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Abstract

We present RSIO, a processor scheduling framework for im-
proving the response time of latency-sensitive applications
by monitoring accesses to I/O channels and inferring when
user interactions occur. RSIO automatically identifies pro-
cesses involved in a user interaction and boosts their prior-
ities at the time the interaction occurs to improve system
response time. RSIO also detects processes indirectly in-
volved in processing an interaction, automatically account-
ing for dependencies and boosting their priorities accord-
ingly. RSIO works with existing schedulers and requires
no application modifications to identify periods of latency-
sensitive application activity. We have implemented RSIO
in Linux and measured its effectiveness on microbenchmarks
and real applications. Our results show that RSIO is easy
to use and can provide substantial improvements in system
performance for latency-sensitive applications.

Categories and Subject Descriptors: D.4.1 [Operating
Systems]: Process Management-Scheduling

General Terms: Performance, Design, Experimentation

Keywords: Scheduling, Interactive applications, Depen-
dencies

1. INTRODUCTION
Despite rapid advances in hardware technology, response

time problems still plague modern computer systems. The
rise of virtualization and cloud computing compound this
problem by expanding the number of applications with dif-
ferent resource requirements and quality-of-service demands
being run on the same system. A key challenge is how to
ensure that the system provides acceptable interactive re-
sponsiveness to users while multiplexing resources among a
diverse collection of applications. Since processor schedul-
ing determines when a process can run, system designers
have long recognized that good scheduling mechanisms are
essential to provide quick response time for latency-sensitive
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activities that handle user interactions. However, identifying
processes involved in latency-sensitive activities is increas-
ingly difficult for several reasons.

First, modern latency-sensitive applications often have
very different execution behavior. Traditional desktop of-
fice productivity tools have different resource demands than
multimedia applications. Multimedia applications have dif-
ferent resource demands from e-commerce applications. All
of these applications have latency-sensitive requirements. As
a result, commonly used approaches in commodity operat-
ing systems which detect interactive latency-sensitive pro-
cesses based on processor resource usage and sleeping be-
havior are generally ineffective across this broad range of
applications [9, 3, 16].

Second, latency-sensitive applications often involve human-
computer interactions that occur in many different ways. An
interactive latency-sensitive process may interact with users
directly through local human-computer interaction (HCI)
devices such as mice, keyboards, and audio/video devices.
It may interact with users indirectly via middleware such as
X Windows. It may also interact with users remotely via the
network. Existing approaches in commodity operating sys-
tems only detect interactions through the window system by
tracking input focus [12, 3]. As a result, they are ineffective
at identifying latency-sensitive applications across the broad
range of interaction types common on modern computers.

Third, human-computer interactions on modern comput-
ers are often handled not just by one process, but by a collec-
tion of processes. For example, processing a typed character
in Emacs on a Linux system requires not just the Emacs ap-
plication, but the window manager and X server as well.
To deliver fast response time, it is crucial for a system to
identify dynamic dependencies among processes that arise
in handling a latency-sensitive request and account for those
relationships in scheduling processes. However, commodity
operating systems provide little if any support for identify-
ing such dependencies, much less mechanisms for using that
information for scheduling latency-sensitive processes.

Finally, the notion of a “latency-sensitive” process is actu-
ally misleading because a process may switch between exe-
cuting latency-sensitive activities and non-latency-sensitive
activities dynamically during its life cycle. For example,
MATLAB users first create programs interactively during
which they expect good system responsiveness, and then
execute those programs to process large amounts of numer-
ical data during which they typically expect to wait a while
for the programs to complete. The first phase is latency-
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sensitive; the second phase is not. Given this dynamic be-
havior, users cannot be expected to specify whether a pro-
cess or an application is latency-sensitive. Furthermore, any
mechanism that depends on the average behavior of such a
process, such as using the average sleep versus run ratio [9]
of a process, will be ineffective and miss transitions between
non-latency-sensitive and latency-sensitive activity.

To address these problems, we introduce RSIO (Response
time Sensitive I/O), a new system for automatically iden-
tifying what activities are latency-sensitive and when they
occur, enabling any processor scheduler to deliver better sys-
tem response time. RSIO is based on the observation that
latency-sensitive activities typically need to respond quickly
to I/O involving user interactions, such as user input or cer-
tain kinds of output. Unlike traditional approaches that
use process activity to guide scheduling, RSIO takes a radi-
cally different approach by using user I/O activity to guide
processor scheduling of processes with latency-sensitive re-
quirements. A simple RSIO configuration script can specify
that operations on I/O channels involving user interactions
be considered as latency-sensitive. RSIO then automatically
and dynamically identifies the processes that perform those
operations on those I/O channels as latency-sensitive when
those operations occur. Unlike other approaches, RSIO does
not specify processes themselves as latency-sensitive, rec-
ognizing that processes may execute latency-sensitive and
non-latency-sensitive activities at different times.

RSIO operates by directly monitoring accesses to I/O
channels that reflect interactions between users and applica-
tions. RSIO can monitor any I/O channel, including those
for direct HCI devices such as keyboard and mice, via mid-
dleware such as the window system, and remote I/O chan-
nels such as the network sockets. RSIO can also work with
I/O channels that are used by both latency-sensitive and
non-latency-sensitive activities by filtering out non-latency-
sensitive interactions. When RSIO detects an operation on
an I/O channel that is latency-sensitive, it identifies the pro-
cess or group of processes performing that operation. RSIO
then prioritizes those processes ahead of other processes that
are not performing latency-sensitive activities. If the pro-
cesses performing those operations depend on other pro-
cesses, RSIO correctly accounts for those dependencies to
ensure that all processes involved in processing a latency-
sensitive operation are prioritized at the right time. RSIO
prioritizes processes in a manner dependent on and compat-
ible with existing schedulers in commodity operating sys-
tems. For example, when used with a priority scheduler,
RSIO can simply boost the priority value of a process to
improve its response time.

We have implemented RSIO in Linux and measured its
performance on various benchmarks and real-world applica-
tions. We show that RSIO is easy to use with unmodified ap-
plications and describe the simple ways in which a complete
desktop environment can be configured to take advantage of
RSIO’s framework for improving interactive performance.
We measure RSIO performance overhead and show that it
is modest. We also compare the performance of RSIO versus
Linux 2.6 schedulers and demonstrate that RSIO can pro-
vide substantial improvements in system response time for a
wide range of applications with latency-sensitive activities.

2. RELATED WORK
Many approaches to processor scheduling have been con-

sidered for improving the performance of applications with
latency-sensitive activities. Schedulers may use processes or
threads as the schedulable entity. For simplicity and without
loss of generality, we loosely refer to the schedulable entity
as a process in this paper.

The most common approach used in commodity operating
systems is to schedule interactive applications based on their
processor usage and sleeping behavior. For example, Win-
dows [13] and FreeBSD [6] use a multi-level feedback queue
scheduler in which processes that block waiting for I/O are
given higher priorities and CPU-bound processes that use
up their time quanta are given lower priorities. Similarly,
the Linux O(1) scheduler [9] attempts to identify interactive
processes as those that sleep longer and run less and gives
them higher priority. Several studies [3, 16] have indicated
that this approach does not work well. The fundamental
problem is that processor usage behavior alone is often a
poor indicator of interactivity given the resource intensive
nature of many modern interactive applications.

