Record and Transplay: Partial Checkpointing for Replay
Debugging Across Heterogeneous Systems

Dinesh Subhraveti
Columbia University
dinesh@cs.columbia.edu

ABSTRACT

Software bugs that occur in production are often difficult to
reproduce in the lab due to subtle differences in the applica-
tion environment and nondeterminism. To address this prob-
lem, we present TRANSPLAY, a system that captures produc-
tion software bugs into small per-bug recordings which are
used to reproduce the bugs on a completely different oper-
ating system without access to any of the original software
used in the production environment. TRANSPLAY introduces
partial checkpointing, a new mechanism that efficiently cap-
tures the partial state necessary to reexecute just the last
few moments of the application before it encountered a fail-
ure. The recorded state, which typically consists of a few
megabytes of data, is used to replay the application without
requiring the specific application binaries, libraries, support
data, or the original execution environment. TRANSPLAY in-
tegrates with existing debuggers to provide standard debug-
ging facilities to allow the user to examine the contents of
variables and other program state at each source line of
the application’s replayed execution. We have implemented
a TRANSPLAY prototype that can record unmodified Linux
applications and replay them on different versions of Linux
as well as Windows. Experiments with several applications
including Apache and MySQL show that TRANSPLAY can
reproduce real bugs and be used in production with modest
recording overhead.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Reliability, availability,
serviceability; D.2.5 [Software Engineering]: Testing and
Debugging; D.4.5 [Operating Systems]: Reliability

General Terms

Design, Experimentation, Performance, Reliability.

Keywords
Record-Replay, Virtualization, Checkpoint-Restart.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMETRICS’11, June 7-11, 2011, San Jose, California, USA.

Copyright 2011 ACM 978-1-4503-0262-3/11/06 ...$10.00.

109

Jason Nieh
Columbia University
nieh @ cs.columbia.edu

1. INTRODUCTION

When core business processes of a customer are suspended
due to an application failure, quickly diagnosing the problem
and putting the customer back in business is of utmost im-
portance. Resolving a bug typically starts with reproducing
it in the lab. However, reproducing a software bug is one of
the most time consuming and difficult steps in the resolution
of a problem. Reproducibility of a bug is impacted by hetero-
geneity of the application environments. A variety of operat-
ing systems, corresponding libraries and their many versions,
application tiers supplied by different ISVs, and network in-
frastructure with varied configuration settings make appli-
cation environments complex and bugs hard to reproduce.
The source of the problem might be an incorrect assump-
tion implicitly made by the application about the availabil-
ity or configuration of local services such as DNS, or about
co-deployed applications and their components, or it may
surface only when a particular library version is used [33].
Furthermore, nondeterministic factors such as timing and
user inputs contribute to the difficulty in reproducing soft-
ware bugs.

Because the common approach of conveying a bug report
is often inadequate, record-replay approaches [29, 28, 31,
19, 24, 2, 13] have been proposed to capture and reproduce
hard-to-find application bugs. By directly recording the ap-
plication and capturing the bug as it occurs, the burden of
repeated testing to reproduce the bug is removed. Despite
its potential for simplifying bug reproduction and debug-
ging, the fundamental limitation of previous record-replay
approaches is that they require the availability or replication
of the production application environment during replay. All
previous approaches require at minimum the availability of
all original code executed as a part of the recording, includ-
ing not just the buggy application binary, but also any other
software executed, such as other applications, libraries, utili-
ties, and the operating system. The original code is required
to generate the instructions that will be executed during
replay.

This is problematic in practice for several reasons. First,
customers are generally unwilling to make available their ac-
tual production environment to vendors for debugging pur-
poses given that keeping it up and running in production is
crucial for business. Second, customers are often unwilling
to even make replicas available since they may contain cus-
tom proprietary software and data that they do not want
to provide in their entirety, or applications from other ven-
dors which they are not allowed to provide to a competing
vendor. Third, even if customers provide detailed informa-



tion to allow vendors to create replicas, it is quite difficult
for them to get all the versions and configurations of all
software right to replay a bug that occurred in a complex
production environment. Fourth, even if an exact replica of a
production environment could be created for debugging pur-
poses, its creation may be prohibitively expensive in terms of
both hardware and software requirements for complex pro-
duction environments. Finally, bugs can be data dependent
and all necessary data is typically not available outside of
the original production environment. While it may be possi-
ble to record every single instruction executed along with all
data arguments so that they can be replayed without need
for the production environment, such a recording would be
prohibitively expensive to do, impose excessive storage re-
quirements, and result in unacceptable recording overhead
in production.

We introduce TRANSPLAY, a software failure diagnosis tool
that can package up the minimum amount of data necessary
to correctly reproduce production software bugs on a state-
less target machine in the developer environment. Exclu-
sively relying on a per-bug lightweight recording, TRANSPLAY
deterministically reproduces the captured bug on a differ-
ent operating system, without access to any originally exe-
cuted binaries or support data. At the target lab, there is
no need to install or configure the original application, sup-
port libraries, other applications, or the operating system
to reproduce the failure. Portions of the application envi-
ronment, including bits of application and library code nec-
essary to reproduce the failure, are automatically detected
and recorded.

TRANSPLAY introduces partial checkpointing, a simple tech-
nique based on the premise of short error propagation dis-
tances [21, 32] that captures the buggy execution of the ap-
plication in its last few seconds prior to failure. Instead of the
traditional approach of taking a full application checkpoint
representing its cumulative state until that point, followed
by a log of external inputs, partial checkpointing completely
ignores the application’s previous execution and focuses on
state accessed by the application within the interval of inter-
est. Every piece of required data, including the instructions
executed within its binary and other libraries, is captured.
In this model, the application is treated as a state machine
with the processor context as its only internal state, with all
other state captured on initial access.

Partial checkpointing provides two guarantees by design.
First, all state necessary to replay the interval of execution is
captured. As TRANSPLAY monitors every interface through
which the application could access external data, any data
required by the application during its deterministic reexe-
cution is guaranteed to be available. This completeness also
decouples replay from the target environment by providing
necessary state from the self-contained log. Second, any state
not directly accessed by the application is not included in
the recording. Since TRANSPLAY only captures state actu-
ally accessed by the application, any extraneous state such
as unaccessed parts of the application’s address space or its
binaries, are not included, leading to a small per-bug record-
ing.

TRANSPLAY allows playing back the bug captured within
a partial checkpoint in a different environment by decou-
pling replay from the target environment. The application is
decoupled from its binaries and memory state by trapping
accesses to the code pages and mapping the actual pages

110

captured at the source, thus avoiding any version discrepan-
cies. Relevant pages from potentially large memory mapped
data files are presented back to the application as needed.
Replay is decoupled from the operating system by replaying
the system call results instead of reexecuting them. Pro-
cesses of an application are decoupled from one another as
well so that replay can be done on a subset of processes,
rather than needing to replay an entire application. Applica-
tions are decoupled from the memory address space through
a lightweight binary translation technique designed specifi-
cally for user code that enables the application to be restored
on a different operating system. Applications are decoupled
from processor MMU structures such as segment descriptor
tables by trapping and emulating the offending instructions
during replay.

TRANSPLAY achieves the record-replay functionality while
meeting four important goals. First, TRANSPLAY does not
require source code modifications, relinking, or other assis-
tance from the application. Second, TRANSPLAY does not
require specialized hardware modifications which limit its
use and are expensive to implement. Third, recorded state
is per bug and small enough to be easily shared with the
developer. Having to share large amounts of data, as in the
case of VM images, adversely impacts ease of use and pri-
vacy. Fourth, TRANSPLAY’s recording overhead is low enough
that it can be used in production. Allowing TRANSPLAY’s in-
strumentation to be enabled while the application is running
in production also side steps the probe effect problem.

