
NEVE: Nested Virtualization Extensions for ARM

Jin Tack Lim1, Christoffer Dall1, Shih-Wei Li1, Jason Nieh1, Marc Zyngier2
1Columbia University 2ARM Ltd

{jintack ,cdall, shihwei, nieh}@cs.columbia.edu, marc.zyngier@arm.com

ABSTRACT
Nested virtualization, the ability to run a virtual machine
inside another virtual machine, is increasingly important
because of the need to deploy virtual machines running soft-
ware stacks on top of virtualized cloud infrastructure. As
ARM servers make inroads in cloud infrastructure deploy-
ments, supporting nested virtualization on ARM is a key
requirement, which has been met recently with the introduc-
tion of nested virtualization support to the ARM architecture.
We build the first hypervisor to use ARM nested virtualiza-
tion support and show that despite similarities between ARM
and x86 nested virtualization support, performance on ARM
is much worse than on x86. This is due to excessive traps
to the hypervisor caused by differences in non-nested vir-
tualization support. To address this problem, we introduce
a novel paravirtualization technique to rapidly prototype
architectural changes for virtualization and evaluate their
performance impact using existing hardware. Using this tech-
nique, we propose Nested Virtualization Extensions for ARM
(NEVE), a set of simple architectural changes to ARM that
can be used by software to coalesce and defer traps by log-
ging the results of hypervisor instructions until the results
are actually needed by the hypervisor or virtual machines.
We show that NEVE allows hypervisors running real appli-
cation workloads to provide an order of magnitude better
performance than current ARM nested virtualization sup-
port and up to three times less overhead than x86 nested
virtualization. NEVE will be included in ARMv8.4, the next
version of the ARM architecture.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP ’17, October 28, 2017, Shanghai, China
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-5085-3/17/10. . . $15.00
https://doi.org/10.1145/3132747.3132754

CCS CONCEPTS
• Computer systems organization → Architectures; •
Software and its engineering→Virtual machines;Op-
erating systems; • Computing methodologies→ Simu-
lation evaluation;

KEYWORDS
Nested virtualization, hypervisors, performance, ARM

ACM Reference Format:
Jin Tack Lim, Christoffer Dall, Shih-Wei Li, Jason Nieh, and Marc
Zyngier. 2017. NEVE: Nested Virtualization Extensions for ARM. In
Proceedings of SOSP ’17, Shanghai, China, October 28, 2017, 17 pages.
https://doi.org/10.1145/3132747.3132754

1 INTRODUCTION
Nested virtualization is the discipline of running virtual ma-
chines (VMs) inside virtual machines. In other words, to
nest hypervisors is to run multiple levels of hypervisors.
Nested virtualization is increasingly important as new use
cases for virtualization are on the rise. For example, operat-
ing systems (OSes) including Microsoft Windows now have
built-in hypervisors to support legacy applications and re-
quire nested virtualization support to run in VMs. Similarly,
deploying VMs on top of Infrastructure-as-a-Service (IaaS)
cloud providers is becomingmore commonplace and requires
nested virtualization support [12, 14, 22, 43].

While the x86 architecture has dominated the server and
cloud infrastructure markets, the ARM architecture is lever-
aging its dominance in the mobile and embedded space to
make inroads in cloud infrastructure deployments [19]. Be-
cause of the demand for nested virtualization in these mar-
kets, architecture support for nested virtualization has re-
cently been added in the latest ARMv8.3 architecture [11].
However, no ARMv8.3 hardware exists yet and, as a conse-
quence, no hypervisors have been developed for ARM that
support nested virtualization. While nested virtualization
can deliver reasonable performance on x86 [10], it remains
an unexplored technology on ARM. Given the growing pop-
ularity of virtualization on ARM and attractive use cases for
nesting, investigating the future for nesting support on ARM
is important.

201

https://doi.org/10.1145/3132747.3132754
https://doi.org/10.1145/3132747.3132754

SOSP ’17, October 28, 2017, Shanghai, China Jin Tack Lim, Christoffer Dall, Shih-Wei Li, Jason Nieh, and Marc Zyngier

Because of the absence of ARM hardware with nested
virtualization support, we introduce a novel approach for
evaluating the performance of new architectural features for
virtualization using paravirtualization. Paravirtualization is
traditionally used to simplify hypervisor design and improve
hypervisor performance by avoiding the use of certain archi-
tectural features that are difficult or expensive to virtualize.
We instead use paravirtualization to enable a hypervisor to
leverage new architectural features that do not exist in the
underlying hardware by using existing instructions in the
underlying architecture to mimic the behavior and perfor-
mance of new architectural features. The approach enables
us to evaluate the performance of new architectural features
for virtualization on existing hardware with real application
workloads and hypervisors at native execution speeds.

Using this approach, we build the first ARM hypervisor to
support nested virtualization. We modified KVM/ARM [18]
to support ARMv8.3 nested virtualization features. Both the
hypervisor design and ARMv8.3 are based on a trap-and-
emulate approach similar to how software supports nested
virtualization on x86. Despite these similarities, we show that
ARMv8.3 nested virtualization performance is quite poor and
significantly worse than x86. Our results provide the first
quantitative comparison between ARM and x86 nested virtu-
alization performance, and provide crucial insight regarding
virtualization support on other emerging architectures. We
identify for the first time how differences in the design of
single-level hardware virtualization support, which do not
cause significant performance impact for non-nested vir-
tualization, end up causing a very significant performance
impact for nested virtualization due to excessive traps to the
hypervisor.

To address this problem, we propose Nested Virtualization
Extensions for ARM (NEVE), a new architecture feature for
ARM that can improve nested virtualization performance
with minimal hardware and software implementation com-
plexity. We observe that a primary source of overhead for
nested virtualization on ARM is the cost of context switch-
ing between a VM and the hypervisor and between different
VMs. On ARM, there are many instructions involved in these
context switches that require hypervisor intervention. This
cost is exacerbated when multiple levels of hypervisors are
involved in running a VM for nested virtualization. Our in-
sight is that many of these hypervisor instructions do not
have an immediate impact on VM or hypervisor execution,
but simply prepare the hardware for running a different exe-
cution context at a later time. NEVE takes advantage of this
insight by logging the results of these hypervisor instructions
and coalescing and deferring traps to the hypervisor until
the execution context being affected is actually used, thereby
significantly reducing the overhead of nested virtualization.

NEVE supports completely unmodified guest hypervisor and
OS software.
Using our paravirtualization approach for architecture

performance evaluation, we have built a complete hyper-
visor for nested virtualization by modifying KVM/ARM to
use NEVE on existing hardware. Our measurements on real
application workloads show that NEVE can provide up to
an order of magnitude better performance than the latest
ARMv8.3 architecture, and up to three times less overhead
than x86 nested virtualization. NEVE will be included in the
next ARM architecture, ARMv8.4.

2 BACKGROUND
Nested virtualization is the ability to run multiple levels of
VMs. Normal single-level virtualization runs a hypervisor
on the hardware and creates a virtual machine environment
similar to the underlying hardware for the VM. This allows
a standard OS designed to run on the underlying hardware
to run without modifications inside the virtual machine en-
vironment. With multiple levels of virtualization, the hyper-
visor must support running another hypervisor within the
VM, which can in turn run another VM. We refer to the host
hypervisor as the first hypervisor that runs directly on the
hardware, and the guest hypervisor as the next level hypervi-
sor. With more levels of virtualization, we also refer to the
host hypervisor as the L0 hypervisor, the guest OS or hypervi-
sor as the L1 guest or hypervisor, the guest OS or hypervisor
running on top of the L1 hypervisor as the L2 guest or hy-
pervisor, etc. While classically virtualizable architectures are
also recursively virtualizable [35], non-virtualizable archi-
tectures like x86 and ARM which have specific hardware
features to support running hypervisors may not necessarily
be recursively virtualizable.
The ARMv8 architecture [7] includes the ARM Virtual-

ization Extensions (VE). VE adds a more privileged CPU
mode, known as an exception level, called EL2. ARM CPU
exception levels EL0, EL1, and EL2 are designed to run user
applications, an OS kernel, and a hypervisor, respectively.
Each exception level has different sets of system registers,
which are only accessible from the same or more privileged
exception level. For single-level trap-and-emulate virtualiza-
tion, VMs are executed in EL0 and EL1. CPU virtualization
works by letting software executing in EL2 configure the
CPU to trap to EL2 on events and instructions that cannot be
safely executed by a VM, for example on hardware interrupts
and I/O instructions. Memory virtualization works by allow-
ing software in EL2 to point to a set of page tables, Stage-2
page tables, used to translate the VM’s view of physical ad-
dresses to machine addresses, while Stage-1 page tables can
be used and managed by the VM without trapping to the hy-
pervisor to translate virtual to physical addresses. Interrupt

202

NEVE: Nested Virtualization Extensions for ARM SOSP ’17, October 28, 2017, Shanghai, China

VMEL1

(a) KVM on
ARMv8.0

EL2
Host Kernel

KVM

VM

(b) KVM on
ARMv8.1 (VHE)

Guest KVM
Hypervisor

(c) KVM on
ARMv8.3 (nested)

Eret Trap Eret Trap

Host KVM
Hypervisor

Eret Trap

Nested VM
Host

Kernel

KVM

Figure 1: ARM Hardware Virtualization Extensions

virtualization works by allowing the hypervisor to inject
virtual interrupts to VMs, which VMs can acknowledge and
complete without trapping to the hypervisor.
ARMv8.1 introduced the Virtualization Host Extensions

(VHE) [15]. Without VHE, hosted hypervisors which are in-
tegrated with an OS kernel, needed to split their OS and hy-
pervisor functionality across EL1 and EL2, respectively [18]
as shown in Figure 1(a). VHE allows running both the OS
kernel and hypervisor functionality in EL2 as shown in Fig-
ure 1(b). VHE expands the capabilities of EL2 so that it can be
functionally equivalent to EL1, including adding additional
EL2 system registers. VHE supports running existing OS ker-
nels written for EL1 in EL2 without having to modify the OS
source code. VHE transparently redirects EL1 system register
access instructions to access EL2 system registers instead.
New instructions are added for the hypervisor to access the
EL1 system registers which belong to the VM context.
Running nested hypervisors on ARM involves running

the host hypervisor using EL2 as normal, but deprivileging
the guest hypervisor to preserve protection so that instead
of running in EL2, as it is designed to do, it runs in either
EL0 or EL1. While it is functionally possible to run the guest
hypervisor in EL0 and trap and emulate hypervisor instruc-
tions to the host hypervisor, there are at least two important
drawbacks of that approach. First, delivering interrupts to
the guest hypervisor has to be fully emulated in software
and cannot leverage the VE support for virtual interrupts,
because the architecture does not support delivering virtual
interrupts to EL0. Second, because the host hypervisor must
trap hypervisor instructions, it must enable a feature to Trap
General Exceptions (TGE), which has the unfortunate side
effect of disabling the Stage-1 virtual address translations for
the guest hypervisor. The host hypervisor must instead con-
struct shadow page tables using Stage-2 translation for the
guest hypervisor running in EL0, making the host hypervisor
overly complicated and likely results in poor performance.

