determining
CONN-FAIL, SYN-to-END, and RTT. Note that any failure to complete the
3-way handshake after the SYN is accepted by the server is captured by SYN-
to-END. For example, delays caused by dropped SYN/ACKs from the server to
the client (the second part of the 3-way handshake) are accounted for in the
SYN-to-END time (as shown in Figure 3). The equation also holds if the server
terminates the connection before sending any data by sending a FIN or RST.

Determining the SYN-to-END component of the client perceived response
time is relatively straightforward. The SYN-to-END time can be decomposed
into two components: the time taken to establish the TCP connection after
receiving the initial SYN, and the time taken to receive and process the HTTP
request(s) from the client. In certain circumstances, for example when the web
server is lightly loaded and the data transfer is large, the first component of the
SYN-to-END time can be ignored, and the second component can be used as an
approximation to the processing time spent in the application-level server. In
such cases, measuring the processing time in the application-level server can

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

58 • D. Olshefski et al.

Fig. 3. Dropped SYN/ACK from server to client captured in SYN-to-END time.

provide a good estimate of the SYN-to-END time. In general, the processing
time in the application-level server is not a good estimate of the SYN-to-END
time. If the web server is heavily loaded, it may delay sending the SYN/ACK
back to the client, or it may delay delivering the HTTP request from the client
to the application-level server. In such cases, the time to establish the TCP
connection may constitute a significant component of the SYN-to-END time.
Thus, to obtain an accurate measure of the SYN-to-END time, measurements
must be done at the kernel level. A simple way to measure SYN-to-END is
by timestamping in the kernel when the last SYN packet is received by the
server and when the last data packet is sent from the server. If the kernel does
not already provide such a packet timestamp mechanism, it can be added with
minor modifications. Section 4 describes in further detail how we measured
SYN-to-END for our Certes Linux implementation.

Determining the RTT component of the client perceived response time is also
relatively straightforward. RTT can be determined at the server by measuring

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Using Certes to Infer Client Response Time at the Web Server • 59

the time from when the SYN/ACK is sent from the server to the time when
the server receives the ACK back from the client. The RTT time measured in
this way includes the time spent by the client in processing the SYN/ACK and
preparing its reply. Our experience indicates that typically the time taken by
clients to process a SYN/ACK packet and send a reply is not significant, and
this method yields an accurate measure of RTT. Other approaches for esti-
mating RTT can also be used [Allman 2000]. For both SYN-to-END and RTT
measurements, the kernel at the web server must provide the respective times-
tamps. As discussed in Section 4, these timestamps can be added with minor
modifications.

However, determining CONN-FAIL is a difficult problem. The problem is
that when a server accepts a SYN and processes the connection, the server is
unaware of how many failed connection attempts have been made by the client
prior to this successful attempt. The TCP header [Postel 1981] and the data
payload of a SYN packet do not provide any indication of which attempt the
accepted SYN represents. As a result, the server cannot examine the accepted
SYN to determine whether it is an initial attempt at connecting, or a first retry
at connecting, or an N th retry at connecting. Even in the cases where the server
is responsible for dropping the initial SYN and causing a retry, it is difficult for
the server to remember the time the initial SYN was dropped and correlate it
with the eventually accepted SYN for a given connection. For such a correlation,
the server would be required to retain additional state for each dropped SYN
at precisely the time when the server’s input network queues are probably
near capacity, which could result in performance scalability problems for the
server.

Certes solves this problem by taking advantage of two properties of server
mechanisms for supporting SYNs. First, since the server cannot distinguish
between whether a SYN packet is an initial attempt or N th retry, it must treat
them all equally. Second, it is easy for a server to simply count the number of
SYNs that are dropped versus accepted since it only requires a small amount of
state. As a result, Certes can compute the probability that a SYN is dropped and
apply that probability equally to all SYNs during a given time period to estimate
the number of SYN retries that occur. This information is then combined with a
understanding of the TCP exponential backoff mechanism to correlate accepted
SYNs with the number of SYN drops that occurred to determine how many
retries were needed before establishing a connection.

Certes can then determine CONN-FAIL based on how many retries were
needed and the amount of time necessary for those retries to occur. In particular,
due to TCP timeout and exponential backoff mechanisms specified in RFC 1122
[Braden 1989], the first SYN retry occurs 3 seconds after the initial SYN, the
second SYN retry occurs 6 seconds after the first retry, the third SYN retry
occurs 12 seconds after the second retry, etc. Certes does assume that all clients
adhere to this exact exponential behavior on SYN retries from RFC 1122. This
is a reasonable assumption given that RFC 1122 is supported by all major
operating systems, including Microsoft operating systems [Microsoft], Linux
[RedHat], FreeBSD [FreeBSD], NetBSD 1.5 [NetBSD], AIX 5.x, and Solaris.
OneStat.com [OneStat 2002] estimates that 97.46% of the web server accesses

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

60 • D. Olshefski et al.

on the Internet are from users running a Windows operating system. The rest
they attribute to Macintosh and Linux users (1.43% and 0.26%, respectively).

Section 3.1 presents a more detailed step-by-step construction of the Certes
model. In particular, we discuss the impact of the variance of RTT on when
retries arrive at the server and how Certes accounts for this variability.
Section 3.2 describes a more simplified Certes model that can be implemented
efficiently and yet still yields good response time results.

3.1 Mathematical Construction of The Certes Model

Certes determines the mean client perceived response time by accounting for
CONN-FAIL using a statistical model that estimates the number of first, sec-
ond, third, etc., retries that occur during a specified time interval. Certes divides
time into discrete intervals for grouping connections by their temporal relation-
ship. Without loss of generality, we will assume that time is divided into one
second intervals, but in general any interval size less than the initial TCP retry
timeout value of three seconds may be used. For ease of exposition, let m = 3
be the number of discrete time intervals that occur during the initial TCP retry
timeout value of three seconds.

Certes determines the number of retries that occurred before a SYN is ac-
cepted by using simple counters to take three aggregate server-side measure-
ments for each time interval. The measurements are:

DROPPEDi the total number of SYN packets that the server
dropped during the ith interval.

ACCEPTEDi the total number of SYN packets that the server
did not drop during the ith interval.

COMPLETEDi the total number of connections that completed
during the ith interval.

Using these three measurements, we can compute for a given interval the
offered load at the server, which is the number of SYN packets arriving at the
server. The offered load in the ith interval is:

OFFERED LOADi = ACCEPTEDi +DROPPEDi. (2)

Certes decomposes each of these measured quantities, OFFERED LOADi,
DROPPEDi, ACCEPTEDi, and COMPLETEDi as a sum of terms that have
associations to connection attempts. Let R j

i be the number of SYNs that arrived
at the server as a j th retry during the ith interval, starting with R0

i as the
number of initial attempts to connect to the server during interval i. Let D j

i
be the number of SYNs that arrived at the server as a j th retry during the ith
interval but were dropped by the server. Let Aj

i be the number of SYNs that
arrived at the server as a j th retry during the ith interval and were accepted
by the server. Let C j

i be the number of connections completed during the ith
interval that were accepted by the server as a j th retry. Let k be the maximum
number of retries attempted by any client. For each interval i, we have the

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Using Certes to Infer Client Response Time at the Web Server • 61

following decomposition:

OFFERED LOADi =
∑k

j=0 R j
i

DROPPEDi = ∑k
j=0 D j

i

ACCEPTEDi = ∑k
j=0 Aj

i

COMPLETEDi = ∑k
j=0 C j

i .

(3)

For each time interval i, Certes determines the mean client perceived re-
sponse time for those web transactions that are completed during the time
interval. This includes both connections that are completed during the time
interval as well as connections that give up during the interval after exceeding
the maximum number of retries attempted by any client. COMPLETEDi is the
number of transactions that completed during the ith interval and Rk+1

i is the
number of clients that gave up during the interval. Applying Eq. (1) to a time
interval, Certes computes the mean client response time for the ith interval as:

CLIENT RTi =
Rk+1

i · 3[2k+1 − 1]+∑k
j=1 C j

i · 3[2 j − 1]+∑SYN-to-END+∑RTT
COMPLETEDi + Rk+1

i
. (4)

Equation (4) essentially divides the sum of the response times by the number
of transactions to obtain mean response time. In the denominator, Eq. (4) sums
the total number of transactions that completed and clients that gave up. In the
numerator, there are four terms summed together. The first term Rk+1

i ·3[2k+1−
1] is the amount of time that clients waited before giving up based on the TCP
exponential backoff mechanism. The second term

∑k
j=1[C j

i ·3[2 j−1]] represents
the total CONN-FAIL time experienced by those clients that completed in the
ith interval. The third term

∑
SYN-to-END is the sum of the measured SYN-

to-END times for all transactions completed in the ith interval. The fourth term∑
RTT is the sum of one round trip time for all transactions completed during

the ith interval. For example, if k = 2, then Eq. (4) reduces to:

CLIENT RTi =
∑

SYN-to-END+∑RTT+ 21Rk+1
i + 9C2

i + 3C1
i

COMPLETEDi + Rk+1
i

.