We have implemented a TRANSPLAY prototype that inte-
grates with standard interactive debuggers. Our prototype
can record application execution on one Linux system and
replay it on different Linux distributions or on Windows
without any of the original application binaries or libraries.
Using several real multi-process and multi-threaded appli-
cations, we demonstrate TRANSPLAY’s ability to record and
deterministically replay execution across completely differ-
ent Linux environments and across Linux and Windows op-
erating systems, capturing the root cause of various types
of real software bugs in desktop and server applications.
Recording overhead is less than 3% for most applications
including Apache, and less than 17% in all cases, with re-
spective partial checkpoints consuming less than 5 MB.

2. USAGE MODEL AND SYSTEM
OVERVIEW

TRANSPLAY is a tool for recording and replaying speci-
fied intervals of the execution of a group of processes and
threads. We refer to a group of processes and threads being
recorded or replayed as a session. A session can consist of
multiple processes that make up an application or a set of
applications, where each process may contain threads that
share the address space of the process. Once TRANSPLAY is
installed on the same machine as a production application,
it continuously records its execution. When a fault occurs,
TRANSPLAY outputs a set of partial checkpoints and logs
taken before the fault. A partial checkpoint is the partial
state of a session which needs to be restored initially to re-
play the session’s execution for a specified time interval. A
log contains the events recorded over the interval that works
together with a partial checkpoint to enable deterministic re-
play. When recording multiple processes, partial checkpoints



and logs are saved separately for each process, along with
information identifying the process that had the failure.

TRANSPLAY divides the recording of an application into
periodic, contiguous time intervals. For each time interval,
it records a partial checkpoint and log for each application
process that executes during that interval. A recording inter-
val can be configured to be of any length. As the application
executes, a series of partial checkpoints and logs are gen-
erated and the most recent set of checkpoints and logs are
stored in a fixed size memory buffer. Storing a set of partial
checkpoints and logs rather than just the most recent one
ensures that a certain minimum amount of execution con-
text is available when a failure occurs. Partial checkpoints
and logs are maintained in memory to avoid disk I/O and
minimize runtime overhead. Older partial checkpoints and
logs are discarded to make room for the new ones. Partial
checkpoints and logs in memory can be written to disk at
any time by stopping the current recording interval, causing
the accumulated partial checkpoints and logs in memory to
be written to disk. TRANSPLAY has built-in support for de-
tecting explicit faults such as a segmentation violation and
divide by zero, and provides an interface to integrate with
external fault sensors.

When a failure occurs, the recording can be made avail-
able to the developer in lieu of, or as an attachment to a
bug report. The bug can then be directly replayed on any
hardware in the developer’s environment using TRANSPLAY.
Although the failure may involve the interaction of multi-
ple tiers of software, the developer does not need access to
any of that software to reproduce the failure. This is im-
portant since an application developer may have access to
only his application software, not other software required to
reproduce the failure. Since TRANSPLAY captures architec-
ture dependent binary instructions of the application as a
part of its partial checkpoint, the target CPU where replay
is performed is required to be the same type as the original
CPU. Other hardware attributes are not required to be the
same.

Using partial checkpoints, a developer does not need to
replay an entire multi-process application or a set of applica-
tions. The developer could just select the process where the
fault occurs to simplify problem diagnosis, and TRANSPLAY
will replay just that process, with its interactions with other
application processes virtualized. If the selected process uses
shared memory, TRANSPLAY will also simultaneously replay
other processes that share memory with the selected process
to provide deterministic replay.

TRANSPLAY integrates with the GNU Project Debugger
(GDB) to closely monitor and analyze the execution of the
application being replayed. Any inputs needed by the replay
are provided from the recorded partial checkpoint and log,
and any outputs generated by the replay are captured into
an output file and made available to the user. If the ap-
plication writes into a socket, for instance, the user would
be able to examine the contents of the buffer passed to the
write system call and also see how the content of the buffer
is generated during the steps leading to the system call. For
root cause analysis, TRANSPLAY allows the programmer to
set breakpoints at arbitrary functions or source lines, single
step the instructions, watch the contents of various program
variables at each step, and monitor the application’s original
recorded interactions with the operating system and other
processes. Reverse debugging can also be done by resum-

111

ing the application from an earlier partial checkpoint with
a breakpoint set to a desired point of execution in the past.

A partial checkpoint file itself does not contain any sym-
bol information, so the debugger retrieves it from a sep-
arately provided symbol file. Typically, application binaries
are stripped of their symbol table and debugging sections be-
fore they are shipped to the user. However, the symbol and
debugging information is preserved in respective formats [1]
separately in a symbol file which would be accessible to de-
velopers.

3. PARTIAL CHECKPOINTING

The traditional approach for recording an interval of an
application’s execution is to checkpoint the initial state of
the application at the beginning of the interval, followed
by logging events that guide replay. The initial checkpoint
represents the cumulative execution until the beginning of
the interval and the log represents data inputs and events
required to guide replay. Such an approach may include data
which is not relevant for reproducing the recorded bug. For
example, the checkpoint may contain pages in the memory
address space which will not be used at replay.

TRANSPLAY uses a different approach called partial check-
pointing, to capture minimal but complete state required
for replay. Treating the application as a state machine with
the processor context as the only internal state, TRANSPLAY
continuously monitors its interfaces to intercept and record
every piece of state that crosses the application boundary.
Any previous execution, and state accumulated as a result, is
ignored. In addition to recording the system call results and
other events required for deterministic replay, TRANSPLAY
monitors accesses and changes to the address space pages
and captures relevant information to create a self-contained
recording of the application bug.

A partial checkpoint has four key characteristics. First,
the state captured is completely decoupled from the under-
lying application binaries and the operating system. Second,
it is defined only for a specific interval of an application’s ex-
ecution and contains only the portion of state accessed by
the application in that interval. The space needed to store
a partial checkpoint can be small since it is used only for
recording execution of a brief interval of time. Even though
an application itself may be large in its memory footprint
and processing large quantities of data, it only accesses a
fraction of itself during a brief interval of time. In contrast,
regular checkpointing mechanisms [26, 23, 12], including vir-
tual machine snapshots [5], rely on the availability of com-
plete file system state or virtual machine images, including
all software code and additional file snapshots, to resume
execution. Third, it is only useful for deterministically re-
playing the specific time interval, not for running the appli-
cation normally. When the application is replayed, it does
not perform any useful work, except that its execution can be
analyzed using tools such as debuggers and profilers. Fourth,
it is captured over the specified time interval, not at a single
point in time. A particular piece of state is included in the
partial checkpoint when it is first accessed within the inter-
val. For instance, a shared library page is included in the
partial checkpoint when the application calls a function lo-
cated in that page. Similarly, the state of an installed signal
handler is included when the respective signal is delivered to
a thread. Partial checkpointing further provides an efficient



Algorithm 1: Partial checkpointing mechanism implemented within the page fault handler

1 if partial flag in the PTE is set then
2 if page is shared then
3 add (page address, page content) to the corresponding shared_memory_object;
4 add (region’s start address, corresponding shared_memory_object) to the process shared_maps;
5 else
6 if page is mapped within current recording interval then
7 | add page and page content to the list of saved pages in the respective system call event_record;
8 else
9 | add page to the initial_page_list;
10 end
11 end
12 end

representation that minimizes the information necessary to
replay the application over a fixed time interval.

Partial checkpointing is substantially different from in-
cremental checkpointing [27]. Incremental checkpointing as-
sumes the existence of an earlier full checkpoint, and saves
only the execution state that has changed since the prior
checkpoint. To resume execution from an incremental check-
point, the state from the full checkpoint must be restored,
as well as the state from the subsequent incremental check-
point. Partial checkpointing differs in at least three ways.
First, partial checkpointing does not require saving or restor-
ing any full checkpoint. All checkpointed state necessary to
use a partial checkpoint is completely contained within the
partial checkpoint. Second, a partial checkpoint is completed
after a time interval to enable deterministic replay over only
the previous time interval. In contrast, an incremental check-
point occurs after a time interval to enable normal execution
to be resumed after that time interval going forward. Third,
a partial checkpoint contains state that has been read dur-
ing a time interval, while an incremental checkpoint contains
state that has been modified.

