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Abstract

Containers are widely deployed to package, isolate, and
multiplex applications on shared computing infrastructure,
but rely on the operating system to enforce their security
guarantees. This poses a significant security risk as large
operating system codebases contain many vulnerabilities.
We have created BlackBox, a new container architecture
that provides fine-grain protection of application data
confidentiality and integrity without trusting the operating
system. BlackBox introduces a container security monitor, a
small trusted computing base that creates protected physical
address spaces (PPASes) for each container such that there is
no direct information flow from container to operating system
or other container PPASes. Indirect information flow can only
happen through the monitor, which only copies data between
container PPASes and the operating system as system call
arguments, encrypting data as needed to protect interprocess
communication through the operating system. Containerized
applications do not need to be modified, can still make use of
operating system services via system calls, yet their CPU and
memory state are isolated and protected from other containers
and the operating system. We have implemented BlackBox
by leveraging Arm hardware virtualization support, using
nested paging to enforce PPASes. The trusted computing base
is a few thousand lines of code, many orders of magnitude
less than Linux, yet supports widely-used Linux containers
with only modest modifications to the Linux kernel. We show
that BlackBox provides superior security guarantees over
traditional hypervisor and container architectures with only
modest performance overhead on real application workloads.

1 Introduction

Containers are widely deployed to package, isolate, and
multiplex applications on shared computing infrastructure.
They are increasingly used in lieu of hypervisor-based virtual
machines (VMs) because of their faster startup time, lower
resource footprint, and better I/O performance [6, 15, 26, 47].

Popular container mechanisms such as Linux containers
rely on a commodity operating system (OS) to enforce their
security guarantees. However, commodity OSes such as
Linux are huge, complex, and imperfect pieces of software.
Attackers that successfully exploit OS vulnerabilities may
gain unfettered access to container data, compromising the
confidentiality and integrity of containers—an undesirable
outcome for both computing service providers and their users.

Modern systems incorporate hardware security mecha-
nisms to protect applications from an untrusted OS, such
as Intel Software Guard Extensions (SGX) [30] and Arm
TrustZone [2], but they require rewriting applications and may
impose high overhead to use OS services. Some approaches
have built on these mechanisms to protect unmodified
applications [7] or containers [3]. Unfortunately, they suffer
from high overhead, incomplete and limited functionality,
and massively increase the trusted computing base (TCB)
through a library OS or runtime system, potentially trading
one large vulnerable TCB for another.

As an alternative, hypervisors have been augmented with
additional mechanisms to protect applications from an un-
trusted OS [11, 12, 27, 35, 67]. This incurs the performance
overhead of hypervisor-based virtualization, which containers
were designed to avoid. The TCB of these systems is signif-
icant, in some cases including an additional commodity host
OS, providing additional vulnerabilities to exploit to com-
promise applications. Theoretically, these approaches could
be applied to microhypervisors [10, 61] with smaller TCBs.
Unfortunately, microhypervisors still inherit the complex-
ity of hypervisor-based virtualization, including virtualizing
and managing hardware resources. The reduction in TCB is
achieved through a much reduced feature set and limited hard-
ware support, making their deployment difficult in practice.

To address this problem, we have created BlackBox, a new
container architecture that provides fine-grain protection of
application data confidentiality and integrity without the need
to trust the OS. BlackBox introduces a container security mon-
itor (CSM), a new mechanism that leverages existing hardware
features to enforce container security guarantees in a small
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trusted computing base (TCB) in lieu of the OS. The monitor
creates protected physical address spaces (PPASes) for each
container to enforce physical memory access controls, but pro-
vides no virtualization of hardware resources. Physical mem-
ory mapped to a container’s PPAS is not accessible outside the
PPAS, providing physical memory isolation among containers
and the OS. Since container private data in physical memory
only resides on pages in its own PPAS, its confidentiality and
integrity is protected from the OS and other containers.

The CSM repurposes existing hardware virtualization
support to run at a higher privilege level and create PPASes,
but is itself not a hypervisor and does not virtualize hardware.
Instead, the OS continues to access devices directly and
remains responsible for allocating resources. This enables
the CSM to be minimalistic and simple while remaining
performant. By supporting containers directly without
virtualization, no additional guest OS or complex runtime
needs to run within the secured execution environment,
minimizing the TCB within the container itself.

Applications running in BlackBox containers do not need
to be modified and can make use of OS services via system
calls, with the added benefit of their data being protected from
the OS. The monitor interposes on all transitions between
containers and the OS, clearing container private data in CPU
registers and switching PPASes as needed. The only time in
which any container data in memory is made available to the
OS is as system call arguments, which only the monitor itself
can provide by copying the arguments between container
PPASes and the OS. The monitor is aware of system call
semantics and encrypts system call arguments as needed
before passing them to the OS, such as for interprocess
communication between processes, protecting container
private data in system call arguments from the OS. Given the
growing use of end-to-end encryption for I/O security [55],
in part due to the Snowden leaks [36], the monitor relies
on applications to encrypt their own I/O data to simplify its
design. Once a system call completes and before allowing
a process to return to its container, the monitor checks the
CPU state to authenticate the process before switching the
CPU back to using the container’s PPAS.

In addition to ensuring a container’s CPU and memory
state is not accessible outside the container, BlackBox protects
against malicious code running inside containers. Only trusted
binaries, which are signed and encrypted, can run in BlackBox
containers. The monitor is required to decrypt the binaries, so
they can only run within BlackBox containers with monitor
supervision. The monitor authenticates the binaries before
they can run, so untrusted binaries cannot run in BlackBox
containers. It also guards against memory-related Iago attacks,
attacks that maliciously manipulate virtual and physical mem-
ory mappings, that could induce arbitrary code execution in
a process in a container by preventing virtual or physical
memory allocations that could overwrite a process’s stack.

We have implemented BlackBox on Arm hardware, given

Arm’s growing use in personal computers and cloud comput-
ing infrastructure along with its dominance on mobile and
embedded systems. We leverage Arm hardware virtualization
support by repurposing Arm’s EL2 privilege level and nested
paging, originally designed for running hypervisors, to en-
force separation of PPASes. Unlike x86 root operation for run-
ning hypervisors, Arm EL2 has its own hardware system state.
This minimizes the cost of trapping to the monitor running
in EL2 when calling and returning from system calls because
system state does not have to be saved and restored on each
trap. We show that BlackBox can support widely-used Linux
containers with only modest modifications to the Linux kernel,
and inherits support for a broad range of Arm hardware from
the OS. The implementation has a TCB of less than 5K lines
of code plus a verified crypto library, orders of magnitude less
than commodity OSes and hypervisors. With such a reduced
size, the CSM is significantly easier for developers to maintain
and ensure the correctness of than even just the core virtualiza-
tion functionality of a hypervisor. We show that BlackBox can
provide finer granularity and stronger security guarantees than
traditional hypervisor and container architectures with only
modest performance overhead for real application workloads.

2 Threat Model and Assumptions

Our threat model is primarily concerned with OS vulnerabil-
ities that may be exploited to compromise the confidentiality
or integrity of a container’s private data. Attacks in scope
include compromising the OS or any other software to read or
modify private container memory or register state, including
by controlling DMA-capable devices, or via memory remap-
ping and aliasing attacks. We assume a container does not
voluntarily reveal its own private data whether on purpose or
by accident, but attacks from other compromised containers,
including confidentiality and integrity attacks, are in scope.
Availability attacks by a compromised OS are out of scope.
Physical or side-channel attacks [5, 32, 43, 52, 68, 69] are
beyond the scope of the paper. Opportunities for side-channel
attacks are greater in BlackBox than in systems that isolate
at a lower level, e.g. VMs. The trust boundary of BlackBox
is that of the OS’s system call API, enabling adversaries to
see some details of OS interactions such as sizes and offsets.