Windows [13] provides some additional intelligence for
processes waiting on I/O by adjusting how much its priority
is raised depending on the device for which it was waiting.
For example, a process waiting on keyboard I/O would get a
larger boost than one waiting for disk I/O. RSIO differs from
this form of using I/O information in several ways. First,
RSIO does not tie its I/O mechanism to processor usage
and sleeping behavior, avoiding the limitations of that ap-
proach. Second, RSIO is not limited to accounting for I/O
usage only when processes block waiting on I/O. It accounts
for any use of I/O, whether or not a process blocks, such as
writing to an audio device, for example. Third, RSIO prop-
erly identifies processes that are indirectly involved in I/O
interactions, not just those that are waiting on a device.

Another approach is to schedule using window system in-
put focus. For example, schedulers used in Solaris [4] and
Windows [13] raise the priority of processes associated with
a window that has input focus. Input focus has also been
used for scheduling other system resources [16]. Using input
focus can work well, but may also unintentionally raise the
priority of non-interactive applications, for example, if the
user leaves the mouse focus on a window running a compute-
intensive batch application. More importantly, it does not
work for applications that do not use the local GUI interface
to interact with users, including console applications and ap-
plications that interact with remote users over a network. A
key problem with using input focus is accurately tracking
not just the process that receives input from the window
system, but other processes involved in an interaction. This
is not addressed in previous work [4, 3].

HuC [3] schedules interactive and multimedia applications
based on display output production. Processes are scheduled
to equalize display output rates across windows, where the
rate is based on the percentage of the window pixels that
change per second. For video applications, this results in all
videos being displayed at the same frame rate regardless of
window size. A fundamental problem with this approach is
that it results in undesirable behavior for mixes of interac-
tive and non-interactive applications if the latter generate
lots of display output. For example, a non-interactive ker-
nel compilation generating lots of text will be mistakenly
prioritized over other interactive applications.

Various approaches have focused on improving scheduling
for latency-sensitive applications by adding additional pa-
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rameters that can be specified. For example, Mac OS X [15]
allows real-time processes to specify their periodic CPU re-
source requirements and timing constraints, and SMART [10]
provides a bias on fair scheduling that uses the ability of
batch processes to tolerate more latency to allow other latency-
sensitive processes to run before them while preserving fair
allocations. These approaches assume some way of know-
ing which activities are latency-sensitive and what processes
are involved in those activities. RSIO is complementary to
this work and focuses on automatically identifying latency-
sensitive activities so that their scheduling parameters can
be set correctly and dynamically. For example, RSIO can
be used as an automatic mechanism for determining how to
dynamically adjust the bias of a process in SMART.

Several approaches to real-time scheduling have recog-
nized that applications may have different latency require-
ments during different periods of application execution. For
example, SMART [10] allows application developers to spec-
ify time constraints on sections of application code, which
the scheduler then uses in ordering processes for execution.
An application can have sections that are time-critical and
sections that are not, enabling the scheduler to dynamically
adjust the scheduling criteria for a process instead of treat-
ing the process with one set of static scheduling parameters.
While this approach allows precise specification of time con-
straints on portions of code, it requires application modifica-
tions to do this. While RSIO does not focus on scheduling
real-time applications, it also enables parts of an applica-
tion execution to be treated as latency-sensitive. However,
it does not require application modifications because it de-
rives this behavior from I/O interactions.

While most related work has focused on the problem of
scheduling once processes are assigned scheduling parame-
ters, another key issue is how those parameters should be
propagated correctly in the presence of process dependen-
cies. Priority inheritance [5] is used to reduce priority in-
version when a high priority process is blocked on a mutex
resource by propagating the high priority value to other pro-
cesses that need to run to unblock the process. SWAP [17]
generalizes this work for dependencies due to other operat-
ing system resources and works for dynamic priorities.

While RSIO and SWAP both recognize that processes
are dependent on each other, they differ in four fundamen-
tal ways. First, RSIO solves the problem of determining
which processes are interactive and when they are interac-
tive. SWAP assumes priorities are already known and has
no idea how to identify interactive activities. Second, RSIO
provides mechanisms to actively identify all processes in-
volved in a user interaction to improve interactive perfor-
mance. SWAP has no idea how to identify such processes,
and only passively identifies a process that should run when
a high priority process is blocked. Third, RSIO provides
a new and novel scheduling policy for improving interactive
performance based on access patterns to I/O devices. SWAP
provides no scheduling policy and simply addresses the pri-
ority inversion problem with existing schedulers. Finally,
RSIO introduces a new confidence-based mechanism based
on time proximity. SWAP has a confidence-based mech-
anism, but it is simply based on whether a blocked high
priority process is woken up by a given process.

3. RSIO USAGE MODEL
RSIO is based on the observation that activities are of-

----------------------------------
# tty devices
rsio_config READ /dev/tty0
rsio_config READ /dev/tty1
rsio_config READ /dev/ttyN
# mouse device
rsio_config READ /dev/input/mice
# audio device
rsio_config WRITE /dev/dsp
# network channels
rsio_config READ \

CONNECT webproxy.columbia.edu:8080
rsio_config READ \

ACCEPT mymachine.columbia.edu:22
-----------------------------------

Figure 1: Default RSIO Configuration

ten latency-sensitive because they are processing I/O due to
human-computer interactions, and those activities are more
tied to the nature of the I/O than any particular process
being executed. Furthermore, a process may engage in both
latency-sensitive and non-latency-sensitive activities. In this
context, specifying the priority or other scheduling param-
eters of a process may not be useful since how a process
should be scheduled will change dynamically based on its
I/O processing. Instead, RSIO provides a usage model based
on allowing users and administrators to configure I/O chan-
nels. RSIO then automatically and dynamically derives the
scheduling characteristics appropriate for processes based on
their access and usage of those I/O channels. Section 3.1
describes basic RSIO configuration. Section 3.2 discusses
optional parameters for filtering.

3.1 RSIO Channel Configuration
RSIO provides a command, rsio_config, to configure

I/O channels as being latency-sensitive. It takes two types
of parameters: channel and operation. Channel specifies the
I/O channel being configured. There are two types of chan-
nels, files and sockets. A file channel is a persistent entity in
the file system that is identified by the filename. For exam-
ple, the I/O channel for a mouse device is /dev/input/mice.
A socket is a dynamically created entity that is identified
both by the channel name and its creation operation. For
example, if the channel refers to a network socket, the chan-
nel name is the destination hostname and port number and
its creation operation can be connect or accept. It is easy
to distinguish between file and socket channel types since
only the latter includes a creation operation.

Operation specifies the I/O channel operation that a pro-
cess performs to cause it to be flagged as latency-sensitive.
The operation can be read, write, or both read and write.
After performing a specified I/O channel operation, a pro-
cess remains marked as latency-sensitive until RSIO deter-
mines that the relevant user interaction has completed.

To illustrate how easy it is to use RSIO, Figure 1 shows
how a small number of RSIO configuration commands can
be used to set up a default configuration of a system. For a
Linux system, the startup script would go in /etc/rc.local.
It sets up a system to use RSIO once the system is started us-
ing these commands. While users may customize their own
RSIO configurations, simple default settings such as those
shown in Figure 1 work for the vast majority of programs
so that users do not need to manage such configuration files
unless they desire more customized control.

The startup script configures four classes of I/O channels,
TTY devices, the mouse device, the audio device, and net-
work channels. TTY devices are terminal devices, including
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serial devices such as the original character-based terminals,
and virtual terminals, which are used by various applica-
tions such as the X window system for managing user input
and display output. A system has a default set of TTY de-
vices, which typically and in this case are represented by
/dev/tty0 to /dev/ttyN. A successful read from a terminal
device usually corresponds to user keyboard input. RSIO
configures any read from a default TTY device as a latency-
sensitive activity to improve system responsiveness to user
keyboard input. Only terminal device reads are flagged as
latency-sensitive, not writes. A write to a terminal device
usually corresponds to application output to the display, but
not all display output is the result of interactive activities.
For example, a kernel compile generates lots of display out-
put, but is not latency-sensitive.