A better alternative is running the guest hypervisor in EL1.
Unfortunately, this does not work without ARMv8.3 nested
virtualization support. Hypervisor instructions do not trap
to EL2 when executed in EL1, but cause exceptions directly
to the guest hypervisor in EL1. This would typically lead to

an unmodified hypervisor crashing if executed in EL1. For
example, suppose the guest hypervisor wishes to configure
its own page table base register. Since this EL2 register is
accessed using a hypervisor instruction which does not trap
to EL2 but instead causes an exception in EL1, attempts to
change the register would cause an unexpected exception
to the guest hypervisor executing in EL1, likely leading to
a software crash. To address this limitation, ARM recently
introduced nested virtualization support in the ARMv8.3
revision of the architecture [11]. It works in three parts. First,
it enables trapping of hypervisor instructions executed in
EL1 to EL2. Second, it disguises the deprivileged execution
by telling the guest hypervisor that it runs in EL2 if it reads
the CurrentEL register, which contains the current exception
level. Third, it supports using the EL2 page table format in
EL1. The resulting configuration using KVM on ARMv8.3 is
shown in Figure 1(c).

Comparison to x86 ARMv8.3 nested virtualization sup-
port is similar to x86 in that guest hypervisor instructions
can be configured to trap to the host hypervisor. However,
the core hardware virtualization support is different.We limit
our discussion of x86 to Intel VT as it is similar to AMD-V
for all purposes discussed here. While ARM VE provides a
separate CPU privilege level, EL2, with its own set of fea-
tures and register state, Intel VT provides root vs. non-root
mode, completely orthogonal to the CPU privilege levels,
each of which supports the same full range of user and ker-
nel mode functionality. Both ARM and Intel trap into their
respective EL2 and root modes, but transitions between root
and non-root mode on Intel are implemented with a VM
Control Structure (VMCS) residing in normal memory, to
and from which hardware state is automatically saved and
restored when switching to and from root mode, for example
when the hardware traps from a VM to the hypervisor. ARM
instead has a simpler hardware mechanism to transition be-
tween EL1 and EL2, but leaves it up to software to decide
what state needs to be saved and restored, providing more
flexibility to optimize what is done for each transition.
Because of these differences in the core hardware virtu-

alization support, ARMv8.3 must provide some additional
mechanisms not necessary for x86 to provide the same level
of support for nested virtualization. First, since ARM aug-
ments the existing CPU privilege level for virtualization sup-
port, as opposed to introducing an orthogonal mechanism,
ARMv8.3 needs to disguise the CPU privilege level so that a
hypervisor that normally runs in EL2 does not know that it
is running in EL1 as a guest hypervisor. Second, because EL2
is a separate privilege level with its own page table format
that differs from the EL1 page table format, ARMv8.3 allows
a hypervisor, which would normally use the EL2 page table
format when run in EL2, to use the same format when run
as a guest hypervisor in EL1.

203

SOSP ’17, October 28, 2017, Shanghai, China Jin Tack Lim, Christoffer Dall, Shih-Wei Li, Jason Nieh, and Marc Zyngier

3 PARAVIRTUALIZATION FOR
ARCHITECTURE EVALUATION

Unfortunately, ARMv8.3 hardware is not available, and the
newest publicly available ARM hardware is still v8.0. As
architectural support for virtualization is increasingly com-
mon, understanding the performance of these features is
important, ideally before they become set in production hard-
ware. However, evaluating new architecture features for vir-
tualization is challenging because of costs associated with
prototyping new hardware and the need to understand the
interaction of both hardware and software. Chip vendors use
cycle-accurate simulators to measure performance, but they
are typicallymany orders of magnitude slower than real hard-
ware, making it hard to evaluate real-life workloads. Booting
a full virtualization stack including the hypervisor and VM
can take days, and even then, measuring key application per-
formance characteristics such as fast I/O performance using
10G Ethernet is still not possible. Furthermore, simulators of
commercial architecture designs are themselves quite com-
plex to build and often closed and proprietary, limiting their
availability in practice. Software developers often can only
use simpler architecture models before hardware is available,
at the cost of not being able to measure any real architecture
performance.

To overcome this challenge, we introduce an existing idea,
paravirtualization, in a new context. Paravirtualization al-
lows for a software interface to a VM that differs slightly
from the underlying hardware [46]. It is used to make hy-
pervisors simpler and faster by avoiding certain architecture
features that are complex or difficult to virtualize efficiently.
We instead use paravirtualization to allow us to build hy-
pervisors using new architecture features that do not exist
on current hardware, and measure the performance of a full
virtualization stack using new architecture features at native
execution speeds on existing hardware.

Paravirtualization to evaluate new architecture features is
only possible when the performance and functionality of the
proposed feature can be closely emulated using instructions
supported by available hardware. For core virtualization sup-
port in the architecture, changes often involve traps; either
by adding features to trap on instructions that previously
did not trap, or by adding logic to avoid costly traps. In
both cases, paravirtualization can be used to replace instruc-
tions inside the VM with other ones supported by available
hardware such that the resulting behavior and performance
closely mimic that of a proposed architectural change.

For example, as discussed in Section 2, current ARM server
hardware does not support nested virtualization, because
when a hypervisor runs inside a VM on top of another hy-
pervisor, various instructions that it executes do not trap to
the underlying hypervisor for proper execution, but instead

simply fail improperly. However, if we replace those hyper-
visor instructions with instructions that do trap on current
hardware and the trap cost is expected to remain similar in
future hardware, we can obtain similar relative performance
to future hardware that supports nested virtualization with
correct trapping behavior.

There are a couple key assumptions in this example. First,
the approach is useful for evaluating the relative performance
of an architecture feature compared to something else, not
to estimate absolute performance of future hardware. For
example, the approach can provide an accurate evaluation
of the overhead of nested virtualization compared to native
execution.

Second, the approach assumes that certain types of traps
are interchangeable in terms of performance. For example, on
ARM, the trap cost using an explicit trap instruction should
be similar to the cost of any system register access instruction
that traps. Only the cost of the trap itself needs to remain
similar; the overall cost of handling the respective trap can
be quite different. This assumption is likely to be true in
most cases and we have validated it on ARM hardware, as
discussed in Section 5.

Using this approach, it becomes possible to efficiently eval-
uate the performance of full virtualization stacks interacting
with fast I/O peripherals, using many CPU cores, and with
real-world workloads. It avoids the extremely slow perfor-
mance, complexity, and limited availability of cycle-accurate
simulators for recent architecture versions of commercial
CPUs. Perhaps more importantly, the approach allows co-
design and rapid prototyping of software and architecture
together, reducing long feedback loops common today when
the performance of full software stacks is not known until
full OS support and hardware is released, which is long after
the architecture design phase takes place.

4 KVM/ARM NESTED VIRTUALIZATION
FOR ARMV8.3

Because ARMv8.3 hardware is not yet available, we leverage
our paravirtualization approach discussed in Section 3 to
allow us to design, implement, and evaluate the first ARM
hypervisor to support nested virtualization using ARMv8.3
architectural support on existing ARMv8.0 hardware. Since
both ARM and x86 provide a single level of architectural
virtualization support, we take an approach similar to Tur-
tles [10] for supporting nested virtualization on x86, where
multiple levels of virtualization are multiplexed onto the sin-
gle level of architectural support available. We have imple-
mented nested virtualization support on ARM by modifying
KVM/ARM [18], the widely-used mainline Linux ARM hy-
pervisor. There are two kinds of modifications: (1) changes
to KVM/ARM as a host hypervisor to support running guest

204

NEVE: Nested Virtualization Extensions for ARM SOSP ’17, October 28, 2017, Shanghai, China

hypervisors, and (2) paravirtualization of KVM/ARM to run
as a guest hypervisor on ARMv8.0 with similar behavior as
an unmodified KVM/ARM guest hypervisor on ARMv8.3.
CPU virtualization is accomplished by deprivileging a

guest hypervisor so that instead of running in EL2, it runs
in EL1 and traps on hypervisor instructions to the host hy-
pervisor running in EL2, which emulates the instruction as
needed. A guest hypervisor and its nested VMs all run in a
single VM from the point of view of the host hypervisor. The
host hypervisor emulates virtual CPUs, including the virtual-
ization extensions, by providing a virtual EL2 mode, creating
the illusion to the VM, and its guest hypervisor, that it runs
on real hardware capable of running additional VMs. Once
the host hypervisor emulates the full architecture including
VE to a VM, nesting is recursively supported. Based on the
support from the L0 host hypervisor, the L1 guest hypervisor
can provide the same architecture environment in the L2
nested VM to run an L2 hypervisor. An L2 hypervisor will
run in EL1 and trap on hypervisor instructions to the L0
host hypervisor, which can then forward it to the L1 guest
hypervisor providing the emulated architecture for the L2
hypervisor. In this manner, nested virtualization can be done
recursively as each hypervisor is limited to providing the
architecture environment including VE for the next level hy-
pervisor running in a VM, but is not concerned with further
levels of hypervisors.

To mimic ARMv8.3 behavior using ARMv8.0 hardware so
that hypervisor instructions run by the guest hypervisor trap
as needed to the host hypervisor, we paravirtualize the guest
hypervisor by replacing the hypervisor instructions with
hvc instructions. An hvc instruction takes a 16-bit operand
and generates an exception to EL2, which can read the 16-
bit operand back from a system register. We encode the
hypervisor instructions using the 16-bit operand, so that
on the trap to EL2, the host hypervisor is informed of the
original guest hypervisor instruction that was replaced by
an hvc and can emulate the behavior of that instruction.
Our paravirtualization technique can be implemented in

multiple ways. We added wrappers around all candidate
instructions at the source code level, which, depending on
a configuration option, at compile time replaces hypervisor
instructions with hvc instructions. In this way, we did not
change any of the logic or instruction flow of the original
KVM/ARM code base and thereby avoided unintentionally
introducing bugs or departing from the original hypervisor
implementation. It is also possible to paravirtualize the guest
hypervisor using a fully automated approach, for example
by binary patching a guest hypervisor image.
There are four kinds of hypervisor instructions that are

paravirtualized to mimic ARMv8.3 behavior so they trap
if executed by the guest hypervisor on ARMv8.0 hardware.
First, instructions that can only run in EL2, such as those that

directly access EL2 registers, are undefined when executed
in EL1 on ARMv8.0, so they are paravirtualized to trap to
EL2 to access virtual EL2 state.