We assume secure key storage is available, such as
provided by a Trusted Platform Module (TPM) [31]. We
assume the hardware is bug-free and the system is initially
benign, allowing signatures and keys to be securely stored
before the system is compromised. We assume containers
use end-to-end encrypted channels to protect their I/O
data [21, 37, 55]. We assume the CSM does not have any
vulnerabilities and can thus be trusted; formally verifying
its codebase is future work. We assume it is computationally
infeasible to perform brute-force attacks on any encrypted
container data, and any encrypted communication protocols
are assumed to be designed to defend against replay attacks.
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Figure 1: BlackBox Architecture

3 Design

BlackBox enclaves traditional Linux containers to protect the
confidentiality and integrity of container data. We refer to
a container as being enclaved if BlackBox protects it from
the OS. From an application’s perspective, using enclaved
containers is little different from using traditional containers.
Applications do not need to be modified to use enclaved con-
tainers and can make use of OS services via system calls. Con-
tainer management solutions [48,49] such as Docker [20] can
be used to manage enclaved containers. BlackBox is designed
to support commodity OSes, though minor OS modifications
are needed to use its enclave mechanism, in much the same
way that OS modifications are typically required to take ad-
vantage of new hardware features. However, BlackBox does
not trust the OS and a compromised OS running enclaved con-
tainers cannot violate their data confidentiality and integrity.

BlackBox introduces a container security monitor (CSM),
as depicted in Figure 1, which serves as its TCB. The CSM’s
only purpose is to protect the confidentiality and integrity of
container data in use. It achieves this by performing two main
functions, access control and validating OS operations. Its
narrow purpose and functionality makes it possible to keep
the CSM small and simple, avoiding the complexity of many
other trusted system software components. For example,
unlike a hypervisor, the CSM does not virtualize or manage
hardware resources. It does not maintain virtual hardware
such as virtual CPUs or devices, avoiding the need to emulate
CPU instructions, interrupts, or devices. Instead, interrupts are
delivered directly to the OS and devices are directly managed
by the OS’s existing drivers. It also does not do CPU schedul-
ing or memory allocation, making no availability guarantees.
The CSM can be kept small because it presumes the OS is
CSM-aware and relies on the OS for complex functionality
such as bootstrapping, CPU scheduling, memory manage-
ment, file systems, and interrupt and device management.

To enclave containers, the CSM introduces the notion of
a protected physical address space (PPAS), an isolated set of
physical memory pages accessible only to the assigned owner
of the PPAS and the CSM. Each page of physical memory is
mapped to at most one PPAS. The CSM uses this mechanism
to provide memory access control by assigning a separate

PPAS to each enclaved container, thereby isolating the phys-
ical memory of each container from the OS and any other
container. The OS determines what memory is allocated to
each PPAS, but cannot access the memory contents of a PPAS.
Similarly, a container cannot access a PPAS that it does not
own. Memory not assigned to a PPAS, or the CSM, is as-
signed to and accessible to the OS. The CSM itself can access
any memory, including memory assigned to a PPAS. Within
a PPAS, addresses for accessing memory are the same as the
physical addresses on the machine; physical memory cannot
be remapped to a different address in a PPAS. For example, if
page number 5 of physical memory is assigned to a PPAS, it
will be accessed as page number 5 from within the PPAS. Con-
tainer private data in memory only resides on pages mapped to
its own PPAS, therefore its confidentiality and integrity is pro-
tected from the OS and other containers. Section 4 describes
how BlackBox uses nested page tables to enforce PPASes.

The CSM interposes on all transitions between containers
and the OS, namely system calls, interrupts, and exceptions,
so that it can ensure that processes and threads, which we
collectively refer to as tasks, can only access the PPAS of
the container to which they belong when executing within
context of the container. The CSM ensures that when a task
traps to the OS and switches to running OS kernel code, the
task no longer has access to the container’s PPAS. Otherwise,
the OS could cause the task to access the container’s private
data, compromising its confidentiality or integrity. The CSM
maintains an enclaved task array, an array with information
for all tasks running in enclaved containers. When entering
the OS, the CSM checks if the calling task is in an enclaved
container, in which case it saves to the enclaved task array
the CPU registers and the cause of the trap, switches out
of the container’s PPAS, and clears any CPU registers not
needed by the OS. When exiting the OS, the CSM checks the
enclaved task array if the running task belongs to an enclaved
container, in which case it validates the current CPU context,
namely the stack pointer and page table base register, match
what was saved in the enclaved task array for the respective
task. If they match, the CSM switches to the respective
container’s PPAS so the task can access its enclaved CPU
and memory state. As a result, container private data in CPU
registers or memory is not accessible to the OS.

To support OS functionality that traditionally requires
access to a task’s CPU state and memory, the CSM provides
an application binary interface (ABI) for the OS to request
services from the CSM. The CSM ABI is shown in Table 1.
For example, create_enclave and destroy_enclave are
called by the OS in response to requests from a container run-
time, such as runC [29], to enclave and unenclave containers,
respectively. For CSM calls that require dynamically allo-
cated memory, the OS must allocate and pass in the physical
address of a large enough region of contiguous memory to
perform the respective operation. Otherwise, the call will fail
and return the amount of memory required so that the OS can
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CSM Call Description
create_enclave Create new enclave for a container.
destroy_enclave Destroy enclave of a container.
protect_vectors Validate OS exception vectors.
alloc_iopgtable Allocate I/O device page table.
free_iopgtable Free I/O device page table.
set_iopt Update entry in I/O device page table.
get_ioaddr Get physical address for I/O virtual address.
enter_os Context switch CPU to OS.
exit_os Context switch CPU from OS.
set_vma Update virtual memory areas of a process/thread.
set_pt Update page table entry of a process/thread.
copy_page Copy contents of a page to a container.
task_clone Run new process/thread in a container.
task_exec Run in new address space in a container.
task_exit Exit a process or thread in a container.
futex_read Read the value of a futex in a container.

Table 1: BlackBox Container Security Monitor ABI

make the call again with the required allocation. For example,
create_enclave requires the OS to allocate memory to be
used for metadata for the enclaved container. Upon success,
the allocated memory is assigned to the CSM and no longer
accessible to the OS until destroy_enclave is called, at
which point the memory is assigned back to the OS again.

3.1 System Boot and Initialization

BlackBox boots the CSM by relying on Unified Extensible
Firmware Interface (UEFI) firmware and its signing infras-
tructure with a hardware root of trust. The CSM and OS
kernel are linked as a single binary which is cryptographically
signed, typically by a cloud provider running BlackBox
containers; this is similar to how OS binaries are signed by
vendors like Red Hat or Microsoft. The binary is first verified
using keys already stored in secure storage, ensuring that only
the signed binary can be loaded. To keep the CSM as simple
as possible, BlackBox does not implement bootstrapping
within the CSM itself, which can require thousands of lines of
code to support many systems. Instead, it relies on the OS’s
bootstrapping code to install the CSM securely at boot time
since the OS is initially benign. By relying on commodity
OSes such as Linux that already boot on a wide range of
systems, this makes it easier for the CSM to support many
systems without the burden of manually maintaining and
porting its own bootstrapping code for many systems.

At boot time, the OS initially has full control of the system
to initialize hardware, and installs the CSM. CSM installation
occurs before local storage, network and serial input services
are available, so remote attackers cannot compromise its in-
stallation. Once installed, the CSM runs at a higher privilege
level than the OS and subsequently enables PPASes as needed.
A small amount of physical memory is statically assigned to
the CSM, and the rest is assigned to the OS. Any attempt to ac-
cess the CSM’s memory except by the CSM itself will trap to

the CSM and be rejected. Although the OS’s memory is sep-
arate from the CSM’s, the CSM can access the OS’s memory
and can restrict its from modifying its own memory if needed.

The CSM expects the hardware to include an IOMMU
to protect against DMA attacks by devices managed by
the OS [62]. The CSM retains control of the IOMMU and
requires the OS to make CSM calls to update IOMMU page
table mappings, which are typically configured by the OS
during boot. This ensures that I/O devices can only access
memory mapped into the IOMMU page tables managed
by the CSM. The OS calls alloc_iopgtable during boot
to allocate an IOMMU translation unit and its associated
page table for a device, and set_iopt and to assign physical
memory to the device to use for DMA. The CSM ensures
that the OS can only assign its own physical memory to the
IOMMU page tables, ensuring that DMA attacks cannot be
used to compromise CSM or container memory.