3.1 Partial Checkpointing Mechanism

We will use Linux semantics to describe how partial check-
pointing and logging are done in further detail. A partial
checkpoint broadly consists of session state accessed by pro-
cesses and threads in the session, per process state, and per
thread state. Per session state consists of global shared mem-
ory objects accessed during the interval and not tied to any
process, such as shared mapped files and System V shared
memory. Per process state consists of the initial set of mem-
ory pages needed to enable replay and mappings for global
shared memory objects. Per thread state consists of CPU,
FPU, and MMU state. To start recording a partial check-
point for a time interval, TRANSPLAY forces all threads in
the session to reach a synchronization barrier at their next
entry into the kernel. The barrier is required to produce a
globally consistent partial checkpoint across all threads. The
last thread to reach the barrier records the CPU, FPU and
MMU state of each thread, including the processor register
state and the user created entries in the global and local de-
scriptor tables. A status flag indicating that the session is in
recording mode is set and all threads waiting at the barrier
are woken up.

For both per process and per session memory state, only
pages that were read during a recording interval need to be
saved in a partial checkpoint. If a process only writes to

112

a page, but does not read from it, such a page is not re-
quired from the partial checkpoint during replay. However,
page table status flags provided by most processors are not
sufficient to determine if a written page has also been read.
We conservatively include all pages accessed during the in-
terval in the partial checkpoint even though the application
may not have read from some of them. This approximation
works well in most cases as most pages that are written by
an application are also read.

To save per process memory state in a partial checkpoint,
TRANSPLAY must determine the memory pages that are read
by the threads associated with the process during the inter-
val of execution. Similarly, TRANSPLAY must also account
for per session state corresponding to memory objects that
are shared across multiple processes and not necessarily as-
sociated with any individual process. To save per session
state in a partial checkpoint, TRANSPLAY must determine
the memory pages of global shared memory objects that are
read by the threads during the interval of execution. Algo-
rithm 1 illustrates the partial checkpointing mechanism and
Table 1 describes the data structures involved.

TRANSPLAY uses two types of objects to store the con-
tents of accessed pages during the recording interval. A per
process initial_page_set is allocated for memory regions
private to a process. Each record in the set contains a page
address and content. A per session shared_memory_object
is allocated for each shared memory region accessed within a
recording interval and contains the subset of pages accessed
by any process or thread in the session in that interval. Each
record in the set contains the offset of the page within the
region and its content as of the first access to that page by
any process or thread in that recording interval. The pages
in the shared_memory_object may be mapped at different
addresses by different processes.

To track which pages are accessed, TRANSPLAY utilizes the
present bit available in the page table entry. It cooperatively
shares its use with the kernel by keeping track of kernel use
of and changes to these bits by using one of the unused bits
available in the page table entry as a partial flag. At the
beginning of the recording interval, TRANSPLAY clears the
present bit for each page in the process address space that
is present, using the partial flag to store the original value
of the present bit. TRANSPLAY also clears the present bit
and sets the partial flag whenever a new page table entry is
added. When a thread accesses a page which does not have
its present bit set, a page fault is generated. As a part of
the page fault handler, TRANSPLAY checks the partial flag



to see if it is set. If it is set, the page was originally present
and needs to be recorded.

If the page belongs to a shared memory region, TRANSPLAY
adds a record containing the offset of the page within the
shared memory region and the page content to the shared_
memory_object that represents the shared memory region. It
updates a per process set of shared memory regions, shared_
maps, that represents the mapped instances of the shared_
memory_objects for that process. Otherwise, TRANSPLAY
copies the page address and contents to the process’s ini-
tial_page_set.

Fach accessed page is copied just once when it is first ac-
cessed during the interval. Memory shared among threads
associated with a process is automatically taken care of as
a part of this simple mechanism. If a process is created via
fork during the recording interval, its initially mapped pages
at the time of creation that are accessed during the record-
ing interval are also included in the partial checkpoint. This
is done by performing the same operations to the process at
creation time as were done to other processes already created
at the beginning of the recording interval, namely clearing
the present bit for each page in the process address space
that is present, and using the partial flag to store the original
value of the present bit. Note that for pages not correspond-
ing to a shared memory region, TRANSPLAY only includes
pages in the partial checkpoint that are already mapped at
the beginning of the recording interval or at process creation.

Changes in Memory Region Geometry. The threads
of an application may map, remap or unmap memory regions
within a recording interval. TRANSPLAY must capture suffi-
cient state to reproduce these events at replay. TRANSPLAY
keeps track of the system calls made by each thread in a
per-thread queue of event_record structures. In addition,
TRANSPLAY keeps track of the system calls that map mem-
ory in the current recording interval in a per process stack
called recent_maps, including a reference to the respective
system call event_record. When a page is first accessed that
was mapped during the recording interval, a page fault oc-
curs and TRANSPLAY searches the recent_maps stack to find
the most recently mapped memory region corresponding to
the page, which is the current mapping being used by the
thread. The page is then added to the respective system call
event_record or to the respective shared_memory_object
if it is for a shared memory region. If the page happens to
be a global shared page, a record containing a pointer to
its shared_memory_object, and the starting address where
the shared memory region is mapped in the process address
space is added to the event_record of the system call event
that mapped the shared memory region. If the page was not
mapped within the current recording interval, the record is
added to the shared_maps set of the process. When a failure
is detected and a partial checkpoint is emitted, the pages
associated with the system call are saved along with the
event_record.

An incremental partial checkpointing mechanism could be
used to reduce storage requirements and copying overhead.
Pages already copied as part of previous partial checkpoints
that are still stored in memory do not need to be copied
again in the current partial checkpoint if the contents remain
the same. However, Section 5 shows that the additional com-
plexity of incremental partial checkpointing is not needed as
the storage requirements and copying overhead of regular
partial checkpoints is modest.

113

3.2 Logging

TRANSPLAY performs logging to collect necessary informa-
tion and application state to deterministically replay each
thread and process in a session from an initial state defined
by the partial checkpoint through the end of the record-
ing interval. Logging serves two purposes. First, it records
necessary data which may not be available at the target en-
vironment. Second, it captures information related to the
outcomes of nondeterministic events to ensure a determin-
istic replay. Our logging mechanism builds on SCRIBE [13],
a low-overhead operating system mechanism for determin-
istic record-replay that supports multi-threaded and multi-
process applications on multiprocessors. TRANSPLAY lever-
ages SCRIBE’s mechanisms for handling nondeterminism due
to signals, shared memory interleavings and instructions such
as rdtsc. We omit further details about addressing these
sources of nondeterminism due to space constraints. Unlike
SCRIBE, TRANSPLAY provides a different system call logging
mechanism which records all system call results rather than
reexecuting them at replay. This is done to support replay
debugging across heterogeneous systems.

4. PARTIAL REPLAY

To replay a piece of previously recorded application, the
user chooses a process and an interval of execution to re-
play by selecting the corresponding partial checkpoints. To
reproduce a deterministic replay of interleaved shared mem-
ory accesses among application processes, TRANSPLAY com-
putes a shared memory closure of the selected process and
replays all processes in the closure together as a session. A
shared memory closure of a process p is the smallest set of
processes consisting of p, such that no process within the set
shares memory with a process outside the set. All threads
within each process in the closure are included in the session
and replayed together. To aid debugging, replay can also be
done across consecutive recording intervals by coalescing the
partial checkpoints and concatenating the respective logs;
details are omitted due to space constraints.

Partial replay consists of two phases: Load phase, where
the coalesced partial checkpoint of each process in the ses-
sion is restored, and Replay phase, where the application
threads are deterministically reexecuted within TRANSPLAY’s
control. Transition from load to replay phase occurs when
control is transferred to the application code. We first de-
scribe the general mechanism of each of these phases, and
then describe in further detail how the mechanism works for
replaying specifically on Linux and Windows.

