
Appears in Proceedings of the First Symposium on Networked Systems Design and Implementation (NSDI 2004)

SWAP: A Scheduler With Automatic Process Dependency Detection

Haoqiang Zheng and Jason Nieh

Department of Computer Science

Columbia University

{hzheng,nieh}@cs.columbia.edu

Abstract

We have developed SWAP, a system that auto-
matically detects process dependencies and accounts
for such dependencies in scheduling. SWAP uses
system call history to determine possible resource
dependencies among processes in an automatic and
fully transparent fashion. Because some dependen-
cies cannot be precisely determined, SWAP asso-
ciates confidence levels with dependency information
that are dynamically adjusted using feedback from
process blocking behavior. SWAP can schedule pro-
cesses using this imprecise dependency information
in a manner that is compatible with existing sched-
uling mechanisms and ensures that actual scheduling
behavior corresponds to the desired scheduling pol-
icy in the presence of process dependencies. We have
implemented SWAP in Linux and measured its effec-
tiveness on microbenchmarks and real applications.
Our results show that SWAP has low overhead, effec-
tively solves the priority inversion problem and can
provide substantial improvements in system perfor-
mance in scheduling processes with dependencies.

1 Introduction

Modern applications often consist of a number
of cooperating processes in order to achieve a higher
degree of modularity, concurrency, and performance.
Applications of this type span a broad range from
high-performance scientific parallel applications to
desktop graphical computing applications. Interac-
tions among the cooperating processes often result
in dependencies such that a certain process cannot
continue executing until some other processes fin-
ish certain tasks. However, operating systems today
often ignore process dependencies and schedule pro-
cesses independently. This can result in poor system
performance due to the actual scheduling behavior
contradicting the desired scheduling policy.

Consider priority scheduling, the most common
form of scheduling used today in commercial oper-
ating systems for general-purpose and real-time em-
bedded systems. The basic priority scheduling al-

gorithm is simple: given a set of processes with as-
signed priorities, run the process with the highest
priority. However, when processes share resources,
resource dependencies among processes can arise that
prevent the scheduler from running the highest pri-
ority process, resulting in priority inversion [5]. For
example, suppose there are three processes with high,
medium, and low priority such that the high pri-
ority process is blocked waiting for a resource held
by the low priority process. A priority scheduler
would run the medium priority process, preventing
the low priority process from running to release the
resource, thereby preventing the high priority pro-
cess from running as well. This situation is par-
ticularly problematic because the medium priority
process could run and prevent the high priority pro-
cess from running for an unbounded amount of time.
Priority inversion can critically impact system per-
formance, as demonstrated in the case of the NASA
Mars Pathfinder Rover [12] when priority inversion
caused repeated system resets and drastically lim-
ited its ability to communicate back to the Earth.

Because priority inversion can cause significant
performance problems, much work has been done
to address this issue [1, 5, 15, 17]. The general
idea behind these approaches is to boost the pri-
ority of a low priority process holding the resource
so that it can run and release the resource to get
out of the way of a high priority process waiting
on the resource to run. However, there are four
important limitations that occur in practice with
such approaches in the context of general-purpose
operating systems. First, these approaches focus on
mutex resources only and do not address other po-
tential resource dependencies among processes. For
instance, a high priority X window application can
suffer priority inversion while waiting on the X server
to process requests from other lower priority X ap-
plications without any dependencies on mutexes [9].
Second, these approaches typically assume that it is
possible to precisely determine dependencies among
processes and do not consider dependencies such as
those involving UNIX signals and System V IPC

1



Appears in Proceedings of the First Symposium on Networked Systems Design and Implementation (NSDI 2004)

semaphores where no such direct correlation exists.
Third, these approaches generally assume that prior-
ities are static whereas priorities are often adjusted
dynamically by scheduling policies in modern op-
erating systems. Fourth, implementing these ap-
proaches for a given resource in a commercial op-
erating system can require adding detailed resource-
specific usage information and numerous modifica-
tions to many parts of a complex operating system.

We have developed SWAP, a Scheduler With Au-
tomatic process dePendency detection, to effectively
account for process dependencies in scheduling in
the context of general-purpose operating systems.
Rather than focusing on process dependencies aris-
ing from mutex resources, SWAP’s dependency de-
tection mechanism tracks system call history to de-
termine a much broader range of possible resource
dependencies among processes, including those that
arise from widely used interprocess communication
mechanisms. Because some dependencies cannot be
precisely determined, SWAP associates a confidence
level with each dependency that is dynamically ad-
justed using feedback from process blocking behav-
ior. SWAP introduces a general dependency-driven
scheduling mechanism that can use imprecise de-
pendency information to schedule processes to run
that are determined to be blocking high priority pro-
cesses. SWAP scheduling is compatible with exist-
ing scheduling mechanisms. It is more general than
popular priority inheritance approaches [5, 15] and
can be used with schedulers that dynamically ad-
just priorities or non-priority schedulers. Further-
more, SWAP automatically accounts for process de-
pendencies in scheduling without any intervention
by application developers or end users. We have
implemented SWAP in Linux and measured its ef-
fectiveness on both microbenchmarks and real appli-
cations. Our experimental results demonstrate that
SWAP operates with low overhead and provides sub-
stantial improvements in system performance when
scheduling processes with dependencies.

This paper presents the design and implementa-
tion of SWAP. Section 2 discuses related work. Sec-
tion 3 describes the SWAP automatic dependency
detection mechanism. Section 4 describes SWAP
dependency-driven scheduling. Section 5 presents
performance results that quantitatively measure the
effectiveness of a Linux SWAP implementation using
both microbenchmarks and real application work-
loads. Finally, we present some concluding remarks.

2 Related Work

Lampson and Redell discussed the priority inver-
sion problem more than two decades ago and intro-

duced priority inheritance to address the problem
[5]. Using priority inheritance, a process holding a
resource inherits the highest priority of any higher
priority processes blocked waiting on the resource so
that it can run, release the resource, and get out of
the way of the higher priority processes. Priority
inheritance assumes that priorities are static while
they are inherited because recalculating the inher-
ited priority due to dynamic priority changes is too
complex. Priority inheritance addresses the prior-
ity inversion problem assuming the resource depen-
dency is known; it does not address the underlying
issue of determining resource dependencies.

Sha, et. al. developed priority ceilings [15] to
reduce blocking time due to priority inversion and
avoid deadlock in real-time systems. However, pri-
ority ceilings assume that the resources required by
all processes are known in advance before the exe-
cution of any process starts. This assumption holds
for some real-time embedded systems, but does not
hold for general-purpose systems. Other approaches
such as preemption ceilings [1] can also be used in
real-time embedded systems but also make assump-
tions about system operation that do not hold for
general-purpose systems. Like priority inheritance,
priority ceilings typically assume static priorities to
minimize overhead and does not address the issue of
determining resource dependencies among processes.

To address priority inversion in the presence of
dynamic priorities, Clark developed DASA for ex-
plicitly scheduling real-time processes by grouping
them based on their dependencies [3]. While the
explicit scheduling model is similar to our sched-
uling approach, DASA needs to know the amount
of time that each process needs to run before its
deadline in order to schedule processes. While such
process information may be available in some real-
time embedded systems, this information is gener-
ally not known for processes in general-purpose sys-
tems. DASA also assumes that accurate dependency
information is provided. It does not consider how
such information can be obtained, and can fail with
inaccurate dependency information.