3.2 Enclaved Container Initialization

To securely initialize an enclaved container, an image that
is to be used for such a container must first be processed into
a BlackBox container image, using a process similar to how
Amazon enclaves are created using Docker images [1]. Black-
Box provides a command line tool build_bb_image, which
can be used by a cloud customer, that takes a Docker image,
finds all executable binary files contained within the image,
and encrypts the sections containing the code and data used
by the code using the public key paired with a trusted private
key stored in the secure storage of the host and accessible only
by the CSM. These encrypted sections are then hashed and
their hash values recorded along with the binaries they belong
to. These values are then signed with the private key of the
container image’s creator whose paired public key is accessi-
ble in the secure storage of the host to ensure authenticity and
bundled with the container image for later reference during
process creation, as described in Section 3.3. This ensures the
binaries cannot be modified without being detected, or run
unless decrypted by the CSM. Other than additional hashes
and using encrypted binaries, the BlackBox container image
contains nothing different from a traditional Docker image.

To start a container using a BlackBox container image,
the container runtime is modified to execute a simple shim
process in place of the container’s specified init process.
The container runtime passes the shim the path of the init
process used by the container along with any arguments and
its environment. The shim is also given the signed binary
hash information bundled with the container image. The shim
process runs a tiny statically linked program that initiates
a request to the OS to call the create_enclave CSM call
before executing the original init process, passing the signed
hash information to the CSM as part of the call. Other than
the shim process, which exits upon executing the init process,
there is no additional code that runs in a BlackBox container
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beyond vanilla Linux containers. There are no additional
libraries and no need for a library OS, avoiding the risks of
bloating the TCB of the container itself.
create_enclave creates a new enclave using the Black-

Box container image and returns with the calling process
running in the enclaved container, the return value of the
call being the new enclave’s identifier. create_enclave per-
forms the following steps. First, it creates a new PPAS for
the container. Second, it freezes the userspace memory of the
calling process so it, and its associated page tables, cannot
be directly changed by the OS, then moves all of its pages of
physical memory into the container’s PPAS so that they are
no longer accessible by the OS. Finally, it checks the contents
of the loaded shim binary in memory against a known hash to
validate the calling process is the expected shim process.

After returning from create_enclave, the shim executes
the container’s init process from within the container. Since
the container’s init process obtains its executable from
the BlackBox container image whose code and data are
encrypted, the OS may load it, but cannot actually execute
it without the CSM using its private key to decrypt it. Further
details on exec with encrypted binaries are described in
Section 3.6. In this way, the OS is incapable of running a
BlackBox container image without the CSM. Therefore, if
it is running, the CSM must be involved and protecting it.
Because the CSM itself is securely booted and enclave code is
encrypted and only runnable by the CSM, an unbroken chain
of trust is established enabling remote attestation similar to
that of other security systems, such as Samsung Knox [56].

The container runtime calls destroy_enclave to remove
the enclave of a container, which terminates all running
processes and threads within the container to ensure that any
container CPU state and memory is cleared and no longer
accessible to the OS or any other container before removing
the enclave. The container is effectively returned to the same
state it was in before create_enclave was called.

3.3 Enclaved Task Execution

BlackBox supports the full lifecycle of tasks executing in
enclaved containers, including their dynamic creation and
termination via standard system calls such as fork, clone,
exec, and exit. This includes tracking which tasks are
allowed to execute in which containers. This is achieved by
requiring the OS to call a set of CSM calls, task_clone on
task creation via fork and clone, task_exec when loading
a new address space via exec, and task_exit when a task
exits via exit. These calls request the CSM to perform
various functions related to task execution that the OS is not
able to do because it does not have access to task CPU state
and memory. If the OS does not make the respective CSM
call, the created task and executed binary will simply not run
in its enclave and therefore will not have access to its data.
These calls update the enclaved task array, the index of which

is used as the enclaved task identifier. Each entry in the array
includes the enclave identifier of the container in which the
task executes, as well as the address of the page table used
by the task as discussed earlier.

When a task running in an enclaved container creates a
child task via a system call, the OS calls task_clone with the
enclaved task identifier of the calling task and a flag indicating
whether the new task will share the same address space as the
caller, as when creating a thread, or have its own copy of the
address space of the caller, as when creating a process. In the
latter case, new page tables will be allocated for the child task
and the CSM will ensure that they match those of the caller’s
and cannot be directly modified by the OS. The CSM will also
confirm that the calling task issued the task creation system
call. If all checks pass, the CSM will create a new entry in
the enclaved task array with the same enclave identifier as the
calling process, and return the array index of the new entry
as the identifier for the task. The entry will also contain the
address of the task’s page table, which will be the same as the
caller’s entry if it shares the same address space as the caller.

When the OS runs the child and the task returns from the
OS, the OS provides the CSM with the enclaved task’s identi-
fier. The CSM then looks up the task in its enclaved task array
using this identifier and confirms that the address of the page
table stored in the entry matches the address stored in the page
table base register of the CPU. If the checks pass, it will then
restore CPU state and switch the CPU to the container’s PPAS,
thereby allowing the task to resume execution in the container.
If the OS does not call task_clone, then upon exiting the OS,
the task’s PPAS would not be installed and it would fail to run.

On exec, the calling task will replace its existing address
space with a new one. The OS calls task_exec, which, like
task_clone for fork, creates a new enclaved task entry
with a new address space. The difference is that the new
address space is validated by ensuring that the new process’
stack is set up as expected and the executable binary is
signed and in the BlackBox container image, as described
in Section 3.6. After creating the new enclaved task entry,
the original address space is disassociated from the container,
scrubbing any memory pages to be returned to the OS and
removing them from the container’s PPAS.

On exit, the OS will call task_exit so the CSM can
remove the enclaved task entry from the enclaved task array.
If an address space has no more tasks in the container, the
CSM disassociates it in a similar manner to the exec case.

3.4 Memory

BlackBox prevents the OS from directly accessing a
container’s memory, but relies on the OS for memory manage-
ment, including allocating memory to tasks in the container.
This avoids introducing complex memory management code
into BlackBox, keeping it small and simple, but means that
BlackBox also needs to protect against memory-based Iago
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attacks [9] by the untrusted OS through manipulation of
system call return values. For example, if a process calls mmap,
it expects to receive an address mapping that does not overlap
with any of its existing mappings. If the OS were to return a
value overlapping the process’s stack, it could manipulate the
process into overwriting a return address on its stack through
a subsequent read with an attacker controlled address,
opening the door for return-oriented-programming [53] and
return-into-libc [58] attacks. Furthermore, the OS may return
an innocuous looking non-overlapping virtual address from
mmap, but still maliciously map the returned address to the
physical page the stack is on.

To rely on the OS for memory management while
preventing memory-based Iago attacks, BlackBox protects
the container’s memory at the application level by preventing
the OS from directly updating per process page tables. It
instead requires the OS to make requests to the CSM to
update process page tables, allowing the CSM to reject
updates if the OS behaves incorrectly. Figure 2 depicts how
a container’s page table is updated during a page fault. When
a process in a container faults on a page, an exception causes
control to transfer to the OS by way of the CSM (steps 1-3).
The OS then allocates a page for the process, but instead of
updating the process page table directly, it performs a set_pt
CSM call (step 4). Upon receiving the set_pt call, the CSM
verifies if the allocation is acceptable (step 5). To do so, the
CSM maintains a list of valid mappings for each process. This
list is maintained by interposing on system calls that adjust
memory mappings. In Linux these calls include mmap and brk.
Prior to writing the page table entry, the CSM first verifies
that the virtual address specified belongs to a valid mapping.
If it does not, the update is rejected. Second, the CSM checks
if the physical page assigned is already in the container’s
PPAS and therefore already in use. This can commonly occur
innocuously when, e.g., two processes in a container have the
same file mapped in their address spaces. However, to prevent
the risk of a malicious OS coercing an enclave to overwrite
existing memory via a malicious memory allocation, the CSM
marks any physical page mapped more than once read only in
the container’s PPAS, unless it was inherited from a parent as

part of process creation in which case it can be trusted. While
this is effective at preventing these attacks, the downside is
that writes to such memory will trap and need to be handled
by BlackBox; for simplicity, BlackBox disallows writable
memory-mapped file I/O as it is uncommonly used. Finally,
if the virtual address is valid and not mapped to an existing
physical page in a container’s PPAS, the CSM unmaps the
assigned physical page from the OS and maps it into the
container’s PPAS. The CSM then updates the page table entry
on the OS’s behalf (step 6). Control is then returned back to
the OS (step 7). When returning control back to the process
that faulted, the process’s container PPAS will be switched to
(steps 8-10). Section 4 describes further details about this pro-
cess. The CSM also invalidates TLB entries as needed when
it performs page table updates, ensuring that a malicious OS
cannot violate a container’s PPAS through stale TLB entries.