The mouse device /dev/input/mice handles all mouse
events. A successful read from the mouse device corresponds
to a process receiving mouse events. RSIO configures any
read from a mouse device as a latency-sensitive activity to
improve responsiveness to user mouse input. A system may
have other user input devices such as a joystick. These de-
vices can be treated in a similar way as the mouse device.

The audio device /dev/dsp is used for audio output. A
successful write to the audio device results in audio output.
Audio is latency-sensitive and delays in processing audio can
result in audible clicks and degradation of audio quality.
RSIO configures any write to the audio device as a latency-
sensitive activity to ensure good audio quality. While a write
operation occurs after a particular audio sample has been
processed, audio processing is typically periodic and repeti-
tive in nature, so all subsequent processing of audio samples
will be handled in a latency-sensitive manner.

RSIO configures audio output to be latency-sensitive, but
does not configure any display output to be latency-sensitive.
Any approach that flags processes that generate display out-
put as latency-sensitive can be problematic because many
common applications that are not latency-sensitive can gen-
erate lots of display output, a kernel compile being just one
such example. On the other hand, many multimedia appli-
cations also generate lots of display output and should be
considered latency-sensitive. Monitoring keyboard or mouse
input does not help since multimedia applications can gen-
erate long periods of display output without any user input.
Our insight is that latency-sensitive applications that dis-
play output but do not require much user input usually also
generate audio output. For example, movie players gener-
ate both video and sound, but non-latency-sensitive appli-
cations such as kernel compilation do not generate sound.
As a result, this RSIO configuration automatically delin-
eates between these two classes of applications by moni-
toring audio output instead of display output. While this
approach works for most common cases, there are some sce-
narios in which RSIO may not correctly identify an activity
as latency-sensitive. For example, playback of a silent movie
will not be treated as latency-sensitive due to the absence of
audio output. Conversely, a music player generating audio
output will be treated as latency-sensitive even if no one is
listening.

Network channels are used for handling remote interac-
tions. This example setup shows two for illustrative pur-
poses. The first network channel is an outgoing connection
to a web proxy, webproxy.columbia.edu, at port number
8080. A read on this channel corresponds to the local ma-

chine receiving data from a web server. RSIO configures any
read on the network channel as a latency-sensitive activity
to improve system responsiveness when processing a web
page download so that web pages are displayed faster. The
second network channel is an incoming connection to the lo-
cal machine’s port 22 where the SSH daemon is listening for
connections. A read on this channel corresponds to the lo-
cal machine receiving data from a remote SSH client, which
typically corresponds to user input. RSIO configures any
read on the network channel as latency-sensitive to improve
system responsiveness when the user is remotely connected.

The end result of this startup script is a set of RSIO I/O
channels that can be used to capture many latency-sensitive
activities in a standard desktop computer system. The con-
figuration of TTY devices and the mouse device effectively
tracks input focus and treats processes receiving user input
as being latency-sensitive only when such input is occurring.
The configuration of the audio device enables audio and mul-
timedia applications to be treated as latency-sensitive. The
configuration of the network channels enables web and re-
mote access applications to be treated as latency-sensitive
during periods of user interaction. The user is not required
to identify any application processes, or set and tune any ad-
ditional parameters such as shares or priorities. This simple
yet powerful usage model provides flexibility and function-
ality not available with other process-centric approaches.

These examples illustrate how RSIO enables users to sim-
ply configure a small number of I/O channels to completely
configure a system to use RSIO. Note that RSIO is intended
to be used to configure I/O channels that are directly used
by users. This is easy to do because the number of such I/O
channels is limited, they are mostly created when the sys-
tem is booted, and the latency-sensitivity of these channels
is easy to determine. There are many other I/O channels
that are indirectly used by users, such as IPC communica-
tion channels. Users are not expected to manipulate those
channels. Instead, RSIO automatically handles those indi-
rect channels in a manner described in Section 7.

3.2 RSIO Access Filtering
Sometimes, non-latency-sensitive activities may also share

access to the same I/O channels as latency-sensitive ones.
For example, while port 22 is often used for latency-sensitive
SSH connections, users can also use SCP commands to copy
large files via this port. If port 22 is configured as a RSIO
channel, then RSIO will also treat SCP commands as latency-
sensitive even though they are not.

To address this issue, rsio_config can be used with ad-
ditional optional parameters for each RSIO channel to filter
out those non-latency-sensitive activities. Similar to spam
filters that identify spam email based on various distinct
characteristics, we observe that non-latency sensitive activi-
ties often have different I/O behavior from latency-sensitive
activities. To illustrate how this works, we describe two
types of filters that are supported in our RSIO prototype:
inactive time and user identity.

The inactive time filter is designed based on the observa-
tion that users often need to pause to think between inter-
actions. The filter allows users to specify the inactive time
I and duration D for each RSIO channel. For example, if I

and D are 1 second and 30 seconds, respectively, an activity
must pause for at least one second every 30 seconds to be
considered as latency-sensitive. By configuring a network
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State Fields / Description

rchannel access type, uid,
handler list

handler id, process, access type,
access time, expiration time
confidence, cohandler list

max_conf maximum confidence value

co_conf cohandler confidence value

sys_expire system expiration time

co_delta cohandler time window

reader IPC reader process

writer IPC writer process

Table 1: RSIO System State
RSIO channel with this filter, SCP commands to copy large
files can easily be filtered out since they will not have such
inactive times while interactive SSH sessions will have such
inactive times and be treated as latency-sensitive.

The user identity filter simply filters based on user ID.
By default, a RSIO channel is latency-sensitive for all users.
If a user ID or a group ID is specified for a RSIO channel,
only accesses from this user ID or group ID are considered
as latency-sensitive. The user identity filter provides a con-
venient mechanism for system administrators to implement
differentiated service for different group of users.

Many other filters can be implemented as well. For exam-
ple, filtering can be done based on source or destination IP
addresses for networking based RSIO channels, or based on
a white or black list of applications that should or should
not be considered as latency-sensitive.

RSIO filtering provides a powerful and general mechanism
that can be used for any I/O channel shared by latency-
sensitive and non-latency-sensitive activities. At the same
time, our experience and the results presented in Section 9
show that for many users, a basic RSIO configuration with-
out filtering can effectively detect most latency-sensitive ac-
tivities. Furthermore, in cases such as the shared display
output used by many activities, it can be more effective to
implicitly differentiate between latency-sensitive and non-
latency-sensitive activities by simply identifying another I/O
channel used by latency-sensitive activities that is not used
by non-latency-sensitive activities, such as the audio device.

4. RSIO I/O CHANNEL INSTANTIATION
Table 1 summarizes the system state RSIO maintains to

identify RSIO I/O channels and processes involved in user
interactions using those channels. rsio_config causes the
instantiation of a RSIO I/O channel, which is represented
using an rchannel. As shown in Table 1, an rchannel con-
sists of three components: an access type, a user identifier,
and a list of handlers, described in more detail below. In
a Unix-style system, this additional state is associated with
the in-memory inode structure, which is used to represent
I/O channels. The state is created and deleted as part of
inode creation and deletion. At creation, the access type
is blank, the user identifier is zero, and the list of handlers
is empty. RSIO state initialized in this way has no effect
on the behavior of the system. The RSIO state only af-
fects system behavior after the RSIO state is configured by
a configuration command.

The configuration of RSIO state is somewhat different for
the two types of I/O channels, files and sockets. For file I/O
channels, such as TTY devices, the corresponding inode

is created when the system boots and therefore exists by
the time that a rsio_config command is executed. When

the configuration command executes, RSIO simply finds the
already created inode and configures its associated RSIO
state. The access type is set to read, write, or read-write
according to whether the read or write operations are used
to activate this channel, and the user identifier is set based
on the user field of the configuration command. This is
implemented using the ioctl system call.