Sommer discusses the importance of removing
priority inversion in general-purpose operating sys-
tems and identifies the need to go beyond previous
work which focused almost exclusively on the prior-
ity inversion problem for mutex resources [17]. Som-
mer notes the difficulty of addressing priority inver-
sion for non-mutex resources when it is difficult if not
impossible to determine precisely on which process
a high priority dependent process is waiting. Som-
mer proposes a priority-inheritance approach for ad-
dressing priority inversion due to system calls, but

2



Appears in Proceedings of the First Symposium on Networked Systems Design and Implementation (NSDI 2004)

only implemented and evaluated an algorithm for a
single local procedure system call in Windows NT.
Sommer did not address general interprocess com-
munication mechanisms that can result in priority
inversion and does not consider the impact of dy-
namic priority adjustments.

Steere, et. al. developed a feedback-based re-
source reservation scheduler that monitors the prog-
ress of applications to guide resource allocation [18].
The scheduler allocates resources based on reserva-
tion percentages instead of priorities to avoid ex-
plicit priority inversion. Symbiotic interfaces were
introduced to monitor application progress to derive
the appropriate assignment of scheduling parameters
for different applications based on their resource re-
quirements in the presence of application dependen-
cies. However, applications need to be modified to
explicitly use the interfaces for the system to moni-
tor progress effectively.

Mach’s scheduler handoff mechanism [2], Lot-
tery scheduling’s ticket transfers [19] and doors [8]
are mechanisms whereby applications can deal with
process dependencies by explicitly having one pro-
cess give its allocated time to run to another pro-
cess. However, these handoff mechanisms typically
require applications to be modified to explicitly use
them. Applications also need to identify and know
which processes to run. These mechanisms are not
designed to resolve priority inversion in general and
do not resolve priority inversions due to dependen-
cies that are not explicitly identified in advance.

Co-scheduling mechanisms have been developed
to improve the performance of parallel applications
in parallel computing environments [4, 10, 16]. These
mechanisms try to schedule cooperating processes or
threads belonging to the same parallel application
to run concurrently. This reduces busy waiting and
context switching overhead and improves the degree
of parallelism that can be used by the application.
Because many of these applications are written using
parallel programming libraries, these libraries can be
modified to implement co-scheduling. Co-scheduling
mechanisms focuses on supporting fine-grained par-
allel applications. They typically do not support
multi-application dependencies and do not address
the problem of uniprocessor scheduling in the pres-
ence of process dependencies.

3 Automatic Dependency Detection

SWAP introduces a mechanism that automati-
cally detects potential process dependencies by lever-
aging the control flow structure of commodity op-
erating systems. In commodity operating systems
such as Linux, process dependencies occur when two

processes interact with each other via the interpro-
cess communication and synchronization mechanisms
provided by the operating system. These mecha-
nisms are provided by the operating system as sys-
tem calls. This suggests a simple idea that SWAP
uses for detecting resource dependencies among pro-
cesses: if a process is blocked because of a process
dependency, determine the system call it was exe-
cuting and use that information to determine what
resource the process is waiting on and what processes
might be holding the given resource.

Based on this idea, SWAP uses a simple resource
model to represent process dependencies in a system.
The model contains three components: resources,
resource requesters, and resource providers. A re-
source requester is simply a process that is request-
ing a resource. A resource provider is a process that
may be holding the requested resource and therefore
can provide the resource by releasing it. If a certain
resource is requested but is not available, the re-
source requesters will typically need to block until
the resource is made available by the resource pro-
viders. SWAP uses this simple yet powerful model
to represent almost all possible dependency relation-
ships among processes. SWAP applies this model to
operating system resources to determine dependen-
cies resulting from interprocess communication and
synchronization mechanisms.

An assumption made by SWAP is that resources
are accessed via system calls. While this is true for
many resources, one exception is the use of mem-
ory values for synchronization, most notably user
space shared memory mutexes. User space mutexes
may simply spin wait to synchronize access to pro-
tected resources. Since no system call is involved
when accessing this kind of mutex, SWAP does not
detect this kind of dependency relationship. How-
ever, thread library mutex implementations such as
pthreads in Linux do not allow spin waiting indefi-
nitely while waiting for a mutex. Instead, they al-
low spin waiting for only a time less than the con-
text switch overhead then block. Given that context
switch times in modern systems are no more than a
few microseconds, the time spent busy waiting and
the time not accounted for by SWAP is relatively
small. For example, the Linux pthread mutex im-
plementation will spin wait for only 50 CPU cycles
before blocking [6]. SWAP focuses instead on pro-
cess dependencies that can result in processes block-
ing for long periods of time.

3.1 SWAP Resource Model

In the SWAP resource model, each resource has
a corresponding resource object identified by a tu-

3



Appears in Proceedings of the First Symposium on Networked Systems Design and Implementation (NSDI 2004)

ple consisting of the resource type and the resource
identifier. The resource identifier can consist of an
arbitrary number of integers. The meaning of the
resource identifier is specific to the type of resource.
For example, a socket is a resource type and the
inode number associated with this socket object is
used as the resource specific identifier for sockets.
SWAP associates with each resource object a list of
resource requesters and a list of resource providers.

SWAP creates a resource object when a resource
is accessed for the first time and deletes the object
when there are no more processes using it, which is
when it has no more resource requesters or providers.
SWAP efficiently keeps track of resource objects by
using a resource object hash table. A resource ob-
ject is added to the hash table when it is created
and removed when it is deleted. The hash key of a
resource object is generated from its resource iden-
tifier. If a resource identifier consists of N integers,
SWAP uses the modulus of the sum of all these inte-
gers and the hash table size as the hash key for this
resource. Generating the hash key this way allows
resource objects to be quickly added into or retrieved
from the hash table. Separate chaining is used if re-
source identifiers hash to the same hash table entry,
but such conflicts are infrequent.

SWAP associates a process as a resource requester
for a resource object if the process blocks because it
is requesting the respective resource. When a pro-
cess blocks, SWAP needs to first determine what re-
source the process is requesting. Since resources are
accessed via system calls, SWAP can determine the
resource being requested by examining the system
call parameters. For example, if a process requests
data from a socket resource by using the system call
read(sock,...), we can identify which socket this
process is accessing from the socket descriptor sock.
When a process executes a system call, SWAP saves
the parameters of the system call. If the process
blocks, SWAP then identifies the resource being re-
quested based on the saved system call parameters.
Once the resource is identified, SWAP appends the
process to the resource object’s list of resource re-
questers. When a resource requester eventually runs
and completes its system call, SWAP determines
that its request has been fulfilled and removes the
process from the requester list of the respective re-
source object.