BlackBox provides support for copy-on-write (CoW) mem-
ory, a key optimization commonly used in OSes. The OS
traditionally expects to be able to share a page in memory
among multiple processes and when a write is attempted,
break the CoW by copying the contents of the page to a new
page assigned to the process. With BlackBox, the OS does not
have the ability to copy container memory though, so the OS
instead makes a copy_page CSM call to have the CSM per-
form the CoW break on its behalf. The CSM will check that
the source page belongs to the container’s PPAS and the desti-
nation page is in the OS’s memory. If so, it will move the des-
tination page into the container’s PPAS and perform the copy.

BlackBox supports the dynamic release of memory back
to the OS as tasks adjust their heap, unmap memory regions,
and exit, while preserving the privacy and integrity of a
container’s memory. As with memory allocation, system
calls that can allow for returning of an application’s memory,
like munmap and _exit are tracked to maintain an accurate
view of a container’s memory mappings. During these calls,
the OS may attempt to free pages allocated to the process. In
doing so, as with memory allocation, it must make use of the
set_pt CSM call since it cannot update page tables directly.
The CSM will then check if the application has made a call
to release the specified memory and reject the update if it has
not. If the update is valid, the CSM will perform the page
table update, and if no longer needed, scrub the page and
remove it from the container’s PPAS.

While BlackBox ensures that container memory is not
accessible to the OS, many OS interactions via system calls
expect to use memory buffers that are part of an application’s
memory to send data to, or receive data from, the OS.
BlackBox treats the use of such memory buffers in system
calls as implicit directives to declassify the buffers so they
can be shared with the OS. To support this declassification
while ensuring that a container’s PPAS is not accessible
to the OS, BlackBox provides a syscall buffer for each
task running in an enclaved container that is outside of the
container’s PPAS and accessible to the OS. When interposing
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on a system call exception, the CSM replaces references
to memory buffers passed in as system call arguments with
those to the task’s syscall buffer. For buffers that are used to
send data to the OS, the data in those buffers is copied to the
syscall buffer as well. When returning to the container, the
references to the syscall buffer are replaced with those to the
original memory buffers. For buffers that are used to receive
data from the OS, the data in the syscall buffer is copied to
the original memory buffers as well.

Most system calls are interposed on by a single generic
wrapper function in the CSM that uses a table of system
call metadata to determine which arguments must be altered.
System calls with more complex arguments, like those
involving iovec structures are interposed on with more
specific wrapper functions. On Linux, this interposing and
altering of arguments works for most system calls with a few
notable exceptions as discussed in Section 3.5.

As part of the copying of data from the OS to an enclaved
container, BlackBox also does simple checks on system
call return values to ensure they fall within predefined
correct ranges. This has been shown to protect against many
Iago attacks [14]. However, to keep its TCB simple and
small, BlackBox only guarantees the correctness of system
call semantics for memory management and inter-process
communication (IPC), the latter discussed in Section 3.5. As
a result, BlackBox protects against Iago attacks related to
memory management and IPC, but is susceptible to some
other Iago attacks. Augmenting BlackBox with a user-level
runtime library in an enclaved container that guarantees the
correctness of system call semantics could improve Iago
attack protection, but at the cost of a larger TCB and potential
additional limitations on system call functionality.

3.5 Inter-process Communucation

While BlackBox declassifies data to the OS passed in as sys-
tem call arguments, it protects inter-process communication
(IPC) among tasks running in the same enclaved container
by encrypting the data passed into IPC-related system calls.
This protects applications using IPC, which is transferred
through and accessible to the OS. System calls that can create
IPC-related file descriptors, such as pipe, and Unix Domain
Sockets are interposed on and their returned file descriptors
(FDs) recorded in per-process arrays marking them as related
to IPC. When the CSM interposes on system calls that pass
data through FDs, like write and sendmsg, it checks if the
given FD is one related to IPC for that process. If it is, the
CSM first uses authenticated encryption with a randomly gen-
erated symmetric key created during container initialization
to encrypt the data before moving it into the task’s syscall
buffer. A record counter, incremented on each transaction,
is included as additional authenticated data to prevent the
host from replaying previous transactions. Similarly, data
is decrypted and authenticated when interposing on system

calls like read and recvmsg before copying it to the calling
process’s PPAS. With this mechanism, IPC communication
is transparently encrypted and protected from the OS.

As mentioned in Section 3.4, to avoid trusting the OS’s
memory allocations, memory pages that are used by more
than one process in a container are marked read-only in the
container’s PPAS unless the pages are known to belong to
a shared memory mapping and are inherited during process
creation. Shared memory regions created by a parent process
through mmap with MAP_SHARED and faulted in prior to
forking can be written to by both parent and child processes
since the child’s address space is validated after fork, as
discussed in Section 3.3. However, for simplicity, BlackBox
does not allow for writable IPC shared memory via XSI IPC
methods such as shmget and shm_open, which are no longer
widely-used. Modern applications instead favor thread-based
approaches for performance or shared mappings between
child worker processes via mmap compatible with BlackBox.

Futexes are used among threads and processes to syn-
chronize access to shared regions of memory. As part of the
design of futex, the OS is required to read the futex value,
which is in the process’s address space and included in the
respective container’s memory. This direct access to container
memory is incompatible with BlackBox’s memory isolation.
To support futex, the OS makes a futex_read CSM call
to obtain the value of a futex for container processes, rather
than try and access the memory directly. The CSM ensures
that only the futex address passed to futex can be read, and
only if a futex call has been made.

Signals, used to notify processes of various events, present
two issues for BlackBox. First, when delivering a signal to a
process, a temporary stack for the signal handler is set up in
the process’s memory. With enclaved containers, this memory
is not accessible to the OS. To remedy this, the OS is modi-
fied to setup this stack in a region of memory outside of the
container’s PPAS, which is then moved to the PPAS when the
signal handler is executed and returned to the OS when the sig-
nal handler returns via rt_sigreturn. Second, the OS has to
adjust the control flow of the process to execute the signal han-
dler instead of returning to where it was previously executing.
BlackBox cannot allow the OS to adjust the control flow of an
enclaved process without validating it is doing so properly. To
achieve this, as part of the CSM interposing on system calls, it
tracks signal handler installation via system calls such as rt_
sigaction. Upon handling a signal, the CSM ensures that
the process will be correctly returning to a registered handler.

3.6 Container File System

Files within a container can only be accessed through an OS’s
I/O facilities making access to a container’s files inherently
untrustworthy without additional protection. A userspace
encrypted file system could potentially be used to provide
transparent protection of file I/O, but this would likely signif-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    689



icantly increase the container’s TCB. BlackBox relies on ap-
plications to use encryption to fully protect sensitive data files
within a container, and provides a simple mechanism to allow
the OS to load encrypted executable binaries for execution.

As discussed in Section 3.2, container images for BlackBox
are pre-processed. For example, ELF binaries, widely-used
on Linux, have .text, .data, and .rodata sections that
contain the executable code and data used by the code. These
sections are combined into various segments when loaded
into memory. In a BlackBox container image, the ELF head-
ers are left unencrypted, but the .text, .data, and .rodata
sections are encrypted then hashed, and their hash values are
recorded along with the binaries. This enables BlackBox to
validate the integrity and authenticity of executable binaries.