Second, instructions that run as part of the hypervisor and
access EL1 registers are paravirtualized to trap to EL2 be-
cause they will now interfere with the execution of the guest
hypervisor which is really running in EL1. For example, an
ARM hypervisor will configure EL1 registers to run a VM
with its guest OS in EL1. This works fine if the hypervisor
is running in EL2 and writes to EL1 registers for the VM,
but is problematic if the hypervisor is deprivileged running
in EL1, because it will then unknowingly be overwriting its
own EL1 register state. Instead, these EL1 access instructions
must trap to the host hypervisor which will then emulate the
instruction on virtual EL1 register state. The host hypervisor
is then responsible for multiplexing EL1 state between the
guest hypervisor and the nested VM by context switching
the hardware EL1 state to the nested VM’s virtual EL1 state
when the nested VM runs. For some EL1 access instructions,
existing ARMv8.0 mechanisms are used by the host hypervi-
sor to configure them to trap, avoiding paravirtualization of
these instructions.
Third, the eret instruction is paravirtualized to trap to

EL2 and reading the CurrentEL special register is paravirtu-
alized to return EL2 as the current exception level. eret is
used by a hypervisor to return to a VM. The guest hypervisor
should not directly return to a nested VM without the host
hypervisor’s intervention, but must trap to the host hypervi-
sor. The nested VM’s EL1 register state is emulated by the
host hypervisor; entering the nested VM is only possible
once the host hypervisor loads the emulated nested VM state
to physical registers.
Finally, VHE adds a number of new instructions that are

undefined on ARMv8.0 which must be paravirtualized to trap
to EL2 so they can be emulated. These new instructions are
used to access EL1 state when running in EL2 with register
access redirection enabled, as explained in Section 2. Because
these instructions are not defined on ARMv8.0, they generate
an exception to EL1 when executed by a guest hypervisor,
instead of trapping to EL2. To allow guest hypervisors to
be configured with VHE on ARMv8.0, these instructions are
paravirtualized to trap as they would on ARMv8.3. Because
VHE is designed to make EL2 work the same way as EL1
and because the guest hypervisor already runs in EL1, run-
ning a VHE guest hypervisor works trivially without further
changes.
Memory virtualization is done using shadow page ta-

bles [1] to handle additional levels of memory translation
imposed by nested virtualization. ARM hardware supports
only two stages of address translation via Stage-1 and Stage-
2 page tables. Nested virtualization requires at least three:
L2 VM virtual address (VA) to L2 VM physical address (PA),

205

SOSP ’17, October 28, 2017, Shanghai, China Jin Tack Lim, Christoffer Dall, Shih-Wei Li, Jason Nieh, and Marc Zyngier

L2 VM PA to L1 VM PA, L1 VM PA to L0 PA. Similar to pre-
vious work [10], the host hypervisor creates shadow Stage-2
page tables to map from L2 VM PAs to L0 PAs by collapsing
Stage-2 page tables from the guest and host hypervisors. The
Stage-1 MMU translates L2 VAs to L2 PAs using the L2 guest
OS’s page tables, and the Stage-2 MMU then translates L2
VM PAs to L0 PAs using the shadow page tables.

Interrupt virtualization is accomplished by providing a
hypervisor control interface to a guest hypervisor via trap-
and-emulate. This interface is used by a hypervisor to control
virtual interrupts for higher level VMs and is multiplexed
onto the single-level ARM virtual interrupt support in the
ARM Generic Interrupt Controller (GIC). When a guest hy-
pervisor programs registers in the hypervisor control inter-
face, this must trap to the host hypervisor to sanitize and
translate the payload before writing shadow copies of the
register payload into the hardware control interface. The
hypervisor control interface is memory mapped with GICv2
and therefore trivially traps to EL2 when not mapped in
the Stage-2 page tables, but GICv3 uses system registers
and must use paravirtualization of the guest hypervisor to
mimic ARMv8.3’s behavior of trapping EL1 accesses to EL2
on ARMv8.0.

5 EVALUATION OF ARMV8.3 NESTED
VIRTUALIZATION

We present some experimental results that quantify the
nested virtualization performance of ARMv8.3 based on run-
ning our paravirtualized KVM/ARM guest hypervisor on our
KVM/ARM host hypervisor on multicore ARM hardware.
We also measure the performance of a KVM x86 guest hy-
pervisor on top of a KVM x86 host hypervisor to compare
against a more mature nested virtualization solution with
a similar hypervisor design; KVM x86 is based on Turtles.
These results provide the first measurements of ARM nested
virtualization as well as the first comparison of nested virtual-
ization between ARM and x86. Experiments were conducted
using server hardware in CloudLab [37].

ARM measurements were done using HP Moonshot m400
servers, each with a 64-bit ARMv8-A 2.4 GHz Applied Micro
Atlas SoC with 8 physical CPU cores. Each m400 node had
64 GB of RAM, a 120 GB SATA3 SSD for storage, and a Dual-
port Mellanox ConnectX-3 10 GbE NIC. x86 measurements
were done using Cisco UCS SFF 220 M4 servers, each with
two Intel E5-2630 v3 8-core 2.4 GHz CPUs. Hyperthreading
was disabled on the nodes to provide a similar hardware
configuration to the ARM servers. Each node has 128 GB of
ECCmemory (8x16 GB DDR4 1866 MHz dual rank RDIMMs),
a 2x1.2 TB 10K RPM 6G SAS SFF HDD for storage, and a
Dual-port Cisco UCS VIC1227 VIC MLOM 10 GbE NIC. The
x86 hardware includes VMCS Shadowing [27], the latest

ARMv8.3 x86
Micro-
benchmark VM Nested

VM
Nested
VM VHE VM Nested

VM
Hypercall 2,729 422,720 307,363 1,188 36,345
Device I/O 3,534 436,924 312,148 2,307 39,108
Virtual IPI 8,364 611,686 494,765 2,751 45,360
Virtual EOI 71 71 71 316 316

Table 1: Microbenchmark Cycle Counts

x86 hardware support for nested virtualization. All servers
were connected via 10 GbE, and the interconnecting network
switch easily handles multiple sets of nodes communicating
with full 10 Gb bandwidth.

To provide comparable measurements, we kept the soft-
ware environments across all hardware platforms and hyper-
visors the same as much as possible. For the host and guest
hypervisors, we used KVM in Linux 4.10.0-rc3 with QEMU
2.3.50, with our modifications for ARM nested virtualization.
KVM/ARM can be configured to run with or without VHE
support; we ran experiments with both versions as guest
hypervisors. KVM was configured with its standard VHOST
virtio network, and with cache=none for virtual block stor-
age devices [25, 32, 42]. All hosts and VMs used Ubuntu 14.04
with the same Linux 4.10.0-rc3 kernel and software config-
uration. All VMs used paravirtualized I/O using virtio-net
and virtio-block over PCI.
We ran experiments in two configurations, in a VM (no

nesting) and in a nested VM. The VM was configured with
4 cores and 12 GB RAM running on KVM with 8 cores and
16 GB RAM. The nested VM was configured with 4 cores and
12 GB RAM running on a KVM guest hypervisor with 6 cores
and 16 GB RAM running on the host KVM hypervisor with 8
cores and 20 GB RAM. The CPU and memory configurations
were selected to provide the same hardware resources to the
VM or nested VM used for running the experiments while
ensuring more than adequate hardware resources for the
underlying hypervisor(s).
We leveraged the kvm-unit-test microbenchmarks [33]

to quantify important micro-level interactions between the
hypervisor and its VM. Table 1 shows the results for run-
ning kvm-unit-test in the VM and nested VM configurations
for ARMv8.3, with and without VHE, and x86. Measure-
ments are shown in cycles instead of time to provide a useful
comparison across hardware. Despite using a similar hyper-
visor architecture on ARM and x86, which both leverage
trap-and-emulate hardware support for nested virtualiza-
tion, as well as sharing the same architecture-independent
parts of the KVM implementation, the measurements show
that ARMv8.3 has drastically worse nested virtualization
performance than x86.

The Hypercall benchmark measures the cost of switching
from a VM to the hypervisor, and immediately back to the

206

NEVE: Nested Virtualization Extensions for ARM SOSP ’17, October 28, 2017, Shanghai, China

VM without doing any work in the hypervisor. Compared to
using a VM, making hypercalls from a nested VM to a guest
hypervisor on ARMv8.3 is 155 and 113 times more expensive
using a non-VHE and VHE guest hypervisor, respectively.
When a nested VM makes a hypercall, it first traps to the
host hypervisor running in EL2. The host hypervisor then
forwards this hypercall to the guest hypervisor by emulating
an exception to the virtual EL2 mode in the VM. When the
guest hypervisor processes the hypercall, it simply returns
back to the nested VM. However, the process of transitioning
between the guest hypervisor and the nested VM involves
executing many hypervisor instructions that trap to the host
hypervisor, which ends up being very expensive.
The Device I/O benchmark measures the cost of access-

ing an emulated device in the hypervisor. This is a frequent
operation for many device drivers and provides a common
baseline for accessing I/O devices emulated in the hypervisor.
Device I/O is more costly than Hypercall because it emulates
the device in addition to performing similar operations to Hy-
percall. This additional work reduces the relative overhead
of running in a nested VM versus a VM, but the overhead is
still hundreds of thousands of cycles on ARMv8.3 compared
to tens of thousands of cycles on x86.

The Virtual IPI (Inter Processor Interrupt) benchmarkmea-
sures the cost of issuing a virtual IPI from one virtual CPU
to another virtual CPU when both virtual CPUs are actively
running on separate physical CPUs. This is a frequent oper-
ation in multi-core OSes that affects many multi-threaded
workloads. Virtual IPI is more costly than Hypercall because
it involves exits from both the sending VM and receiving
VM. The sending VM exits because sending an IPI traps and
is emulated by the underlying hypervisor. The receiving VM
exits because it gets an interrupt which is handled by the
underlying hypervisor. Compared to VMs, virtual IPIs be-
tween CPUs in nested VMs are more than 73 and 59 times
more expensive using non-VHE and VHE guest hypervisors,
respectively.

The Virtual EOI benchmark measures the cost of complet-
ing a virtual interrupt, also known as End-Of-Interrupt. The
interrupt controllers of both platforms, GIC [6] on ARM and
APICv [28] on x86, include support for completing interrupts
directly in the VM without trapping to the hypervisor. As a
result, this operation is much less expensive than the other
benchmarks which trap. The KVM host hypervisor provides
support on both ARM and x86 so that nested VMs can use
hardware-accelerated virtual interrupt completion, resulting
in the same cost for both VMs and nested VMs.
In all cases except Virtual EOI, the cost of running the

microbenchmarks in a nested VM on ARMv8.3 is prohibi-
tively expensive compared to running in a VM. Compared
to x86, nested VM performance on ARMv8.3 imposes more
than an order of magnitude more overhead in terms of cycle

counts, and up to 7 times more overhead in terms of relative
performance compared to a VM. While trap-and-emulate
nested virtualization provides reasonable performance on
x86, it does not on ARMv8.3.

To investigate the reasons behind the poor ARMv8.3 per-
formance, we measured the average number of traps to the
host hypervisor when running the Hypercall benchmark.
While Hypercall only causes a single trap when running in a
VM, it causes 126 and 82 traps to the host hypervisor when
running in a nested VM using a non-VHE and VHE guest
hypervisor, respectively. Clearly, each trap, also known as an
exit, from the nested VM results in a multitude of additional
traps from the guest hypervisor to the host hypervisor. This
is a major source of overhead for nested virtualization and
is called the exit multiplication problem [10].
The guest hypervisor using VHE performs better than

without VHE, because it traps less often. When KVM/ARM
runs with VHE enabled, it uses EL1 system register access
instructions wherever possible with the expectation that the
hardware redirects these instructions to EL2 registers, as
discussed in Section 2. When this is done as a VHE guest
hypervisor running in EL1 on ARMv8.0 hardware, it simply
accesses EL1 registers directly without trapping to the host
hypervisor, and the host hypervisor configures the EL1 hard-
ware registers with the guest hypervisor’s state. In contrast,
a non-VHE guest hypervisor can only access EL2 state using
EL2 system register access instructions, and each such access
will trap to the host hypervisor since EL2 registers are not
accessible at EL1. Despite this reduction in the number of
traps for a VHE guest hypervisor, its nested virtualization
performance remains poor.