To allow the resource requester to wake up and
continue to run, a resource provider needs to run to
provide the respective resource to the requester. To
reduce the time the resource requester is blocked,
we would like to schedule the resource provider as
soon as possible. However, waking up the requester

by providing the necessary resource is an action that
will not happen until some time in the future. Know-
ing which process will provide the resource to wake
up the requester is unfortunately difficult to deter-
mine before the wake up action actually occurs. The
process that will provide the resource may not have
even been created yet. Furthermore, there may be
multiple processes that could serve as the provider
for the given requester. For example, a process that
is blocked on an IPC semaphore could be provided
the semaphore by any process in the system that
knows the corresponding IPC key. That is to say,
any process existing in the system could in theory be
the possible resource provider. In practice though,
only a few processes will have the corresponding IPC
key and hence the number of possible resource pro-
viders may be more than one but is likely to be small.

To identify resource providers, SWAP uses a his-
tory-based prediction model. The model is based
on the observation that operating system resources
are often accessed in a repeating pattern. For ex-
ample, once a process opens a socket, it will usually
make many calls to access the socket before having it
closed. This behavior suggests that a process with a
history of being a good resource provider is likely to
be a future provider of this resource. SWAP there-
fore treats all past providers of a certain resource
as potential future resource providers. SWAP first
identifies these potential resource providers and then
applies a feedback-based confidence evaluation using
provider history to determine which potential pro-
viders will actually provide the necessary resource
to a requester in the most expedient manner.

SWAP associates a process as a potential resource
provider for a resource object the first time the pro-
cess executes a system call that makes it possible
for the process to act as a resource provider. For ex-
ample, if a process writes data to a socket resource,
SWAP identifies this process as a resource provider
for the socket. When a process executes a system
call, SWAP determines the resource being provided
by examining the system call parameters. Once the
resource is identified, SWAP appends the process to
the resource object’s list of resource providers. Note
that when SWAP adds a process to the resource pro-
vider list, it has only been identified as a potential
resource provider. The potential provider must have
provided the resource at least once to be identified
as a resource provider, but just because it has pro-
vided the resource before does not necessarily mean
it will provide the resource again.

SWAP uses feedback-based confidence evaluation
to predict which process in a list of potential re-
source providers will provide the necessary resource

4



Appears in Proceedings of the First Symposium on Networked Systems Design and Implementation (NSDI 2004)

most quickly to a resource requester. This is quan-
tified by assigning a confidence value to each po-
tential resource provider. A larger confidence value
indicates that a provider is more likely to provide
the resource quickly to a resource requester. SWAP
adjusts the confidence values of potential providers
based on feedback from their ability to provide the
resource quickly to a requester. If a resource pro-
vider is run and it successfully provides the resource
to a requester, SWAP will use that positive feedback
to increase the confidence value of the provider. If a
resource provider is run for a certain amount of time
and it does not provide the resource to a requester,
SWAP will use that negative feedback to decrease
the confidence value of the provider.

We first describe more precisely how SWAP com-
putes the confidence of each resource provider. Sec-
tion 4 describes how SWAP uses the confidence of re-
source providers in scheduling to account for process
dependencies. SWAP assigns an initial base confi-
dence value K to a process when it is added to a
resource object’s provider list. SWAP adjusts the
confidence value based on feedback within a range
from 0 to 2K. K can be configured on a per resource
basis. If a resource provider successfully provides the
resource to a requester, SWAP increments its confi-
dence value by one. If a resource provider runs for
T time quanta and does not provide the resource to
a requester, SWAP decrements its confidence value
by one. T can be configured on a per resource ba-
sis. A process on the resource provider list will not
be considered as a potential resource provider if its
confidence drops to zero.

Because it is possible to have cascading process
dependencies, a resource provider P1 for a resource
requester P can further be blocked by another pro-
cess P2, which is the resource provider for P1. As a
result, P2 can be indirectly considered as a resource
provider for P . SWAP dynamically determines the
confidence of an indirect provider as the product of
the respective confidence values. Let C(P, P1, R) be
the confidence of provider P1 for resource R with
requester P and C(P1, P2, R1) be the confidence of
provider P2 for resource R1 with requester P1. Then
the indirect confidence C(P, P2, R) is computed as
C(P, P1, R) ∗C(P1, P2, R1)/K. Since P2 is not a di-
rect resource provider for P , if P2 is run as an indi-
rect resource provider for P , the feedback from that
experience is applied to the confidence of P1. This
ensures that a resource provider that is blocked and
has multiple providers itself will not be unfairly fa-
vored by SWAP in selecting among direct resource
providers based on confidence values.

A process will usually remain on the resource

provider list until it either terminates or executes a
system call that implicitly indicates that the process
will no longer provide the resource. For example, a
process that closes a socket would no longer be iden-
tified as a resource provider for the socket. SWAP
does, however, provide a configurable parameter L
that limits the number of resource providers asso-
ciated with any resource object. SWAP groups the
providers in three categories: high confidence pro-
viders, default confidence providers, and low con-
fidence providers. When this parameter L is set,
SWAP only keeps the L providers with highest con-
fidence values. If a new resource provider needs to
be added to the provider list and it already has L
providers, the provider is added to the end of the
default confidence provider list, and an existing pro-
vider is removed from the front of the lowest cat-
egory provider list that is not empty. When there
are many potential resource providers, this limit can
result in a loss of past history information regarding
low confidence providers, but reduces the history in-
formation maintained for a resource object.

3.2 SWAP Dependency Detection in Linux

To further clarify how the SWAP resource model
can be generally and simply applied to automatically
detecting process dependencies in general-purpose
operating systems, we consider specifically how the
model can be applied to the kinds of resources found
in Linux. These resources include sockets, pipes and
FIFOs, IPC message queues and semaphores, file
locks, and signals. We discuss in detail how sockets,
IPC semaphores, and file locks can be identified by
SWAP and how the requesters and potential provid-
ers of these resources can be automatically detected.
Pipes, FIFOs, IPC message queues and signals are
supported in a similar fashion but are not discussed
further here due to space constraints.

Sockets are duplex communication channels that
can involve communication either within a machine
or across machines. We only consider the former
case since the SWAP resource model only addresses
process dependencies within a machine. This in-
cludes both UNIX domain sockets and Internet sock-
ets with the same local source and destination ad-
dress. A socket has two endpoints and involves two
processes, which we can refer to as a server and a
client. SWAP considers each endpoint as a separate
resource so that each socket has two peer resource
objects associated with it. These objects can be cre-
ated when a socket connection is established. For
example, when a client calls connect and a server
calls accept to establish a socket connection, SWAP
creates a client socket resource object and a server

5



Appears in Proceedings of the First Symposium on Networked Systems Design and Implementation (NSDI 2004)

resource object. All system calls that establish and
access a socket provide the socket file descriptor as
a parameter. SWAP can use the file descriptor to
determine the corresponding inode number. SWAP
then uses the inode number to identify a socket re-
source object.

SWAP determines the resource requesters and
providers for socket resource objects based on the
use of system calls to access sockets. A socket can
be accessed using the following system calls: read,
write, readv, writev, send, sendto, sendmsg, recv,
recvfrom, recvmsg, select, poll, and sendfile.
When a socket is accessed by a process, the pro-
cess is added as a resource provider for its socket
endpoint and the system call parameters are saved.
The process will remain a resource provider for the
resource object until it explicitly closes the socket or
terminates. If the system call blocks, it means that
the process is requesting the peer resource object
on the other end of the socket. For example, when
a client does a read on its endpoint and blocks, it
is because the server has not done a write on its
peer endpoint to make the necessary data available
to the client. If the system call blocks, SWAP there-
fore adds the process as a resource requester for the
peer resource object.