An ELF binary is executed by the OS as a result of a
process calling exec, upon which the OS loads the binary by
mapping its ELF headers into memory, reading the ELF head-
ers to determine how to process the rest of the binary, then
mapping the segments of the binary to memory. As discussed
in Section 3.3, the OS is required to call task_exec, which
passes the virtual addresses of the binary’s loaded segments
containing the .text, .data, and .rodata sections to the
CSM. During this call, the CSM moves the process’s pages,
corresponding to the loaded binary, into the container’s PPAS,
validates that the hashes of the encrypted .text, .data, and
.rodata sections match the hashes for the given binary from
the BlackBox container image to confirm the authenticity and
integrity of the loaded segments, then decrypts the sections
in memory. The virtual to physical address mappings of these
binary segments are recorded for later use. Upon returning
from task_exec, the OS will begin running the task whose
binary is now decrypted within protected container memory.
If checking the hashes or decryption fails, the CSM will
refuse to run the binary within an enclaved container,
ensuring only trusted binaries can run within.

For dynamically linked binaries, in addition to the binary
segments the OS maps during exec, the OS also maps the
segments of the loader in the process’s address space. These
segments are verified in the same manner as the binary’s
segments. Dynamically linked binaries load and execute
external libraries that BlackBox must validate are as expected
and trusted. During the container image creation process, as
with executable binaries, library binaries are also encrypted
preventing their use without the CSM. These libraries are
loaded and linked at runtime in userspace by a loader that
is part of the trusted container image. To do this, the loader,
running as part of a process’s address space, mmaps library
segments into memory. The CSM intercepts these mmaps
by interposing on FD-related system calls, such as open. If
an FD is created for one of the libraries within a container,
as recorded during container image creation, the CSM marks
that FD as associated with the given library. If this FD is then
used with mmap, the CSM intercepts it. Based on the size of
the mmap request and the protection flags used, the CSM can

infer which segment the loader is mapping. If it is a segment
containing one of the encrypted sections, the CSM performs
the same hashing, decryption, and memory map recording
as it does with executable binaries.

4 Implementation

We have implemented a BlackBox prototype by repurposing
existing hardware virtualization support available on modern
architectures, including a higher privilege level, usually
reserved for hypervisors, and nested page tables (NPTs).
NPTs, also known as Arm’s Stage 2 page tables and
Intel’s Extended Page Tables (EPT), is a hardware-assisted
virtualization technology that introduces an additional level
of virtual address translation [8]. When NPTs are used by
hypervisors, the guest OS in a VM manages its own page
table to translate a virtual address to what the VM perceives
as its physical address, known as a guest physical address, but
then the hypervisor manages an NPT to translate the guest
physical address to an actual physical address on the host.
Hypervisors can thereby use NPTs to control what physical
memory is available to each VM.

BlackBox uses hardware virtualization support to run the
CSM in lieu of a hypervisor to support PPASes. The CSM
runs at the higher hypervisor privilege level, so that it is
strictly more privileged than the OS and is able to control
NPTs. The CSM introduces an NPT for each container and
the OS, such that a container’s PPAS is only mapped to its
own NPT, isolating the physical memory of each container
from the OS and each other. The CSM switches a CPU
from one PPAS to another by simply updating its NPT base
register to point to the respective container’s NPT. Similarly,
the CSM uses NPTs to protect its own memory from the OS
and containers by simply not mapping its own memory into
the NPTs. The memory for the NPTs is part of the CSM’s
protected memory and is itself not mapped into any NPTs so
that only the CSM can update the NPTs. When the CSM runs,
NPTs are disabled, so it has full access to physical memory.

Specifically, BlackBox uses Arm hardware virtualization
extensions (VE) [16–19]. The CSM runs in Arm’s hypervisor
(EL2) mode, which is strictly more privileged than user (EL0)
and kernel (EL1) modes. EL2 has its own execution context
defined by register and control state, and switching the
execution context of EL0 and EL1 are done in software. The
CSM configures Stage 2 page tables in EL2, and the System
Memory Management Unit (SMMU), Arm’s IOMMU. The
Linux kernel runs in EL1 and has no access to EL2 registers,
so it cannot compromise the CSM. CSM calls are made using
Arm’s hvc instruction from EL1.

Before and after every transition to the OS, BlackBox traps
to the CSM, which in turn switches between container and OS
NPTs. One might think that imposing two context switches
to the CSM to swap NPTs for every one call to the OS
would be prohibitively expensive, but we show in Section 5
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that this can be done on Arm without much overhead. The
flexibility that Arm EL2 provides of allowing software
to determine how execution context is switched between
hypervisor and other modes turns out to be particularly
advantageous for implementing the CSM because it does
not lock its implementation into using heavyweight hardware
virtualization mechanisms to save and restore hypervisor
execution context that are not required for the CSM.

Trapping to the CSM before and after every transition to the
OS requires that the CSM interpose on all system calls, inter-
rupts, and exceptions. Hypervisors traditionally accomplish
similar functionality by trapping interrupts and exceptions to
itself, then injecting virtual interrupts and exceptions to a VM.
BlackBox avoids the additional complexity of virtualizing
interrupts and exceptions by taking a different approach. The
CSM configures hardware so system calls, interrupts, and ex-
ceptions trap to the OS and modifies the OS’s exception vector
table for handling these events so that enter_os and exit_
os CSM calls are always made before and after the actual OS
event handler. To guarantee these handlers are installed and
not modified by the OS at a later time, BlackBox requires the
OS to make a protect_vectors CSM call with the address
of the text section of the vector table during system initializa-
tion, before any container may be enclaved. The CSM then
prevents the OS from tampering with the modified vector ta-
ble by marking its backing physical memory read only in the
OS’s NPT. Similarly, the vDSO region of memory is marked
read only to prevent malicious tampering of the region.

Figure 3 depicts the steps involved in interposing on transi-
tions between the containers and OS when repurposing virtu-
alization hardware. While running in a container, an exception
occurs transferring control to the protected OS exception
vector table (step 1). All entry points in the exception vector
table invoke the enter_os CSM call (step 2). During this, the
CSM switches to the OS’s NPT (step 3). The OS will there-
fore not be able to access private physical memory mapped
into container NPTs. For system call exceptions, system call
arguments are copied to an OS accessible syscall buffer (step
4). Control is transferred back to the OS (step 5) to perform
the required exception handling. When the OS has finished
handling the exception, the exit_os CSM call is made as
part of the return path of the exception vectors when returning
to userspace (step 6). For system call exceptions, OS updated
arguments are copied back to the original buffer (step 7). On
exit_os, the CSM verifies the exception return address to
ensure the call is from the trusted exception vectors, which the
OS cannot change, rejecting any that are not. The CSM then
checks if the running task belongs to an enclaved container,
in which case the CSM switches to the respective container’s
NPT so the task can access its PPAS memory state (step 8).
Control is restored to the container by returning from exit_
os (step 9) and back to userspace (step 10). If exit_os is not
called, the CSM will not switch the CPU to use the container’s
PPAS, so its state will remain inaccessible on that CPU.
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Figure 3: System Call from Enclaved Container

BlackBox protects a container’s memory by using separate
NPTs for the OS and each container, but still relies on the OS
to perform all complex memory management functions, such
as allocation and reclamation, to minimize the complexity
and size of the CSM. This is straightforward because unlike
hypervisors which virtualize physical memory using NPTs,
the CSM merely uses NPTs for access control so that the
identity mapping is used for all NPTs including the OS’s
NPT. The OS’s view of memory is effectively the same
as the actual physical memory for any physical memory
mapped into the OS’s NPT. Except for the CSM’s physical
memory, all physical memory is initially assigned to the
OS and mapped to its NPT. When the OS allocates physical
memory to processes in containers, the CSM can just unmap
the physical memory from the OS’s NPT and map it to the
respective container’s NPT at the same address. The CSM
does not need its own complex allocation functionality. The
CSM checks the OS’s NPT to make sure that the OS has
the right to allocate a given page of memory. For example,
should the OS attempt to allocate a physical page belonging
to the CSM, the CSM will reject the allocation and not update
the OS’s or container’s NPT. The CSM also checks that any
page allocation proposed by the OS for a container is not
mapped into the IOMMU page tables and will therefore not
be subject to DMA attacks, as discussed in Section 3.1.