4.1 Partial Replay Mechanism

4.1.1 Load Phase

As a part of the load phase, TRANSPLAY prepares the
process context required for the application to run inde-
pendent of the target. It includes creating and populating
the memory regions, creating the application processes and
threads, and loading user created segment descriptor table
entries. The x86 architecture provides global (GDT) and lo-
cal (LDT) descriptor tables, which describe user accessible
memory segments in its segmented memory model. Typi-
cal multi-threaded applications create private memory seg-
ments by adding segment descriptor entries to these tables
and execute instructions that reference their entries. If the
target operating system’s segment layout matches with that



[Data structure [Function

event_record

Entry describing system call state in per-thread system call queue

recent_maps

Stack of system call event_records that map memory regions within current recording interval

initial_page_set

Per-process set of pages initially restored at replay

shared_memory_object

Set of (page offset, page content) records describing a sparse shared memory region

shared_maps

Set of (page offset, shared_memory_object) records indicating shared memory regions mapped within a process

segment_selector

Key-value table that maps a segment register to the selector it contains during replay phase

selector_base

Key-value table that maps a selector to the base linear address of the segment it points to

Table 1: Key Transplay data structures

of the source and it provides an API to access the tables,
TRANSPLAY loads the entries into the tables. If not, emu-
lation of instructions that explicitly reference the segments
must be done as described in Section 4.3.

A key requirement for heterogeneous replay is that the
same address space regions used by the application during
recording be available to the application during replay. Since
TRANSPLAY captures non-relocatable chunks of application
binaries directly from application’s memory, they have to be
loaded at the same address offsets at replay. However, in the
general case, the required address regions may not be avail-
able on the target system, because they may be reserved
for the operating system or system libraries. For example,
the default Linux/x86 configuration makes 3 GB of address
space available to the user space, but the default Windows
configuration does not use the same size address space. Fur-
thermore, system libraries such as Windows’ kernel.d1l
and Linux’s Virtual Dynamic Shared Object (VDSO) re-
serve specific address offsets for themselves, preventing the
use of their address regions by the application.

Virtual machines and emulators decouple the user code
from the target system by running it on a virtual MMU, but
TRANSPLAY avoids full emulation of the processor MMU by
making a reasonable assumption that the address regions
required by application’s memory pages are available to the
user at replay. Common operating systems share the basic
memory layout on a given architecture and typically allow
the user to configure the way the linear address space is
partitioned between the user and kernel space using a boot-
time switch. For example, to record Linux/x86 applications
and replay them on Windows/x86, a simple way to avoid
conflicts is to configure Linux/x86 and Windows/x86 to al-
locate the bottom 2 GB and 3 GB, respectively, of address
space to application programs. In this way, Windows system
libraries, which only occupy a small region immediately be-
low the kernel region, will not conflict with an application’s
pages in the bottom 2 GB of address space.

4.1.2 Replay Phase

The replay phase executes the instructions produced by
the application during replay and decouples them from the
target system. Most instructions dispatched by the applica-
tion are executed natively. Note that TRANSPLAY does not
need to process privileged instructions since a partial check-
point never contains them. TRANSPLAY only tracks pages
within the application address space. Any privileged instruc-
tions such as in or cli, which may be executed as a part of
the system calls, are not included. However, there are two
classes of instructions that TRANSPLAY may need to emulate:
1. instructions explicitly referencing user created segments,
and 2. instructions that invoke a system call. Instructions
that reference the user segments are emulated using a sim-
ple binary translation mechanism. Because the GDT and
LDT may be managed differently by different operating sys-

114

tems, TRANSPLAY virtualizes an application’s access to the
tables.

TRANSPLAY emulates the system calls by intercepting the
instructions used to invoke a system call, and emulating the
call itself. For example, on the x86 architecture, Linux ap-
plications invoke the system calls using the sysenter or
int x80 instruction. TRANSPLAY intercepts these instruc-
tions and emulates the respective system call based on tech-
niques developed in RR [3]. For most system calls, emulation
is done by simply returning the results of the system call
from the recording, bypassing kernel execution. There are
three classes of system calls that require further emulation:
system calls for process control, system calls that modify
the address space geometry, and system calls related to the
MMU context. We discuss these in further detail in Sections
4.2 and 4.3. Replaying the system call results is done in an
operating system independent way by TRANSPLAY on behalf
of the application. The application never directly contacts
the target operating system, thereby decoupling the replayed
application from the operating system services of the target.

4.1.3 Integration with the Debugger

TRANSPLAY integrates with GDB by providing a GDB
script that directs the load phase until the application is
fully initialized for the user to start interacting through the
debug interface. It also contains the necessary GDB direc-
tives to load the symbol information for the application be-
ing debugged. The script begins the debugging session with
the invocation of the program that performs the load phase
as the debuggee, which reads the partial checkpoint files, re-
constructs their address space and initializes their threads.
The debugger does not intervene during this process. The la-
tency of the load phase is usually imperceptible to the user.
After the application is loaded, a single forward step within
the GDB script transfers control to the application code.
The application is presented to the user in a stopped state
while the debugger shows the register state and the source
line of the application a few moments prior to the failure.
The user can then set break points, single step through the
source lines to examine program variables and monitor ap-
plication’s interactions with the operating system and other
processes, to analyze the root cause. Any inputs needed by
the application are automatically provided by TRANSPLAY.
For instance, when the application attempts to read from the
console, the input is directly provided from the log rather
than waiting for user input. When the application executes
the system call interrupt instruction in a debugging session,
the perceived state of the application’s registers and mem-
ory after returning from the instruction would be identical
to its state at the corresponding point during recording.

4.2 Partial Replay Across Linux

Load Phase. The load phase is performed by a stati-
cally linked program, partial checkpoint loader, which cre-



[Category [System Call

|Linux

[Windows

fork

emulate with fork

emulate with CreateProcess

Process control clone

forward to the OS

emulate with CreateThread

exit_group

wait for other threads

wait for other threads

mmap, brk, execve

emulate with mmap and munmap

emulate with VirtualAlloc

Memory geometry|shmat, mmap with MAP_SHARED flag

emulate with shmat

emulate with MapViewOfFile

munmap

forward to the OS

emulate with UnmapViewOfFile

MMU context set_thread_area, modify_ldt

forward to the OS

update selector_base table |

Table 2: Transplay system call emulation

ates the application processes, restores their address space
and finally transfers control to the application code. The
partial checkpoint loader itself is built to be loaded at an
unconventional address region to avoid conflicting with the
pages of the application and does not use the standard pro-
gram heap or stack. The partial checkpoint loader begins
by creating the per session shared memory regions as de-
fined by the shared_memory_objects, and mapping them
into its address space. The sparse set of memory pages in
each shared_memory_object are then loaded into respective
shared memory regions, and the regions are unmapped.

A set of processes, each to become one of the processes
recorded in the partial checkpoint, are recursively created
with unconventional address regions used as their stacks,
to avoid conflict with the application’s stack pages. Each
process begins restoring itself by attaching to the shared
memory regions indicated by the shared_maps set in its par-
tial checkpoint. Each page in the initial_page_set is then
mapped as an independent, private, anonymous, writable
region and its initial page content is loaded. After the page
content is loaded, its protection flags are set to their original
recorded values through mprotect system call. For example,
if the page was originally a file map of a read-only shared
library, it is first mapped as a writable anonymous region
to load its contents, and the original page permissions are
restored afterwards.

After the process address space is prepared, each pro-
cess recursively creates its threads. Each process and thread
loads respective descriptor table entries using the Linux API,
and enters a futex barrier. Once all threads reach the bar-
rier, the main replay thread invokes TRANSPLAY to attach to
the threads and start replaying. Each thread then executes
the instructions to restore the processor registers. When the
instruction pointer is finally restored through a jmp instruc-
tion, the thread starts running the application code.