System V IPC semaphores provide an inter-
process synchronization mechanism. SWAP asso-
ciates a resource object with each IPC semaphore.
An IPC semaphore object is created when a process
calls semget to create a semaphore. semget returns
a semaphore identifier which is a parameter used by
all system calls that access the semaphore. SWAP
therefore uses the semaphore identifier to identify
the respective resource object. SWAP determines
the resource requesters and providers for semaphores
based on the use of the semop system call to access
the resource. When a semaphore is accessed by a
process, the process is added as a resource provider
and the system call parameters are saved. The pro-
cess will remain a resource provider for the resource
object until the semaphore is explicitly destroyed or
the process terminates. If the system call blocks,
the calling process is added as a resource requester
of the semaphore object.

File locks provide a file system synchronization
mechanism between processes. Linux supports two
kinds of file locking mechanisms, fcntl and flock.
Since both of these mechanisms work in a similar
way and can both provide reader-writer lock func-
tionality, we just discuss how SWAP supports the
flock mechanism. SWAP associates a resource ob-
ject with each file lock. An flock object is created
when a process calls flock to create a file lock for

a file associated with the file descriptor parameter
in flock. SWAP distinguishes between exclusive
locks and shared locks and creates a different flock
resource object for each case. Since flock is used
for all operations on the file lock, the file descrip-
tor is available for all file lock operations. SWAP
can therefore use the file descriptor to determine the
corresponding inode number. SWAP uses the inode
number and a binary value indicating whether the
file lock created is shared or exclusive to identify the
respective resource object.

SWAP determines the resource requesters and
providers for flock resource objects based on the use
of system calls to access the resources. A shared
flock resource object is accessed when flock is called
with LOCK SH and the respective file descriptor. When
this happens, the calling process is added as a re-
source provider for the object. If the system call
blocks, then some other process is holding the file
lock exclusively, which means the process is a re-
source requester for the exclusive flock object. SWAP
therefore adds the process as a resource requester
for the exclusive flock resource object. An exclu-
sive flock resource object is accessed when flock is
called with LOCK EX and the respective file descrip-
tor. When this happens, the calling process is added
as a resource provider for the object. If the system
call blocks, then some other process is holding the
file lock either shared or exclusively, which means the
process is a resource requester for the both the exclu-
sive and shared flock object. SWAP therefore adds
the process as a resource requester for both flock re-
source objects. For both shared and exclusive flock
resource objects, a process remains a resource pro-
vider for the object until it terminates or explicitly
unlocks the flock by calling flock with LOCK UN.

4 Dependency-Driven Scheduling

SWAP combines the information it has gathered
from its dependency detection mechanism with a
scheduling mechanism that is compatible with the
existing scheduling framework of an operating sys-
tem but accounts for process dependencies in deter-
mining which process to run. We describe briefly
how a conventional scheduler determines which pro-
cess to run and then discuss how SWAP augments
that decision to account for process dependencies.

A conventional scheduler maintains a run queue
of runnable processes and applies an algorithm to
select a process from the run queue to run for a time
quantum. Processes that block become not runna-
ble and are removed from the run queue. Similarly,
processes that wake up become runnable and are in-
serted into the run queue. With no loss of general-

6



Appears in Proceedings of the First Symposium on Networked Systems Design and Implementation (NSDI 2004)

ity, we can view each scheduling decision as applying
a priority function to the run queue that sorts the
runnable processes in priority order and then selects
the highest priority process to execute [14]. This
priority model, where the priority of a process can
change dynamically for each scheduling decision, can
be used for any scheduling algorithm. To account
for process dependencies, we would like the priority
model to account for these dependencies in deter-
mining the priority of each process. Assuming the
dependencies are known, this is relatively easy to
do in the case of a static priority scheduler where
each process is assigned a static priority value. In
this case when a high priority process blocks wait-
ing on a lower priority process to provide a resource,
the the lower priority process can have its priority
boosted by priority inheritance. The scheduler can
then select a process to run based on the inherited
priorities. However, priority inheritance is limited
to static priority schedulers and does not work for
more complex, dynamic priority functions.

To provide a dependency mechanism that works
for all dynamic priority functions and therefore all
scheduling algorithms, SWAP introduces the notion
of a virtual runnable process. A virtual runnable
process is a resource requester process that is blocked
but has at least one runnable resource provider or
virtual runnable resource provider that is not itself.
Note that a resource requester could potentially also
be listed as a provider for the resource, but is explic-
itly excluded from consideration when it is the re-
source requester. The definition is recursive in that
a process’s provider can also be virtual runnable. A
process that is blocked and has no resource providers
is not virtual runnable. A virtual runnable process
can be viewed as the root of a tree of runnable and
virtual runnable resource providers such that at least
one process in the tree is runnable. SWAP makes a
small change to the conventional scheduler model by
leaving virtual runnable processes on the run queue
to be considered in the scheduling decision in the
same manner as all other runnable processes. If a
virtual runnable process is selected by the scheduler
to run, one of its resource providers is instead chosen
to run in its place. SWAP selects a resource provider
to run in place of a virtual runnable process using
the confidence associated with each provider. The
confidence of a runnable provider is just its confi-
dence value. The confidence of a virtual runnable
provider is its indirect confidence value as described
in Section 3.1. If a virtual runnable provider is se-
lected, the confidence values of its providers are ex-
amined recursively until a runnable process with the
highest confidence value is selected. Once a virtual

P1

P2 P3

P4 P5

P1

P2 P3

P1
Step1

C= 20

C= 20 C= 20

C= 19 C= 20

Step3Step2

C= 20

Figure 1: SWAP Scheduling Example

runnable requester process becomes runnable as a
result of being provided the resource, it is simply
considered in the scheduling decision like all other
runnable processes.

Figure 1 shows an example to further illustrate
how SWAP dependency-driven scheduling chooses
a resource provider based on confidence. Virtual
runnable processes are shaded and runnable pro-
cesses are not. Suppose at the time the scheduler
is called, a virtual runnable process P1 is currently
the highest priority process. In Step 1 in Figure 1,
P1 is blocked because it is requesting resource R1
which has two resource providers P2 and P3. P3 is
also blocked because of it is requesting resource R2
which has two providers P4 and P5. In this exam-
ple, P4 needs to run for 40 ms to produce resource
R2, and P3 needs to run for 20 ms to produce re-
source R1. P2 and P5 do not actually provide the
respective resources this time. In this example, we
assume the confidence quantum T described in Sec-
tion 3.1 is 100 ms. SWAP needs to decide which
process among P2, P4, and P5 is likely to wake up
P1 early. It decides by using the confidence value as-
sociated with each provider. Assume there is no pre-
vious confidence history for these resources so that
all confidence values are equal to a base confidence
K of 20. In deciding which process to run in place
of virtual runnable process P1, SWAP then deter-
mines P2’s confidence C(P1, P2, R1) as 20, P4’s in-
direct confidence C(P1, P4, R1) as C(P1, P3, R1) ∗
C(P3, P4, R2)/K = 20, and P5’s indirect confidence
C(P1, P5, R1) as C(P1, P3, R1)∗C(P3, P5, R2)/K =
20. The first provider with the highest confidence
value is P2, so it will be selected to run first. It will
run for 100 ms and then receive negative feedback
because it does not wake up P1 after one confidence
time quantum is used. C(P1, P2, R1) will then be-
come 19. P4 becomes the first provider with the
highest confidence, so it will be selected to run. Af-
ter P4 runs for 40 ms, it provides the resource for
P3, which wakes up P3, resulting in the new situa-

7



Appears in Proceedings of the First Symposium on Networked Systems Design and Implementation (NSDI 2004)

tion shown in Step 2 in Figure 1. At this time, P3
can be the selected to run for virtual runnable P1
since it has a higher confidence value than P2. It
will continue to run for another 20 ms and eventu-
ally wake up P1, resulting in P1 being runnable as
shown in Step 3 in Figure 1.