For socket I/O channels, a corresponding inode is created
when the socket is actually created and used, so it usually
does not exist at the time the rsio_config command is ex-
ecuted. To deal with this dynamic state, RSIO defers the
execution of RSIO configuration commands on sockets and
keeps a list of such commands. It then monitors socket cre-
ation system calls such as connect and accept and checks if
any such creation matches with a deferred RSIO command.
For example, if a RSIO command for accepting connections
to the SSH local port 22 was deferred, RSIO will monitor
accept system calls and check if any such calls are for port
22. If such a system call is found, RSIO then identifies the
corresponding inode created by the system call and updates
its RSIO state in the same manner as discussed earlier for
file I/O channels. Deferred RSIO commands remain in the
deferred list since matching sockets may be created at any
time and each such creation requires RSIO to update the
respective inode state.

5. RSIO I/O CHANNEL ACTIVATION
Given a set of RSIO-configured I/O channels, RSIO needs

to identify user interactions on those channels and the pro-
cesses involved in those interactions. For most types of I/O,
an application cannot communicate with users directly, but
instead does so through the operating system via system
calls. RSIO therefore monitors relevant system calls that
access RSIO configured I/O channels to detect such human-
computer interactions.

RSIO monitors read and write operations that occur through
system calls to detect the start of a human-computer inter-
action. Read operations include not only read system calls,
but also system calls such as readv and recvmsg. Similarly,
write operations include write, writev and sendmsg. RSIO
instruments these system calls. When a system call is per-
formed, RSIO uses the system call arguments, specifically
the file descriptor, to obtain the corresponding inode and
check its RSIO state. If both the read and write flags are
not set, then no further action is taken. If the access type is
read and a read operation is performed, or the access type
is write and a write operation is performed, RSIO considers
this system call as the start of a user interaction on a RSIO
I/O channel. The calling process is referred to as a primary

handler for this interaction and RSIO activates the process
so it is considered as being latency-sensitive. Section 8 de-
scribes how latency-sensitive processes are scheduled. RSIO
performs its monitoring after the actual system call has suc-
cessfully read or written I/O since there is no need to per-
form any action if the operation was not successful.

RSIO currently only handles I/O through read and write
operations. It does not support user interactions through
memory mapped I/O channels. In our experience, this is
sufficient for most I/O channels of interest. For example,
while memory mapped file systems are not uncommon, those
forms of I/O are not typically user interactions. Perhaps
the most common instance of memory mapped I/O that
does involve user interactions is through the display device.
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However, as discussed in Section 3, RSIO does not typically
treat that I/O channel as latency-sensitive since it is also
commonly used by non-latency-sensitive activities.

RSIO introduces a handler to maintain state associated
with a process that is a primary handler. As mentioned in
Section 4, RSIO maintains a handler list for each RSIO I/O
channel. Whenever an interaction happens on a RSIO chan-
nel, RSIO checks the handler list of the channel to see if the
calling process is already in the handler list. If the handler
does not exist, a new handler object is created and inserted
into the list. As shown in Table 1, a handler consists of
seven components: an id, a reference to the associated pro-
cess, an access type, an access time, an expiration time, a
confidence value, and a cohandler list. For a primary han-
dler, the id is the inode identifier of the corresponding I/O
channel, the access type is the access type of the I/O chan-
nel, and the access time is the last time the process accessed
the I/O channel. The access type is not strictly necessary,
but is stored as part of the handler to avoid having to go
back to the corresponding rchannel to look it up. A process
is considered to have accessed a RSIO I/O channel if it per-
formed a read or write operation and the channel’s access
type matches the operation. The cohandler list is initially
empty. The expiration time, confidence value, and cohan-
dler list are described in further detail below. Note that a
process may access multiple RSIO I/O channels and hence
may have multiple handlers associated with it. Handlers for
a process will be deleted and removed from all handler lists
when the process exits.

After a primary handler is activated, RSIO needs to de-
termine when it should be deactivated and no longer consid-
ered latency-sensitive. An interaction usually finishes when
an application outputs the resulting response to the user.
RSIO could detect such output by monitoring I/O channels.
However, this requires users to specify the I/O channels to
be considered for user output, as output to I/O channels
such as disk should usually not be considered as the end of
a user interaction. Even if the I/O channels to monitor for
user output are specified, it is difficult to know which out-
put is the last one. An application may generate a sequence
of outputs in response to an interaction, and it would be
desirable to maintain the processes involved in that interac-
tion until the output to the user is complete. The additional
complexity involved in monitoring output may not provide
much benefit given the uncertainty in determining when the
output is complete. This problem does not occur for de-
termining the start of a user interaction since it is easy to
determine and desirable to use the first I/O for that purpose.

RSIO approaches this handler deactivation problem from
a different angle. We observe that an interaction between
an application and a user typically continues for some pe-
riod of time until one of two things happens. First, the user
could switch from interacting with one application to an-
other. Second, the user could simply stop interacting with
the computer. RSIO uses a confidence model to address the
first case, and a timeout model to address the second case.

RSIO detects when an interaction ends due to a user
switching interaction to another process using a confidence
model. As shown in Table 1, each handler includes a field
called confidence, which is used to indicate how confident
RSIO is that this handler is still involved in a user interac-
tion. If a new handler is created due to an interaction on a
RSIO channel, its confidence value is initialized to one. If an

interaction occurs and the handler already exists due to a
previous interaction, its confidence value is incremented by
one. For all other handlers in the handler list of the RSIO
I/O channel, their confidence values are each decremented
by one since they are not involved in the current interac-
tion. Confidence values start at zero and can be incremented
up to max conf, the maximum allowable confidence value.
max conf is configurable and is five by default. If the confi-
dence of a handler is decremented to zero, the handler will
be deactivated and no longer considered latency-sensitive.
Since a word is typically assumed to be five to six charac-
ters on average [1], this default value of max conf deactivates
a process by the time a user has typed one word worth of
user interactions into another process. A handler is deleted
if its confidence is zero and its cohandler list is empty. Co-
handlers will be discussed further in Section 6.

For example, if a user switches from interacting with pro-
cess A to process B, process B will become latency-sensitive
immediately. On each further interaction with process B,
process A’s confidence value will drop by one. And after a
number of interactions no more than the maximum confi-
dence value, process A will be deactivated because its con-
fidence has dropped to zero. This mechanism enables RSIO
to detect the end of an interaction due to a user switching
to interact with another process.

RSIO determines when a user has stopped interacting
with the computer system by using a simple timeout model.
There is no easy way to determine precisely when a user
stops interacting with the computer. RSIO associates a
timeout with each handler for this purpose, which is its
expiration time, as shown in Table 1. When a handler is
activated, RSIO assigns it an expiration time. A handler
will be deactivated if that process does not access a RSIO
I/O channel before its expiration time. RSIO assigns the ex-
piration time by using the handler’s access time and adding
to it a system expiration time, sys expire. If a handler is
activated at time t, it will expire at time t + sys expire.
sys expire is configurable and is 2 seconds by default. This
default was selected based on previous research indicating a
2 second response time limit for simple commands [14, 11].