C1
i indicates the number of clients that waited an additional 3 seconds due

to a SYN drop, C2
i is the number of clients that waited an additional 9 seconds

due to two SYN drops, and Rk+1
i is the number of clients that gave up after

waiting 21 seconds.
To compute the mean client perceived response time for each interval, Certes

uses Eq. (3) to derive the values of C j
i and Rk+1

i from the measured quantities
OFFERED LOADi, DROPPEDi, ACCEPTEDi, and COMPLETEDi. We start
from the observation that the TCP header [Postel 1981] and the data payload
of a SYN packet do not provide any indication of which connection attempt a
dropped SYN represents. As a result, the server’s TCP implementation cannot
distinguish a SYN packet containing a j th SYN retry from a SYN packet con-
taining a kth SYN retry. This implies that all types of SYN packets are dropped

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

62 • D. Olshefski et al.

or accepted with equal probability. The mean SYN drop rate at the server for
the ith interval can be computed from OFFERED LOADi and DROPPEDi:

DRi = DROPPEDi/OFFERED LOADi. (5)

A key hypothesis of Certes is that the drop rate must therefore be equal for
all R j

i in the ith interval. This results in the following relations between R j
i

and D j
i :

D0
i = DRi · R0

i

D1
i = DRi · R1

i

D2
i = DRi · R2

i

...

Dk
i = DRi · Rk

i .

(6)

Each individual connection that completes during the ith interval was ac-
cepted during the (i − SYN-to-END)th interval. Because each connection may
have a different SYN-to-END time, connections that complete during the ith
interval may have been accepted during different intervals. Let ACCEPTEDp,i
be the number of connections that were accepted during the pth interval and
completed during the ith interval. Therefore,

COMPLETEDi =
∑

p

ACCEPTEDp,i. (7)

Let

ACCEPTEDp,i =
k∑

j=0

Aj
p,i, (8)

where Aj
p,i is the number of SYNs that were accepted during the pth interval

as a j th retry and completed during the ith interval. Therefore,

C j
i =

∑
p

Aj
p,i. (9)

As mentioned above, when a server accepts a SYN and processes the con-
nection, the server is unaware of how many failed connection attempts have
been made by the client prior to this successful attempt. Therefore, there is no
direct method for determining the number of retries associated with a specific
connection. As such, there is no direct method for obtaining Aj

p,i. We estimate
the value of Aj

p,i from the ratio of Aj
p to ACCEPTEDp:

Aj
p,i =

[
Aj

p

ACCEPTEDp

]
· ACCEPTEDp,i. (10)

Since the SYNs that do not get dropped get accepted, Eq. (6) implies that Aj
i

is:

Aj
i = R j

i − D j
i = R j

i −
[
DRi · R j

i

]
. (11)

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Using Certes to Infer Client Response Time at the Web Server • 63

Fig. 4. Variance in RTT affects arrival time of retries.

Combining Eq. (10) and (11) allows us to rewrite Eq. (9) as:

C j
i =

∑
p

[
R j

p −
[
DRp − R j

p

]
ACCEPTEDp

· ACCEPTEDp,i

]
. (12)

Equation (12) solves for C j
i in terms of R j

p, DRp and ACCEPTEDp,i. We can
substitute Eq. (12) into our equation for calculating CLIENT RTi, effectively
removing C j

i from Eq. (4). We now turn our attention to solving for R j
i .

Drops occurring during the ith interval return as retries in future intervals.
Based on the TCP exponential backoff mechanism, the timing of the return
depends on whether it was an initial SYN, a 1st retry, a 2nd retry, etc. As a
result, the number of retries arriving during the ith interval is a function of
the number of drops that occurred in prior intervals:

R1
i = D0

i−m

R2
i = D1

i−2m

R3
i = D2

i−4m

...

Rk+1
i = Dk

i−2k−1m.

(13)

Equation (13) assumes that retries arrive at the server exactly when expected
based on the TCP specification (i.e., in 3 seconds, 6 seconds, etc.). Due to variance
in RTT, this assumption may not hold in practice. Such a scenario is shown in
Figure 4, where the network delay changes between connection attempts for a
specific client. This has the effect of skewing the estimates for R j

i , since retries
may not always arrive at the server exactly when expected (i.e., in 3 seconds,
6 seconds, etc.). Note that it is the variance in RTT for a specific client that
affects the model and not the differences in RTT between clients. For example,
the server will observe the 3-second, 6-second, 12-second, etc. retry delay for
each client with a consistent RTT, regardless of the magnitude of the RTT.

This effect can be accounted for by treating R j
i as a weighted distribution

over the D j
i of past intervals instead of just using a single interval. Let W j

p,i be

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

64 • D. Olshefski et al.

the portion of D j
p that will return as R j+1

i . The following holds:

1 =
∑

i

W j
p,i. (14)

Using these weights, we can modify Eq. (13) so that R j
i is a combination

of drops occurring in a small set of prior intervals, rather than the number of
drops that occurred in one specific prior interval:

R1
i = · · ·+

[
W 0

i−m−1,i · D0
i−m−1

]+[
W 0

i−m,i · D0
i−m

]+[
W 0

i−m+1,i · D0
i−m+1

]+ · · ·
R2

i = · · ·+
[
W 1

i−2m−1,i · D1
i−2m−1

]+[
W 1

i−2m,i · D1
i−2m

]+[
W 1

i−2m+1,i · D1
i−2m+1

]+ · · ·
R3

i = · · ·+
[
W 2

i−4m−1,i · D2
i−4m−1

]+[
W 2

i−4m,i · D2
i−4m

]+[
W 2

i−4m+1,i · D2
i−4m+1

]+ · · ·
...

Rk
i = · · ·+

[
W k−1

i−2k−1m−1,i · Dk−1
i−2k−1m−1

]+[
W k−1

i−2k−1m,i · Dk−1
i−2k−1m

]+[
W k−1

i−2k−1m+1,i · Dk−1
i−2k−1m+1

]+ · · · .

(15)

Equation (6) allows us to rewrite Eq. (15) in terms of DRi, W j
p,i and R j

i by
substituting DRi · R j

i for D j
i :

R1
i = · · ·+

[
W 0

i−m−1,i ·DRi−m−1 · R0
i−m−1

]+[
W 0

i−m,i ·DRi−m · R0
i−m

]+[
W 0

i−m+1,i ·DRi−m+1 · R0
i−m+1

]+ · · ·
R2

i = · · ·+
[
W 1

i−2m−1,i ·DRi−2m−1 · R1
i−2m−1

]+[
W 1

i−2m,i ·DRi−2m · R1
i−2

]+[
W 1

i−2m+1,i ·DRi−2m+1 · R1
i−2m+1

]+ · · ·
R3

i = · · ·+
[
W 2

i−4m−1,i ·DRi−4m−1 · R2
i−4m−1

] + (16)[
W 2

i−4m,i ·DRi−4m · R2
i−4m

]+[
W 2

i−4m+1,i ·DRi−4m+1 · R2
i−4m+1

]+ · · ·
...

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Using Certes to Infer Client Response Time at the Web Server • 65

Rk
i = · · ·+

[
W k−1

i−2k−1m−1,i ·DRi−2k−1m−1 · Rk−1
i−2k−1m−1

]+[
W k−1

i−2k−1m,i ·DRi−2k−1m · Rk−1
i−2k−1m

]+[
W k−1

i−2k−1m+1,i ·DRi−2k−1m+1 · Rk−1
i−2k−1m+1

]+ · · · .
By recursive substitution of the R j

i terms, we can transform these k equations
into terms of the unknowns R0

i and W j
p,i. For k = 2 and m = 3, the result is:

R1
i =

[
W 0

i−4,i ·DRi−4 · R0
i−4

]+ [W 0
i−3,i ·DRi−3 · R0

i−3

]+ [W 0
i−2,i ·DRi−2 · R0

i−2

]
R2

i = W 1
i−7,i ·DRi−7·

[[
W 0

i−11,i−7 ·DRi−11 · R0
i−11

]+[
W 0

i−10,i−7 ·DRi−10 · R0
i−10

]+[
W 0

i−9,i−7 ·DRi−9 · R0
i−9

]]+
W 1

i−6,i ·DRi−6·
[[

W 0
i−10,i−6 ·DRi−10 · R0

i−10

]+[
W 0

i−9,i−6 ·DRi−9 · R0
i−9

]+[
W 0

i−8,i−6 ·DRi−8 · R0
i−8

]]+
W 1

i−5,i ·DRi−5·
[[

W 0
i−9,i−5 ·DRi−9 · R0

i−9

]+[
W 0

i−8,i−5 ·DRi−8 · R0
i−8

]+[
W 0

i−7,i−5 ·DRi−7 · R0
i−7

]]
.

(17)

From Eq. (3), we have:

OFFERED LOADi = R0
i + R1

i + R2
i (18)

and by substituting Eq. (17) into Eq. (18), we get:

OFFERED LOADi =
R0

i +[
W 0

i−4,i ·DRi−4 · R0
i−4

]+ [W 0
i−3,i ·DRi−3 · R0

i−3

]+ [W 0
i−2,i ·DRi−2 · R0

i−2

]+
W 1

i−7,i ·DRi−7 ·
[[

W 0
i−11,i−7 ·DRi−11 · R0

i−11

]+[
W 0

i−10,i−7 ·DRi−10 · R0
i−10

]+[
W 0

i−9,i−7 ·DRi−9 · R0
i−9

]]+
W 1

i−6,i ·DRi−6 ·
[[

W 0
i−10,i−6 ·DRi−10 · R0

i−10

]+[
W 0

i−9,i−6 ·DRi−9 · R0
i−9

]+[
W 0

i−8,i−6 ·DRi−8 · R0
i−8

]]+
W 1

i−5,i ·DRi−5 ·
[[

W 0
i−9,i−5 ·DRi−9 · R0

i−9

]+[
W 0

i−8,i−5 ·DRi−8 · R0
i−8

]+[
W 0

i−7,i−5 ·DRi−7 · R0
i−7

]]
.