SWAP’s use of virtual runnable processes pro-
vides a number of important benefits. By intro-
ducing a new virtual runnable state for processes,
SWAP leverages an existing scheduler’s native deci-
sion making mechanism to account for process de-
pendencies in scheduling. SWAP implicitly uses an
existing scheduler’s dynamic priority function with-
out needing to explicitly calculate process priorities
which could be quite complex. SWAP does not need
to be aware of the scheduling algorithm used by the
scheduler and does not need to replicate the algo-
rithm as part of its model in any way. As a result,
SWAP can be integrated with existing schedulers
with minimal scheduler changes and can be easily
used with any scheduler algorithm, including com-
monly used dynamic priority schemes. By using a
confidence model, SWAP allows a scheduler to ac-
count for process dependency information in sched-
uling even if such information is not precisely known.

One issue with using the confidence model in
scheduling is that it may unfairly favor processes
with high confidence. If SWAP keeps selecting a
given provider, its confidence will continue to rise
if it never fails to provide the necessary resource.
This behavior is consistent with SWAP’s objective
to run the process that can most quickly provide
the resource for a virtual runnable process. How-
ever, there may be other providers that could also
provide the resource just as quickly but are not se-
lected by the confidence model because they were
not initially given the chance to run. We have not
seen this issue in practice for three reasons. First,
the process that runs in place of a virtual runnable
process is still charged by the underlying scheduler
for the time it runs, so running it sooner results in it
running less later. Second, a process that provides
a resource typically only runs for a short duration
until it provides the resource. A process selected
using the confidence model also must provide the
resource within a confidence quantum of T which
is usually small, otherwise other resource providers
will be selected. Third, the confidence model is only
used when the resource requester blocks because the
resource is not available and there are multiple po-
tential providers. If a requester does not need to
block or there is only one provider, the confidence
model is not used.

While the SWAP approach provides important

advantages, we also note that it can be limited by
the decision making algorithm of an existing sched-
uler in the context of multiprocessors. To support
scalable multiprocessor systems, schedulers typically
associate a separate run queue with each CPU to
avoid lock contention on a centralized run queue.
Since CPU scheduling decisions are decoupled from
one another, the process that is selected to run may
not be the most optimal. In a similar manner, if
a virtual runnable process is selected by the sched-
uler on a CPU, it may not be globally the best vir-
tual runnable process to select. It is possible that
the virtual runnable process selected is not the one
with the highest priority across all CPUs accord-
ing to the native scheduler’s priority model. Other
approaches could be used to select a globally more
optimal virtual runnable process, but would incur
other disadvantages. One could provide separately
managed queues for virtual runnable processes, but
this would require duplicating scheduler functional-
ity and increasing complexity. If a single queue was
used for virtual runnable processes, this could also
impact scheduler scalability.

5 Experimental Results

We have implemented a SWAP prototype in Red
Hat Linux 8.0 which runs the Linux 2.4.18-14 kernel.
The SWAP automatic dependency detection mecha-
nisms were designed in such a way that they can be
implemented as a loadable kernel module that does
not require any changes to the kernel. The SWAP
dependency-driven scheduling mechanism was also
largely implemented in the same kernel module, but
it does require some changes to the kernel scheduler.
These changes only involved adding about 15 lines
of code to the kernel and were localized to only a
couple of kernel source code files related to the ker-
nel scheduler. As discussed in Section 3.1, SWAP
provides three configurable parameters, the default
maximum number of providers per resource L, the
initial base confidence value K, and the confidence
quantum T . In our SWAP implementation, the de-
fault values of L, K, and T were set to 20, 20, and
20 ms, respectively.

We have used our SWAP prototype implementa-
tion in Linux to evaluate its effectiveness in improv-
ing system performance in the presence of process
dependencies. We compared Linux SWAP versus va-
nilla Redhat Linux 8.0 using both microbenchmarks
and real client-server applications. Almost all of our
measurements were performed on an IBM Netfinity
4500R server with a 933 MHz Intel PIII CPU, 512
MB RAM, and 100 Mbps Ethernet. We also report
measurements obtained on the same machine con-

8



Appears in Proceedings of the First Symposium on Networked Systems Design and Implementation (NSDI 2004)

figured with two CPUs enabled. We present some
experimental data from measurements on four types
of application workloads. Section 5.1 presents re-
sults using a client-server microbenchmark workload
to measure the overhead of SWAP and illustrate
its performance for different resource dependencies.
Section 5.2 presents results using a multi-server mi-
crobenchmark to measure the effectiveness of SWAP
when multiple processes can be run to resolve a re-
source dependency. Section 5.3 presents results us-
ing a thin-client computing server workload to mea-
sure the effectiveness of SWAP in a server environ-
ment supporting multiple user sessions. Section 5.4
presents results using a chat server workload to mea-
sure the effectiveness of SWAP in a multiprocessor
server environment supporting many chat clients.

5.1 Client-server Microbenchmark

The client-server microbenchmark workload con-
sisted of a simple client application and server ap-
plication that are synchronized to start at the same
time. Both the client and the server run in a loop
of 100 iterations. In each iteration, the client waits
for the server to perform a simple bubblesort com-
putation on a 4K array and respond to the client
via some method of communication, resulting in a
dependency between client and server. We consid-
ered six common communication mechanisms be-
tween client and server:

• Socket (SOCK): Server computes and writes
a 4 KB data buffer to a Unix domain socket.
Client reads from the socket.

• Pipe/FIFO (PIPE): Server computes and writes
a 4 KB data buffer to a pipe. Client reads the
data from the pipe.

• IPC message queue (MSG): Server computes
and sends a 4 KB data buffer via an IPC mes-
sage queue. Client receives the data from the
message queue.

• IPC semaphores (SEM): Two semaphores called
empty and full are initialized to true and false,
respectively. Server waits for empty to be true
then computes and signals full when it com-
pletes. Client waits for full to be true then sig-
nals empty. Wait and signal are implemented
using the semop system call.

• Signal (SIG): Server waits for a signal from the
client, computes, and sends a signal to client
when it completes its computation. Client waits
until it receives the signal.