6. DEPENDENCIES AND COHANDLERS
While the start of an interaction through a RSIO I/O

channel is caused by one calling process and therefore one
primary handler, multiple processes may be involved in the
processing required for such an interaction. If only the pri-
mary handler is treated as latency-sensitive, it may block
waiting for another process that is involved indirectly in the
user interaction, resulting in a form of priority inversion.
Even if the primary handler does not block, other processes
involved in the user interaction may be in the critical path.
If they are not treated as being latency-sensitive, they can
be delayed in being scheduled, resulting in degraded system
responsiveness. Unfortunately, while it is easy to determine
the primary handler for a user interaction, there is no general
way to precisely determine what other processes the primary
handler may depend upon in processing the interaction.

For example, consider a user typing into a text editor such
as Emacs on a Linux system running X Windows. Key-
board input occurs through a TTY device, which is read by
the X server. The X server then communicates with Emacs
to pass along the keyboard input. Since the X server pro-
cess reads the I/O channel, it is the primary handler of the
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interaction. However, Emacs is the application actually do-
ing the semantically interesting processing of the keyboard
input. If only the primary handler is treated as latency-
sensitive, system response time may suffer because Emacs
is also indirectly processing the user input and is therefore
latency-sensitive. In this case, the X server will not block
on Emacs, but Emacs is in the critical path for generating a
response. Furthermore, the operating system has no direct
knowledge that Emacs is involved in the user interaction.
In this particular case, the X server may be able to obtain
this information, but this is application-specific and does not
generalize to other non-X interactions. For example, if the
Emacs process then depends on another process to handle
the user interaction, the X server will not be able to help
with determining those dependencies.

RSIO automatically detects what processes a primary han-
dler depends upon by using a simple heuristic that works
well in practice. If a primary handler depends on another
process for handling a user interaction, it is very likely for
those processes to communicate within a short period of time
of when the user I/O occurs. We refer to the user I/O as
an activation event, since it activates a process as a primary
handler. By monitoring the time proximity of activation
events and interprocess communication events, RSIO can
detect the processes indirectly involved in handling a user
I/O interaction without needing to know any application-
specific details.

RSIO refers to a process that a primary handler depends
upon as a cohandler. RSIO reuses the handler object dis-
cussed in Section 5 in a different way to maintain state as-
sociated with a cohandler. RSIO considers a process A as a
possible cohandler for a process B if process A communicates
with process B after a handler has been created for process
B, and using the same access type as process B’s handler.
Recall that a process will have a handler object if it has
been previously activated as a primary handler. As shown
in Table 1, RSIO maintains a cohandler list for each handler.
Whenever a process A communicates with another process
B that has an associated handler with a corresponding ac-
cess type, RSIO checks the cohandler list of the handler to
see if the process A is already in the cohandler list. If the co-
handler does not exist, a new handler object is created and
inserted into the list. For simplicity, we first assume that
all communications between processes match the respective
access type; Section 7 discusses how to determine whether a
communication is the right access type.

The seven fields of the handler object are initialized in a
different way in the case of a cohandler versus a primary
handler. For a cohandler, the id is the process identifier of
the corresponding primary handler, the access type is the ac-
cess type of the primary handler, the access time is the last
time the cohandler process communicated with the primary
handler, the expiration time is set equal to the expiration
time of the primary handler, the confidence value is initial-
ized to zero, and the cohandler list is initially empty. Note
that a process may serve as a cohandler for multiple other
processes, and hence may have multiple cohandler handler
objects associated with it. A process will be removed from
all cohandler lists when it exits. Since a process generally
does not communicate with many other processes, the co-
handler lists are typically short in practice.

Processes in a cohandler list are just potential cohandlers.
A RSIO confidence model decides if a potential cohandler is

an actual cohandler. When a handler is activated by access-
ing a RSIO I/O channel and its cohandler list is not empty,
RSIO instantiates a callback to occur after a time period T

to adjust the confidence of the cohandlers. Suppose a han-
dler for process A has been activated at time t1. If process
B communicates with process A during the time period t1

- T to t1 + T, the callback increments the confidence value
of process B by one. For all other cohandlers, the callback
decrements the confidence by one. A cohandler B is acti-
vated and treated as an actual cohandler if its confidence
is larger than a confidence threshold co conf, listed in Ta-
ble 1. co conf is configurable and is two by default to set the
confidence threshold to be one more than what is used for
activating a primary handler. The range of confidence val-
ues is limited by max conf just as for the primary handlers.
The value of T is set by the parameter co delta in Table 1.
It is configurable and is 5 ms by default.

Figure 2 presents an example to illustrate the cohandler
confidence model for a process p. From time t1 to t11, pro-
cess p was activated for 5 times, which happened at time
t2, t4, t6, t8 and t11, respectively. Suppose process p has
two potential cohandlers p1 and p2 in its cohandler list with
initial confidence values of zero. For interaction a1 at time
t2, p1 has one interprocess communication with p at time t1
which is within T ms of t2, so RSIO increases p1’s confidence
by 1. The confidence of p2 remains as 0. For interaction a2,
process p1 has another interprocess communication with p

within the expected threshold while p2 has no such commu-
nications, so the confidence values of (p1, p2) are adjusted
to be (2, 0). For interaction a3, p2 has an interprocess
communication within the expected threshold while p1 does
not, so the confidence values of (p1, p2) are adjusted to
be (1, 1). p2 continues to communicate with p within the
expected threshold for activation events a4 and a5 while p1

does not, so at the end of a5, the confidence values of (p1,
p2) are adjusted to be (1, 3). At this point, p2 is treated as
an activated cohandler while p1 is not. The example shows
how RSIO automatically detects the cohandler transition
from p1 to p2 based on its confidence model.

time

RSIO Accesses

IPC

p1 p1 p2 p2 p2

T

a1 a2 a3 a4 a5

t1

t2

t5 t7 t9 t10

t4 t6 t8 t11

(1, 0) (2, 0)

t3

p1

(1, 1) (1, 2) (1, 3)

Figure 2: Cohandler Detection
A cohandler may communicate with other processes that

should also be considered latency-sensitive. Each cohandler
has an associated handler object and its own cohandler list.
RSIO can thereby recursively identify potential cohandlers
of cohandlers in the same way it identifies cohandlers of pri-
mary handlers.

When a primary handler or cohandler process forks a new
process, the process creation is treated by RSIO as a form
of communication between the child and parent processes.
As a result, RSIO identifies the child process has a potential
cohandler and is added as a new cohandler to the cohandler
list of the parent process. RSIO’s confidence model is again
used to activate or deactivate the child process as an actual
cohandler based on resulting interprocess communications
while the parent is processing a user interaction.
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7. INTERPROCESS COMMUNICATIONDE-

TECTION
To detect cohandlers, RSIO needs to monitor interprocess

communications and determine a notion of access type for
them. In a UNIX style system, processes can communicate
or synchronize with each other using various mechanisms,
including pipes, sockets, pseudo terminals, signals, futexes,
IPC semaphores, file locks, etc. RSIO monitors interprocess
communications that are commonly used for data communi-
cations to capture communications that are used for passing
data related to user interactions. For this purpose, RSIO
monitors three types of interprocess communication mecha-
nisms: pipes, sockets, and pseudo terminals, the latter being
widely used by X window applications. Other mechanisms
are ignored because they are mostly used for synchroniza-
tion, instead of communication.

For pipes, sockets and pseudo terminals, RSIO needs to
determine the processes involved in an interprocess commu-
nication using these mechanisms. It is easy to determine
one of the processes involved by monitoring the system calls
that use these mechanisms and determining the calling pro-
cess of the system call. However, operating systems typi-
cally do not provide a way to track the process involved in
the other end of such a communication at the time of the
system call. Since pipes, sockets, and pseudo terminals are
all represented as inodes in the kernel, RSIO associates two
additional fields with each inode to track processes at both
ends of an interprocess communications.