Our measurements of ARMv8.3 nested virtualization per-
formance are based on replacing guest hypervisor instruc-
tions on ARMv8.0 that do not trap as they would on ARMv8.3
with hvc instructions, which are explicit trap instructions,
to mimic ARMv8.3 behavior. The replaced instructions are
mostly system register access instructions along with a few
eret instructions. On ARM, the cost of a trap should be eval-
uated in two parts: (1) finding out that you need to generate
an exception, and (2) generating the exception. The first can
range from expensive (memory fault) to being free (hvc in-
struction), with a system register trap being almost free. The
second is a fixed cost for all instructions. As a result, the cost
of traps for the replaced instructions is expected to be very
similar to that of an hvc instruction on all implementations
of the ARM architecture.

We further measured the trap cost of several different sys-
tem register access instructions that trap on current ARMv8.0
hardware and compared their cost with an hvc instruction.
In all cases, trapping from EL1 to EL2 was between 68 to 76
cycles, and returning from a trap to EL2 back to EL1 was

207

SOSP ’17, October 28, 2017, Shanghai, China Jin Tack Lim, Christoffer Dall, Shih-Wei Li, Jason Nieh, and Marc Zyngier

65 cycles. The difference in trap costs across different in-
structions was less than 10% overall and less than 10 cycles.
These measurements on current ARM hardware support our
assumption that hvc instructions can be used as a suitable
replacement to mimic ARMv8.3 instructions that trap on
system register accesses with similar performance.

6 NEVE: NESTED VIRTUALIZATION
EXTENSIONS

Nested virtualization support as introduced in ARMv8.3 traps
hypervisor instructions from a deprivileged guest hypervisor
running in EL1 to a host hypervisor running in EL2. A single
exit from a nested VM can result in the guest hypervisor is-
suing many hypervisor instructions, resulting in a multitude
of additional traps from the guest hypervisor to the host hy-
pervisor. Many hypervisor instructions need to trap because
they access system registers. If we can reduce the number
of accesses to system registers that need to trap, we can po-
tentially reduce overhead and improve the performance of
nested virtualization on ARM.
System registers accessed by the guest hypervisor can

be loosely classified into two groups: VM registers, which
only affect the VM, and hypervisor control registers, which
directly affect hypervisor execution. A key observation is
that VM registers do not have an immediate effect on the
guest hypervisor’s execution, but instead are used to prepare
the hardware for running the nested VM when execution
returns to the nested VM.

Based on this observation, we propose NEVE, an addition
to the ARMv8.3 architecture that avoids traps from the guest
hypervisor to the host hypervisor for awide range of hypervi-
sor instructions that access system registers. NEVE supports
unmodified guest hypervisors, both hosted and standalone
designs, and unmodified guest OSes. NEVE has three key
mechanisms. First, it avoids traps to the host hypervisor for
VM registers and instead adds hardware support to store VM
registers in memory until they are actually needed for VM
execution. In ARMv8.3, when a guest hypervisor accesses a
VM system register, it traps to the host hypervisor, which
simply stores this value in memory in a software-managed
data structure, and later programs this value into physical
registers when running the nested VM. NEVE instead sup-
ports this operation in hardware by using an architecturally
defined storage format and transparently rewriting system
register access instructions into normal memory accesses.
Second, NEVE reduces traps to the host hypervisor for

hypervisor control registers by instead identifying and using
equivalent registers that can be accessed without trapping. In
ARMv8.3, when the guest hypervisor writes to a hypervisor
control register and traps to the host hypervisor, in many
cases, the host hypervisor handles the trap by writing into

an equivalent EL1 register. For example, the guest hypervisor
will write the base address of the exception vector for itself in
VBAR_EL2 which will trap to the host hypervisor, which in
turn needs to write the address to VBAR_EL1, the equivalent
EL1 register, so that the guest hypervisor running in EL1 will
handle exceptions correctly. In cases where the EL1 and EL2
registers have the same format, NEVE instead supports this
operation in hardware by transparently redirecting accesses
to EL2 registers to EL1 registers without trapping to the host
hypervisor.
Third, NEVE reduces traps to the host hypervisor when

reading certain hypervisor control registers by keeping a
cached copy in memory and redirecting register read instruc-
tions into normal memory accesses. Read instructions, in
the absence of side effects, have no immediate impact on
hypervisor execution and can be serviced from a memory
cache to avoid traps.

6.1 Architecture Specification
NEVE introduces an EL2 Virtual Nested Control Register
(VNCR_EL2) which is managed exclusively by the host hy-
pervisor. The host hypervisor can use the VNCR_EL2 to
enable and disable NEVE and to configure a deferred access
page in memory used to store the values of VM system reg-
isters. Table 2 shows the bit fields in the VNCR_EL2 register.
The BADDR field contains the physical base address of the
deferred access page. The layout of the deferred access page
can be arbitrarily defined as long as each VM system register
is stored at a well-defined offset from BADDR. The Enable bit
completely enables or disables NEVE. When the Enable field
is set to 1, and the ARMv8.3 nested virtualization support
is enabled, all accesses to the VM system registers which
would otherwise trap to the host hypervisor are redirected to
memory accesses to the deferred access page. Similarly, the
register redirection described above for hypervisor control
registers is enabled and disabled using the Enable field in the
VNCR_EL2.

Fields Description
bits[52:12] BADDR: Deferred Access Page Base Address
bits[11:1] Reserved
bit[0] Enable

Table 2: VNCR_EL2 Register Fields

It is up to the host hypervisor to determine when NEVE
is enabled and when register values are copied to and from
the deferred access page. In a typical workflow, the host
hypervisor populates the deferred access page with initial
values of the registers and enables NEVE before running
the guest hypervisor. During guest hypervisor execution,
all accesses to VM system registers are redirected to the
deferred access page. When the host hypervisor needs to

208

NEVE: Nested Virtualization Extensions for ARM SOSP ’17, October 28, 2017, Shanghai, China

Category Register Description

VM
Trap
Control

HACR_EL2 Hypervisor Auxiliary Control
HCR_EL2 Hypervisor Configuration
HPFAR_EL2 Hypervisor IPA Fault Address
HSTR_EL2 Hypervisor System Trap
TPIDR_EL2 EL2 Software Thread ID
VMPIDR_EL2 Virtualization Multiprocessor ID
VNCR_EL2 Virtual Nested Control
VPIDR_EL2 Virtualization Processor ID
VTCR_EL2 Virtualization Translation Control
VTTBR_EL2 Virtualization Translation Table Base

VM
Execution
Control

AFSR0_EL1 Auxiliary Fault Status 0
AFSR1_EL1 Auxiliary Fault Status 1
AMAIR_EL1 Auxiliary Memory Attribute Indirection
CONTEXTIDR_EL1 Context ID
CPACR_EL1 Architectural Feature Access Control
ELR_EL1 Exception Link
ESR_EL1 Exception Syndrome
FAR_EL1 Fault Address
MAIR_EL1 Memory Attribute Indirection
SCTLR_L1 System Control
SP_EL1 Stack Pointer
SPSR_EL1 Saved Program Status
TCR_EL1 Translation Control
TTBR0_EL1 Translation Table Base 0
TTBR1_EL1 Translation Table Base 1
VBAR_EL1 Vector Base Address

Thread ID TPIDR_EL2 Software Thread ID
Table 3: VM System Registers

use the VM register values, it simply accesses the deferred
access page. For example, when the guest hypervisor runs
the nested VM, it executes the eret instruction to enter
the nested VM, which traps to the host hypervisor. The
host hypervisor copies register values from the deferred
access page to physical EL1 registers to run the nested VM,
and disables NEVE while running the nested VM so the
VM can access its EL1 registers. Similarly, when the host
hypervisor emulates an exception from the nested VM to the
guest hypervisor, it copies the EL1 system register values
from the hardware into the deferred access page, enables
NEVE, and runs the guest hypervisor. The guest hypervisor
can now access the VM system registers directly without
trapping to the host hypervisor.
Table 3 lists the 27 VM system registers we identified

as part of the ARMv8.3 specification which do not affect
execution of the hypervisor directly. When enabled, NEVE
redirects accesses to these registers to the deferred access
page. The VM Trap Control registers control when certain
operations performed by the VM trap to the hypervisor and
other virtualization features such as Stage-2 translation and
virtual interrupts. The VM Execution Control registers are
system registers that belong to the VM itself and do not affect
hypervisor execution. The Thread ID register, TPIDR_EL2, is

NEVE EL2 Register Description

Redirect
to *_EL1

AFSR0_EL2 Auxiliary Fault Status 0
AFSR1_EL2 Auxiliary Fault Status 1
AMAIR_EL2 Auxiliary Memory Attribute Indirection
ELR_EL2 Exception Link
ESR_EL2 Exception Syndrome
FAR_EL2 Fault Address
SPSR_EL2 Saved Program Status
MAIR_EL2 Memory Attribute Indirection
SCTLR_EL2 System Control
VBAR_EL2 Vector Base Address

Redirect
to *_EL1
(VHE)

CONTEXTIDR_EL2 Context ID
TTBR1_EL2 Translation Table Base 1

Trap on
write

CNTHCTL_EL2 Counter-timer Hypervisor Control
CNTVOFF_EL2 Counter-timer Virtual Offset
CPTR_EL2 Architectural Feature Trap
MDCR_EL2 Monitor Debug Configuration

Redirect
or trap

TCR_EL2 Translation Control
TTBR0_EL2 Translation Table Base
Table 4: Hypervisor Control Registers

commonly used by hypervisors to store thread-specific data,
but does not affect the hypervisor’s execution.

We distinguish two types of hypervisor control registers,
normal system registers and GIC registers related to the
hypervisor control interface used for interrupt virtualization,
discussed in Section 4. When the guest hypervisor executes
in virtual EL2, which really runs in EL1, accesses to these EL2
registers would normally trap to the host hypervisor, but
NEVE uses two techniques to avoid traps, register redirection
and cached copies. Table 4 shows the 17 normal system
registers we identified that affect the hypervisor’s execution
in EL2, and the techniques NEVE used to avoid traps.

Register redirection transparently redirects accesses from
an EL2 register to its corresponding EL1 register if it ex-
ists and has the same format as the EL2 register. Since the
guest hypervisor is really running in EL1, EL2 register ac-
cesses can be redirected to corresponding EL1 registers such
that changes to the registers have the same impact on the
hypervisor’s execution when running deprivileged in EL1
as running in EL2 on real hardware. NEVE provides regis-
ter redirection for 12 EL2 registers with corresponding EL1
registers as shown in Table 4, two of which are grouped
separately (VHE) as they were added as part of VHE and are
only relevant for VHE hypervisors.