(19)

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

66 • D. Olshefski et al.

Equation (19) provides one equation for each interval i, in terms of
OFFERED LOADi (which is measured), DRi (which is measured), R0

i (which
is unknown) and W j

p,i (which is unknown). Once solutions for R0
i are found,

they can be used to calculate R j
i , ∀i, j . Additionally, the presence of W j

p,i intro-
duces nonlinearity. Each interval i contains seven unknowns: R0

i , W 0
i,i+2, W 0

i,i+3,
W 0

i,i+4, W 1
i,i+5, W 1

i,i+6, and W 1
i,i+7.

From Eq. (14), we have the following equations for each interval i:

1 = W 0
i,i+2 +W 0

i,i+3 +W 0
i,i+4

1 = W 1
i,i+5 +W 1

i,i+6 +W 1
i,i+7.

(20)

All values in Eq. (19) must be positive, and hence we have the constraints:

0 ≤ R0
i , W j

p,i∀i, j , p. (21)

Of course, if the values for W j
p,i were somehow magically known, then Eq. (19)

could be solved directly since it reduces to a linear system of N equations
in N unknowns. In practice, however, W j

p,i are unknown and need to be es-
timated. We describe one approach to a solution whose general steps are as
follows:

(1) Determine an initial estimate for all W j
p,i over a window of prior intervals.

Errors in the estimates for W j
p,i are directly related to the errors in R0

i .
As such, determining the bounds for this error is a known solved problem:
bounding the error in solving a system of linear equations whose coefficients
may contain experimental error [Golub and Loan 1996].

(2) Solve Eq. (19) using these W j
p,i estimated values.

(3) If there is no solution in Step (2), (i.e., Eq. (21) is not satisfied) or there is
a positive change in the optimization objective, then change the values for
W j

p,i and iterate.

Let WI be the initial vector of W j
p,i estimated values. The objective of the

optimization may be to minimize ‖WI − WS‖, where WS is the final solution
vector of weights. In other words, assuming that the initial best estimate is
based on prior fact, the solution vector ought not to deviate significantly from
it.

Step (1). One approach for determining WI to account for the impact of
variance in RTT shown in Figure 4 would be to base WI on average historical
measures of the changes in RTT over time. Let χk be the probability density
function of 1RTT over a period of length 3[2k]m. Given that the arrivals of
R0

i are uniformly distributed over the ith interval (defined by the probability

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Using Certes to Infer Client Response Time at the Web Server • 67

density function ti), then

E
[
W 0

i,i+2

] = ∫ i+2

i+1
fχ0 (x) dx

E
[
W 0

i,i+3

] = ∫ i+3

i+2
fχ0 (x) dx

E
[
W 0

i,i+4

] = ∫ i+4

i+3
fχ0 (x) dx

E
[
W 1

i,i+5

] = ∫ i+5

i+4
fχ1 (x) dx

E
[
W 1

i,i+6

] = ∫ i+6

i+5
fχ1 (x) dx

E
[
W 1

i,i+7

] = ∫ i+7

i+6
fχ1 (x) dx.

(22)

Where fχk (t) is the convolution of ti and χk :

fχ0 (t) = 3+
∫ ∞
−∞

χ0(x)ti(t − x) dx

fχ1 (t) = 9+
∫ ∞
−∞

χ1(x)ti(t − x) dx.
(23)

In other words, E[W 0
i,i+2] is the mean portion of R0

i that is expected to return
during the (i + 2)nd interval as R1

i+2. Note that, in Eq. (22), the E[W j
p,i] terms

are independent of p. We now set WI to E[W j
p,i], in effect, replacing W j

p,i in
Eq. (19) with its historical mean, E[W j

p,i]. By replacing the variables W j
p,i by

their means, the error can be quantified using Chernoff ’s Bound [Papoulis and
Pillai 2001].

Step (2). Substituting the current estimated values of W 0
p,i and W 1

p,i into Eq.
(19) translates the problem into a linear system of N equations in N unknowns,
for N intervals (i.e., since W 0

p,i and W 1
p,i are now constants, the only unknowns

left are R0
i). During system initialization, note that all SYNs arriving, accepted

or dropped during the first interval are initial SYNs. Likewise, R j
i = 0 for

1 ≤ j ≤ k, 1 ≤ i ≤ 3 (no 1st, 2nd, 3rd, . . . , kth, retries can occur in the first
three intervals) and R j

i = 0 for 2 ≤ j ≤ k, 4 ≤ i ≤ 9 (no 2nd, 3rd, . . . , kth,
retries can occur during the 4th and 9th intervals). In general,

R j
i = 0 for i ≤ 3(2z − 1), j ≥ z, 1 ≤ z ≤ k,

R j
i = 0 for i ≤ 0, ∀ j . (24)

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

68 • D. Olshefski et al.

For the initial N intervals, there are only N unknowns:

OFFERED LOAD1 = R0
1

OFFERED LOAD2 = R0
2

OFFERED LOAD3 = R0
3

OFFERED LOAD4 = R0
1 ·
[
W 0

1,4 ·DR1
]+

R0
2 ·
[
W 0

2,4 ·DR2
]+

R0
4

OFFERED LOAD5 = R0
1 ·
[
W 0

1,5 ·DR1
]+

R0
2 ·
[
W 0

2,5 ·DR2
]+

R0
3 ·
[
W 0

3,5 ·DR3
]+

R0
5

(25)

Step (3). If Step (2) does not produce a satisfactory solution, an adjustment
is made to the values of W 0

p,i and W 1
p,i. There are several ways to perform this

adjustment. One method is based on the partial derivatives of R0
i with respect

to W 0
p,i and W 1

p,i, as defined by the gradient matrix:

G =

∂R0
i

∂W 0
i−2,i

∂R0
i−1

∂W 0
i−2,i

∂R0
i−2

∂W 0
i−2,i

. . .

∂R0
i

∂W 0
i−3,i

∂R0
i−1

∂W 0
i−3,i

∂R0
i−2

∂W 0
i−3,i

. . .

∂R0
i

∂W 0
i−4,i

∂R0
i−1

∂W 0
i−4,i

∂R0
i−2

∂W 0
i−4,i

. . .

...
...

...
. . .

. (26)

The number of columns in G is equal to the number of intervals in the sliding
window and the number of rows in G is equal to the total number of W j

p,i in the
sliding window. Using G we can formulate a linear program to determine W j

p,i
for the next iteration:

GT 1W 1R0

∂R0
i

∂W 0
i−2,i

∂R0
i

∂W 0
i−3,i

∂R0
i

∂W 0
i−4,i

· · ·

∂R0
i−1

∂W 0
i−2,i

∂R0
i−1

∂W 0
i−3,i

∂R0
i−1

∂W 0
i−4,i

· · ·

∂R0
i−2

∂W 0
i−2,i

∂R0
i−2

∂W 0
i−3,i

∂R0
i−2

∂W 0
i−4,i

· · ·

...
...

...
. . .

1W 0
i−2,i

1W 0
i−3,i

1W 0
i−4,i

1W 1
i−7,i

1W 1
i−6,i

1W 1
i−5,i

...

=

1R0
i

1R0
i−1

1R0
i−2

1R0
i−3

1R0
i−4

1R0
i−5

...

. (27)

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Using Certes to Infer Client Response Time at the Web Server • 69

The column vector 1W is the amount of (unknown) change to apply to the
W j

p,i for the next iteration. The column vector 1R0 is the amount of change
we would like to witness for each R0

i by applying the new values for W j
p,i. In

this case,

1R0
i =

{ ‖0− R0
i ‖ if R0

i < 0

0 otherwise.
(28)

Essentially, Eq. (27) uses the gradient matrix GT to determine how much each
weight ought to be changed in order to achieve a viable solution. Equation (27)
can be solved using a linear least squares method [Press et al. 1992] to obtain
a best fit solution for the 1W .

Final Step. Once Step (2) produces a satisfactory solution for R0
i and W j

p,i,
these values can be plugged into Eq. (16) to obtain the values for R j

i . The values
for R j

i can then be used in Eq. (12) to determine C j
i . Having determined the

values for R j
i and C j

i for the ith interval, we use these values in Eq. (4) to obtain
the mean client response time.

3.2 Fast Online Approximation of The Certes Model

Section 3.1 describes a computationally expensive algorithm: solving a system
of nonlinear equations. We now present a fast, online, implementation of Certes
that produces near optimal results based on a noniterative approach. We sim-
plify the mathematical approach in two ways:

(1) We assume that all transactions that complete during the ith interval have
roughly the same SYN-to-END time. If variance in SYN-to-END time leads
to an inconsistency in the model, we make an online adjustment similar to
Eq. (12) but based on the mean SYN-to-END time for a given interval. For
the remainder of the article, when referring to SYN-to-END time, we imply
the mean SYN-to-END time for a given interval.

(2) We compute an initial estimate of weights, WI , by assuming RTT has no
variance. If this assumption leads to an inconsistency in the model, we make
simple online adjustments to W j

p,i in the current and future time intervals.

What follows is a step-by-step example exposing this approach.