Note that the OS is oblivious to the fact that its allocation
decisions for process page tables, Arm’s Stage 1 page tables,
are also used for Stage 2 page tables. Furthermore, since
Arm hardware first checks Stage 1 page tables before Stage
2 page tables, page faults due to the need to allocate physical
memory to a process all appear as Stage 1 page faults, which
are handled in the normal way by the OS’s page fault handler.
Since the CSM maps the physical memory to the respective
Stage 1 and Stage 2 page table entries at the same time, there
are no Stage 2 page faults for memory allocation.

As discussed in Section 3.4, BlackBox requires that pro-
cess page tables cannot be directly modified by the OS. At the
same time, commodity OSes like Linux perform many oper-
ations that involve walking and accessing process page tables.
To minimize OS modifications required to use enclaved con-
tainers, BlackBox makes the process page tables readable but
not writable by the OS by marking the corresponding entries
in the OS’s NPT read only. All existing OS code that walks
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and reads process page tables can continue to function with-
out modification, and only limited changes are required to the
OS to use CSM calls for any updates to process page tables.
A process’s page tables are also mapped to its respective con-
tainer’s NPT, so they can be accessed by MMU hardware for
virtual address translation while executing the process. Black-
Box also maps tasks’ syscall buffers, used for passing system
call arguments to and from the OS, to their Stage 1 page tables.
This allows OS functions designed to copy data to and from
buffers in the calling process’s address space to function cor-
rectly without modification. The tasks’ syscall buffers them-
selves are only mapped to the OS’s NPT, not the container’s
NPT, as they are shared directly only by the CSM and OS.

To optimize TLB usage, physically contiguous memory can
be mapped to an NPT in blocks larger than the default 4 KB
page size. The BlackBox implementation supports transparent
2 MB stage 2 block mappings by first fully populating the last-
level stage 2 page table with 4 KB mappings, then folding all
512 entries into a single entry. BlackBox checks that all 512
entries are contiguous in physical memory and that the first
entry is aligned to a 2 MB boundary. BlackBox will unfold a
block mapping if one of the original 512 entries is unmapped,
such that all 512 entries are no longer contiguous in physical
memory. Similarly, BlackBox will unfold a block mapping if
there is a need to change the attributes of one of the original
512 entries, such as marking it read only while other entries
remain writable. This approach is advantageous over just sup-
porting huge pages allocated by the OS because it improves
TLB usage even when the OS does not use huge pages.

Although BlackBox is designed to work using existing
hardware virtualization support, the upcoming Armv9 archi-
tecture with its inclusion of the Arm Confidential Compute
Architecture (CCA) [41] offers alternative mechanisms that
may be used for implementing BlackBox. CCA introduces
secure execution environments called Realms. The memory
and execution state of these Realms are inaccessible to
existing privileged software like OSes and hypervisors
guaranteeing their confidentiality and integrity from them.
Realms are supported by a separate Realm World and
managed by a Realm Management Monitor (RMM) running
in EL2 within the Realm World giving it full access to Realm
memory and CPU state as well as control over their execution.
Although Realms are currently only designed to support VMs,
it may be possible to use them to support enclaved containers
by integrating the functionality of the CSM with the RMM
and extending its ABI to encompass the CSM’s ABI.

BlackBox’s implementation is relatively small. The
implementation is less than 10K lines of code (LOC), most
of which is the 5K LOC for the implementation of Ed25519,
ChaCha20, and Poly1305 from the verified HACL* crypto
library [70]. Other than HACL*, BlackBox consisted of 4.9K
LOC, all in C except for 0.4K LOC in Arm assembly. Table 2
shows a breakdown by feature. 0.3K LOC was for verifying
the CSM was correctly booted and initialized. 1K LOC was

Feature BlackBox Linux KVM
Bootstrapping 0 8.5K 8.5K
Device Support 0 425K 425K
Filesystem Support 0 163K 163K
Process Management 0 110K 110K
Memory Management 0 60.7K 60.7K
CPU Scheduling 0 29.3K 29.3K
Networking 0 190K 0
Sound 0 89.3K 0
Process Security 0 64.7K 0
Device Virtualization 0 0 30.1K
CPU Virtualization 0 0 3.5K
VM Switch 0 0 1.2K
Cryptography 5K 19K 19K
Boot Verification 0.3K 0 0
Enclave Management 1K 0 0
Enclave Switch 0.1K 0 0
CPU Protection 0.2K 0 0
Syscall Interposition 1K 0 0
NPT Management 1K 0 2.8K
Memory Mapping Protection 0.5K 0 0
DMA Protection 0.8K 0 9K
Total 9.9K 1.2M 862K

Table 2: LOC for BlackBox, Linux, and KVM

for enclave management, including enclave creation and
handling enclave metadata 0.1K LOC was for switching
between enclaves and the OS. 0.2K LOC was for protecting
data in CPU registers. 1K was for system call interposition,
including marshaling of arguments. The table used for
determining how to marshal system calls and check return
values is dynamically generated as a single line of C code at
compile time. 2.3K LOC was for memory protection, includ-
ing NPT management of PPASes, Iago and DMA protection,
and handling and validating page table update requests.
BlackBox’s CSM TCB implementation complexity is similar
to other recently verified concurrent systems [39–41, 63],
suggesting that it is small enough that it can be formally
verified. Beyond the CSM itself, only 0.5K LOC were
modified or added to the Linux kernel to support BlackBox.

Table 2 also compares the code complexity of BlackBox
versus the Linux kernel and KVM hypervisor. This is a
conservative comparison as the LOC for Linux and KVM
only include code compiled into the actual binaries for one
specific Arm server used for the evaluation in Section 5.
Even with this conservative comparison, BlackBox is orders
of magnitude less code, in part because its functionality is
largely orthogonal to both OSes and hypervisors, which have
much more complex functionality requirements.

5 Experimental Results

We quantify the performance of BlackBox compared to
widely-used Linux containers, and demonstrate BlackBox’s
ability to protect container confidentiality and integrity. Ex-
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Name Description
Lmbench lmbench v3.0-a9 [46] latency microbenchmarks.
Hackbench hackbench [54] using Unix domain sockets and 100

process groups running in 500 loops.
Apache Apache v2.4.46 server handling 100 concurrent

requests from remote ApacheBench [64] v2.3 client,
serving the 12 KB default Debian index.html.

HAProxy HAProxy v1.8.19 server proxying 100 concurrent
requests from remote ApacheBench [64] v2.3 client
to remote Apache v2.4.29, serving the 82 KB
index.html of the GCC 13.0.0 manual.

Kernbench Compilation of the Linux 5.4 kernel using
allnoconfig for Arm with GCC 8.3.0.

Memcached memcached v1.6.9 using the memtier [51] benchmark
v1.3.0 with default parameters.

MySQL MariaDB v10.3.27, a MySQL fork, handling requests
from remote YCSB [13] v0.17.0 client running workload
A with 200 parallel transactions, recordcount=500K,
and opcount=100K.

Netperf netperf v2.6.0 [33] running netserver on the server
and the client with default parameters in three modes:
TCP_STREAM (receive throughput), TCP_MAERTS
(send throughput), and TCP_RR (latency).

Nginx Nginx v1.18.0 server handling 100 concurrent requests
from remote ApacheBench [64] v2.3 client, serving the
12 KB default Debian index.html.

Table 3: Microbenchmarks and Application Workloads

periments were run using both Arm multiprocessor embedded
system and server hardware with VE support, specifically (1)
a Raspberry Pi 4 Model B with a 4-core Cortex-A72 64-bit
1.5 GHz Broadcom BCM2711 SoC, 8 GB RAM, a 250 GB
Samsung 860 EVO SSD connected via USB3.0, and Gigabit
Ethernet, running Raspberry Pi OS Buster (2020-08-20 De-
bian), and (2) an AMD Seattle Rev.B0 server with an 8-core
Cortex-A57 64-bit ARMv8-A 2 GHz AMD Opteron A1100
SoC, 16 GB of RAM, a 512 GB SATA3 HDD, and an AMD
XGBE 10 GbE NIC, running Ubuntu 16.04. For client-server
experiments, the clients ran on a Lenovo ThinkPad P52 with a
quad-core Intel i7-8750H 64-bit 4.1 GHz CPU, 32 GB RAM,
and a 1 TB PCIe SSD, running Linux Mint 20, connected
to the Arm hardware via Gigabit Ethernet through an ASUS
RT-N16. All machines used Linux kernel 5.4 LTS and for
running in containers, the Docker 20.10.6 container runtime.