As listed in Table 1, these two fields are a reader field and
a writer field. Both fields are initially NULL when the in-

ode is created. Whenever a process successfully accesses an
inode using a read system call, the reader field is updated
to reference the calling process. Similarly, the writer field is
updated on a successful write system call. The latest reader
and writer is thus stored for each inode. The reader and
writer fields are reset to NULL when the respective process
closes the file descriptor corresponding to this inode.

When an interprocess communication of interest occurs,
RSIO identifies the calling process of the system call and uses
the reader and writer fields to determine the other process
involved. If one of the processes has an associated handler
because it is a primary handler or cohandler, RSIO checks
the access type of the handler to see if it matches the inter-
process communication. For example, if the calling process
performs a read system call to communicate with a pro-
cess that has an associated handler with a read access type,
RSIO considers this a match. If a match occurs, RSIO pro-
ceeds with the cohandler creation and update mechanism
discussed in Section 6.

8. RSIO SCHEDULING
RSIO is a general mechanism that dynamically detects

whether processes are latency-sensitive by identifying all ac-
tivated primary handlers and cohandlers. This information
can be used by any processor scheduler to improve the re-
sponsiveness of a system. A priority scheduler could use this
information to boost the priority of processes that have been
marked latency-sensitive. A fair-share scheduler could use
this information to increase the shares of processes that have
been marked latency-sensitive. A multi-level feedback queue
scheduler could use a separate queue for processes that are

marked latency-sensitive and schedule processes from this
queue ahead of other queues.

To illustrate further how RSIO can be used in commodity
operating systems for scheduling, we describe one implemen-
tation of how RSIO can be used with a priority scheduler to
improve system responsiveness, specifically the Linux O(1)
processor scheduler. This priority-based scheduler dynami-
cally adjusts the priorities of processes based on processor
usage and sleeping behavior to improve the performance of
interactive processes. A process’s dynamic priority is de-
cided by its nice value and a dynamically computed priority
bonus. The nice value is specified by the user and has a
range of [-20, 19]. A smaller nice value is translated into a
higher priority. The priority bonus has a range of [-5, 5].
A process’s priority bonus is decided by its sleep_avg, the
sleep versus run ratio of the process. Processes with larger
sleep_avg get more priority bonus and thus higher priority,
so they should get better response time. However, predict-
ing a process’s interactiveness based on its sleep_avg has
various limitations [3, 16].

Using RSIO, we change the way Linux computes a pro-
cess’s dynamic priority to take advantage of RSIO’s ability
to more accurately determine when processes are performing
latency-sensitive activities and need better response time.
We keep the same algorithm for computing a process’s dy-
namic priority based on its nice value and a priority bonus.
However, the priority bonus is determined by whether RSIO
has indicated that the given process is latency-sensitive. By
default, a process is assigned a priority bonus of 0. If a pro-
cess becomes an activated handler or cohandler for a RSIO
I/O channel, it is assigned a priority bonus of 10 until it is de-
activated. This maintains the same dynamic range of prior-
ity values as used by the default Linux scheduler, but adjusts
priority values within that range in a manner that more ac-
curately reflects when processes are latency-sensitive. This
change in behavior is very simple and requires changing only
a few lines of code in the Linux scheduler.

9. EXPERIMENTAL RESULTS
We have implemented a RSIO prototype in the Linux

2.6.19 kernel and modified the Linux scheduler to use RSIO
as described in Section 8. To demonstrate its effectiveness,
we ran several micro-benchmarks and real-world applica-
tions to compare compare the performance of RSIO versus
the vanilla Linux O(1) scheduler. Since our RSIO proto-
type and the O(1) scheduler adjust priorities over the same
dynamic range, this conservative comparison demonstrates
how much RSIO can improve system responsiveness while
maintaining the same limits on priority adjustments. Since
the O(1) scheduler has been replaced by the CFS sched-
uler [8] in more recent versions of Linux, we also compare the
performance of our RSIO prototype versus the CFS sched-
uler in the Linux 2.6.31.12 kernel.

We used application workloads that represent a wide-range
of different usage scenarios, including (1) running a mix
of interactive and non-interactive applications from a lo-
cal console, (2) using a technical computing tool similar to
MATLAB which has periods of interactive use and back-
ground number crunching calculations, (3) web browsing on
a loaded machine, (4) multimedia video playback on a loaded
machine, and (5) supporting multiple remote users engaged
in periods of interactivity and long-running computations.
We also measure the performance overhead of RSIO versus
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vanilla Linux. For RSIO, we set up the system with default
parameters and configured I/O channels using the configu-
ration script previously shown in Figure 1.

For most of our workloads, we measure response time to
quantify system performance. Users often care about when
the system is responding poorly as opposed to just average
response time. Users are typically unhappy with the respon-
siveness of a system if it has good average response time but
unexpectedly long delays in system responsiveness some of
the time. To capture this notion, we report our results in
terms of both the 90th percentile and worst case response
time performance.

Measurements were done using an HP xw9300 PC with
a 2.6 GHz AMD Opteron processor and 2 GB RAM. For
measurements involving a remote client, the client was a Dell
Precision 370 with a 2.8 GHz Intel Pentium 4 processor and 2
GB RAM. All machines ran Ubuntu 6.06 and were connected
via a dedicated 1 Gb Ethernet switch. All machines ran the
Linux 2.6.19 kernel except when the HP PC used the CFS
scheduler and required the 2.6.31.12 kernel.

9.1 Active Console Benchmark
The first scenario represents a local user using a window

system with multiple consoles open, one of which the user
is actively using by typing and executing simple commands.
Other windows are being used to run non-latency-sensitive
batch jobs. For the user to receive good response time, the
console window that the user is actively using, along with
its associated commands being executed, should be detected
as performing latency-sensitive activities. Other batch jobs
should be treated as non-latency-sensitive activities.

For this scenario, we used an active console benchmark
consisting of two GNOME terminal windows. GNOME ter-
minal is a pseudo terminal application that allows users of
the GNOME Linux desktop environment to execute com-
mands using a UNIX style shell environment. In one termi-
nal, a Linux kernel compilation is executed, which is a long
running batch job. In the other terminal, a user types at
the command prompt “time ls” to execute the command to
list the contents of a directory and time its execution. Once
the command completes, the user repeats the same typing
and command execution. The user repeated the command
fifty times, and we measured the elapsed time for executing
the command each time to quantify the response time of
the system. We also varied the load on the system due to
the Linux kernel compilation by allow the compilation to be
done in parallel with different numbers of processes.

Figure 3 compares the response time of RSIO versus O(1)
and CFS using the active console benchmark under different
system loads, from no load to running 64 concurrent kernel
compilation processes. When running without any back-
ground workload, RSIO, O(1), and CFS provide the same
response time of 10 ms for the interactive directory listing
command. As the load on the system increases, the response
time of O(1) and CFS increases dramatically. When 64 ker-
nel compilation processes were running, the worst response
time for O(1) and CFS was 2.5 s and 0.84 s, respectively.
This is a significant and noticeable delay for interactive ac-
tivities and makes typing and executing interactive com-
mands very unpleasant. The 90th percentile response time
for both cases was over 0.5 s. This is five times longer than
the 100 ms response time threshold [11] for having users feel
that the system is reacting instantaneously.

In contrast, RSIO correctly identifies the active console
since keyboard input through the TTY device is configured
as a RSIO I/O channel, and any processes involved in read-
ing that keyboard input are marked as latency-sensitive.
The worst case response time of RSIO is 28 ms even with
64 kernel compilation processes running. This is a bit worse
than the 10 ms response time in the low load case, but well
over an order of magnitude better than both O(1) and CFS.
The small performance degradation is mostly caused by I/O
contention since both the background load and the inter-
active commands exercise the file system. Furthermore, the
90th percentile response time of RSIO is almost independent
of background load. The worst case and 90th percentile re-
sponse times of RSIO are well below the threshold at which
users can detect any response time delays.