Step (1). An alternative to the approach given in the prior section for deter-
mining WI is to begin with the assumption that the RTT has no variance. Given
an assumption of zero variance in the RTT, the initial values for WI become:

0 = W 0
i−m−1,i = W 1

i−2m−1,i = W 2
i−4m−1,i = · · · = W k−1

i−2k−1m−1,i

1 = W 0
i−m,i = W 1

i−2m,i = W 2
i−4m,i = · · · = W k−1

i−2k−1m,i

0 = W 0
i−m+1,i = W 1

i−2m+1,i = W 2
i−4m+1,i = · · · = W k−1

i−2k−1m+1,i.

(29)

If, by using this assumption, a solution cannot be found, we add-in or adjust for
RTT variance by increasing or decreasing the values for W j

p,i using simple online
heuristics in Step (3). These adjustments serve as an alternative to iterating
over Eq. (19) to determine optimal values for W j

p,i.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

70 • D. Olshefski et al.

Fig. 5. Initial connection attempts that get dropped become retries three seconds later.

Step (2). The following demonstrates how to efficiently solve Eq. (19) via
online direct substitution over a sliding window of intervals. Assume that the
server is booted at time t0 (or there is a period of inactivity prior to t0), as shown
in Figure 5. Certes assumes that all SYNs arriving during the first interval
[t0, t1] are initial SYNs. During the first interval [t0, t1], the server measures
ACCEPTED1 and DROPPED1 and can use those measurements to determine
A0

1 = ACCEPTED1, D0
1 = DROPPED1, and R0

1 = OFFERED LOAD1. Ap-
pendix 6 shows the results when Certes is applied when SYNs in the first
interval are not all initial SYNs. The dropped SYNs, D0

1 , will return to the
server as 1st retries three seconds later as R1

4 during interval [t3, t4].
Moving ahead in time to interval [t3, t4], as shown in Figure 6, the server

measures ACCEPTED4 and DROPPED4 and calculates the SYN drop rate for
the 4th interval, DR4, using Eq. (5). The web server cannot distinguish between
an initial SYN or a 1st retry, therefore, the drop rate applies to both R0

4 and
R1

4 equally, giving D1
4 = DR4 · R1

4, and then A1
4 = R1

4 − D1
4. From Eq. (3),

A0
4 = ACCEPTED4 − A1

4 and D0
4 = DROPPED4 − D1

4. Finally, the number
of initial SYNs arriving during the 4th interval is R0

4 = A0
4 + D0

4. We have
determined the values for all terms in Figure 6.

Note that the D1
4 dropped SYNs will return to the server as 2nd retries six

seconds later during interval [t9, t10], as R2
10 , when those clients experience

their second TCP timeout and that the D0
4 dropped SYNs will return to the

server as 1st retries, as R1
7 , three seconds later during interval [t6, t7].

By continuing in this manner it is possible to recursively compute all values
of R j

i , Aj
i and D j

i for all intervals, for a given k. Figure 7 depicts the 10th
interval, including those intervals that directly contribute to the values in the
10th interval. Clients that give up after k connection attempts are depicted as
ending the transaction.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Using Certes to Infer Client Response Time at the Web Server • 71

Fig. 6. A second attempt at connection, that gets dropped, becomes a retry six seconds later.

Fig. 7. After three connection attempts the client gives up.

Figure 8 shows the final model defining the relationships between the
incoming, accepted, dropped and completed connections during the ith in-
terval. Connections accepted during the ith interval complete during the
(i + SYN-to-END)th interval. The client frustration timeout is specified in sec-
onds and the term R j

i+[FTO−2k−1m] indicates that clients who do not get accepted
during the ith interval on the kth retry will cancel their attempt for service
during the i + [FTO− 2k−1m] interval.

The model in Figure 8 can be implemented in a web server by using a simple
data structure with a sliding window. Note that during each time interval, only
the aggregate counters for DROPPEDi, ACCEPTEDi, and COMPLETEDi are
incremented. At the end of each time interval, the more detailed counters for
R j

i , Aj
i , D j

i , C j
i are computed using a fixed number of computations.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

72 • D. Olshefski et al.

Fig. 8. Relationship between incoming, accepted, dropped, completed requests.

Fig. 9. The smaller the interval, the more difficult to accurately discretize events.

Step 3. As mentioned in Section 3.1, due to inconsistencies in network de-
lays the 1st retry from a client may not arrive at the server exactly three seconds
later, rather it may arrive in the interval prior to or after the interval it was
expected to arrive. Likewise, since the measurement for SYN-to-END is not
constant, there will be instances where C j

i+SYN-to-END 6= Aj
i ; in other words,

some of the j retries accepted in the ith interval may complete prior to or after
the (i + SYN-to-END)th interval.

These occurrences relate to an interesting aspect of the choice for interval
length. In general, when sampling techniques are used, the smaller the sam-
pling period (more frequent the sampling), the more accurate the result. Certes
is not a sampling based approach—yet one might intuit that using shorter in-
tervals would somehow provide for better results—just the opposite is true. As
shown in Figure 9, as the size of the interval is reduced below a certain point,
the probability that events happen when expected reduces as well. For example,
the probability that a dropped initial SYN will arrive back at the server during

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Using Certes to Infer Client Response Time at the Web Server • 73

the interval that is exactly three seconds later becomes zero as the size of the
interval is reduced to zero. This is similar in nature to the problem of variance
in RTT that is specified in Figure 4. Likewise, with small-sized intervals, the
probability of events occurring on an interval boundary increases.

These inconsistencies can be accounted for by performing online adjustments
to W j

p,i to ensure that relationships within and between intervals remain consis-
tent. The function rint, round to integer, is used to ensure that certain values for
the model remain integral (i.e., we do not allow a fractional number of dropped
SYNs). The first heuristic we use is:

if
(
OFFERED LOADi < R1

i + R2
i

)
then

overload = (R1
i + R2

i

)−OFFERED LOADi

R1
i = R1

i − rint
(

overload ·
[

R1
i

R1
i + R2

i

])
R1

i+1 = R1
i+1 + rint

(
overload ·

[
R1

i

R1
i + R2

i

])
R2

i = R2
i − rint

(
overload ·

[
R2

i

R1
i + R2

i

])
R2

i+1 = R2
i+1 + rint

(
overload ·

[
R2

i

R1
i + R2

i

])
.

(30)

If the number of retries exceeds the measured offered load, we simply delay
a portion of the overload until the next interval.

The second heuristic we use is:

if (ACCEPTEDi−SYN-to-END 6= COMPLETEDi) then

C0
i = rint

(
COMPLETEDi ·

[
A0

i−SYN-to-END

ACCEPTEDi−SYN-to-END

])

C1
i = rint

(
COMPLETEDi ·

[
A1

i−SYN-to-END

ACCEPTEDi−SYN-to-END

])

C2
i = rint

(
COMPLETEDi ·

[
A2

i−SYN-to-END

ACCEPTEDi−SYN-to-END

])
.

(31)

Since our approximation uses the mean SYN-to-END time, the number of
completed connections may not equal the number of accepted connections.
We adjust for this difference by using the ratio A0

i−SYN-to-END : A1
i−SYN-to-END :

A2
i−SYN-to-END to calculate the ratio for C0

i : C1
i : C2

i . This attempts to adjust for
variance in the SYN-to-END time.

As shown in Section 5.2, the results obtained by using these heuristics were
sufficiently accurate to allow us to bypass the use of the costlier optimization
approach defined in Section 3.1.

Final Step. Having determined the values for R j
i and C j

i for the ith interval,
we use these values in Eq. (4) to obtain the mean client response time.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

74 • D. Olshefski et al.

Fig. 10. Addition of network SYN drops to the model.

3.2.1 Packet Loss in the Network. Packet drops that occur in the network
(and not explicitly by the server) are included in the model to refine the client
response time estimate. Since the client-side TCP reacts to network drops in
the same manner as it does to server-side drops, network drops are estimated
and added to the drop counts, D j

i . As shown in Figure 10, SYNs dropped by the
network (NDS j

i) are combined with those dropped at the server. To estimate
the SYN drop rate in the network, one can use a general estimate of a 2–3%
[Yajnik et al. 1999; Zhang et al. 2000] packet loss rate in the Internet or, in the
case of private networks, obtain packet loss probabilities from routers. Another
approach is to assume that the packet loss rate from the client to the server is
equal to the loss rate from the server to the client. The server can estimate the
packet loss rate to the client from the number of TCP retransmissions.

3.2.2 Client Frustration Time Out (FTO). A scenario that is very often ne-
glected when calculating response times occurs when the client cancels the
connection request due to frustration while waiting to connect. This is shown
in Figure 11. Any client is only willing to wait a certain amount of time before
hitting reload on the browser or going to another site. Such failed transac-
tions must be included when determining client response time. To include this
latency, the Certes model defines a limit, referred to as the client frustration
timeout (FTO), which is the longest amount of time a client is willing to wait for
an indication of a successful connection. In other words, the FTO is a measure
of the upper bound on the number of connection attempts that a client’s TCP
implementation will make before the client hits reload on the browser or goes
to another website.

Table I specifies the relationship between FTO and the value for k, which was
introduced in Section 3.1 as the maximum number of retries a client is willing
to attempt before giving up. Fortunately, the value chosen for the number of

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Using Certes to Infer Client Response Time at the Web Server • 75

Fig. 11. Client gets frustrated waiting for connection.