Cached copies (shown as “Trap on write” in Table 4) trans-
parently changes reads from EL2 registers that don’t have
an equivalent EL1 to instead read a cached copy from the
deferred access page. The host hypervisor copies the value
of the virtual EL2 register to the deferred access page when
running the guest hypervisor to cache the latest value of the
register for reads from the guest hypervisor. Writes to these

209

SOSP ’17, October 28, 2017, Shanghai, China Jin Tack Lim, Christoffer Dall, Shih-Wei Li, Jason Nieh, and Marc Zyngier

NEVE GIC Register Description

Trap on
write

ICH_HCR_EL2 Hypervisor Control
ICH_VTR_EL2 VGIC Type
ICH_VMCR_EL2 Virtual Machine Control
ICH_MISR_EL2 Maintenance Interrupt Status
ICH_EISR_EL2 End of Interrupt Status
ICH_ELRSR_EL2 Empty List Register Status
ICH_AP0R<n>_EL2 Active Priorities Group 0, n=0-3
ICH_AP1R<n>_EL2 Active Priorities Group 1, n=0-3
ICH_LR<n>_EL2 List, n=0-15

Table 5: Hypervisor Control GIC Registers

registers will trap, allowing the host hypervisor to update
the content of the deferred access page as needed. Cached
copies are used for four EL2 registers, two of which have
similar EL1 registers but with different formats and thus
cannot be used with register redirection from EL2 to EL1
registers, namely CNTHCTL_EL2 and CPTR_EL2.
Table 4 lists two EL2 registers, TCR_EL2 and TTBR0_-

EL2, that may be redirected to corresponding EL1 registers
for VHE guest hypervisors only. VHE changes the format
of these EL2 registers to be identical to the corresponding
EL1 registers. VHE guest hypervisors can therefore access
these registers directly using EL1 access instructions. A non-
VHE guest hypervisor, however, would use the EL2 register
formats, which are incompatible with the EL1 registers, and
therefore the EL2 register accesses cannot be redirected to
EL1 registers but must instead be supported using cached
copies, trapping on writes to these registers.

Table 5 shows the GIC registers in the hypervisor control
interface registers we identified that affect the hypervisor’s
execution in EL2. NEVE uses cached copies in the deferred
access page for all of these registers to avoid traps.
ARM also provides performance monitoring, debugging,

and timer system registers. We note that accesses to the
PMUSERENR_EL0 and PMSELR_EL0 performance monitor
control registers can be redirected to the deferred access
page like VM system registers, reads from the MDSCR_EL1
debug control register can be redirected to a cached copy
so that only writes must trap, and all accesses to the virtual
and physical hypervisor timer EL2 registers trap as reads
must access the registers directly to obtain correct values
updated by hardware. Further details are omitted due to
space constraints.

6.2 Recursive Virtualization
NEVE supports multiple levels of nesting, also known as
recursive nesting. As discussed in Section 4, recursive nest-
ing is supported with ARMv8.3, because the host hypervisor
emulates the same virtual execution environment as the
underlying machine including the hardware virtualization
support and nesting support. NEVE can further improve the

performance of each level of hypervisor. The L0 host hyper-
visor can create a VM with support for NEVE, which the
guest hypervisor will use when running the L2 guest hyper-
visor. When the L1 guest hypervisor configures NEVE by
accessing the VNCR_EL2, we cache the register state to the
deferred access page. Because the VNCR_EL2 of the L1 guest
hypervisor does not affect the execution of L1 hypervisor,
but only affects the execution of the L2 guest hypervisor.
On entry to the L2 VM’s virtual EL2, the L0 host hypervisor
can emulate the behavior of NEVE by using the hardware
features directly. This works by translating the VM physical
address written by the L1 guest hypervisor into a machine
physical address and using this address in the hardware
VNCR_EL2. This allows transparently changing register ac-
cesses performed by the L2 guest hypervisor into memory
and EL1 register accesses. The memory used is provided by
the L1 guest hypervisor which can therefore directly access
the content of the deferred access page used to support the
L2 guest hypervisor running NEVE. In this scenario, NEVE
avoids the same amount of traps between the L2 and L1 guest
hypervisors as in the normal nested case described above.

6.3 Architectural Impact
NEVE represents a relatively small architectural change. It
requires adding the VNCR_EL2 register and adding logic to
redirect system register access instructions from VM regis-
ters to memory at a specified offset, when NEVE is enabled in
the VNCR_EL2 register. It also requires adding logic to redi-
rect instructions accessing EL2 registers to corresponding
EL1 registers or to memory on read accesses, when NEVE
is enabled. Since ARMv8.1 already supports redirecting sys-
tem register access instructions to other system registers
depending on a run-time configuration, the most invasive
part of our proposal is to redirect a system register access
to a memory access. To simplify the logic to handle this, we
propose that the architecture mandates that the host hyper-
visor software programs a page-aligned physical address in
the VNCR_EL2.BADDR field to avoid the need to perform
alignment checks or handle address translation faults.

6.4 Implementation
Although NEVE is designed to work with unmodified guest
hypervisors, it requires modest hardware changes to do so.
To show how NEVE can be used in the absence of a hardware
implementation of NEVE, we describe how we can modify
KVM/ARM to use this feature via our paravirtualization ap-
proach from Section 3. We can use the same KVM/ARM
design from Section 4, but with modifications to CPU virtual-
ization to use NEVE. To implement the deferred access page,
we establish a shared memory region between the host and
guest hypervisor. We modify KVM/ARM to run as a guest

210

NEVE: Nested Virtualization Extensions for ARM SOSP ’17, October 28, 2017, Shanghai, China

hypervisor using NEVE by replacing instructions that access
VM registers with normal load and store instructions that ac-
cess the shared memory region. We also modify KVM/ARM
to run as a guest hypervisor by replacing instructions that
access EL2 hypervisor control registers with instructions
that access corresponding EL1 registers to provide the equiv-
alent register redirection functionality shown in Table 4. The
resulting guest hypervisor eliminates the same traps to the
host hypervisor and provides the same performance charac-
teristics as a hardware system with NEVE.
We run KVM/ARM in two configurations as the guest

hypervisor, non-VHE and VHE. Non-VHE KVM/ARM issues
EL1 system register access instructions to access EL1 VM
system registers and EL2 system register access instructions
to access EL2 VM system registers. These are replaced with
load and store instructions to mimic NEVE. As described in
Section 2, a VHE hypervisor takes advantage of the VHE
register redirection feature to allow its integrated OS writ-
ten for EL1 to run in EL2 without modification. With VHE,
EL1 system register access instructions are redirected to EL2
system registers, and KVM/ARM with VHE uses EL1 system
register access instructions wherever possible to access EL2
registers, as discussed in Section 5. VHE KVM/ARM run-
ning as the guest hypervisor will therefore access its own
virtual EL2 register state directly using EL1 system register
instructions, and there is no need to replace any of these
instructions. However, VHE introduces separate EL12 sys-
tem register access instructions to access EL1 VM system
registers, which are replaced with load and store instructions
to mimic NEVE.

6.5 Performance Impact
The performance benefit of NEVE depends on the design
and implementation of the guest hypervisor. The more of-
ten a guest hypervisor accesses system registers, the greater
potential performance benefit. We briefly discuss three al-
ternative ARM hypervisor designs in this context, which
are also the most widely-used ARM hypervisors: KVM/ARM
without VHE, KVM/ARM with VHE, and Xen.

First, consider a legacy KVM/ARM implementation with-
out support for VHE [18]. KVM/ARM saves and restores all
the VM system registers and modifies VM trap control regis-
ters on every VM exit because it uses the same EL1 hardware
state to run the Linux kernel portion of the hypervisor. Fur-
thermore, a non-VHE hosted hypervisor frequently accesses
the hypervisor control registers when moving between EL1
and EL2. Each of these register accesses from the guest hyper-
visor traps, resulting in significant exit multiplication using
ARMv8.3, and NEVE provides a significant performance gain
for this hypervisor design as shown in Section 7.

Second, consider KVM/ARM in the context of the Virtual-
ization Host Extensions (VHE) [15], which were introduced
in ARMv8.1. While KVM/ARM was originally designed to
run across both EL1 and EL2, VHE allows the KVM/ARM
hypervisor to run entirely in EL2. As a result, KVM/ARM no
longer needs to use EL1 system registers and the hypervi-
sor is unaffected by VM trap controls. Therefore, switching
between the VM and a VHE hypervisor no longer requires
saving and restoring the full VM system register state or con-
figuring VM trap-control registers. However, even with VHE,
the current KVM/ARM implementation frequently accesses
the VM system registers. The reason is that KVM/ARM saves
the VM EL1 context and modifies the VM trap-control reg-
isters when switching from the VM to the hypervisor and
back, because avoiding these operations while preserving
backwards compatibility with non-VHE systems is difficult
and would complicate the code base. Furthermore, saving
and restoring the full EL1 system register state is still needed
when switching between VMs. Therefore, KVM/ARM and
similar VHE-enabled hypervisors will benefit from NEVE as
shown in Section 7.
Third, consider Xen [48] which runs only in EL2 as a

standalone hypervisor. Since Xen does not need to use the
VM system registers for its execution, it does not save and
restore them for every VM exit. However, even Xen must
save and restore all the VM system registers when it switches
between VMs, which is a common operation on Xen because
all I/O is handled in a special separate VM called Dom0.
Furthermore, Xen frequently accesses the hypervisor control
registers which trap when Xen is a guest hypervisor under
ARMv8.3. Therefore, Xen is likely to also benefit from NEVE.

7 EVALUATION OF NEVE NESTED
VIRTUALIZATION

Wemeasured the nested virtualization performance of NEVE
based on running our paravirtualized KVM/ARM guest hy-
pervisor on our KVM/ARM host hypervisor on multicore
ARMhardware. An actual hardware implementation of NEVE
would not require paravirtualization and would run unmod-
ified guest hypervisors; paravirtualization is only used to
provide measurements on current ARMv8.0 hardware. We
also compare NEVE against both ARMv8.3 and x86 nested
virtualization. Experiments were conducted using the same
hardware and software configurations as discussed in Sec-
tion 5. For NEVE measurements, the guest hypervisor has
been paravirtualized to use NEVE by sharing a memory
region with the host hypervisor for logging the results of
hypervisor instructions, and redirecting hypervisor control
register accesses to the corresponding EL1 system registers,
as discussed in Section 6. Although the ARM hardware we
used has a GICv2 which uses a memory mapped interface

211

SOSP ’17, October 28, 2017, Shanghai, China Jin Tack Lim, Christoffer Dall, Shih-Wei Li, Jason Nieh, and Marc Zyngier

ARMv8.3 NEVE x86
Micro-
benchmark

Nested
VM

Nested
VM VHE

Nested
VM

Nested
VM VHE

Nested
VM

Hypercall 422,720 307,363 92,385 100,895 36,345
(155x) (113x) (34x) (37x) (31x)

Device I/O 436,924 312,148 96,002 105,071 39,108
(124x) (88x) (27x) (30x) (17x)

Virtual IPI 611,686 494,765 184,657 213,256 45,360
(73x) (59x) (22x) (25x) (16x)

Virtual EOI 71 71 71 71 316
(1x) (1x) (1x) (1x) (1x)

Table 6: Microbenchmark Cycle Counts

for registers instead of the GICv3 hypervisor control system
registers discussed in Section 6, the programming interfaces
for both GIC versions are almost identical.