Replay Phase. During the replay phase, instructions ex-
plicitly referencing the user segments can be natively exe-
cuted without any emulation because different Linux ver-
sions manage the GDT and LDT in the same way, and pro-
vide the API to load the entries required by the application.
Most system calls made by the application are handled by
simply copying the data from the respective event_records.
Table 2 lists three main classes of exceptions, where further
processing is performed beyond data copy. In particular, for
the fork system call, TRANSPLAY creates a new child process
and preloads the pages indicated in the event_record. These
pages include the pages accessed by the child process in the
recording interval which were not present in the parent’s
address space. For the exit_group system call, TRANSPLAY
defers its execution until all other threads in that process
exhaust their event_records, to avoid their premature ter-
mination. For system calls that map a new memory region
(mmap, brk, execve etc.), the pages indicated in the system
call’s event_record are mapped and preloaded into memory.

115

For system calls that map a System V shared memory region
or a shared memory mapped file, the shared_memory_object
indicated in the event_record of the system call is mapped.
For clone, set_thread_area and modify_ldt system calls,
the system call is simply forwarded to the underlying ker-
nel. The interleaving of shared memory accesses as recorded
in the event stream is enforced among replaying processes
and threads and any signals received by the application
within the interval are delivered at respective points using
the SCRIBE [13] mechanisms.

4.3 Partial Replay on Windows

TRANSPLAY’s mechanism for replaying Linux applications
on Windows is based on Pin instrumentation [16], but is
conceptually similar to replaying on Linux as discussed in
Section 4.2. We highlight the steps which are different below.

Load Phase. The load phase is performed by the Win-
dows version of the partial checkpoint loader in user space
using the Windows API. To replay the application, the par-
tial checkpoint loader itself is started under the control of
TRANSPLAY pintool [16]. TRANSPLAY pintool does not inter-
fere with the loading process performed by the partial check-
point loader. The creation of processes, partial reconstruc-
tion of their address space and creation of threads within
them is performed as already outlined, except using equiva-
lent Windows APIs. Once the partial checkpoints are loaded,
each thread leaves the synchronization barrier and makes a
special system call, which is normally undefined in Linux
and Windows. The system call activates TRANSPLAY pin-
tool by notifying it of the completion of the load phase and
transition into replay phase. TRANSPLAY pintool reads the
respective log file of the thread to obtain its saved processor
context and loads it using Pin’s PIN_ExecuteAt API func-
tion, which turns the control over to the application code.

Replay Phase. TRANSPLAY pintool continues with the
replay phase to monitor the application to satisfy the re-
quests it makes. In particular, TRANSPLAY emulates the key
categories of the Linux system calls listed in Table 2 using
equivalent Windows APIs. For other system calls, TRANSPLAY
pintool traps the system call interrupt instruction, copies
system call return data to the application, increments the
instruction pointer to skip the system call instruction and
allows the application to continue normally. In the absence
of such a mechanism, executing the Linux system call in-
terrupt instruction would cause a general protection fault
on Windows. When new memory regions are mapped, re-
spective memory pages that will be accessed by the appli-
cation in its future execution are brought into memory in
a way similar to Linux replay, except using the Windows
semantics. For instance, Windows treats memory address
space and the physical memory that backs it as separate
resources, whereas Linux transparently associates physical
pages to memory mapped regions. To emulate the Linux



system calls that map new memory regions, TRANSPLAY re-
serves both the address space and the memory together.

Instructions explicitly referencing user segment registers
are treated through a trap and emulate mechanism. Win-
dows configures the CPU descriptor tables based on its mem-
ory layout which is different from that of Linux. A segment
selector, which is an index into the segment descriptor ta-
ble, used by the Linux application may point to a different
region of memory on Windows or may not be valid at all.
Any attempts to update the Windows descriptor tables may
result in a conflict with the way Windows uses its resources.
TRANSPLAY resolves these conflicts by intercepting and em-
ulating the offending instructions within the Linux applica-
tion’s binary and the system calls that modify the descriptor
tables.

TRANSPLAY uses two key-value table data structures, seg-
ment_selector and selector_base, to emulate the instruc-
tions with segment register operands. At any time during
replay, the segment_selector table maps a segment regis-
ter to the selector it contains, and the selector_base table
maps a selector to the base linear address of the segment
that it points to. When an instruction which refers to its
operands through a segment register is encountered during
replay, TRANSPLAY computes the location of each operand
in the flat address space using the formula, (segment base +

operand base + displacement + index*scale), where seg-

ment base is the base address of the segment and is obtained
by joining the two tables on the selector and the remain-
ing terms have instruction semantics and are obtained from
the instruction. TRANSPLAY then rewrites the original in-
struction such that the final linear address of the operand is
used rather than referencing the segment register. The tables
are initialized based on the descriptor table state captured
in the partial checkpoint. As the application executes dur-
ing replay, the segment_selector table is updated by inter-
cepting the mov instructions that load the segment registers
with selectors and the segment_selector table is updated
by intercepting the set_thread_area and modify_ldt sys-
tem calls which provide the mapping between the segment
base address and the selector.

S. EXPERIMENTAL RESULTS

We have implemented TRANSPLAY as a kernel module
and associated user-level tools on Linux which can record
and replay partial checkpoints of multi-threaded and multi-
process Linux applications across different Linux distribu-
tions. We have also implemented a user-level replay tool for
Windows based on Pin binary instrumentation [16], which
currently only replays partial checkpoints of non-threaded
Linux applications on Windows. Our unoptimized proto-
type works with unmodified applications without any li-
brary or base kernel modifications. Using our prototype, we
evaluate TRANSPLAY’s effectiveness in (1) replaying partial
checkpoints across environments differing in software instal-
lation, operating system and hardware, (2) minimizing run-
time overhead and storage requirements of recording appli-
cations, and (3) capturing the root cause of various types of
real software bugs on server and desktop applications.

Recording was done on a blade in an IBM HS20 eServer
BladeCenter, each blade with dual 3.06 GHz Intel Xeon
CPUs with hyperthreading, 2.5 GB RAM, a 40 GB local
disk, and interconnected with a Gigabit Ethernet switch.
Each blade was running the Debian 3.1 distribution and the

116

Linux 2.6.11 kernel and appears as a 4-CPU multiproces-
sor to the operating system. For server application work-
loads that also required clients, we ran the clients on another
blade. Replay was done in three different environments: (1)
a different blade in the BladeCenter running Debian 3.1,
(2) a Lenovo T61p notebook with an Intel Core 2 Duo 2.4
GHz CPU, 2 GB RAM, and a 160 GB local disk running
Windows XP 3.0 with Pin-25945, and (3) a VMware virtual
machine with 2 CPUs, 512 MB RAM, and an 8 GB virtual
disk running Linux Gentoo 1.12 using VMware Player 3.0 on
the Lenovo notebook. None of the recorded application bi-
naries were installed or available in any of the environments
used for replay. Furthermore, the Windows and Gentoo re-
play environments had completely different software stacks
from the Debian recording environment.

Table 3 lists the application workloads we recorded and
replayed using TRANSPLAY. The server applications were
the Apache web server in both multi-process (apache-p)
and multi-threaded (apache-t) configurations, the MySQL
server (mysql), and the Squid web cache proxy server (squid).
httperf-0.9 was used as the benchmark for the web servers
and web proxy to generate 20,000 connection requests. The
desktop applications were a media player (mplayer) and
various compute and compression utilities (gzip, bc, and
ncomp). The applications were all run with their default
configurations. We recorded each application workload by
taking partial checkpoints at three different intervals: 5, 10,
and 15 seconds. All of the applications were recorded and
determinstically replayed correctly across all three different
replay environments except for mysql and apache-t, which
were replayed in the two different Linux environments but
not in Windows due to threading.

5.1 Performance and Storage Overhead

Table 3 lists the execution time for each application work-
load when run natively on Linux without TRANSPLAY, and
Figure 1 shows the normalized runtime overhead of record-
ing the application workloads compared to native execution.
As a conservative measure and due to space constraints, we
show the recording overhead for the shortest of the intervals
used, 5 seconds. Overhead for the 10 and 15 seconds was
smaller due to the longer recording intervals. For the 5 sec-
ond intervals, the recording overhead was under 3% for all
workloads except for squid and mysql, where the overhead
was 9% and 17%, respectively.