Table I. Relationship between Client Frustration Timeout and
Number of Connection Attempts

then the number of
If the client frustration timeout is: retries will be:

less than 3 sec 0
at least 3 sec but less than 9 sec 1
at least 9 sec but less than 21 sec 2
at least 21 sec but less than 45 sec 3
at least 45 sec but less than 1.55 min 4
at least 1.55 min but less than 3.15 min 5

retries covers a range of client behavior—unfortunately, that range will not
cover all client behavior. Although it is possible to use a distribution of the FTO
derived from real-world web-browsing traffic, for simplicity, we used a constant
default value of 21 seconds (k = 2) in most of our experiments. In Section 5, we
look more carefully at the impact of using an incorrect assumption for the FTO.

3.2.3 SYN Flood Attacks. Another scenario that is very often neglected
when calculating response times arises during a SYN flood (denial of service)
attack. During a SYN flood, the attackers keep the server’s SYN queue full
by continually sending large numbers of initial SYNs. This essentially reduces
the FTO to zero. The end result is that the server stands idle, with a full SYN
queue, while very few client connections are established and serviced. A SYN
flood attack is very different from a period of heavy load. The perpetrators
of a SYN attack do not adhere to the TCP timeout and exponential back-off
mechanisms, never respond to a SYN/ACK and never establish a connection
with the server; no transactions are serviced. On the other hand, in heavy load
conditions, clients adhere to the TCP protocol and large numbers of transactions
are serviced (excluding situations where the server enters a thrashing state).

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

76 • D. Olshefski et al.

Fig. 12. Certes implementation on a Linux web server.

Certes works well under heavy load conditions due to the adherence of clients
to the TCP protocol. During a SYN flood attack, Certes faces the problem of
identifying the distribution of the FTO. Our approach to a solution involves
identifying when a SYN attack is underway, allowing Certes to switch from
the FTO distribution currently in use to one that is representative of a SYN
attack. While identifying a SYN attack is relatively simple, it is not simple
to construct a representative FTO distribution for a SYN flood attack. Imple-
menting this approach is beyond the scope of this paper and left for future
work.

3.2.4 Categorization. Certes can be used, in parallel, to obtain response
time estimates for multiple classes of transactions. Since Certes is based on
the drop activity associated with SYN packets, the classification of a dropped
SYN is limited to the information contained in the SYN packet which includes,
the device the packet arrived on, source IP address and port, and destina-
tion IP address and port. NAT [Srisuresh and Holdredge 1999; Srisuresh and
Egevang 2001] and IP aliasing can be used to reduce or eliminate some of these
restrictions, but requires additional configuration on the part of the server’s
administrator.

4. CERTES LINUX IMPLEMENTATION

We have implemented the fast online Certes model from Section 3.2 in RedHat
Linux 7.1. Figure 12 shows that the Certes implementation was designed to
execute on the same machine as the web server application. Apache is shown

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Using Certes to Infer Client Response Time at the Web Server • 77

as the web server application in Figure 12, but any web server application can
be used since Certes runs completely independently.

Certes was built with the expectation that it would be part of a control loop. As
such, a local or remote administrator (or control module) can subscribe to Certes
to receive notification when response time thresholds are exceeded. Certes also
periodically logs its modeling results to disk to provide a history of web server
performance that can be used for additional performance analysis.

Certes was mostly implemented as a user-space application that obtains
kernel measurements at the end of each time interval, and then uses the mea-
surements to perform modeling calculations in user space. This time interval
is the same one introduced in Section 3.1, and can be set to any value less than
the initial TCP retry timeout value of 3 seconds. The kernel measurements
required by Certes are the total number of accepted, dropped, and completed
connections, and the total SYN-to-END time for all completed connections dur-
ing an interval. We implemented these as global running counters within the
kernel. These variables are monotonically increasing from the time at which the
machine is booted, regardless of whether or not the Certes model is executing
in user space.

If the kernel already provides these four measurements, then Certes can
be implemented without any kernel modifications. However, since RedHat 7.1
is not fully instrumented for Certes, minor modifications were made to the
kernel. These modifications totaled less than 50 lines of code. To expose the
ACCEPTED, COMPLETED and DROPPED counters, and the SYN-to-END
measurement to user space, we wrote a simple kernel module that extended
the /proc directory. User space programs can then obtain the kernel values by
simply reading a file in the /proc directory. This is the de facto method in Linux
for obtaining kernel values from user space.

To provide further details on our kernel modifications, we describe the steps
by which the Linux kernel manages TCP connection establishment and termi-
nation. We then discuss our instrumentation code that obtains the ACCEPTED,
COMPLETED and DROPPED counters, and the SYN-to-END measurement.

Figure 13 shows the structure of the TCP/IP connection establishment imple-
mentation in Linux. The three important data structures are the rx queue, the
SYN queue, and the accept queue. The rx queue contains incoming packets that
have just arrived. The SYN queue, which is actually implemented as a hash ta-
ble, contains those connections which have yet to complete the TCP three-way
handshake. The accept queue contains those connections which have completed
the three-way handshake but have not yet been accepted by the Apache web
server application. The accept queue is often referred to as the listen queue
since the socket it is attached to is a listening socket. Figure 13 is numbered ac-
cording to the following steps that occur during TCP connection establishment
in an unmodified Linux kernel:

(1) A SYN arrives and is timestamped (denoted ts in the figure).
(2) The incoming SYN packet is placed onto the rx queue during the hardware

interrupt. The rx queue does have a limit, but this limit can be changed and
rarely do packets get dropped due to the rx queue being full.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

78 • D. Olshefski et al.

Fig. 13. TCP/IP connection establishment on Linux.

(3) During post interrupt handling, the IP layer will route the incoming SYN to
TCP. If the SYN hash table is full, TCP drops the incoming SYN. Otherwise,
TCP creates an open (connection) request and places it into the SYN hash
table. Note that Linux does not save the timestamp for the initial SYN
packet in the open request structure.

(4) TCP will respond to the incoming SYN immediately by sending a SYN/ACK
to the client. If TCP cannot immediately send a SYN/ACK to the client (i.e.,
the tx queue in Figure 14 is full), TCP will drop the incoming SYN.

(5) The client completes the TCP 3-way handshake by sending an ACK to the
server.

(6) Once TCP receives the third part of the TCP 3-way handshake from the
client, the open request will be placed onto the accept queue for processing.
At this point, the new child socket is created and pointed to by the open
request. The connection is considered to be established at this point.

(7) The GET request could arrive at the server prior to the child connection
being accepted by Apache, in which case the GET request is simply attached
to the child socket as an inbound data packet.

(8) Apache accepts the newly established child connection and proceeds to pro-
cess the request. The speed at which Apache can process requests, along
with the limit on the number of running Apache processes affects the length
of the accept queue.

Our kernel modifications with respect to Steps (1) through (8) are as follows:
We added an 8-byte timestamp field to both the open request structure and
the socket structure so that the timestamp of the initial SYN could be saved
across the life time of the connection. In Step (3), the timestamp in the SYN
is copied to the open request structure and in Step (6) it is copied from the
open request structure to the child socket structure. The ACCEPTED counter

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Using Certes to Infer Client Response Time at the Web Server • 79

Fig. 14. TCP/IP outbound data transmission on Linux.

is also incremented during Step (6). For our DROPPED counter, we just used
the existing SNMP/TCP drop counter, but fixed several functions in the kernel
that either failed to increment the counter when necessary or, due to incorrect
logic, incremented the counter more than once for the same SYN drop.

Figure 14 shows the outbound processing that occurs when Apache is send-
ing data to the client. Figure 14 is numbered according to the following steps
that occur during TCP outbound data transmission in an unmodified Linux
kernel:

(9) Apache compiles a response to the GET request. This may include execut-
ing a program (such as CGI script or Java program) or reading a file from
disk.

(10) Once the response is composed, Apache makes a socket system call to
send the data (i.e., writev). If there is space available in the kernel for
the response data, the data is copied into the kernel and then writev()
immediately returns. If not, writev() will block the Apache process until
space becomes available.

(11) Once the data is copied to kernel space, TCP will immediately attempt to
queue the data for transmission by placing it onto the tx queue. If the tx
queue is full, TCP places the data on the socket outbound write queue. If
that queue is full, TCP will cause the Apache process to block.

(12) Placed onto the tx queue, the data waits to be transmitted onto the net-
work.

(13) After the data is transmitted onto the network, the data packet is placed
onto the free queue.

(14) The data packet is freed.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

80 • D. Olshefski et al.

Our kernel modifications infringed upon Step (13). As a data packet is being
placed onto the free queue, the current time is stored in the socket structure.
Likewise, if the server application (i.e., Apache) closes the connection, or a TCP
FIN or RST packet is received from the client, the current time is also saved
in the socket structure in another timestamp field. This is also the point at
which the COMPLETED counter is incremented. In this manner, we are able
to identify when the server finished sending data to the client and when either
the server or the client closed the connection. We choose the lesser of these two
as the end of the transaction. Subtracting the timestamp obtained from the
initial SYN allows us to determine the SYN-to-END time for the connection
(which is then added to the running total). In other words, we defined the end
of the transaction to be whichever occurs first: the last data packet is sent from
the server to the client or the first arrival/transmission of a TCP RST or FIN
packet.

In this section, we provided some insights into the key kernel modifications
we performed, all of which were relatively minor. Other modifications, not in-
cluded in the above discussion, were too far removed from the purpose of this
paper to be discussed. Suffice it to say, a thorough investigation of the linux
kernel TCP/IP stack was undertaken to ensure that all code paths relevant to
Certes were examined. Although we provided all of the above by directly mod-
ifying and rebuilding the kernel, it would be possible to provide the identical
support using a kernel module (but with greater implementation difficulty).

5. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of Certes, we implemented Certes on Linux
and evaluated its performance in HTTP 1.0/1.1 environments, under constant
and changing workloads. The results presented here focus on evaluating the ac-
curacy of Certes for determining client perceived response time in the presence
of failed connection attempts. The accuracy of Certes is quantified by compar-
ing its estimate of client perceived response time with client-side measure-
ments obtained through detailed client instrumentation. Section 5.1 describes
the experimental design and the testbed used for the experiments. Section 5.2
presents the client perceived response time measurements obtained for vari-
ous HTTP 1.0/1.1 web workloads. Section 5.3 demonstrates how a web server
control mechanism can use Certes to evaluate its own ability to manage client
response time.

5.1 Experimental Design

The testbed consisted of six machines: a web server, a WAN emulator, and four
client machines (Figure 15). Each machine was an IBM Netfinity 4500R with
dual 933 MHz CPUs, 10/100 Mbps Ethernet, 512 MB RAM, and 9.1 GB SCSI
HD. Both the server and clients ran RedHat Linux 7.1 while the WAN emulator
ran FreeBSD 4.4. The client machines were connected to the web server via two
10/100 Mbps Ethernet switches and a WAN emulator, used as a router between
the two switches. The client-side switch was a 3Com SuperStack II 3900 and
the server-side switch was a Netgear FS508. The WAN emulator software used

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Using Certes to Infer Client Response Time at the Web Server • 81

Fig. 15. Test Bed.

was DummyNet [Rizzo 1997], a flexible and commonly used FreeBSD tool. The
WAN emulator simulated network environments with different network laten-
cies, ranging from 0.3 to 150 ms of round-trip time, as would be experienced
in LAN and cross-country WAN environments, respectively. The WAN emula-
tor simulated networks with no packet loss and 3% packet loss, which is not
uncommon over the Internet.

The web server machine ran the latest stable version of the Apache HTTP
server, V1.3.20. Apache was configured to run 255 daemons and a variety of test
web pages and CGI scripts were stored on the web server. The number of test
pages was small and the page sizes were 1 KB, 5 KB, 10 KB, and 15 KB. The
CGI scripts would dynamically generate a set of pages of similar sizes. Certes
also executed on the server machine, independently from Apache (shown in Fig-
ure 12). The Certes implementation was designed to periodically obtain coun-
ters and aggregate SYN-to-END time from the kernel and perform modeling
calculations in user space. Periodically Certes would log the modeling results
to disk. For our experiments, the Certes implementation was configured to use
250 ms second measurement intervals and a default frustration timeout of 21
seconds (except where noted).

The client machines ran an improved version of the Webstone 2.5 web traffic
generator [WebStone]. Five improvements were made to the traffic generator.
First, we removed all interprocess communication (IPC) and made each child
process autonomous to avoid any load associated with IPC. Second, we modified
the WebStone log files to be smaller yet contain more information. Third, we
extended the error handling mechanisms and modified how and when times-
tamps were taken to obtain more accurate client-side measurements. Fourth,
we implemented a client frustration timeout mechanism after discovering the
one provided in WebStone was only triggered during the select() function call
and was not a true wall clock frustration timeout mechanism. Fifth, we added
an option to the traffic generator that would produce a variable load on the
server by switching between on and sleep states.

The traffic generators were used on the four client machines to impose a va-
riety of workloads on the web server. The results for sixteen different workloads
are presented, half of which were HTTP 1.0, the other half HTTP 1.1. While
both HTTP 1.0 and HTTP 1.1 support persistent and nonpersistent connec-
tions, we configured the traffic generators to run HTTP 1.0 over nonpersistent
connections and HTTP 1.1 over persistent connections. Although recent studies
indicate that nonpersistent connections are still used far more frequently than

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

82 • D. Olshefski et al.

Table II. Test Configurations Included HTTP 1.0/1.1, with Static and Dynamic Pages

Total Network ping RTT
Number of Pages Pages per Drop (ms) Connections SYN

Test Clients Types Connection Rate HTTP min/avg/max per Second Drop Rate
A 2000 static 1 0 1.0 1/8/21 1210–1670 11%–22%
B 2000 static+cgi 1 0 1.0 0.2/0.5/5 330–580 11%–33%
C 2000 static+cgi 1 0 1.0 141/152/165 320–675 0.5%–26%
D 2000 cgi 1 0 1.0 0.2/0.4/4 175–320 26%–44%
E 2000 static 15 0 1.1 4/11/17 80–150 45%–63%
F 1400 static 15 0 1.1 141/153/167 50–96 0.5%–36%
G 2000 static+cgi 5 0 1.1 0.2/0.7/6 97–173 42%–59%
H 1600 static+cgi 5 0 1.1 140/152/165 95–175 9%–37%
I 2000 static+cgi 5 0 1.1 120/133/147 30–185 0%–54%
J 4800 static 1 0 1.0 142/151/165 55–470 0%–78%
K 2000 static+cgi 5 3% 1.1 0.2/0.6/6 103–177 35%–56%
L 2000 static 1 3% 1.0 0.2/0.9/8 340–1310 0%–30%
M 1600 static+cgi 5 3% 1.1 140/151/161 50–115 14%–54%
N 2000 static 1 3% 1.0 144/151/164 145–400 0.5%–34%
O 1500 static+cgi 5 3% 1.1 140/150/161 57–147 8%–53%
P 1800 static+cgi 1 3% 1.0 140/151/161 180–400 5%–38%

persistent connections in practice [Smith et al. 2001], the use of persistent con-
nections increases the duration of each connection and reduces the number of
connection attempts, thereby reducing the effect that SYN drops have on client
response time.

Measuring both HTTP 1.0/1.1 workloads provides a way to quantify the ben-
efits of using Certes for different versions of HTTP versus only using simpler
SYN-to-END measurements. For the HTTP 1.1 workloads considered, the num-
ber of web objects per connection ranged from 5 to 15, consistent with recent
measurements of the number of objects (i.e., banners, icons, etc.) typically found
in a web page [Smith et al. 2001].

The characteristics of the sixteen workloads are summarized in Table II. In
an attempt to cover a broad range of conditions, we varied the workloads along
the following dimensions:

(1) static pages and dynamic content (Perl and C)
(2) HTTP 1.0 and 1.1
(3) 1 to 15 pages per connection
(4) 0% to 3% network drop rate
(5) 5 ms to 150 ms network delays
(6) 1400 to 4800 clients (30 to 1670 conn/sec)
(7) CPU and bandwidth bound
(8) consistent and variable load.

All of the sixteen workloads imposed a constant load on the server except for
Test I and Test J, which imposed a highly varying load on the server. Each exper-
imental workload was run for 20 minutes. For each workload, we measured at
the server the steady-state number of connections per second and mean SYN

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Using Certes to Infer Client Response Time at the Web Server • 83

Fig. 16. Certes accuracy and stability in various environments.

drop rate during successive one-second time intervals. These measurements
provide an indication of the load imposed on the server.

5.2 Measurements and Results

Figure 16(a) compares the client-side, Certes, SYN-to-END and Apache mea-
sured mean response times for each experiment. The values shown are the re-
sponse times, calculated on a per second interval, averaged over the 20-minute
test period. Figure 16(b) shows the same results normalized with respect to the
client-side measurements.

The results show that the SYN-to-END measurement consistently underes-
timated the client-side measured response time, with the error ranging from
5% to more than 80%. The Apache measurements for response time, which by
definition will always be less than the SYN-to-END time, were extremely in-
accurate, with an error of at least 80% in all test cases. In contrast, the Certes
estimate was consistently very close to the client-side measured response time,
with the error being less than 2.5% in all cases except Tests L, N and P, which
were less than 7.4%.

Figures 13 and 14 explain why the Apache level measure of response time
is so short compared to the mean client perceived response time. Apache does
not measure all the inbound kernel queuing that occurs nor the time it takes to

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

84 • D. Olshefski et al.

Fig. 17. Certes response time distribution approximates that of the client for Tests D and G.

perform the TCP three-way handshake. On outbound, Apache measures end of
transaction before the data is transmitted (i.e., as soon as the writev() returns).

Figures 17(a) and 17(b), show the response time distributions for Test D using
HTTP 1.0 and Test G using HTTP 1.1. These results show that Certes not only
provides an accurate aggregate measure of client perceived response time, but
that Certes provides an accurate measure of the distribution of client perceived
response times. Figure 17 again shows how erroneous the SYN-to-END time
measurements are in estimating client perceived response time.

Figures 18(a) and 18(b) show how the response time varies over time for
Test A using HTTP 1.0 and Test G using HTTP 1.1. The figures show the
mean response time at one-second time intervals as determined by each of the
four measurement methods. The client-side measured response time increases
at the beginning of each test run then reaches a steady state during most of
the test run while the traffic generated is relatively constant. At the end of the
experiment, the clients are terminated, the generated traffic drops off, and the
response time drops to zero.

Figure 18 shows that Certes can track in real-time the variations in client
perceived response time for both HTTP 1.0/1.1 environments. The figure also

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Using Certes to Infer Client Response Time at the Web Server • 85

Fig. 18. Certes online tracking of the client response time in Test A and Test G.

indicates that Certes is effective at tracking both smaller and larger scale re-
sponse times, and that Certes is able to track client perceived response time
over time in addition to providing the accurate long term aggregate measures
of mean response time shown in Figure 16. Again, Certes provides a far more
accurate real-time measure of client perceived response time than SYN-to-
END times or Apache. The large amount of overlap in the figures between
the Certes response time measurements and client-side response time mea-
surements show that the measurements are very close. In contrast, the SYN-
to-END and Apache measurements have almost no overlap with the client-side
measurements and are substantially lower.