We ran the microbenchmarks and application workloads
listed in Table 3 using the following five system config-
urations: (1) natively on the host without containers to
provide a baseline measure of performance, (2) Docker
with unmodified Linux containers (Docker), (3) BlackBox
running Docker with traditional Linux containers, without
the security guarantees of being enclaved (BlackBox NS, for
Non-Secure), (4) BlackBox running Docker with enclaved
Linux containers without encrypted IPC (BlackBox NE,
for no encryption), and (5) BlackBox running Docker with
enclaved Linux containers (BlackBox Enclaved). Three

BlackBox configurations were used to quantify the cost of
different protection mechanisms. BlackBox NS provides
the same security as Docker, the only difference being that
BlackBox NS runs the containers on BlackBox with the
OS’s NPT enabled, to quantify NPT overhead. BlackBox
NE provides stronger security by enclaving the container but
without enabling IPC encryption, thereby quantifying Black-
Box overhead without IPC encryption. BlackBox Enclaved is
the same as BlackBox NE but with IPC encryption enabled.
When using BlackBox, its DMA protection is not available
on the Raspberry Pi 4 because it has no SMMU. Docker’s
default seccomp policy is enabled for all configurations.
Versions of libseccomp prior to v2.5 had a significant
performance issue on policies like Docker’s default [65]. The
Docker version we use incorporates this performance fix.

5.1 Performance Measurements

Figure 4 shows performance measurements for each
microbenchmark and application workload for each container
configuration normalized to native execution; lower numbers
are better. Solid bars indicate results run on the Raspberry
Pi and the overlaid outlined bars indicate results run on the
AMD Seattle Arm server. BlackBox has the highest overhead
relative to native execution on the null system call measure-
ment, but most of the overhead is from Docker, due to its use
of seccomp to configure and limit the system calls available
in a container to reduce the available attack surface area.
Although seccomp is used for all system calls, its overhead
is most apparent for the null system call as its base cost is the
lowest since it does no work. In contrast, the overhead due
to BlackBox, from the two CSM calls that BlackBox makes
on every system call, is small relative to seccomp. Although
CSM calls require switching to and from Arm’s EL2 mode, it
requires no more than EL2’s system register state to execute,
eliminating the need to save and restore system registers
when switching between EL1 and EL2; only general-purpose
registers need to be saved and restored. Taking advantage
of Arm’s architectural features makes CSM calls relatively
inexpensive, enabling fine-grained container protection
without significant overhead from system call interposition.
The key aspect of Arm’s design that is crucial for the CSM
is that software determines what state needs to be saved and
restored. Running the CSM in the equivalent x86 hypervisor
root mode would be much more expensive as it provides a
hardware instruction that must be used to context switch to
root mode that requires saving and restoring the entire CPU
system state [17]. The x86 mechanism works well for hyper-
visors since they already require this operation, but poorly
for the CSM which makes minimal use of CPU system state,
and therefore does not need the expensive save and restore.

For the read, write, stat, open/close, and select
system call measurements, BlackBox Enclaved is less
than two times the cost of Docker. The overhead for the
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Figure 4: Container Performance for Microbenchmarks and Application Workloads.

enclaved configurations is due to the need to copy system call
arguments back and forth between the container PPAS and
OS, since enclaved container memory is not accessible to the
OS. open additionally incurs overhead as part of checking
the path being opened to identify FDs associated with shared
libraries as part of BlackBox’s binary decryption mechanism.
For all system calls, the overhead on the AMD server, as indi-
cated by the outlined bars, exceeds that of the Raspberry Pi’s.
In most cases, this is due to the server hardware performing
the CPU bound system call operations more quickly than
the Raspberry Pi while their memory performance remains
similar, resulting in the similar costs for BlackBox’s system
call argument copying having relatively higher overhead.

fork and exec measurements show the highest overhead
for BlackBox Enclaved versus Docker, less than three times
the cost of Docker. This is due to validating that the new
process’s address space matches its parent’s on fork, and
additionally validating the address space against the new
binary’s mappings on exec. Although the binary must be de-
crypted for exec measurements, it is only decrypted once and
all subsequent iterations just confirm the mappings match the
first’s, thereby amortizing the cost of the initial decryption.

Page fault measurements show the one microbenchmark
for which there is noticeable overhead for BlackBox NS
versus Docker. This is due to the added cost of using NPTs
for the BlackBox NS configuration. This overhead then
increases for enclaved containers due to needing to verify the
fault resides within a known address mapping to protect the
container from potential Iago attacks from the OS. Although
a page fault results in several context switches to the CSM,
the context switches themselves are not a significant cost
because they are relatively inexpensive on Arm.

Protecting container IPC communication through encryp-
tion imposes little cost for most workloads, but this overhead
is noticeable for pipe, UNIX domain sockets (AF_UNIX),
and hackbench measurements. These benchmarks represent
worst-case overheads for IPC encryption because they all use
IPC to read and write a single byte to signal other processes.
When encrypting, this single byte is padded and written along
with authentication data, significantly increasing the relative
write size and affecting read/write latency measurements.
In contrast, the context switch microbenchmark, in which a

parent process spawns two child processes that communicate
between each other with pipes, has almost no overhead. In
this case, 4 byte reads and writes are used so the extra data
that encryption adds, and therefore the time to complete
the calls, is relatively less, and context switching and
rescheduling dominates IPC encryption costs. The signaling
microbenchmarks do not involve any encryption. BlackBox
Enclaved overhead for signal installation is due to copying
the sigaction struct in and out, and for signal delivery is
due to verifying the control flow.

Apache, HAProxy, Kernbench, memcached, MySQL, and
Nginx measurements show that BlackBox overhead is much
less on realistic application workloads than microbenchmarks.
In most cases, BlackBox Enclaved overhead versus native
execution is less than 15% on both the Raspberry Pi and
AMD server, demonstrating modest overhead across both
Arm embedded and server hardware. As indicated by the
BlackBox NS measurements, NPT usage is a source of
overhead, though more so on the Raspberry Pi than the AMD
server. Apache, HAProxy, and Nginx workloads measure
latency in addition to throughput. In terms of latency, the
overhead for these workloads for BlackBox Enclaved versus
native execution is less than 15% on both the Raspberry
Pi and AMD server. Furthermore, Netperf measurements
show that BlackBox provides fast networking performance
as it involves no I/O virtualization, in contrast to using
VMs. Applications are able to make full use of the host’s
networking capabilities. Although applications are expected
to encrypt their network I/O to protect their data, we did not
encrypt network connections for these measurements to avoid
encryption costs obscuring BlackBox’s overhead.

Figure 5 quantifies the CPU utilization when running the
application workloads, as a measure of computational over-
head. Solid bars indicate results run on the Raspberry Pi and
the overlaid outlined bars indicate results run on the AMD
server. CPU utilization is generally lower on the AMD server
than the Raspberry Pi, since the AMD server is more powerful
with more CPUs. On the Raspberry Pi, the difference in CPU
utilization between BlackBox Enclaved and native execution
is less than 15% across all workloads, and less than 5% for
all workloads except Apache and Memcached. On the AMD
server, the difference in CPU utilization between BlackBox
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Figure 5: CPU Utilization for Application Workloads

Enclaved and native execution is less than 15% across all
workloads, except Apache. Apache CPU utilization for Black-
Box Enclaved is high because at higher throughput rates, the
cost of extra copying to use syscall buffers, as discussed in
Section 3.4, becomes dominant. The buffers are used to send
data from a container’s PPAS to the OS to perform network
I/O. Other than Apache, the difference in CPU utilization
between BlackBox Enclaved and native execution is quite
modest across both Arm embedded and server hardware.