Figure 1 also shows the speedup of replay on Linux and
Windows for 5 second replay intervals. Replay results are
shown for 5 second intervals for Linux using the blade and
Windows using the notebook; other results are omitted due
to space constraints. Replay was generally faster than record-
ing, several times faster in some cases. Two factors con-
tribute to replay speedup: omitted in-kernel work due to
system calls partially or entirely skipped (e.g. network out-
put), and time compressed due to skipped waiting at replay
(e.g. timer expiration). be did not show any speedup because
it is a compute-bound workload which performs few system
calls. Speedups on Windows were smaller due to the ad-
ditional overhead of binary instrumentation and emulation
required to replay on Windows. The binary instrumentation
overhead was less for longer replay intervals as Pin’s over-
head of creating the initial instruction cache for emulation
is amortized over the replay interval.

Figure 2 shows a measure of partial checkpoint latency,



[Name [Workload [Time[Bug [Memory| Partial] Log]|
mysql MySQL 3.23.56, 10 threads, run sql-bench 105 s[data race 121 MB[ 538 KB 29 KB
apache-t|Apache 2.0.48, 57 threads, run httperf 0.9 57 s|atomicity violation 221 MB|1305 KB|2284 KB
apache-p|Apache 2.0.54, 6 processes, run httperf 0.9 59 s|library incompatibility| 4188 KB| 935 KB| 2570 B
squid Squid 2.3, run httperf 0.9 82 s|heap overflow 7192 KB| 991 KB 4 KB
bc bc 1.06, compute 7 to 5000 decimal places 55 s|heap overflow 2172 KB| 349 KB| 2714 B
gzip Gzip 1.2.4, compress 200 MB /dev/urandom data 68 s[global buffer overflow | 1820 KB| 321 KB| 1341 B
ncomp Ncompress 4.2, compress 200 MB /dev/urandom data 82 s|stack smash 1440 KB| 293 KB| 1229 B
mplayer [Mplayer 1.0rc2, play 10 MB 1080p HDTV video at 24 fps| 40 s|device incompatibility 44 MBJ|1393 KB[9513 KB

Table 3: Application workloads and bugs

the average time it takes to atomically finish recording one
interval and start recording a subsequent recording interval
while doing a periodic recording of the applications. It in-
cludes the time taken for the application threads to reach
the synchronization barrier so that a consistent initial state
of the application for the partial checkpoint can be recorded.
The application is not completely stopped during this time.
Some of the application threads may still be running appli-
cation code while others reach the barrier. The barrier is
created in the kernel when checkpoint request arrives and
each application thread reaches the barrier the next time
it enters the kernel. Once all threads reach the barrier, the
rest of the processing is done. The latency is less than a few
hundred milliseconds in all cases. The average latency was
the same for the 5, 10, and 15 second recording intervals.

We saved the last three partial checkpoints and their as-
sociated logs for each application and characterized their
size and composition. For mplayer, only the last two partial
checkpoints and logs were saved for the 15 second recording
interval due to its relatively short execution time. We only
considered complete intervals, so if 5 second recording inter-
vals were used and an application had a partial checkpoint
at the end of its execution accounting for the last 2 seconds
of execution, that partial checkpoint was not included in this
characterization.

Figure 3 shows the average total size of partial checkpoints
across all processes of each workload for 5, 10 and 15 sec-
ond recording intervals. Partial checkpoint sizes are mod-
est in all cases, no more than roughly 5 MB even for the
longest recording intervals. Most of an application’s mem-
ory pages are not accessed during any particular interval of
execution. For example, the largest partial checkpoint was
roughly 5 MB for mysql, which had a virtual memory foot-
print of well over 100 MB. Figure 3 also shows the size of
the partial checkpoints when compressed using l1zma, as de-
noted by the patterned bars. In addition to the fact that
the partial checkpoint data compressed well, the high com-
pression ratios indicated were also due to our unoptimized
prototype which will end up storing duplicate code pages
with the same content for multi-process applications. While
the cost of taking regular full checkpoints is usually highly
correlated with checkpoint size due to the large amount of
memory state that needs to be saved, Figures 2 and 3 show
that partial checkpoint latency is not correlated with partial
checkpoint size because the sizes are quite small.

Figure 4 shows the total size of logs generated by all pro-
cesses of each application for 5, 10 and 15 second recording
intervals. mysql had the most log data due to the high den-
sity of system call events carrying input data presented by
sql-bench. For a 5 second recording interval, the log size
was 59 MB. While this is significant storage overhead, the
log does not accumulate over time. Even though TRANSPLAY
continuously records the application, it only stores the most

117

recent execution history within a buffer of fixed size. bc was
mostly compute bound and had the least log data, less than
1 KB, which is not visible in Figure 4. Figure 4 also shows the
compressed log sizes, as denoted by the patterned bars. The
logs of most workloads compressed well, except for gzip,
ncomp and mplayer, for which negligible compression was
obtained and hence the compressed values are not visible.
The log of gzip and ncomp mostly contained the 200 MB
of random data, which does not compress well. The log of
mplayer was dominated by the compressed video file, which
also does not compress well.

Figure 5 shows the composition of each application’s log.
The three bars shown for each application correspond from
left to right to the 5, 10, and 15 second recording intervals,
respectively. The log data is classified into four categories:
sys is system call records and integer return values, output
is the data returned from system calls, mmap is pages mapped
during the recording interval, and shm are events correspond-
ing to page ownership management of shared memory. In
most cases, the log was dominated by output data which is
returned to the replayed application through system calls.
One of the primary goals of TRANSPLAY is to decouple the
application from its source environment and TRANSPLAY
meets this goal in part by logging more data than other
record-replay systems that require an identical replay en-
vironment. bc produced a small log, mostly containing the
system call records. apache-t shows many page ownership
management events in its log since it is a multi-threaded ap-
plication with many threads. mysql has fewer threads and
less page ownership management events. Log data due to
memory mapped pages was generally small relative to other
constituents of the log because most of the memory map-
pings occurred at the beginning of the applications and the
logs are for the last few complete intervals of application
execution.

5.2 Software Bugs

Table 3 also lists with each application the real-life soft-
ware bugs that we used to measure TRANSPLAY’s ability
to capture and reproduce failures. All of the application
bugs were taken from BugBench [15], except for the bugs
for apache-p and mplayer, which were collected from In-
ternet forums where they were reported. The bugs include
nondeterministic data race bugs, different types of memory
corruption issues such as buffer overflow, and issues due to
incompatible interactions with the target environment where
the application was run. We recorded each faulty application
while the bug is triggered. In some cases, the experiment
had to be repeated many times before the bug manifested.
mysql and apache-t bugs were nondeterministic data race
bugs. The apache-t bug was triggered by running two con-
current instances of the httperf benchmark and the mysql
bug was triggered using mysql’s rpl_max_relay_size test.



record m— replay-windows =

o

replay-linux s

squid
bc
9zip

T
]
>
£

apache-t
apache-p
ncomp
mplayer

Application

Figure 1: Recording overhead
1000.0

o 5s mmmm 10s EEEE 15s =

25

&

®4

E

g3t

g

[*]