7.1 Microbenchmark Results
We repeated the kvm-unit-test microbenchmark measure-
ments from Section 5 using NEVE with the same nested VM
configurations. Table 6 shows the results in terms of cycle
counts and relative overhead compared to running in a non-
nested VM, along with the previous results from Table 1.
NEVE provides a dramatic performance improvement com-
pared to ARMv8.3. When running in a nested VM, NEVE
provides up to 5 times faster performance than ARMv8.3 for
both non-VHE and VHE guest hypervisors. While x86 nested
virtualization remains much faster in terms of absolute cycle
counts, this is due to the fact that the base VMmeasurements
are faster on x86 than on ARM. However, comparing the rel-
ative performance of a nested vs. non-nested VM on each
platform, we see that a guest hypervisor using NEVE has
similar overhead to x86. For example for Hypercall, NEVE
incurs a 34 to 37 times slowdown while x86 incurs a 31 times
slowdown running in a nested vs. non-nested VM.

Table 7 shows the average number of traps to the host hy-
pervisor when running each microbenchmark in the nested
VM. NEVE reduces the number of traps by more than six
times compared to ARMv8.3. For example, Hypercall takes
only one trap from a VM, but from a nested VM on ARMv8.3,
it requires 126 and 82 traps to the host hypervisor using a non-
VHE and VHE guest hypervisor, respectively. Using NEVE,
Hypercall only requires 15 traps to the host hypervisor using
either a non-VHE or VHE guest hypervisor. Although non-
VHE and VHE guest hypervisors require the same number of
traps for Hypercall, they incur different numbers of cycles as
shown in Table 6 as the traps incurred are different with dif-
ferent emulation costs. For example, VHE adds an additional
timer, the EL2 virtual timer, where non-VHE systems only
have one virtual timer, the EL1 virtual timer. This additional
timer must be supported for VHE guest hypervisors. Because
of the register redirection functionality of VHE, and because

ARMv8.3 NEVE x86
Micro-
benchmark

Nested
VM

Nested
VM VHE

Nested
VM

Nested
VM VHE

Nested
VM

Hypercall 126 82 15 15 5
Device I/O 128 82 15 15 5
Virtual IPI 261 172 37 38 9
Virtual EOI 0 0 0 0 0
Table 7: Microbenchmark Average Trap Counts

the VHE guest hypervisor runs deprivileged in EL1, the VHE
guest hypervisor directly accesses the EL1 virtual timer when
it programs its EL2 virtual timer. However, when attempt-
ing to program its EL1 virtual timer, the guest hypervisor
will use new VHE-specific EL02 access instructions, which
always trap to the host hypervisor, resulting in traps for a
VHE guest hypervisor that do not occur for a non-VHE guest
hypervisor. A more optimized VHE guest hypervisor [16]
with NEVE could potentially reduce the number of traps to
the host hypervisor to even less than x86.
The Device I/O and Virtual IPI microbenchmarks show

similar improvements. Virtual EOI remains unaffected be-
cause the nested VM can interact directly with the hardware
support in all cases. The results show howNEVE significantly
improves nested virtualization performance by resolving the
exit multiplication problem.

7.2 Application Benchmark Results
To provide a more realistic measure of performance, we next
evaluated nested virtualization using widely-used CPU and
I/O intensive application workloads, as listed in Table 8. We
used three different configurations for our measurements:
(1) native: running natively on Linux capped at 4 cores and
12 GB RAM, (2) VM: running in a 4-way SMP guest OS with
12 GB RAM using KVM as a hypervisor with 8 cores and
16 GB RAM, and (3) nested VM: running in a 4-way SMP
nested guest OS with 12 GB RAM using KVM as the guest
hypervisor, which is capped with 6 cores with 16 GB RAM,
while the host KVM hypervisor has 8 cores and 20 GB RAM.
The last two configurations are the same as those used in Sec-
tion 5. For benchmarks that involve clients interacting with
the server, the client ran on a separate dedicated machine
and the server ran on the configuration being measured, en-
suring that clients were never saturated during any of our
experiments. Clients ran natively on Linux with the same
kernel version and userspace as the server and configured
to use the full hardware available.
Figure 2 shows the performance measurements for each

VM and nested VM configuration across two different verti-
cal scales given the large dynamic range of themeasurements.
Since we are most interested in overhead and in comparing

212

NEVE: Nested Virtualization Extensions for ARM SOSP ’17, October 28, 2017, Shanghai, China

0

10

20

30

40 ARMv8.3 VM
ARMv8.3 Nested
ARMv8.3 Nested VHE

NEVE Nested
NEVE Nested VHE

x86 VM
x86 Nested

kernbench Hackbench SPECjvm2008 TCP RR TCP STREAM TCP MAERTS Apache Nginx Memcached MySQL
0

1

2

3

4

P
er

fo
rm

a
n

ce
O

ve
rh

ea
d

Figure 2: Application Benchmark Performance

Kernbench Compilation of the Linux 3.17.0 kernel using the
allnoconfig for ARM using GCC 4.8.2.

Hackbench hackbench [40] using Unix domain sockets and
100 process groups running with 500 loops.

SPECjvm2008 SPECjvm2008 [41] 2008 running real life applica-
tions and benchmarks chosen to measure Java
Runtime Environment performance; we used
15.02 release of the Linaro AArch64 port of Open-
JDK.

Netperf netperf v2.6.0 [30] server running with default
parameters on the client in three modes: TCP_RR,
TCP_STREAM, and TCP_MAERTS, measuring
latency and throughput, respectively.

Apache Apache v2.4.7 Web server running ApacheBench
[44] v2.3 on the remote client, measuring requests
handled per second serving the 41 KB file of the
GCC 4.4 manual using 10 concurrent requests.

Nginx Nginx v1.4.6 Web server running Siege [29]
v3.0.5 on the remote client, measuring requests
handled per second serving the 41 KB file of the
GCC 4.4 manual using 8 concurrent requests.

Memcached memcached v1.4.14 using the memtier benchmark
v1.2.3 with its default parameters.

MySQL MySQL v14.14 (distrib 5.5.41) running SysBench
v.0.4.12 using the default configuration with 200
parallel transactions.

Table 8: Application Benchmarks

across different hardware platforms, VM and nested VM per-
formance are normalized relative to their respective ARM or
x86 native execution, with lower meaning less overhead.

As expected, running in a nested VM on ARMv8.3 shows
the highest overhead, in some cases more than 40 times
native execution. The largest overhead occurs for network-
related workloads, including Netperf TCP_MAERTS, Apache,
and Memcached. The high overhead is likely due to the high
frequency of interrupts caused by many incoming network
packets. Injecting a high number of virtual interrupts to the
nested VM results in a high number of switches between
the nested VM and the guest hypervisor, which in turn re-
sults in many traps using only ARMv8.3. Hackbench also

performs quite poorly as it is 15 and 11 times slower for non-
VHE and VHE guest hypervisors, respectively, compared to
native execution. Hackbench is a highly parallel SMP work-
load in which the OS frequently sends IPIs to synchronize
and schedule tasks across CPU cores. As shown in Table 6,
virtual IPIs are costly in nested VMs on ARMv8.3, which
accounts for the noticeable slowdown in Hackbench. Com-
pared to native execution, CPU-intensive workloads such
as SPECjvm and kernbench have a relatively modest perfor-
mance slowdown in nested VMs, 24% and 33% overhead for
a non-VHE guest hypervisor and 14% and 26% for a VHE
guest hypervisor, respectively. These workloads have much
less overhead than other application workloads because they
cause far fewer interactions between the nested VM and the
guest hypervisor, and therefore don’t suffer as much from the
exit multiplication problem as network related benchmarks.

In contrast, NEVE provides significantly better ARMnested
virtualization performance, reducing performance overhead
by more than or close to an order of magnitude in some cases.
For example, Memcached performance goes from more than
a 40 times slowdown using ARMv8.3 to less than a 3 times
slowdown using NEVE, more than an order of magnitude
improvement. For network-related workloads including Net-
perf TCP MAERTS, Apache, and Memcached, NEVE suc-
cessfully reduces exit multiplication by coalescing traps to
reduce the performance overhead. Unlike ARMv8.3, which
has significantly worse performance, NEVE provides over-
all performance that is comparable to, and in many cases
better than, x86 nested virtualization using the latest x86
virtualization optimizations.

In fact, NEVE incurs significantly less overhead than both
ARMv8.3 and x86 on many of the network-related work-
loads, including Netperf TCP MAERTS, Nginx, Memcached,
and MySQL. MySQL runs better with NEVE because of the
high cost of x86 non-nested virtualization compared to ARM,
but this is not the case for the other workloads. For example,
Memcached running in a nested VM on x86 shows an 8 times
slowdown compared to only a 2.5 times slowdown on NEVE.
The reason for this is that Memcached incurs substantially

213

SOSP ’17, October 28, 2017, Shanghai, China Jin Tack Lim, Christoffer Dall, Shih-Wei Li, Jason Nieh, and Marc Zyngier

more exits on x86 than ARM, including more than four times
as many exits from the nested VM for processing I/O on x86
versus NEVE. Since the relative cost of nested VM exits is
similar on x86 and NEVE as shown in Table 6, the much
higher number of exits on x86 results in much higher over-
head than NEVE. Netperf TCP MAERTS and Nginx exhibit
similar behavior.
The reason for the much higher number of exits can be

explained based on the network I/O behavior. When a nested
VM wants to send packets, its frontend driver notifies the
backend driver running in the L1 VM, which causes an exit
from the nested VM. Virtio, which is used for paravirtualized
I/O, provides mechanisms to optimize I/O performance by
reducing the number of VM exits due to notifications. While
the backend driver is busy, it tells the frontend driver that
it can continue to send packets without further notification.
Only once the backend driver has nothing left to do does it
tell the frontend driver to notify it again when it has more
packets to send. On x86, it turns out thatMemcached requires
manymore virtio notifications than onNEVE. This is because
as soon as the backend driver running in L1 is notified, it
handles the packets quickly and enables the notification
again. In other words, the quicker the backend driver handles
packets, the more the frontend driver needs to notify. In fact,
by introducing some delay by busy waiting to artifically slow
down the backend driver in L1 when running Memcached in
x86, we can reduce the x86 Memcached overhead to be close
to NEVE. The reason that the x86 L1 backend driver is much
faster to process packets than ARM backend driver is that
the x86 hardware is much faster than the ARM hardware
used. Memcached runs natively roughly three times faster
on the x86 server compared to the ARM server. This leads
to an interesting performance anomaly that having faster
hardware can result in more virtualization overhead.
Our results are based on paravirtualizing KVM/ARM as

a guest hypervisor to mimic the behavior of ARMv8.3 and
NEVE on existing ARMv8.0 hardware. Future ARM hard-
ware, such as ARMv8.3 hardware, may have somewhat dif-
ferent performance characteristics. In particular, ARMv8.3 is
a more complex architecture than ARMv8.0, so it would not
be surprising if the relative cost of traps is higher for such
hardware compared to current ARMv8.0 hardware. Because
NEVE improves performance by reducing the number of
traps for nested virtualization, a high trap cost for actual
ARMv8.3 hardware would only accentuate the performance
difference between NEVE and ARMv8.3, making ARMv8.3
nested virtualization performance worse and NEVE’s relative
improvement even better.

As further validation of this work, we have presented these
results to ARM, which has decided to include NEVE in the
next release of the ARM architecture.

8 RELATEDWORK
Paravirtualization is used to make hypervisors simpler and
faster by avoiding certain architecture features that are com-
plex or difficult to virtualize efficiently [8, 39]. It is also used
to provide virtual architectures that differ from the underly-
ing hardware architecture and can run custom guest OSes
designed for performance and scalability [46]. We leverage
paravirtualization in a new way to emulate the behavior and
measure the performance of new architecture features at
native execution speeds on existing and currently available
hardware.