9.2 Octave Benchmark
The second scenario represents a remote user running a

MATLAB-like application that has phases of frequent user
interactions and phases of long running batch processing.
Other remote users are running other batch jobs. For the
user to receive good system response time, the frequent user
interaction phases of the application should be detected as
latency-sensitive when they occur. Other phases of the ap-
plication and other batch jobs should be treated as non-
latency-sensitive activities.

For this scenario, we used an octave benchmark with two
SSH sessions representing two different users connected to
a server over the network. One user is running a kernel
compilation in the same manner as discussed for the active
console benchmark, but over an SSH session instead of using
a local GNOME terminal. This is used to represent batch
processing activity. The other user is running Octave [2], a
MATLAB-like application that involves phases of interactive
use and long-running computations. The user runs Octave
and types two sets of commands in the following order:

tic; load A.dat; toc; (1)
for i=1:1000; X=A\A; end; (2)

The first set of commands represent a user interacting
with the application to set up a computation to run and
should be considered as latency-sensitive. It consists of tim-
ing commands and obtaining input data. The commands
“tic” and “toc” are used to report the elapsed time of the
command executed between these two commands. The com-
mand “load A.dat” loads data from a local file “A.dat” to
create a 200x200 two dimensional array. The second set
of commands represent the long running computation and
should not be considered as latency-sensitive. It consists of
an iterative loop that performs a set of long running compu-
tations on the two-dimensional array. Once the commands
complete, the user repeats the same typing and command
execution. The user repeated the commands ten times, and
we measured the elapsed time for executing the interactive
set of commands each time to quantify the response time.

Figure 4 compares the response time of Linux schedulers
versus RSIO using the Octave benchmark under different
loads with different numbers of kernel compilation processes.
The response time of O(1) is 133 ms when running without
any background load, but increases dramatically as the load
increases. When 64 kernel compilation processes were run-
ning, the worst response time for O(1) ballooned to 24.15
s, a completely unacceptable delay of almost half a minute
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Figure 3: Active Console Benchmark
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Figure 4: Octave Benchmark
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Figure 5: Web Browsing Benchmark

during the interactive phase of the benchmark. Even the
90th percentile response time is 16.47 s. The performance is
horrible because the Octave benchmark does not sleep much,
and thus the O(1) scheduler mistakenly always considers the
benchmark as a non-interactive process since it only uses
processor usage and sleep behavior to determine interactiv-
ity. The response time of CFS was similar to, but slightly
better than, that of O(1). When no background workload
was running, the worst response time was 112 ms. When
64 kernel compilation processes were running, the worst re-
sponse time increased to 9.13 s, which is still unacceptable.

In contrast, RSIO correctly identifies the SSH session run-
ning the Octave benchmark as latency-sensitive when it is
receiving user input since the network channel for SSH is
configured as a RSIO I/O channel. RSIO response time is
129 ms with no background load, and only 130 ms in the
worst case even with 64 kernel compilation processes run-
ning. RSIO performs 185 times better than O(1) and 70
times better than CFS. The worst case response time of
RSIO is essentially independent of background load across
the range of system load considered. Furthermore, the re-
sponse time of RSIO is not much more than the response
time threshold at which users can detect any response time
delays. RSIO achieves this response time performance even
though users are connected to the machine remotely, demon-
strating that RSIO can automatically detect user interac-
tions via SSH connections to identify latency-sensitive phases
of an application.

9.3 Web Browsing Benchmark
The third scenario represents a local user running a web

browser to download various web pages while other batch
jobs are running. For the local user to receive good system
response time, the web browser that the user is using should
be detected as performing latency-sensitive activities. Other
batch jobs should be treated by the system as non-latency-
sensitive activities.

For this scenario, we used a web browsing benchmark
consisting of the Mozilla Firefox web browser visiting a lo-
cally stored web page with two frames. One frame runs a
JavaScript program that causes the other frame to reload
“http://news.google.com” repeatedly for five minutes. This
web page provides current news and is frequently updated.
Each page reload is done five seconds after the previous
reload completes, providing the user some time to view the
contents of the web page before reloading a new version. The
JavaScript program reports the elapsed time from sending
the HTTP request until the web page is completely reloaded.
While the web browsing activity is occurring, another user
is remotely connected to the same machine and running a
kernel compilation in the same manner as discussed for the
Octave benchmark, representing batch processing activity.

Because a JavaScript program controls the web page reload-
ing, there is no actual user input when running this bench-
mark. However, users typically still expect good responsive-
ness for such web page viewing activities, as scripted web
page downloads are not uncommon in practice.

Figure 5 compares the response time of Linux schedulers
versus RSIO using the web browsing benchmark under dif-
ferent system loads. The response time of the O(1) scheduler
without background load is 0.96 s, but grows dramatically
as the load on the system increases. When 64 kernel compi-
lation processes were running, the worst case response time
for Linux was 12.85 s, a completely unacceptable delay dur-
ing the interactive phase of the benchmark. The 90th per-
centile response time was 1.91 s, twice as slow as running
the benchmark on an unloaded system. The performance
of CFS is much worse for this benchmark. The worst case
response time was 2.29 s when running without background
load. When 64 kernel compilation processes were running,
the worst case response time increased to 48.9 s.

In contrast, RSIO correctly identifies the web browser as
latency-sensitive when it is receiving web data from the In-
ternet since the network channel to the web proxy is config-
ured as a RSIO I/O channel. RSIO performed well under all
different system loads. The worst web page reloading time
for even a loaded system was only 0.84 s, slightly better
than Linux’s web response time in the low load case. The
slight improvement can be explained by the fact that even
without the background load, the system still runs many
other processes which can affect the performance of the web
browsing benchmark if they have similar priority as the web
browser, as would be the case for the vanilla Linux system.
Usability studies have shown that web pages should take less
than one second to download for the user to experience an
uninterrupted web browsing experience [11]. Overall, only
RSIO was able to consistently provide subsecond web page
download times that were fast enough for an uninterrupted
web browsing experience even when the system was loaded.

9.4 Media Player Benchmark
The fourth scenario represents a local user playing a movie

while other batch jobs are running. For the local user to
receive good playback quality, the media player application
should be detected as performing latency-sensitive activities.
Other batch jobs should be treated by the system as non-
latency-sensitive activities.

For this scenario, we used a media player benchmark con-
sisting of the MPlayer application playing a locally stored
5.36 MB MPEG-1 video clip with 834 352x240 frames. The
video was scaled to 800x600 during playback, and the movie
clip was played in a loop for five minutes. While the movie
playback is occurring, another user is remotely connected to
the same machine and running a kernel compilation in the

272



 0

 5

 10

 15

 20

 25

O
(1

)
C

F
S

R
S

IO

O
(1

)
C

F
S

R
S

IO

O
(1

)
C

F
S

R
S

IO

O
(1

)
C

F
S

R
S

IO

O
(1

)
C

F
S

R
S

IO

O
(1

)
C

F
S

R
S

IO

S
p
e
e
d
 (

fp
s)

System Load
0 4 8 16 32 64

90% 100%

Figure 6: Media Player Benchmark
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same manner as discussed for the Octave benchmark, rep-
resenting batch processing activity. Although media play-
ers often receive no user input while playing a movie, users
clearly expect good system responsiveness to deliver all video
frames and audio samples on time at the desired playback
rate. Slowing down the playback rate would be undesirable
and result in poor quality video and audio. For this bench-
mark, we used frame rate as the measure of performance.
We logged the frame rate reported by the application, and
used the worst case frame rate and the 90th percentile frame
rate to quantify performance.