€1

o
g
g ¢ 5 3 ¢ § E 2 g ¢ & ¢ 2 8 £ %
£ § 3§ = g 4 E § § 9 g 3
g g 3 =3 8 €

© o
Application Application

Figure 2: Checkpoint latency Figure 3: Partial checkpoint size

5s mmmm 10s mmm 155 . output =

100

100.0

—

10.0

Log Size (MB)
R —
J CI——
R

—

1.0

[Retavavarer |
[

0.1

shm ——1

sys = mmap 3

Error Propagation Distance (ms)

mysql
squid
be -
gzip
NCOMP - ——
mysql

apache-p o
mplayer -—

apache-t

apache-t

Application
Figure 4: Log size

For most other applications, the bug is triggered using mal-
formed input. For example, the bug for bc is triggered using
a malformed bc script, the bug for squid is triggered using a
malformed client request, and the bugs for gzip and ncom-
press are triggered using malformed command line input.
Table 3 shows the partial checkpoint and log sizes for
TRANSPLAY to capture and reproduce each bug. We also
measured the virtual memory footprint of each application
as reported by the top command to provide a rough mea-
sure of the amount of state required to run it. In practice,
applications typically require more data than the content of
their virtual memory. They also indirectly rely on the state
represented by their environment and the operating system.
In all cases, the size of the sum of the partial checkpoint
and log is much less than the virtual memory footprint of
each application. Within the same recording interval where
the mplayer bug was triggered, it was also mapping various
codec libraries and accessing their pages to initialize them.
This additional noise accounts for the large log size pro-
duced by the mplayer bug. Note that the partial checkpoints
and logs required to capture the bugs are in general much
less than what was required to record the more resource-
intensive application workloads shown in Figures 3 and 4.
Once a recording of the bug occurrence was captured,
TRANSPLAY was able to deterministically replay the bug ev-
ery time, even on a different platform, and was useful to di-
agnose the root cause of each bug. For example, for the mysql
and apache-t nondeterministic data race bugs, TRANSPLAY
correctly captured the specific interleaving of shared mem-
ory accesses required to reproduce the bug. TRANSPLAY was
able to capture all data required to reproduce these bugs
with partial checkpoint and log sizes orders of magnitude
smaller than the application’s memory footprint. In general,
TRANSPLAY captured the bug-triggering conditions and in-
put required to reproduce all bugs. For instance, the mal-
formed client request which caused squid to fail and the
relevant code snippet from the input program that trig-
gered a heap overflow in bc were part of the log recorded
by TRANSPLAY. In the case of apache-p and mplayer, the
bugs occurred due to incompatibility with the target envi-
ronment. For apache-p, one of the processes would silently

e
@
=
S
1]
a
5

squid

Application
Figure 5: Log composition

118

be

gzip
ncomp
mplayer
mysql
apache-t
apache-p
squid

bc

gzip
ncomp
mplayer

Application
Figure 6: Error propagation distance

exit when it notices unexpected behavior from a function
in one of the libraries it uses due to an incompatible ver-
sion. Since TRANSPLAY captured the code page in the library
where the offending function existed, TRANSPLAY was able
to reproduce the faulty behavior even on the system where
the right version of the library was installed. Other record-
replay tools which only record at the system call interface
would not be able to capture these types of bugs. Similarly,
TRANSPLAY correctly captured the root cause of the prob-
lem for mplayer, which failed due to an incompatible audio
device at the target system.

Figure 6 shows the error propagation distance for each bug
listed in Table 3. To measure error propagation distance, we
instrumented TRANSPLAY to log the value of the time stamp
counter along with each recorded event, and calculated the
time between two closest events that encompass the root
cause of the bug and the appearance of its symptom. In all
cases, the observed value was less than half a second, sup-
porting TRANSPLAY’s assumption and demonstrating that a
modest recording interval of 5 seconds as used in our exper-
iments is sufficient to reproduce the bugs. Bugs with longer
propagation distances may be captured by dedicating more
storage space to store longer intervals of execution.

6. RELATED WORK

Many diagnosis and debugging tools have been developed.
While interactive debugging tools [8] are helpful for analyz-
ing bugs that can be easily reproduced, they do not assist
with reproducing bugs. Techniques for compile-time static
checking [7] and runtime dynamic checking [11] are useful in
detecting certain types of bugs, but many bugs escape these
detection methods and surface as failures, to be reproduced
and debugged in the developer environment. Bug reporting
mechanisms [18, 10] collect information when a failure oc-
curs, but they are often limited in their ability to provide
insight into the root cause of the problem because they rep-
resent the aftermath of the failure, not the steps that lead
to it.

Many record-replay approaches have been proposed to im-
prove bug reproducibility and debugging [14, 29, 28, 31, 19,
24, 2, 13]. All of these approaches impose crucial dependen-



cies between the environment at the time of replay and the
original production recording environment. Although some
approaches claim to be able to replay in a different environ-
ment from which recording occurs, all previous approaches
assume the availability during replay of all software code
used during recorded execution. Hardware mechanisms [34,
20, 17] record data accesses at an instruction granularity,
but do not record code and rely on the availability of bina-
ries to replay instructions. Netzer and Weaver [22] proposed
a tracing mechanism that has some similarities to partial
checkpointing. Tracing creates a checkpoint for replaying
from some starting point by recording values of memory
locations when they are initially read, then restoring all of
those values upon replay. Tracing differs fundamentally from
partial checkpointing as it does not support replay in a dif-
ferent environment and requires the availability of the same
instrumented application code. BugNet [21] uses a similar
approach at the hardware level to record the operand val-
ues accessed by load instructions at the hardware level to
replay the execution. Partial checkpointing is conceptually
different from this approach because TRANSPLAY considers
all data including the instruction opcodes as external inputs
in order to produce a self-contained recording.

Virtual machine mechanisms [6, 4] may allow replay on a
different host environment from recording, but require the
availability of the same virtual machine image at record and
replay time, including all application, library, and operating
system binaries. Not only does this require a large amount
of data, but this is often impractical for bug reproducibil-
ity as customers are unlikely to allow application vendors
to have an entire replica of all of their custom proprietary
software. Crosscut [5] aims to extract a subset of data offline
from a complete recording of a VM to reduce the size. How-
ever, it still requires a heavy weight instrumentation during
recording and the original log it generates is large. Oper-
ating system mechanisms [29, 31] may record input data
through system calls, but still require the availability of all
files, including application binaries, during replay. For ex-
ample, consider use of a memory mapped file or access to
a memory mapped device, both of which would impose de-
pendencies on devices and files from the original recording
envionment. Neither of these types of data would be included
by recording system call arguments or results, as has been
previous proposed. Application, library, and programming
language mechanisms [28, 9] not only require access to bi-
naries during replay, but they also require access to source
code to modify applications to provide record-replay func-
tionality. In contrast, TRANSPLAY requires no access to any
software from the production recording environment, includ-
ing application, library, or operating system binaries.

Combining the key features of transparency, determinism,
and low overhead has been difficult to achieve with record-
replay, especially for multi-threaded applications on multi-
processors. Hardware mechanisms face a high implementa-
tion barrier and do not support record-replay on commod-
ity hardware. Application, library, and programming lan-
guage mechanisms require application modifications, lacking
transparency. Virtual machine mechanisms incur high over-
head on multiprocessors, making them impractical to use
in production environments [6]. To reduce recording over-
head, various mechanisms propose record-replay that is not
deterministic [2, 24]. Building on SCRIBE [13], TRANSPLAY
addresses these shortcomings using a lightweight operating

119

system mechanism to provide transparent, fully determinis-
tic record-replay for multi-threaded applications on multi-
processors with low overhead.

A number of speculative tools leverage record-replay or
checkpointing. Triage [32] proposes a diagnosis protocol to
automatically determine the root cause of a software failure
in production. ASSURE [30] and ClearView [25] attempt
to automatically diagnose a failure and automatically patch
the software, with a goal of quickly responding to vulnera-
bilities. While such techniques may work for a limited set
of well characterized bugs, they are generally not suitable
for many common bugs which require intuitive faculties and
application-specific knowledge of a human programmer. For
instance, the right set of program inputs and environment
manipulations to be used for each repetition of the execu-
tion heavily depends on the application and is generally not
possible to automatically generate.

7. CONCLUSIONS

TRANSPLAY is the first system which can capture pro-
duction software bugs and reproduce them deterministically
in a completely different environment, without access to
any of the original software used in the production envi-
ronment. TRANSPLAY accomplishes this by relying only on
a lightweight per-bug recording; there is no need for access
to any originally executed binaries or support data, no need
to run the same operating system, and no need to replicate
the original setup or do repeated testing. TRANSPLAY intro-
duces partial checkpointing, a simple and novel mechanism
to record the complete state required to deterministically
replay an application, including relevant pieces of its exe-
cutable files, for a brief interval of time before its failure.
Partial checkpointing minimizes the amount of data to be
recorded and decouples replay from the original execution
environment while ensuring that all information necessary
to reproduce the bug is available. TRANSPLAY integrates
with a standard unmodified debugger to provide debugging
facilities such as breakpoints and single-stepping through
source lines of application code while the application is re-
played. The captured state, which typically amounts to a few
megabytes of data, can be used to deterministically replay
the application.s execution to expose the steps that lead to
the failure. No source code modifications, relinking or other
assistance from the application is required.