Previous work has explored ways to use existing hardware
to emulate new hardware. For example, Shade [13] proposed
a dynamic translation framework that could run SPARCv9 bi-
naries on a SPARCv8 CPU. However, Shade incurs significant
performance overhead. Simulating SPARCv9 on SPARCv8
is more than an order of magnitude slower than native ex-
ecution on SPARCv8. Our paravirtualization technique is
applied statically and does not incur substantial performance
overhead, but is focused on virtualization hardware support
rather than emulating entire future architectures.

Much work on nested virtualization has focused on x86 [4,
10, 31, 49]. Turtles [10] was the first to show that trap-and-
emulate nested virtualization provides reasonable perfor-
mance on x86. Our ARM hypervisor design uses the same
approach as Turtles for CPU and memory virtualization,
but uses paravirtualized I/O in lieu of direct device assign-
ment as used in Turtles; the latter was not supported on
the ARM server hardware available for our measurements.
However, we show that the lessons learned from trap-and-
emulate nested virtualization on x86 may not apply to other
architectures and that a similar approach on ARM performs
poorly due to differences between the ARM and x86 virtual-
ization support. We introduce a new architecture extension
to address this problem and significantly improve ARM per-
formance.

To optimize nested virtualization further, Intel added a new
hardware extension called VMCS shadowing [27], which al-
lows a guest hypervisor to execute VMCS access instructions
without trapping. VMCS shadowing redirects instructions
that are designed to access the VMCS, which is stored in
in memory, to a different memory location. Our x86 mea-
surements in Section 7.2 show that the VMCS shadowing
optimization provides roughly a 10% performance improve-
ment. Both VMCS shadowing and NEVE use the basic idea
of redirection to mitigate the exit multiplication problem
by reducing traps from guest hypervisors. However, unlike
VMCS shadowing, NEVE introduces register redirection and
rewrites system register accesses to memory accesses or
to other existing registers based on a classification of the
functionality of the registers. NEVE is designed for RISC

214

NEVE: Nested Virtualization Extensions for ARM SOSP ’17, October 28, 2017, Shanghai, China

architectures without adopting techniques similar to VMCS
which are more suitable for CISC architectures. Unlike the
modest gain of VMCS shadowing on x86, NEVE provides
an order of magnitude performance improvement on ARM.
This is due in part to the CISC vs. RISC architecture designs.
x86 automatically saves and restores VM state using the
hardware VMCS mechanism which coalesces accesses to
VM register state when changing between root and non-root
mode in a single operation, mitigating the exit multiplication
problem and reduces the benefit of VMCS shadowing. In con-
trast, ARM requires software to save and restore VM state
to individual registers which results in many more accesses
to VM state in software, for which NEVE can significantly
reduce exit multiplication and improve performance.

Xen-Blanket [47] leverages nested virtualization to trans-
form existing heterogeneous cloud infrastructures into a
homogeneous Blanket layer to host x86 nested VMs. Unlike
the aforementioned nested x86 solutions that use hardware
virtualization primitives exposed to the guest hypervisor, it
does not rely on the host hypervisor to expose those prim-
itives to the nesting layers. Therefore, Xen-Blanket only
supports paravirtualized guest OSes, not unmodifed OSes in
the nested VM.

Agesen et al. [2] proposed software techniques for avoid-
ing VM exits by leveraging existing work on binary trans-
lation to detect and rewrite sequences of instructions that
cause multiple exits from the VM and rewrite them into
translated sequences that only cause a single exit. LeVasseur
et al. [34] proposed pre-virtualization, a form of static par-
avirtualization that uses a hypervisor-specific module in
the guest OS to rewrite itself when loaded by a hypervisor.
In contrast, NEVE is a hardware approach to transparently
rewrite deferrable register accesses to memory accesses in
the guest hypervisor and delivers substantial performance
gain for workloads running in nested VMs.
Some techniques [3, 21] reduce VM exits by coalescing

interrupts, effectively changing the hardware semantics to
reduce interrupt overhead while increasing interrupt latency.
NEVE does not defer interrupts, but defers trapping on in-
struction execution in a way that preserves existing archi-
tecture semantics and improves performance even in the
absence of interrupts.
Various ARM virtualization approaches have been devel-

oped [5, 9, 16–18, 20, 23, 24, 26, 36, 45, 48], but none of them
support nested virtualization. Our work presents the first
ARM hypervisor to support nested virtualization, and intro-
duces new architecture improvements that can be used by
host hypervisors to significantly enhance performance.
As virtualization continues to be of importance, under-

standing the trade-offs of different approaches to hardware
virtualization support is instrumental in the design of new

architectures. For example, RISC-V [38] is an emerging ar-
chitecture for which virtualization support is being explored.
NEVE provides an important counterpoint to x86 practices
and shows how acceptable nested virtualization performance
can be achieved on RISC-style architectures.

9 CONCLUSIONS
We present the first in-depth study of ARM nested virtual-
ization. We introduce a novel paravirtualization technique
to evaluate the performance of new architectural features
before hardware is readily available. Using this technique,
we evaluate ARMv8.3 nested virtualization support and find
that its performance is prohibitively expensive compared to
normal virtualization, despite its similarities to x86 nested
virtualization. We show how differences between ARM and
x86 in non-nested virtualization support end up causing sig-
nificant exit multiplication on ARM. To address this problem,
we introduce NEVE, a simple architecture extension that
provides register redirection, and coalesces and defers traps
by logging system register accesses to memory and only
copying the results of those accesses to hardware system
registers when necessary. We evaluate the performance of
NEVE and show that NEVE can improve nested virtualization
performance by an order of magnitude on real application
workloads compared to the latest ARMv8.3 architecture, and
can provide up to three times less virtualization overhead
than x86. NEVE is straightforward to implement in ARM and
will be included the next version of the ARM architecture.

10 ACKNOWLEDGMENTS
Martha Kim provided helpful comments on earlier drafts of
this paper. This work was supported in part by ARM and
NSF grants CNS-1717801, CNS-1563555, CNS-1422909, and
CCF-1162021.

REFERENCES
[1] Keith Adams and Ole Agesen. 2006. A Comparison of Software and

Hardware Techniques for x86 Virtualization. In Proceedings of the
12th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XII). ACM, New York, NY,
USA, 2–13. https://doi.org/10.1145/1168857.1168860

[2] Ole Agesen, Jim Mattson, Radu Rugina, and Jeffrey Sheldon. 2012.
Software Techniques for Avoiding Hardware Virtualization Exits. In
Proceedings of the 2012 USENIX Conference on Annual Technical Con-
ference (USENIX ATC ’12). USENIX Association, Berkeley, CA, USA,
35–35. http://dl.acm.org/citation.cfm?id=2342821.2342856

[3] Irfan Ahmad, Ajay Gulati, and Ali Mashtizadeh. 2011. vIC: Interrupt
Coalescing for Virtual Machine Storage Device IO. In Proceedings of
the 2011 USENIX Conference on USENIX Annual Technical Conference
(USENIX ATC ’11). USENIX Association, Berkeley, CA, USA, 4–4. http:
//dl.acm.org/citation.cfm?id=2002181.2002185

[4] Alexander Graf, Joerg Roedel. 2009. Nesting the Virtualized World. In
Linux Plumbers Conference.

215

https://doi.org/10.1145/1168857.1168860
http://dl.acm.org/citation.cfm?id=2342821.2342856
http://dl.acm.org/citation.cfm?id=2002181.2002185
http://dl.acm.org/citation.cfm?id=2002181.2002185

SOSP ’17, October 28, 2017, Shanghai, China Jin Tack Lim, Christoffer Dall, Shih-Wei Li, Jason Nieh, and Marc Zyngier

[5] Jeremy Andrus, Christoffer Dall, Alexander Van’t Hof, Oren Laadan,
and Jason Nieh. 2011. Cells: A Virtual Mobile Smartphone Architecture.
http://doi.acm.org/10.1145/2043556.2043574. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles (SOSP ’11). 173–187.

[6] ARM Ltd. 2011. ARM Generic Interrupt Controller Architecture ver-
sion 2.0 ARM IHI 0048B. (June 2011).

[7] ARM Ltd. 2013. ARM Architecture Reference Manual ARMv8-A
DDI0487A.a. (Sept. 2013).

[8] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen
and the Art of Virtualization. In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles (SOSP ’03). ACM, New
York, NY, USA, 164–177. https://doi.org/10.1145/945445.945462

[9] Ken Barr, Prashanth Bungale, Stephen Deasy, Viktor Gyuris, Perry
Hung, Craig Newell, Harvey Tuch, and Bruno Zoppis. 2010. The
VMware Mobile Virtualization Platform: Is That a Hypervisor in Your
Pocket? SIGOPS Oper. Syst. Rev. 44, 4 (Dec. 2010), 124–135. https:
//doi.org/10.1145/1899928.1899945

[10] Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor, Nadav
Har’El, Abel Gordon, Anthony Liguori, Orit Wasserman, and Ben-Ami
Yassour. 2010. The Turtles Project: Design and Implementation of
Nested Virtualization. In Proceedings of the 9th USENIX Conference
on Operating Systems Design and Implementation (OSDI’10). USENIX
Association, Berkeley, CA, USA, 1–6. http://dl.acm.org/citation.cfm?
id=1924943.1924973

[11] David Brash. 2016. ARMv8-A Architecture - 2016 Additions. (Oct.
2016). https://community.arm.com/groups/processors/blog/2016/10/
27/armv8-a-architecture-2016-additions.

[12] CloudShare. 2017. Is your virtualized infrastructure keeping you from
the cloud? (2017). https://www.cloudshare.com/technology/nested-
virtualization/.

[13] Bob Cmelik and David Keppel. 1994. Shade: A Fast Instruction-set
Simulator for Execution Profiling. In Proceedings of the 1994 ACM
SIGMETRICS Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’94). ACM, New York, NY, USA, 128–137. https:
//doi.org/10.1145/183018.183032

[14] Ravello Community. 2016. Nested virtualization: How to run nested
KVM on AWS or Google Cloud. (Jan. 2016). https://blogs.oracle.com/
ravello/run-nested-kvm-on-aws-google.

[15] Christoffer Dall, Shih-Wei Li, Jin Tack Lim, Jason Nieh, and Georgios
Koloventzos. 2016. ARMVirtualization: Performance and Architectural
Implications. In Proceedings of the 43rd International Symposium on
Computer Architecture (ISCA ’16). IEEE Press, Piscataway, NJ, USA,
304–316. https://doi.org/10.1109/ISCA.2016.35

[16] Christoffer Dall, Shih-Wei Li, and Jason Nieh. 2017. Optimizing the
Design and Implementation of the Linux ARM Hypervisor. In Proceed-
ings of the 2017 USENIX Conference on Annual Technical Conference
(USENIX ATC ’17). USENIX Association, Berkeley, CA, USA, 221–233.

[17] Christoffer Dall and Jason Nieh. 2010. KVM for ARM. In Proceedings
of the Ottawa Linux Symposium. 45–56.