To gain insight on Certes’ sensitivity to the FTO, Test O and Test P were
executed using false assumptions for the number of retries k. In these two
cases, the FTO was distributed across clients: 1/3 of the transactions were
from clients configured to have an FTO of 9 seconds (k = 1), 1/3 were from
clients configured to have an FTO of 21 seconds (k = 2), and 1/3 from clients
configured to have a client FTO of 45 seconds (k = 3); the online model used
the incorrect assumption that all clients had an FTO of 21 seconds (k = 2). The
results for Tests O and P show that the Certes response time measurements

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

86 • D. Olshefski et al.

Fig. 19. Certes online tracking of the client response time in Test J, in on-off mode.

were still within 2% and 7.4%, respectively, of the client-side response time
measurements. For Test O, the resulting Certes estimate was only off by
108 ms, and for Test P, the difference was 677 ms. As mentioned earlier, if
the distribution for k was known (via historical measurements) the distribu-
tion can easily be included into the model. Further study is needed to determine
if error bounds exist for Certes and under which specific conditions Certes is
least accurate and why.

One of the key requirements for an online algorithm such as Certes is to be
able to quickly observe rapid changes in client response time. Figure 19 shows
how Certes is able to track the client response time as it rapidly changes over
time. There is no significant lag in Certes reaction time to these changes. This
is an important feature for any mechanism to be used in real-time control. As
expected, the SYN-to-END measurement tracks the client perceived response
time during the time intervals in which SYN drops do not occur. During the
interval in which SYN drops occur, the SYN-to-END measurement reaches a
maximum (i.e., about 6 seconds in Figure 19), which indicates the inaccuracy of
the SYN-to-END time for those connections that are accepted when the accept
queue is nearly full. We note for completeness that Figure 19 is zoomed in to
show detail and does not contain information from the entire experiment. The
chaos at the end of the test run is indicative of the time-dependent nature of SYN
dropping. These relatively few clients experienced SYN drops prior to these last
few intervals, increasing the overall mean client response time during a period
when the load on the system is actually very light. The mean client response
time during these intervals actually reflects heavy load in the recent past.

An important consideration in using an online measurement tool such as
Certes is ensuring that the measurement overhead does not adversely affect
the performance of the web server. To determine the overhead of Certes, we re-
executed Tests A, G and H on the server without the Certes instrumentation and
found the difference in throughput and client response time to be insignificant.
This suggests that Certes imposes little or no overhead on the server.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Using Certes to Infer Client Response Time at the Web Server • 87

Fig. 20. Web server control manipulating the Apache accept queue limit.

5.3 Accept Queue Management

In this section we demonstrate how Certes can be combined with a web server
control mechanism to better manage client response time. Web server control
mechanisms often manipulate inbound kernel queue limits as a way to achieve
response time goals [Li and Jamin 2002; Lu et al. 2001; Kanodia and Knightly
2000; Parekh et al. 2001; Almeida et al. 1998; Chen et al. 2001; Chen and
Mohapatra 1999]. Unfortunately, there is a serious pitfall that can occur when
post-TCP connection measurements are used as an estimate of the client re-
sponse time. Using these types of measurements as the response time goal can
lead the control mechanism to take actions that may result in having the exact
opposite effect on client perceived response time from that which is intended.
Without a model such as Certes, the control mechanism will be unaware of this
effect.

To emulate the effects of a control mechanism at the web server, we modified
the server to dynamically change the Apache accept queue limit over time.
Figure 20 shows the accept queue limit changing every 10 seconds between the
values of 25 and 211. Figure 21 shows the effect this has on the client perceived
response time. In this experiment, 1000 clients requested static pages using
HTTP 1.0 while DummyNet imposed a 152-ms ping delay. The SYN drop rate
varied from 0 to 81%, depending on the accept queue limit; likewise, the number
of completed transactions varied from 185 to 1020 per second.

When the queue limit is small, such as near the 200th interval, the response
time at the clients is high due to failed connection attempts, but the SYN-to-
END time is small due to short queue lengths at the server. The pitfall occurs
when the control mechanism decides to shorten the accept queue to reduce
response time, causing SYN drops, which in turn increases mean client response
time. Certainly, the control mechanism must be aware of the effect that SYN
drops have on the client perceived response time and include this as an input
when deciding on the proper queue limits.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

88 • D. Olshefski et al.

Fig. 21. Client response time increases as accept queue limit decreases.

6. CONCLUSIONS

This article presented Certes, an online server-based mechanism that enables
web servers to measure client perceived response time. Certes is based on a
model of TCP that quantifies the effect that SYN drops have on client perceived
response time by using three simple server-side measurements. Certes does not
suffer from any of the drawbacks associated with the addition of new hardware,
having to modify existing web pages or HTTP servers, and does not rely on third
party sampling. Certes can also be used for the delivery of non-HTML objects
such as PDF or PS files.

A key result of Certes is its robustness and accuracy. Certes was shown to
provide accurate estimates in the HTTP 1.0/1.1 environments, with both static
and dynamically created pages, under constant and variable loads of differing
scale. Certes can be applied over long periods of time and does not drift or
diverge from the client perceived response time; any errors that may be intro-
duced into the model do not accumulate over time. Certes is computationally
inexpensive and can be used online at the web server to provide information
in real-time. Certes captures the subtle changes that can occur under constant
load as well as the rapid changes that occur under bursty conditions. Certes can
also determine the distribution of the client perceived response time, which is
extremely important, since service-level objectives may not only specify mean
response time targets, but also indicate variability measures such as mode,
maximum, standard deviation and variance.

Certes can be readily applied in a number of contexts. Certes is particu-
larly useful to web servers that manage QoS by performing admissions con-
trol. Certes allows such servers to quantify the effect that admission re-
jection has on client perceived response time as well as allowing them to
avoid the pitfalls associated with using application level or kernel level SYN-
to-END measurements of response time. Certes is accurate under heavy
server load, the moment at which admissions control or scheduling algorithms
must make critical decisions. Algorithms that manage resource allocation,
reservations or congestion [Balakrishnan et al. 1999] can benefit from the

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Using Certes to Infer Client Response Time at the Web Server • 89

Fig. 22. Effect of SYN drop rate on client response time, as modeled as an /M/M/1 queuing system.

short-term forecasting [Cohen et al. 1999] of connection retries modeled by
Certes.

APPENDIXES

A. SHORTCOMINGS OF THE (STRICTLY) QUEUING THEORETIC APPROACH

As discussed in Section 2, the related work on modeling TCP that we cite as-
sumes that the SYN drop rate remains consistent over time (and is based on
network drop probabilities and not drop rates at the server). We show here that
such a queuing theoretic approach leads to an error prone result that is not
nearly as accurate as the Certes model. Using an /M/M/1 queuing system to
represent the web server, the steady-state expected client response time is:

CLIENT RT = (ts + tq) · (1− p3)+ 3p+ 6p2 + 12p3 + · · · , (32)

where

ts is the service time of the request, that is,
1
µ

tq is the time spent waiting on the queue
p is the probability of dropping a connection request.

The assumptions for this overly simplified model is that the offered load re-
mains constant over time and that ts remains constant regardless of the offered
load. Nevertheless, Figure 22 is a plot of Eq. (32) (with ts + tq = 0.010 seconds)
showing the additional time added to the mean service time under the given
SYN drop rate. For example, a drop rate of approximately 20% adds 1 second
to the mean service time.

Substituting SYN-to-END for ts + tq in Eq. (32), we can obtain the results
that the /M/M/1 model produces for Test J. Figure 23 shows Figure 19 overlaid
with the /M/M/1 results. The /M/M/1 model fails to track the client perceived
response time as effective as Certes. This is due to its inability to track the

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

90 • D. Olshefski et al.

Fig. 23. Modeling as an /M/M/1 queuing system fails to accurately track client perceived response
time.

Fig. 24. Using a sliding window of drop probabilities fails to capture all the dependences between
time intervals.

dependencies between time intervals. Note that this model still requires collect-
ing the SYN-to-END time, and the number of dropped, accepted and completed
for the current interval.

Equation (33) shows a more accurate approximation, using the drop proba-
bilities from prior intervals:

CLIENT RT =
mean(SYN-to-ENDi)
3 ·DRi−SYN-to-END−3+
6 ·DRi−SYN-to-END−6 ·DRi−SYN-to-END−6+
12 ·DRi−SYN-to-END−12 ·DRi−SYN-to-END−18 ·DRi−SYN-to-END−21.

(33)

This approach captures some, but not all, of the dependences that exist be-
tween time intervals. The results from applying Eq. (33) to Test J are shown in
Figure 24. Note that to apply this approach, a sliding window of the number of

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Using Certes to Infer Client Response Time at the Web Server • 91

Fig. 25. Certes begins modeling at the 600th interval during a consistent load test.

Fig. 26. Certes begins modeling at the 575th interval (in the middle of a peak) during a variable
load test.

dropped, accepted and completed is required—exactly that which is required
by Certes. Therefore, Certes gives a more accurate result using the same infor-
mation at an equivalent computational cost.