• File locking (FLOCK): Server uses flock to
lock a file descriptor while it does its computa-
tion and unlocks when it is completed. Client
uses flock to lock the same file and therefore

112 114 112 96 96 112

1124

1258 1224

1045 1046

1588

112
9696112114112

1129696112114112

0

200

400

600

800

1000

1200

1400

1600

1800

SOCK PIPE MSG SEM SIGNAL FCNTL

Ti
m

e 
(m

s)

Linux (Low) SWAP (Low) Linux (High) SWAP (High)

Figure 2: Client-server Microbenchmark Results

must wait until server releases the lock.

We measured the average time it took the client
to complete an iteration of each of the six client-
server microbenchmarks when using vanilla Linux
versus SWAP. For this experiment, we assumed that
the client is an important application and is there-
fore run as a real-time SCHED FIFO process in Linux.
All other processes are run using the default SCHED -
OTHER scheduling policy. In Linux, SCHED FIFO
processes are higher priority than SCHED OTHER
processes and are therefore scheduled to run before
SCHED OTHER processes. We measured the client
iteration completion time when there were no other
applications running on the system to further com-
pare the overhead of SWAP with vanilla Linux. We
then measured the client iteration completion time
using vanilla Linux versus SWAP when ten other
application processes were running at the same time
as the client-server microbenchmark. The applica-
tion processes were simple while loops imposing ad-
ditional load on the system. This provides a measure
of the performance of vanilla Linux versus SWAP on
a loaded system in the presence of process dependen-
cies.

Figure 2 shows the measurements for each of the
six client-server microbenchmarks. For low system
load, the measurements show that the client itera-
tion completion time for each microbenchmark was
roughly 100 ms for both vanilla Linux and SWAP.
The client completed quickly in all cases, and the dif-
ference between the completion times using SWAP
and vanilla Linux were negligible. Figure 3 shows
the average total time of executing system calls in
each iteration for the six microbenchmarks. This
provides a more precise measure of the overhead
of SWAP versus vanilla Linux. The extra system
call overhead of SWAP ranges from 1.3 µs for the
FLOCK microbenchmark to 3.8 µs for the SEM mi-
crobenchmark. Although the absolute processing
time overhead for SWAP is smallest for the FLOCK

9



Appears in Proceedings of the First Symposium on Networked Systems Design and Implementation (NSDI 2004)

microbenchmark, it is the largest percentage over-
head of all the microbenchmarks because the overall
system call cost of the FLOCK microbenchmark is
small.

The extra overhead associated with SWAP is due
to the costs of intercepting the necessary system
calls for each microbenchmark, examining their pa-
rameters, determining which if any processes should
be added or removed from the SWAP resource re-
quester and provider lists, and performing depen-
dency driven scheduling when necessary. The differ-
ence in SWAP overhead for the different microbench-
marks is due to different numbers of SWAP opera-
tions being done in each case. For each iteration of
the FLOCK microbenchmark, there are two context
switches, resulting in extra SWAP scheduling over-
head since it needs to schedule virtual runnable pro-
cesses. In addition for each iteration, SWAP inter-
cepts two system calls and manages two resource ob-
jects for the file lock, one corresponding to exclusive
lock access and the other corresponding to shared
lock access. For these two system calls, SWAP needs
to check the status of resource providers and re-
questers a total of three times. For each iteration of
the SEM microbenchmark, there are also two con-
text switches, resulting in extra SWAP scheduling
overhead since it needs to schedule virtual runnable
processes. In addition for each iteration, SWAP in-
tercepts four system calls and manages two resource
objects corresponding to two IPC semaphores used
by the SEM microbenchmark. For these system
calls, SWAP needs to check the status of resource
providers and requesters a total of eight times. The
higher number of resource provider and requester
operations for the SEM microbenchmark results in
the higher SWAP processing costs compared to the
FLOCK microbenchmark. While these microbench-
marks were designed to exercise those system calls
that SWAP intercepts, note that SWAP only inter-
cepts a small minority of system calls and only the
intercepted system calls incur any additional over-
head.

While Figure 3 shows the average overhead due
to system calls across all iterations of the microbench-
marks, the cost of a system call can be larger the
first time it is called when using SWAP due to ex-
tra memory allocation that may occur to create re-
source objects, resource providers, and resource re-
questers. For each resource, SWAP creates a 64 byte
resource object. When a process is first added as
a resource requester for a resource, SWAP creates
a 32 byte resource requester object. When a pro-
cess is first added as a resource provider for a re-
source, SWAP creates a 32 byte resource provider

4.1
1.3

5.0

45.0

27.0

12.4

48.4

7.8

28.9

7.9

14.5

2.6

0.0

10.0

20.0

30.0

40.0

50.0

60.0

SOCK PIPE MSG SEM SIGNAL FLOCK

Ti
m

e 
(u

s)

Linux
SWAP

Figure 3: SWAP Overhead

object. The memory overhead of SWAP grows with
the number of resource objects, providers, and re-
questers that need to be allocated. However, since
the associated SWAP objects are all small, and the
resulting memory overhead imposed by SWAP ends
up also being small.

For high system load, Figure 2 shows that the
client iteration completion time for each microbench-
mark was an order of magnitude better using SWAP
versus vanilla Linux. Despite the fact that the client
was the highest priority process in the system, the
client iteration completion times using vanilla Linux
ballooned to over 1 second, roughly ten times worse
than for low system load. The problem is that the
client depends on the server, which runs at the same
default priority as the other processes in the system.
Since Linux schedules processes independently, it
does not account for the dependency between client
and server, resulting in the high priority client pro-
cess not being able to run. In contrast, the client
iteration completion times when using SWAP re-
mained almost the same for both high and low sys-
tem load at roughly 100 ms for all of the microbench-
marks. The client performance using SWAP for high
system load is roughly ten times better than vanilla
Linux for high system load and essentially the same
as vanilla Linux for low system load. SWAP auto-
matically identifies the dependencies between client
and server processes for each microbenchmark and
correctly runs the server process ahead of other pro-
cesses when the high priority client process depends
on it.

5.2 Multi-server Microbenchmark

The multi-server microbenchmark workload con-
sisted of a simple client application and five server
applications that are started at the same time. The
microbenchmark is similar to the SEM microbench-
mark described in Section 5.1 with two differences.
First, since each server increments the semaphore

10



Appears in Proceedings of the First Symposium on Networked Systems Design and Implementation (NSDI 2004)

and there are multiple servers running, the client will
only need to wait until one of the servers increments
the semaphore before it can run and decrement the
semaphore. Second, each of the servers may do a dif-
ferent number of bubblesort computations, resulting
in the server processing taking different amounts of
time. For this experiment, the five servers repeated
the bubblesort computation 2, 5, 5, 10, and 10 times,
respectively. As a result, the servers vary in terms
of the amount of processing time required before the
semaphore is incremented.