Our experimental analysis on real applications running
on Linux shows that TRANSPLAY (1) can capture the root
cause of real-life software bugs and the necessary bug trig-
gering data and events, (2) can capture partial checkpoints
of unmodified Linux applications and deterministically re-
play them on other Linux distributions and on Windows,
and (3) is able to generate partial checkpoints of applica-
tions such as Apache and MySQL with modest recording
overhead and storage requirements. These results demon-
strate that TRANSPLAY is a valuable tool that can simplify
the root cause analysis of production application failures.

8. ACKNOWLEDGEMENTS

This work was supported in part by NSF grants CNS-
09025246, CNS-0914845, and CNS-1018355, AFOSR MURI
grant FA9550-07-1-0527, and IBM. Oren Laadan and Nicolas
Viennot provided invaluable help with SCRIBE source code
for implementing TRANSPLAY.



9.
(1]

(2]

(4]

[6]

(10]

(11]

(12]

(13]

[14]

(15]

[16]

(17]

(18]

19]

REFERENCES

T. Allen et al. DWARF Debugging Information Format,
Version 4, Jun 2010.

G. Altekar and I. Stoica. ODR: Output-Deterministic
Replay for Multicore Debugging. In Proceedings of the 22nd
Symposium on Operating Systems Principles (SOSP), Oct
2009.

P. Bergheaud, D. Subhraveti, and M. Vertes. Fault
Tolerance in Multiprocessor Systems via Application
Cloning. In Proceedings of the 27th International
Conference on Distributed Computing Systems (ICDCS),
Jun 2007.

J. Chow, T. Garfinkel, and P. Chen. Decoupling Dynamic
Program Analysis from Execution in Virtual Environments.
In Proceedings of the 2008 USENIX Annual Technical
Conference, Jun 2008.

J. Chow, D. Lucchetti, T. Garfinkel, G. Lefebvre,

R. Gardner, J. Mason, S. Small, and P. M. Chen.
Multi-Stage Replay With Crosscut. In Proceedings of the
6th International Conference on Virtual Execution
Environments (VEE), Mar 2010.

G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and

P. M. Chen. Execution Replay of Multiprocessor Virtual
Machines. In Proceedings of the 4th International
Conference on Virtual Ezecution Environments (VEE),
Mar 2008.

D. Evans, J. Guttag, J. Horning, and Y. M. Tan. LCLint: A
Tool For Using Specifications to Check Code. In
Proceedings of the 2nd Symposium on Foundations of
Software Engineering (SIGSOFT), Dec 1994.

GNU. GDB: The GNU Project Debugger,
http://www.gnu.org/software/gdb/.

Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F.
Kaashoek, and Z. Zhang. R2: An Application-Level Kernel
for Record and Replay. In Proceedings of the 8th
Symposium on Operating Systems Design and
Implementation (OSDI), Dec 2008.

IBM. WebSphere Application Server V6: Diagnostic Data,

http://www.redbooks.ibm.com/redpapers/pdfs/redp4085.pdf.

Intel. Assure,
http://developer.intel.com/software/products/assure/.

O. Laadan and J. Nieh. Transparent Checkpoint-Restart of
Multiple Processes on Commodity Operating Systems. In
In Proceedings of the 2007 USENIX Annual Technical
Conference, Jun 2007.

O. Laadan, N. Viennot, and J. Nieh. Transparent,
Lightweight Application Execution Replay on Commodity
Multiprocessor Operating Systems. In Proceedings of the
International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), Jun 2010.

T. LeBlanc and J. Mellor-Crummey. Debugging Parallel
Programs with Instant Replay. IEEE Transactions on
Computers, C-36(4), Apr 1987.

S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou.
BugBench: Benchmarks for Evaluating Bug Detection
Tools. In PLDI Workshop on the Evaluation of Software
Defect Detection Tools, Jun 2005.

C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,

G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In Proceedings of the SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), Jun 2005.

P. Montesinos, M. Hicks, S. T. King, and J. Torrellas.
Capo: A Software-Hardware Interface for Practical
Deterministic Multiprocessor Replay. In Proceedings of the
14th International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), Mar 2009.

Morzilla.org. Quality Feedback Agent,
http://kb.mozillazine.org/Quality_Feedback_Agent.

M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. Nainar,

120

20]

(21]

(22]

23]

(24]

(25]

[26]

27]

(28]

(29]

(30]

(31]

32]

(33]

(34]

and I. Neamtiu. Finding and Reproducing Heisenbugs in
Concurrent Programs. In Proceedings of the 8th Symposium
on Operating Systems Design and Implementation (OSDI),
Dec 2008.

S. Narayanasamy, C. Pereira, and B. Calder. Recording
Shared Memory Dependencies Using Strata. In Proceedings
of the 12th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), Oct 2006.

S. Narayanasamy, G. Pokam, and B. Calder. BugNet:
Continuously Recording Program Execution for
Deterministic Replay Debugging. In Proceedings of the
32nd International Symposium on Computer Architecture
(ISCA), Jun 2005.

R. Netzer and M. Weaver. Optimal Tracing and
Incremental Reexecution for Debugging Long-Running
Programs. In Proceedings of the SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), Jun 1994.

S. Osman, D. Subhraveti, G. Su, and J. Nieh. The Design
and Implementation of Zap: A System for Migrating
Computing Environments. In Proceedings of the 5th
Symposium on Operating System Design and
Implementation (OSDI), Dec 2002.

S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee,
and S. Lu. PRES: Probabilistic Replay With Execution
Sketching on Multiprocessors. In Proceedings of the 22nd
Symposium on Operating Systems Principles (SOSP), Oct
2009.

J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe,

J. Bachrach, M. Carbin, C. Pacheco, F. Sherwood,

S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin, M. D.
Ernst, and M. Rinard. Automatically Patching Errors in
Deployed Software. In Proceedings of the 22nd Symposium
on Operating Systems Principles (SOSP), Oct 2009.

J. Plank. An Overview of Checkpointing in Uniprocessor
and Distributed Systems, Focusing on Implementation and
Performance. Technical Report UT-CS-97-372, University
of Tennessee, Jul 1997.

J. Plank, J. Xu, and R. Netzer. Compressed Differences: An
Algorithm for Fast Incremental Checkpointing. Technical
Report UT-CS-95-302, University of Tennessee, Aug 1995.
M. Ronsse and K. De-Bosschere. RecPlay: A Fully
Integrated Practical Record/Replay System. ACM
Transactions on Computer Systems, 17(2), May 1999.

Y. Saito. Jockey: A User-space Library for Record-Replay
Debugging. In Proceedings of the 6th International
Symposium on Automated Analysis-Driven Debugging
(AADEBUG), Sep 2005.

S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh,
and A. D. Keromytis. ASSURE: Automatic Software
Self-Healing Using Rescue Points. In Proceedings of the
14th International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), Mar 2009.

S. Srinivasan, S. Kandula, C. Andrews, and Y. Zhou.
Flashback: A Lightweight Extension for Rollback and
Deterministic Replay for Software Debugging. In
Prooceedings of the 2004 USENIX Annual Technical
Conference, Jun 2004.

J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou.
Triage: Diagnosing Production Run Failures at the User’s
Site. In Proceedings of the 21st Symposium on Operating
Systems Principles (SOSP), Oct 2007.

Wikipedia. Dependency Hell,
http://en.wikipedia.org/wiki/Dependency_hell.

M. Xu, R. Bodik, and M. Hill. A Flight Data Recorder for
Enabling Full-system Multiprocessor Deterministic Replay.
In Proceedings of the 30th International Symposium on
Computer Architecture (ISCA), Jun 2003.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