B. CONVERGENCE

The online implementation of Certes makes the assumption that during the first
interval, all SYNs are initial SYNs. Certes will converge if this assumption is
not true—that is, if Certes begins modeling during the ith interval. Figures 25
and 26 are the results of starting the Certes modeling halfway through the
execution of a consistent and variable load experiment. Figure 25 is similar
to Test A except that the accept queue limit was set to 512 and Figure 26 is
a re-execution of Test J. Figures 25 and 26 represent worst-case scenarios in
the sense that none of the measurements for prior intervals are available when
Certes begins modeling. In both cases, Certes converges after 21 seconds, which
is the FTO.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

92 • D. Olshefski et al.

REFERENCES

ALLMAN, M. 2000. A web server’s view of the transport layer. ACM Comput. Commun. Rev. 30, 4
(Oct.), 133–142.

ALMEIDA, J., DABU, M., MANIKUTTY, A., AND CAO, P. 1998. Providing differentiated levels of service in
web content hosting. In Tech. Rep. CS-TR-1998-1364. Computer Sciences Department, University
of Wisconsin-Madison.

BALAKRISHNAN, H., RAHUL, H. S., AND SESHAN, S. 1999. An integrated congestion management
architecture for internet hosts. ACM SIGCOMM Comput. Commun. Rev. 29, 4 (Oct.), 175–187.

BARFORD, P. AND CROVELLA, M. 1999. A performance evaluation of hyper text transfer protocols.
ACM SIGMETRICS Perf. Eval. Rev. 27, 1 (June), 188–197.

BHATTI, N. AND FRIEDRICH, R. 1999. Web server support for tiered services. IEEE Net. 13, 5 (Sept.-
Oct.), 64–71.

BRADEN, R. 1989. RFC 1122: Requirements for Internet Hosts—Communication layers. IETF,
http://www.ietf.org.

CARDWELL, N., SAVAGE, S., AND ANDERSON, T. 2000. Modeling TCP Latency. In IEEE INFOCOMM
Conference Proceedings (Tel-Aviv, Israel). IEEE Computer Society Press, Los Alamitos, Calif.,
1742–1751.

CHEN, X. AND MOHAPATRA, P. 1999. Providing differentiated service from an internet server. In 8th
International Conference on Computer Communications and Networks Conference Proceedings
(Boston, Mass.). IEEE Computer Society Press, Los Alamitos, Calif., 214–217.

CHEN, X., MOHAPATRA, P., AND CHEN, H. 2001. An admission control scheme for predictable server
response time for web accesses. In 10th International World Wide Web Conference Proceedings
(Hong Kong, China). 545–554.

COHEN, E., KRISHNAMURTHY, B., AND REXFORD, J. 1999. Efficient algorithms for predicting requests
to web servers. In IEEE INFOCOM Conference Proceedings (Orlando, Fla.). IEEE Computer
Society Press, Los Alamitos, Calif., 284–293.

DANZIG, P. 2001. Ideas for next generation content delivery. In NOSSDAV 2001 (Port Jefferson,
N.Y.). ACM, New York, http://www.nossdav.org/2001/keynote nossdav2001.ppt.

EGGERT, L. AND HEIDEMANN, J. 1999. Application-level differentiated services for web servers.
WWW J. 3, 2 (Aug.), 133–142.

EXODUS. http://www.exodus.com/.
FREEBSD. http://www.FreeBSD.org/.
FU, Y., CHERKASOVA, L., TANG, W., AND VAHDAT, A. 2002. EtE: Passive end-to-end internet service

performance monitoring. In USENIX Conference Proceedings (Monterey, Calif.). 115–130.
GOLUB, G. H. AND LOAN, C. F. V. 1996. Matrix Computations. The John Hopkins University Press,

Baltimore, Md.
KANODIA, V. AND KNIGHTLY, E. 2000. Multi-class latency-bounded web services. In IEEE/IFIP

IWQoS Conference Proceedings (Pittsburgh, Pa).
KEYNOTE. http://www.keynote.com/.
LI, K. AND JAMIN, S. 2002. A measurement-based admission-controlled web server. In IEEE IN-

FOCOMM Conference Proceedings IEEE, New York, NY, 651–659.
LU, C., ABDELZAHER, T., STANKOVIC, J., AND SON, S. H. 2001. A feedback control approach for guar-

anteeing relative delays in web server. In Proceedings of the 7th IEEE Real-Time Technology and
Applications Symposium (Taipei, Taiwan). IEEE Computer Society Press, Los Alamitos, Calif.

MERCURY INTERACTIVE. http://www-heva.mercuryinteractive.com/.
MICROSOFT. http://www.MicroSoft.com/.
MOCKAPETRIS, P. 1987a. RFC 1034: Domain names concepts and facilities. IETF,
http://www.ietf.org.

MOCKAPETRIS, P. 1987b. RFC 1035: Domain names implementation and specification. IETF,
http://www.ietf.org.

NAHUM, E., BARZILAI, T., AND KANDLUR, D. 1999. Performance issues in WWW servers. ACM SIG-
METRICS Performance Evaluation Review 27, 1 (May), 216–217.

NETBSD. http://www.NetBSD.org/.
NETQOS. http://www.NetQoS.com/.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Using Certes to Infer Client Response Time at the Web Server • 93

NIELSEN, H. F., GETTYS, J., BAIRD-SMITH, A., PRUD’HOMMEAUX, E., LIE, H. W., AND LILLEY, C. 1997.
Network performance effects of HTTP/1.1, CSS1, and PNG. ACM SIGCOMM Comput. Commun.
Rev. 27, 4 (Oct.), 155–166.

OLSHEFSKI, D., NIEH, J., AND AGRAWAL, D. 2002. Inferring client response time at the web server. In
ACM SIGMETRICS Conference Proceedings (Marina Del Rey, Calif.). ACM, New York, 160–171.

ONESTAT. 2002. Microsoft’s windows OS global market share is more than 97% according to
OneStat.com. OneStat Press Release.

PADHYE, J., FIROIU, V., TOWSLEY, D., AND KUROSE, J. 1998. Modeling TCP throughput: A simple model
and its empirical validation. ACM SIGCOMM Comput. Commun. Rev. 28, 4 (Oct.), 303–314.

PAHDYE, J. AND FLOYD, S. 2001. On inferring TCP behavior. In Proceedings of the 2001 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communications (San
Diego, Calif.). ACM New York, 287–298.

PANDEY, R., BARNES, J. F., AND OLSSON, R. 1998. Supporting quality of service in HTTP servers. In
Proceedings of the 17th annual ACM Symposium on Principles of Distributed Computing (Puerto
Vallarta, Mexico). ACM New York, 247–256.

PAPOULIS, A. AND PILLAI, S. U. 2001. Probability, Random Variables, and Stochastic Processes.
McGraw-Hill Series in Electrical Engineering.

PAREKH, S., GANDHI, N., HELLERSTEIN, J., TILBURY, D., JAYRAM, T., AND BIGUS, J. 2001. Using control
theory to achieve service level objectives in performance management. In IFIP/IEEE Interna-
tional Symposium on Integrated Network Management Conference Proceedings (Seattle, Wash.).
IEEE Computer Society Press, Los Alamitos, Calif. 841–854.

POSTEL, J. 1981. RFC 793: Transmission Control Protocol. IETF, http://www.ietf.org.
PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLANNERY, B. P. 1992. Numerical Recipes in

C: The Art of Scientific Computing, 2nd Edition. Cambridge University Press, Cambridge, United
Kingdom.

RAJAMONY, R. AND ELNOZAHY, M. 2001. Measuring client-perceived response times on the WWW. In
3rd USENIX Symposium on Internet Technologies and Systems (USITS) Conference Proceedings
(USITS ’01) (San Francisco, Calif.).

REDHAT. http://www.RedHat.com/.
RIZZO, L. 1997. Dummynet: A simple approach to the evaluation of network protocols. ACM

SIGCOMM Comput. Commun. Rev. 27, 1 (Jan.), 31–41.
SMITH, F. D., CAMPOS, F. H., JEFFAY, K., AND OTT, D. 2001. What TCP/IP protocol headers can tell

us about the web. ACM SIGMETRICS Perf. Eval. Rev. 29, 1 (June), 245–256.
SRISURESH, P. AND EGEVANG, K. 2001. RFC 3022: Traditional IP Network Address Translator (Tra-

ditional NAT). IETF, http://www.ietf.org.
SRISURESH, P. AND HOLDREDGE, M. 1999. RFC 2663: IP Network Address Translator (NAT) Termi-

nology and Considerations. IETF, http://www.ietf.org.
STEVENS, W. R. 1994. TCP/IP Illustrated, Volume 1 The Protocols. Addison-Wesley, Reading,

Mass.
STREAMCHECK. http://www.streamcheck.com/.
VOIGT, T., TEWARI, R., MEHRA, A., AND FREIMUTH, D. 2001. Kernel mechanisms for service differen-

tiation in overloaded web servers. In USENIX Conference Proceedings (Boston, Mass.). 189–202.
WEBSTONE. http://www.mindcraft.com/.
YAJNIK, M., MOON, S., KUROSE, J., AND TOWSLEY, D. 1999. Measurement and modeling of the tempo-

ral dependence in packet loss. In IEEE INFOCOM Conference Proceedings (Orlando, Fla.). IEEE
Computer Society Press, Los Alamitos, Calif., 345–352.

ZHANG, Y., PAXSON, V., AND SHENKER, S. 2000. The Stationarity of Internet Path Properties: Routing,
Loss and Throughput. In Tech. Rep. ACIRI.

Received August 2002; revised January 2003; accepted September 2003

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