We measured the time for the client to complete
each of the first 15 loop iterations when using va-
nilla Linux versus SWAP. For SWAP, we considered
the impact of different confidence feedback intervals
by using two different intervals, 20 ms and 200 ms.
For this experiment, we assumed that the client is
an important application and is therefore run as a
real-time SCHED FIFO process in Linux. All other
processes in the system are run using the default
SCHED OTHER scheduling policy. We measured
the client iteration time when no other applications
were running on the system as a baseline perfor-
mance measure on vanilla Linux and SWAP. We
then measured the client completion time using va-
nilla Linux versus SWAP when ten other applica-
tion processes were running at the same time as the
client-server microbenchmark. The application pro-
cesses were simple while loops imposing additional
load on the system. This provides a measure of
the performance of vanilla Linux versus SWAP on
a loaded system in the presence of process depen-
dencies.

Figure 4 shows the multi-server microbenchmark
measurements. It shows the measured client itera-
tion completion time for each iteration using vanilla
Linux and SWAP for both low system load and high
system load. In this figure, SWAP-20 is used to
denote the measurements done with a SWAP confi-
dence feedback interval of 20 ms and SWAP-200 is
used to denote the measurements done with a SWAP
confidence feedback interval of 200 ms.

For low system load, Figure 4 shows that client
iteration time is roughly the same at 1 second when
using SWAP or vanilla Linux for the first iteration.
However, the client iteration time when using SWAP
is much better than when using vanilla Linux for
subsequent iterations. While the client iteration time
remains at roughly 1 second for all iterations when
using vanilla Linux, the client iteration time drops to
about 200 ms when using SWAP, with the iteration
time dropping faster using SWAP-200 versus SWAP-
20. Of the five servers running, the server run-
ning the bubblesort computation twice increments

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Round of Test

Ti
m

e 
(s

)

Low Linux Low SWAP-20 Low SWAP-200

High Linux High SWAP-20 High SWAP-200

 

Figure 4: Multi-server Microbenchmark Results

the semaphore the fastest at roughly 200 ms. As a
result, the client completes its iteration the fastest
when this server is scheduled to run instead of the
other servers. The results in Figure 4 show that
SWAP eventually finds the fastest server to run to
resolve the process dependency between the high pri-
ority client and the servers.

It takes the client about 1 second to complete
an iteration using vanilla Linux because the default
SCHED OTHER scheduling policy used in the Linux
2.4.18-14 kernel is basically a round-robin schedul-
ing algorithm with a time quantum of 150 ms. The
Linux scheduler therefore will end up running each
of the five servers in round-robin order until one of
the servers increments the semaphore allowing the
high-priority client to run and complete an itera-
tion. The fastest server needs to run for 200 ms to
increment the semaphore. Therefore, depending on
when the fastest server is run in round-robin order,
it could take between 800 ms to 1400 ms until the
semaphore is incremented and the client can run,
which is consistent with the results shown in Figure
4.

On the other hand, using SWAP the client only
takes 200 ms to complete an iteration because SWAP’s
confidence feedback model identifies the fastest server
after the first iteration because that server is the one
that increments the semaphore and allows the client
to run. In subsequent iterations, SWAP gives that
server preference to run, resulting in lower client it-
eration time. Figure 4 also shows that SWAP with
a feedback interval of 200 ms will reach the optimal
level faster than SWAP with a feedback interval of
20 ms. This is because the confidence value is ad-
justed one unit for each feedback, which means each
positive feedback will make the process run 1 quan-
tum more ahead of the other processes. The larger
the quantum, the more benefit a process will receive
from a positive feedback. In this sense, it is desir-
able for the confidence quantum to be as large as

11



Appears in Proceedings of the First Symposium on Networked Systems Design and Implementation (NSDI 2004)

possible. However, if the quantum is too large, the
dependency-driven scheduler will behave in a FIFO
manner, which can result in longer response times.
In this case, configuring the confidence time quan-
tum to be 200 ms works well because it is the time
needed for the fastest provider to produce the de-
sired resource.

For high system load, Figure 4 shows that client
iteration time is roughly the same at 10 seconds
when using SWAP or vanilla Linux for the first it-
eration. However, the client iteration time when us-
ing SWAP is significantly better than when using
vanilla Linux for subsequent iterations. The reasons
for SWAP’s better performance for high system load
are the same as for low system load, except that the
difference between SWAP and vanilla Linux is mag-
nified by the load on the system.

5.3 Thin-client Computing Server

The thin-client computing server workload con-
sisted of VNC 3.3.3 thin-client computing sessions
running MPEG video players. VNC [13] is a popu-
lar thin-client system in which applications are run
on the server and display updates are then sent to
a remote client. Each session is a complete desktop
computing environment. We considered two differ-
ent VNC sessions:

• MPEG play: The VNC session ran the Berke-
ley MPEG video player [11] which displayed a
locally stored 5.36 MB MPEG1 video clip with
834 352x240 pixel video frames.

• Netscape: The VNC session ran a Netscape
4.79 Communicator and downloaded and dis-
played a Javascript-controlled sequence of 54
web pages from a web server. The web server
was a Micron Client Pro with a 450 MHz In-
tel PII, 128 MB RAM, and 100 Mbps Ether-
net, running Microsoft Windows NT 4.0 Server
SP6a and Internet Information Server 3.0.

We measured the time it took for the respective
application in one VNC session to complete when us-
ing vanilla Linux versus SWAP. For this experiment,
we assumed that the application measured, either
the video player or web browser, is important and is
therefore run as a real-time SCHED FIFO process
in Linux. All other processes in the system are run
using the default SCHED OTHER scheduling pol-
icy. We measured the respective video player and
web browser completion times when there were no
other applications running on the system to provide
a baseline performance measure of each application
running on vanilla Linux and SWAP. We then mea-
sured each application completion time using vanilla
Linux versus SWAP with 50 other VNC sessions run-

40

235

40

236

1389

11111

51

269

1

10

100

1000

10000

100000

MPEG_Play(ms/frm) Netscape(ms/page)

Ti
m

e 
(m

s)

Linux (Low) SWAP (Low) Linux (High) SWAP (High)

Figure 5: Thin-client Computing Server Benchmark
Results

ning at the same time, each session running the video
player application.

Figure 5 shows the thin-client computing server
measurements for the VNC session running MPEG
play and the VNC session running Netscape. For
low system load, the measurements show that the
client completion time for both real applications was
roughly the same. The overhead caused by SWAP is
less than 0.5%. For high system load, the measure-
ments show that the client completion time for each
application was an order of magnitude better using
SWAP versus vanilla Linux. Despite the fact that
the client was the highest priority process in the sys-
tem, the video playback rate of MPEG play was only
0.72 frm/s when using vanilla Linux, which means
that each video frame took on average 1389 ms to
be processed and displayed. In the same situation, it
took Netscape more than 11 seconds to download a
single web page. In both cases the performance was
unacceptable. The problem is that MPEG play and
Netscape, as graphics-intensive applications, depend
on the X Server to render the video frames and web
pages. Since the X server was run at the same de-
fault priority as all the other VNC sessions in the
system, this will effectively make all the clients de-
pending on it run at low priority also.

On the other hand, Figure 5 shows the perfor-
mance of both MPEG play and Netscape remained
to be satisfactory even under very high system load
when using SWAP . This further proves the effective-
ness of the automatic dependency detection mecha-
nism and dependency driven scheduler used by SWAP.
The small difference between using SWAP for high
and low system load can be explained by two fac-
tors. First, Linux still doesn’t support features like
a preemptive kernel which is important to real-time
applications. Second, since access to resources such
as memory and disk are not scheduled by the CPU
scheduler, our SWAP CPU scheduling implementa-

12



Appears in Proceedings of the First Symposium on Networked Systems Design and Implementation (NSDI 2004)

tion does not solve performance degradation prob-
lems caused by accessing these resources.