Figure 6 compares the video performance of Linux sched-
ulers versus RSIO using the media player benchmark un-
der different loads with different numbers of kernel com-
pilation processes. Without any background load, Linux
schedulers and RSIO provide perfect video playback at 24
frames/second (fps). As the load on the system increases,
the frame rate using Linux schedulers gets lower. When 64
kernel compilation processes were running, the worst case
frame rate for O(1) was less than 7 fps, less than 30% of the
desired frame rate. The 90th percentile frame rate was also
poor at less than 10 fps. The CFS scheduler was doing fine
when less than 8 kernel compilation processes were running.
But as the number of background processes increased above
8, the performance of CFS decreases even more dramati-
cally. When 64 kernel compilation processes were running,
the worst case frame rate dropped to 0.6 fps.

In contrast, RSIO correctly identifies the media player
playing the movie clip as latency-sensitive because it is play-
ing both audio and video and output to the audio device is
configured as a RSIO I/O channel. RSIO performed well
under all different system loads and was able to maintain
the full 24 fps frame rate in all cases. Only worst case re-
sults are shown for RSIO since the 90th percentile results
are the same. These results would not be achievable by sim-
ply using input focus since it is not uncommon for a user
to watch a movie while input focus may be somewhere else.
Furthermore, these results show that by identifying latency-
sensitive activities, RSIO can also be used for applications
with quality-of-service requirements to improve performance
without requiring users to specify more complex scheduling
parameters such as reservations or time constraints.

9.5 Multi-User Benchmark
The fifth scenario represents a system supporting multi-

ple users, each of which is engaged in both latency-sensitive
and non-latency-sensitive activities. The latency-sensitive
activities correspond to users executing short and simple
commands. The non-latency-sensitive ones correspond to
users running batch jobs that require longer computations.
For example, consider a group of students sharing the same
server and using MATLAB to do their homeworks. Their

MATLAB usage consists of two phases: a command typing
phase and an execution phase. The first phase is interac-
tive while the second phase is not. For the users to receive
good system response time, the latency-sensitive activities
should be detected when they occur while periods of batch
processing should be treated as non-latency-sensitive.

Since it is difficult to get multiple users to do repeatable
activities that can be measured to capture this scenario, we
used a multi-user benchmark to emulate a set of students
on a set of client machines that are remotely connected to a
server and engaged in “typing then execute” behavior. The
benchmark runs remotely on the client and creates a SSH
connection to the server when started. Once started, it al-
ternates between a “typing” phase and a “execution” phase
in a loop for three hours. We emulate the “typing” phase
by writing a short running command and a long running
command to the SSH connection. After receiving the com-
mand, the shell process running on the server will execute
the command and then respond to the user. The bench-
mark automatically starts another round of measurements
after receiving the response for both commands. Since the
server operating system cannot distinguish between whether
an SSH connection is generated by a real user or an appli-
cation, we simply run multiple instances of the benchmark
on a separate client machine to emulate the multi-user sce-
nario. For example, we run five instances of the benchmark
to emulate five users. To measure system response time, we
report the elapsed time from sending the short command
to the server until receiving the response for the command
from the server. On an unloaded system, the short com-
mand takes only a few milliseconds to complete while the
long command takes two to four minutes to complete.

Figure 7 compares the response time of Linux schedulers
versus RSIO using the multi-user benchmark for different
numbers of emulated users. For comparison, we also report
the response time for Linux 2.6.19 when boosting the prior-
ity of all users using nice -10, which we denote as PRIO.
In an unloaded system, the short command takes 4.35 ms
to complete for all four approaches. As the number of users
increases, the response time of O(1) increases dramatically.
When 20 users were running, the worst response time was
over 5 s, more than three orders of magnitude worse than
when running on an unloaded system. The 90th percentile
response time was 1.9 s, still an unacceptable delay for in-
teractive activities. The performance is poor because the
O(1) scheduler cannot identify the latency-sensitive “typ-
ing” phase based just on its sleep_avg mechanism because
it is short relative to the “execution” phase, resulting in any
average-based measures being unable to identify such tran-
sitions between latency-sensitive and non-latency-sensitive
activities by the same process.

The response time is even worse for PRIO when all of
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the processes for all users were boosted to higher priority.
When 20 users were running, the worst response time was
over 10 s, twice as bad as the response time of O(1) when
users do not attempt to raise the priorities of any processes.
This is because higher priority processes in Linux receive
a large time quantum for execution, and processes at the
same priority are run in round-robin order. All of the high
priority processes have to wait their turn to run, and each
turn takes a longer period of time, resulting in longer delays
and worse response times.

CFS performs better than O(1) and PRIO. It acts like a
round-robin scheduler when all the processes are CPU bound
and run at the same priority. CFS performs better than O(1)
and PRIO because it used a much smaller time quantum
than O(1) and PRIO. However, its worst response time is
still poor, over 300 ms when 20 users were running.

In contrast, RSIO correctly identifies the SSH sessions as
latency-sensitive when and only when they are receiving in-
put since the network channel for SSH is configured as a
RSIO I/O channel. Although each SSH session emulates a
user with both latency-sensitive and non-latency-sensitive
activities, RSIO only boosts the priority of each process
while it is performing the latency-sensitive activity. As a
result, the response time of RSIO is below 4.4 ms across all
system loads.

9.6 Overhead
We also compared the performance of RSIO versus Linux

schedulers running LMbench [7], a popular tool for kernel
overhead measurements. The performance difference be-
tween RSIO and O(1) shows the overhead of RSIO since
both are implemented based on Linux 2.6.19. Figure 8 shows
results for various LMbench measurements which exercise
interprocess communication and system calls. The overhead
added by RSIO was less than 0.35 µs in all cases, represent-
ing less than 5% overhead. RSIO incurs modest overhead
for this benchmark, which translates to negligible overhead
for real applications in practice that do not focus just on ex-
ercising interprocess communication and system call usage.
Figure 8 also shows the overhead of CFS is close to that of
O(1), except for the PIPE latency measurement in which
the overhead is 36% smaller. The performance difference is
likely due to CFS using the 2.6.31.12 kernel version instead
of the 2.6.19 kernel version used for O(1) and RSIO.

While LMbench captures the overhead imposed by RSIO
for typical performance benchmarks, it is not designed as a
latency-sensitive application and does not involve user inter-
action during its execution. As a result, LMbench by design
does not access any RSIO I/O channels and does not mea-
sure the overhead of that aspect of RSIO. However, RSIO
I/O channels are by design accessed by applications that
involve user interactions. Such user interactions typically
operate at user time scales which are much slower than the
time scales measured by typical kernel performance bench-
marks, so the latter are not good indicators of RSIO I/O
channel performance. As shown in the five application sce-
narios, the performance overhead of RSIO versus Linux was
negligible as quantified by application performance on an
otherwise unloaded system.

10. CONCLUSIONS
RSIO introduces a new approach to processor scheduling

for latency-sensitive activities that handle user interactions.

RSIO monitors I/O channel usage instead of processor us-
age for detecting and prioritizing processes when they are
handling latency-sensitive activities. It automatically tracks
processes access I/O channels that handle user interactions,
and detects communications among processes to determine
processes involved in a user interaction. RSIO’s mecha-
nism works with both local and remote I/O channels, and is
compatible with existing processor schedulers. Our experi-
mental results show that RSIO can provide substantial im-
provements in system responsiveness for a wide-range of ap-
plications, including console applications, applications that
mix interactive and batch activities, common web brows-
ing and multimedia applications, remote applications, and
multi-user scenarios.
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