[18] Christoffer Dall and Jason Nieh. 2014. KVM/ARM: The Design and
Implementation of the Linux ARM Hypervisor. In Proceedings of the
19th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’14). ACM, New York, NY,
USA, 333–348. https://doi.org/10.1145/2541940.2541946

[19] Dina Bass and Ian King. 2017. Microsoft Pledges to Use ARM
Server Chips, Threatening Intel’s Dominance. (March 2017).
https://www.bloomberg.com/news/articles/2017-03-08/microsoft-
pledges-to-use-arm-server-chips-threatening-intel-s-dominance.

[20] Jiun-Hung Ding, Chang-Jung Lin, Ping-Hao Chang, Chieh-Hao Tsang,
Wei-Chung Hsu, and Yeh-Ching Chung. 2012. ARMvisor: System
Virtualization for ARM. In Proceedings of the Ottawa Linux Symposium.

93–107.
[21] Yaozu Dong, Dongxiao Xu, Yang Zhang, and Guangdeng Liao. 2011.

Optimizing network I/O virtualization with efficient interrupt coalesc-
ing and virtual receive side scaling. In Cluster Computing (CLUSTER),
2011 IEEE International Conference on. IEEE, 26–34.

[22] Joy Fan. 2017. Nested Virtualization in Azure. (July 2017). https:
//azure.microsoft.com/en-us/blog/nested-virtualization-in-azure/.

[23] General Dynamics. 2013. OKL4Microvisor. (Feb. 2013). http://www.ok-
labs.com/products/okl4-microvisor.

[24] Green Hills Software. 2014. INTEGRITY Secure Virtualization. (Jan.
2014). http://www.ghs.com/products/rtos/integrity_virtualization.
html.

[25] Stefan Hajnoczi. 2011. An Updated Overview of the QEMU Storage
Stack. (June 2011). https://events.linuxfoundation.org/slides/2011/
linuxcon-japan/lcj2011_hajnoczi.pdf.

[26] J.Y Hwang, S.B Suh, S.K Heo, C.J Park, J.M Ryu, S.Y Park, and C.R Kim.
2008. Xen on ARM: System Virtualization using Xen Hypervisor for
ARM-based Secure Mobile Phones. In Proceedings of the 5th Consumer
Communications and Newtork Conference. 257–261.

[27] Intel. 2013. 4th Generation Intel Core vPro Processors with Intel VMCS
Shadowing. (2013). http://www.intel.com/content/dam/www/public/
us/en/documents/white-papers/intel-vmcs-shadowing-paper.pdf.

[28] Intel Corporation. 2012. Intel 64 and IA-32 Architectures Software
Developer’s Manual, 325462-044US. (Aug. 2012).

[29] Jeffrey Fulmer. 2012. Siege. (Jan. 2012). https://www.joedog.org/siege-
home/.

[30] Rick Jones. 2016. Netperf. (Nov. 2016). http://www.netperf.org/
netperf/.

[31] Bernhard Kauer, Paulo Verissimo, and Alysson Bessani. 2011. Recursive
Virtual Machines for Advanced Security Mechanisms. In Proceedings of
the 2011 IEEE/IFIP 41st International Conference on Dependable Systems
and NetworksWorkshops (DSNW ’11). IEEE Computer Society,Washing-
ton, DC, USA, 117–122. https://doi.org/10.1109/DSNW.2011.5958796

[32] KVM contributors. 2015. Tuning KVM. (May 2015). http://www.linux-
kvm.org/page/Tuning_KVM.

[33] KVM contributors. 2017. KVM Unit Tests. (May 2017). http://www.
linux-kvm.org/page/KVM-unit-tests.

[34] Joshua LeVasseur, Volkmar Uhlig, Matthew Chapman, Peter Chubb,
Ben Leslie, and Gernot Heiser. 2005. Pre-Virtualization: Slashing the
Cost of Virtualization. Technical Report 2005-30. Fakultät für Infor-
matik, Universität Karlsruhe (TH).

[35] Gerald J. Popek and Robert P. Goldberg. 1974. Formal Requirements
for Virtualizable Third Generation Architectures. Commun. ACM 17,
7 (July 1974), 412–421. https://doi.org/10.1145/361011.361073

[36] Red Bend Software. 2013. vLogix Mobile. (Feb. 2013). http://www.
redbend.com/en/mobile-virtualization.

[37] Robert Ricci, Eric Eide, and The CloudLab Team. 2014. Introducing
CloudLab: Scientific Infrastructure for Advancing Cloud Architectures
and Applications. USENIX ;login: 39, 6 (Dec. 2014). https://www.usenix.
org/publications/login/dec14/ricci

[38] RISC-V Foundation. 2017. RISC-V. (2017). http://www.riscv.org.
[39] Rusty Russell. 2008. Virtio: Towards a De-facto Standard for Virtual

I/O Devices. SIGOPS Oper. Syst. Rev. 42, 5 (July 2008), 95–103. https:
//doi.org/10.1145/1400097.1400108

[40] Rusty Russell, Yanmin Zhang, Ingo Molnar, and David Sommerseth.
2008. Hackbench. (Jan. 2008). http://people.redhat.com/mingo/cfs-
scheduler/tools/hackbench.c.

[41] Standard Performance Evaluation Corporation. 2015. SPECjvm2008.
(Nov. 2015). https://www.spec.org/jvm2008.

[42] SUSE. 2016. Performance Implications of Cache Modes. (Sept.
2016). https://www.suse.com/documentation/sles11/book_kvm/data/
sect1_3_chapter_book_kvm.html.

216

http://doi.acm.org/10.1145/2043556.2043574
https://doi.org/10.1145/945445.945462
https://doi.org/10.1145/1899928.1899945
https://doi.org/10.1145/1899928.1899945
http://dl.acm.org/citation.cfm?id=1924943.1924973
http://dl.acm.org/citation.cfm?id=1924943.1924973
https://community.arm.com/groups/processors/blog/2016/10/27/armv8-a-architecture-2016-additions
https://community.arm.com/groups/processors/blog/2016/10/27/armv8-a-architecture-2016-additions
https://www.cloudshare.com/technology/nested-virtualization/
https://www.cloudshare.com/technology/nested-virtualization/
https://doi.org/10.1145/183018.183032
https://doi.org/10.1145/183018.183032
https://blogs.oracle.com/ravello/run-nested-kvm-on-aws-google
https://blogs.oracle.com/ravello/run-nested-kvm-on-aws-google
https://doi.org/10.1109/ISCA.2016.35
https://doi.org/10.1145/2541940.2541946
https://www.bloomberg.com/news/articles/2017-03-08/microsoft-pledges-to-use-arm-server-chips-threatening-intel-s-dominance
https://www.bloomberg.com/news/articles/2017-03-08/microsoft-pledges-to-use-arm-server-chips-threatening-intel-s-dominance
https://azure.microsoft.com/en-us/blog/nested-virtualization-in-azure/
https://azure.microsoft.com/en-us/blog/nested-virtualization-in-azure/
http://www.ok-labs.com/products/okl4-microvisor
http://www.ok-labs.com/products/okl4-microvisor
http://www.ghs.com/products/rtos/integrity_virtualization.html
http://www.ghs.com/products/rtos/integrity_virtualization.html
https://events.linuxfoundation.org/slides/2011/linuxcon-japan/lcj2011_hajnoczi.pdf
https://events.linuxfoundation.org/slides/2011/linuxcon-japan/lcj2011_hajnoczi.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-vmcs-shadowing-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-vmcs-shadowing-paper.pdf
https://www.joedog.org/siege-home/
https://www.joedog.org/siege-home/
http://www.netperf.org/netperf/
http://www.netperf.org/netperf/
https://doi.org/10.1109/DSNW.2011.5958796
http://www.linux-kvm.org/page/Tuning_KVM
http://www.linux-kvm.org/page/Tuning_KVM
http://www.linux-kvm.org/page/KVM-unit-tests
http://www.linux-kvm.org/page/KVM-unit-tests
https://doi.org/10.1145/361011.361073
http://www.redbend.com/en/mobile-virtualization
http://www.redbend.com/en/mobile-virtualization
https://www.usenix.org/publications/login/dec14/ricci
https://www.usenix.org/publications/login/dec14/ricci
http://www.riscv.org
https://doi.org/10.1145/1400097.1400108
https://doi.org/10.1145/1400097.1400108
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
https://www.spec.org/jvm2008
https://www.suse.com/documentation/sles11/book_kvm/data/sect1_3_chapter_book_kvm.html
https://www.suse.com/documentation/sles11/book_kvm/data/sect1_3_chapter_book_kvm.html

NEVE: Nested Virtualization Extensions for ARM SOSP ’17, October 28, 2017, Shanghai, China

[43] Ravello Systems. 2017. Run VMware workloads on public clouds -
without any changes. (2017). https://www.ravellosystems.com/.

[44] The Apache Software Foundation. 2015. ab - Apache HTTP server
benchmarking tool. (April 2015). http://httpd.apache.org/docs/2.4/
programs/ab.html.

[45] Prashant Varanasi and Gernot Heiser. 2011. Hardware-supported Vir-
tualization on ARM. In Proceedings of the Second Asia-Pacific Workshop
on Systems (APSys ’11). ACM, New York, NY, USA, Article 11, 5 pages.
https://doi.org/10.1145/2103799.2103813

[46] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. 2002. Scale
and Performance in the Denali Isolation Kernel. In Proceedings of
the 5th Symposium on Operating Systems Design and implementation
(OSDI ’02). USENIX Association, Berkeley, CA, USA, 195–209. http:
//dl.acm.org/citation.cfm?id=1060289.1060308

[47] Dan Williams, Hani Jamjoom, and Hakim Weatherspoon. 2012. The
Xen-Blanket: Virtualize Once, Run Everywhere. In Proceedings of the
7th ACM European Conference on Computer Systems (EuroSys ’12). ACM,
New York, NY, USA, 113–126. https://doi.org/10.1145/2168836.2168849

[48] Xen ARM with Virtualization Extensions. 2015. http://wiki.xenproject.
org/wiki/Xen_ARM_with_Virtualization_Extensions. (April 2015).

[49] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang. 2011. CloudVi-
sor: Retrofitting Protection of Virtual Machines in Multi-tenant Cloud
with Nested Virtualization. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles (SOSP ’11). ACM, New
York, NY, USA, 203–216. https://doi.org/10.1145/2043556.2043576

217

https://www.ravellosystems.com/
http://httpd.apache.org/docs/2.4/programs/ab.html
http://httpd.apache.org/docs/2.4/programs/ab.html
https://doi.org/10.1145/2103799.2103813
http://dl.acm.org/citation.cfm?id=1060289.1060308
http://dl.acm.org/citation.cfm?id=1060289.1060308
https://doi.org/10.1145/2168836.2168849
http://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions
http://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions
https://doi.org/10.1145/2043556.2043576

	Abstract
	1 Introduction
	2 Background
	3 Paravirtualization for Architecture Evaluation
	4 KVM/ARM Nested Virtualization for ARMv8.3
	5 Evaluation of ARMv8.3 Nested Virtualization
	6 NEVE: Nested Virtualization Extensions
	6.1 Architecture Specification
	6.2 Recursive Virtualization
	6.3 Architectural Impact
	6.4 Implementation
	6.5 Performance Impact

	7 Evaluation of NEVE Nested Virtualization
	7.1 Microbenchmark Results
	7.2 Application Benchmark Results

	8 Related Work
	9 Conclusions
	10 Acknowledgments
	References