5.2 System Call Coverage
We evaluated the completeness of Linux system call support
in the current BlackBox prototype implementation by running
the Linux Test Project (LTP) [44] version 20210524 system
call test suite. LTP consists of 1344 test cases designed to
test for correct functionality across the entire Linux system
call interface. We compared system call support results for
running LTP in an enclaved container on BlackBox versus
running it natively, in both cases using the Raspberry Pi.
When running LTP natively, 1149 test cases pass and 195
fail. These failures are expected and are a combination of
missing dependencies and unsupported features of the kernel
and architecture used. For example, test cases for the 16-bit
version of fchown are not supported on the platform. When
running LTP using BlackBox, 1012 test cases pass and 332
fail, demonstrating support for almost 90% of test cases that
passed when run natively. The additional 137 failed tests are
due to the current prototype not yet supporting lesser used
system calls like process_vm_readv.

5.3 Evaluation of Practical Attacks
We evaluated BlackBox’s effectiveness against a com-
promised OS by analyzing CVEs related to the Linux
kernel and various Linux container engines such as Docker.
We considered 23 CVEs which could result in privilege
escalation, code execution, and memory corruption in Linux
capable of compromising the integrity and confidentiality of
container data; we did not consider denial of service attacks,
as BlackBox does not guarantee availability. Specifically,

Bug (CVE-*) Description
2009-3234 Kernel buffer overflow enabling return-to-user attack.
2010-2959 Function pointer overwrite due to integer overflow.
2010-4258 Kernel memory overwrite due to improper handling

of get_fs value.
2013-6441 Improper permissions when mounting /sbin/init.
2014-6407 Symbolic and hardlink issues during docker pull.
2014-9357 Mishandling untrusted archive extraction.
2015-1335 Directory traversal flaw in lxc-start.
2015-3627 Unchecked file descriptor opened prior to chroot.
2015-3629 Unchecked symlink when respawning container.
2015-3630 Weak permissions on /proc filesystem.
2016-1576 Improperly restricted mount namespace.
2016-5195 Race condition in handling CoW breakage.
2016-7117 Use after free in __sys_recvmmsg.
2016-9962 Improperly flushed file descriptors.
2017-7308 Improper validation of data size in packet_set_ring().
2017-1000112 Exploitable memory corruption due to UFO to

non-UFO path switch.
2018-15664 TOCTOU vulnerability in symbolic link checking.
2018-18955 Mishandled nested user namespaces in map_write().
2019-5736 /proc/self/exe file descriptor mishandling
2019-10144 Container processes not isolated during ‘rkt enter’.
2019-11247 Improper access to cluster-scoped custom resource.
2019-14271 Container contents loaded while privileged during

container copy.
2020-14386 Kernel memory corruption due to arithmetic issue

in tpacket_rcv().

Table 4: CVEs Used for Evaluation of Practical Attacks

privilege escalation occurs if the exploit enables the attacker
to gain root access or kernel privilege level, and code
execution occurs if the exploit enables executing arbitrary
code at the same privilege as the software with the bug.

Table 4 lists the CVEs considered. We considered both
malicious containers and unprivileged host users who exploit
bugs in the kernel and container engines to elevate privileges
and compromise container data. In general, these CVEs
exploit flaws in container runtime systems and the kernel that
enable an attacker to obtain kernel-level or root-level access.
Ordinarily, this level of access compromises all container data
and integrity on the system. Linux and the relevant container
engine do not fully protect against any of these compromises.
In contrast, BlackBox protects against all of them.

6 Related Work

Various approaches have been explored to securing applica-
tions from untrusted OSes. Hardware-based trusted execution
environments (TEEs) such as ARM TrustZone [2] and
Intel Software Guard Extensions (SGX) [30] can protect
application memory from higher privileged software, but
require applications to be written or rewritten specifically for
this purpose and may impose other functionality restrictions.

Some systems have built on TEEs. Haven [7] aims to en-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    695



clave Windows applications by porting a Windows library OS
to run inside SGX, avoiding Iago attacks by trusting the library
OS at the cost of a significant TCB. Other systems also pro-
pose running library OSes enclaved by SGX [50,59,66]. Cubi-
cleOS [57] is a library OS designed to be runnable within con-
tainers that makes use of Intel MPK hardware extensions to
isolate apps. Scone [3] uses SGX to enclave Linux containers,
requiring its own custom threading model and a modified C li-
brary within SGX to provide system call support and shielded
I/O interfaces for interacting with the OS. TZ-Container [28]
leverages a shield layer and a container manager inside Trust-
Zone to protect containers, but relies on the OS not modifying
the memory mappings used to protect containers by scanning
the OS image to ensure it does not contain instructions capa-
ble of updating page tables. TrustShadow [24] introduces a
runtime system within TrustZone so that a limited number of
security-critical legacy apps operate on TrustZone memory
isolated from the OS. Unlike these approaches, BlackBox
does not rely on TrustZone or SGX and does not rely on a
library OS or other significant runtime system running inside
an enclaved execution environment, avoiding increasing TCB
complexity. Unlike Haven, its small TCB comes with poten-
tially greater susceptibility to Iago attacks by allowing appli-
cations to use the system call interface of the untrusted OS.

Commodity hypervisors have been modified to secure
applications from an untrusted OS by restricting a guest
OS in a VM to an encrypted view of application mem-
ory [4,10,11,27,35,45,67]. For example, InkTag [27] uses two
NPTs as part of its isolation mechanism, one for the OS and
the other for all applications, separating the plaintext memory
of isolated applications from encrypted memory, but relying
on paravirtualized page table updates to isolate applications
from each other. Appshield [12] uses virtualization techniques
to protect and isolate critical applications against OS-level
malware attacks. Appshield’s memory protection model
requirements are not compatible with Linux’s copy-on-write
semantics and its limited system call interface is insufficient
to support significant workloads. In contrast, BlackBox does
not rely on a hypervisor or traditional memory virtualization,
but instead introduces a new concept of protected physical
address spaces implemented as part of a container security
monitor, enabling it to have a much smaller TCB.

Various approaches reduce the hypervisor’s TCB. Microhy-
pervisors [25,34,61] build new hypervisors from scratch with
smaller TCBs, but at the cost of a significantly reduced feature
set. BlackBox’s approach allows for a small TCB while still
maintaining a significant feature set and the full hardware
support available in a commodity OS. SeKVM [38–40, 63]
retrofits KVM with a small verified TCB to provide VM data
confidentiality and integrity. In contrast, BlackBox provides
container-level isolation and does not require a hypervisor,
introducing a new concept, the CSM, that avoids the cost and
complexity of hypervisor-based virtualization.

X-Containers [60] targets securely isolating containers in

the cloud. Its containers include an entire library OS based
on Linux and run on top of a Xen hypervisor, providing a
model more akin to nested virtualization. Unlike BlackBox,
X-Containers have a large TCB from requiring both large
library OSes and a commodity hypervisor.

Other approaches have looked at ways to harden traditional
containers. gVisor [23] runs a limited userspace kernel within
a container and beneath applications. System calls are inter-
cepted to further isolate applications from the host OS through
reduced interactions and potential attack surfaces. gVisor’s in-
creased isolation comes at the cost of a increased TCB size in
the container. Distroless images [22] aim to limit the contents
of a container to precisely what is necessary for the target app
to run, reducing what must be trusted and maintained within
a container. Linux Container Hardening [42] aims to improve
the security of Linux containers through improving the kernel
subsystems and primitives used by containers to be more se-
cure. These approaches are complementary to BlackBox, and
although they improve container security, unlike BlackBox,
they all must still trust the OS and its large codebase.

7 Conclusions

BlackBox is a new container architecture providing fine-
grain protection of application data confidentiality and
integrity without trusting the OS. BlackBox achieves this
by introducing a container security monitor, a new software
component that creates protected physical address spaces
for containers. The monitor enforces protected address
spaces to isolate container memory and CPU state from
the OS and other containers. It facilitates the use of OS
facilities via system calls by passing required data between
protected address spaces and the OS, implicitly declassifying
such data. This narrow purpose keeps it small and simple.
Unlike a hypervisor, the monitor performs no virtualization
or resource management. Instead, it relies on the OS to
provide complex functionality required to manage hardware
resources, including CPU scheduling, memory management,
file systems, and device management. We have implemented
BlackBox by repurposing Arm hardware virtualization sup-
port. Our results demonstrate that BlackBox supports existing
unmodified containerized application workloads with modest
overhead while maintaining a trusted computing base orders
of magnitude less than an OS or commodity hypervisor.
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