5.4 Volano Chat Server

The Chat server workload consisted of Volano-
Mark 2.1.2 [7], an industry standard Java chat server
benchmark configured in accordance with the rules
of the Volano Report. VolanoMark creates a large
number of threads and network connections, result-
ing in frequent scheduling and potentially many in-
terprocess dependencies. It creates client connec-
tions in groups of 20 and measure how long it takes
the clients to take turns broadcasting their messages
to the group. It reports the average number of mes-
sages transferred by the server per second. For this
experiment, all processes were run using the default
SCHED OTHER scheduling policy. We assumed
that the chat clients are important and are there-
fore run as at a higher priority by running them
with nice -20 with all other applications run at
the default priority. We measured the VolanoMark
performance when there were no other applications
running on the system to provide a baseline per-
formance measure on vanilla Linux and SWAP. We
then measured the VolanoMark performance with
different levels of additional system load. The sys-
tem load was generated using a simple CPU-bound
application. To produce different system load lev-
els, we ran different numbers of instances of the
CPU-bound application. We ran VolanoMark using
the dual-CPU server configuration. This provides a
measures of the performance of vanilla Linux versus
SWAP with a resource-intensive server application
running on a loaded multiprocessor in the presence
of process dependencies. VolanoMark was run using
Sun’s Java 2 Platform 1.4.0 for Linux which maps
Java threads to Linux kernel threads in a one-to-one
manner.

Figure 6 shows the performance of VolanoMark
for different levels of system load. These results
were obtained on the dual-CPU configuration of the
server. The system load is equal to the number of
additional CPU-bound applications running at the
same time. For no additional system load, vanilla
Linux averaged 4396 messages per second on Volano-
Mark test while SWAP averaged 4483. The mea-
surements show that VolanoMark performs roughly
the same for both vanilla Linux and SWAP, with the
performance of SWAP slightly better. This can be
explained by the fact that the Volano clients fre-
quently call sched yield, which allows the CPU
scheduler to decide which client should run next.
Because SWAP is aware of the dependency relation-
ships among clients, SWAP can make a better deci-

1899

1222

4396

30913120

4483

0

1000

2000

3000

4000

5000

0 5 10 15 20

System Load

Th
ro

ug
hp

ut
 (m

sg
/s

)

Linux

SWAP

Figure 6: Volano Chat Server Benchmark Results

sion than vanilla Linux regarding which client should
run next.

The performance of vanilla Linux and SWAP di-
verge significantly with additional system load. At
a system load of 20, SWAP provides VolanoMark
performance that is more than 2.5 times better than
vanilla Linux. Although SWAP does perform much
better than vanilla Linux, both systems show degra-
dation in the performance of VolanoMark at higher
system load. At a system load of 20, SWAP perfor-
mance is about 70 percent of the maximum perfor-
mance while vanilla Linux performance is less than
30 percent of the maximum performance. The degra-
dation in performance on SWAP can be explained
because of its reliance on the CPU scheduler to se-
lect among runnable and virtual runnable processes
and the multiprocessor scheduling algorithm used in
the Linux 2.4.18-14 kernel. For SWAP to deliver the
best performance, high priority virtual runnable pro-
cesses should always be scheduled before lower pri-
ority runnable processes. However, the Linux sched-
uler does not necessarily schedule in this manner on
a multiprocessor. The Linux scheduler employs a
separate run queue for each CPU and partitions pro-
cesses among the run queues based on the number
of runnable processes in each queue. It does not
take into account the relative priority of processes in
determining how to assign processes to run queues.
As a result, for a two-CPU machine, the scheduler
can end up assigning high priority processes to one
CPU and lower priority processes to another. With
SWAP, this can result in high priority virtual run-
nable processes competing for the same CPU even
though lower priority processes are being run on the
other CPU. As a result, some high priority virtual
runnable processes end up having to wait in one
CPU run queue when there are other lower prior-
ity CPU-bound applications which end up running
on the other CPU.

Since Linux schedules processes independently,
it does not account for the dependencies between

13



Appears in Proceedings of the First Symposium on Networked Systems Design and Implementation (NSDI 2004)

client and server, resulting in high priority Volano
clients not being able to run in the presence of other
CPU-bound applications. Linux either delivers poor
performance for these clients or places the burden on
users to tune the performance of their applications
by identifying process dependencies and explicitly
raising the priority of all interdependent processes.
SWAP instead relieves users of the burden of at-
tempting to compensate for scheduler limitations.
Our results show that SWAP automatically identi-
fies the dynamic dependencies among processes and
correctly accounts for them in scheduling to deliver
better scheduling behavior and system performance.

6 Conclusions

Our experiences with SWAP and experimental
results in the context of a general-purpose operating
system demonstrate that SWAP is able to effectively
and automatically detect process dependencies and
accounts for these dependencies in scheduling. We
show that SWAP effectively uses system call history
to handle process dependencies such as those result-
ing from interprocess communication and synchro-
nization mechanisms which have not been previously
addressed. We also show that SWAP’s confidence
feedback model is effective in finding the fastest way
to resolve process dependencies when multiple po-
tential dependencies exist.

These characteristics of SWAP result in signifi-
cant improvements in system performance when run-
ning applications with process dependencies. Our
experimental results show that SWAP can provide
more than an order of magnitude improvement in
performance versus the popular Linux operating sys-
tem when running microbenchmarks and real appli-
cations on a heavily loaded system. We show that
SWAP can be integrated with existing scheduling
mechanisms and operate effectively with schedulers
that dynamically adjust priorities. Furthermore, our
results show that SWAP achieves these benefits with
very modest overhead and without any application
modifications or any intervention by application de-
velopers or end users.

7 Acknowledgments

This work was supported in part by NSF grant
EIA-0071954, an NSF CAREER Award, and an IBM
SUR Award.

References
[1] Ted Baker. Stack-Based Scheduling of Real-Time

Processes. Real-Time Systems, 3(1), March 1991.

[2] David L. Black. Scheduling Support for Concur-
rency and Parallelism in the Mach Operating Sys-
tem. IEEE Computer, 23(5):35–43, 1990.

[3] Raymond K. Clark. Scheduling Dependent Real-
Time Activities. PhD thesis, Carnegie Mellon Uni-
versity, 1990.

[4] Dror G. Feitelson and Larry Rudolph. Coscheduling
Based on Run-Time Identification of Activity Work-
ing Sets. International Journal of Parallel Program-
ming, 23(2):136–160, April 1995.

[5] Butler W. Lampson and David D. Redell. Experi-
ence with Processes and Monitors in Mesa. Com-
munications of the ACM, 23(2):105–117, February
1980.

[6] Xavier Leroy. The LinuxThreads Library. Now a
part of the glibc GNU C library.

[7] Volano LLC. Volanomark Benchmark.
http://www.volano.com/benchmarks.html.

[8] Jim Mauro and Richard McDougall. Solaris Inter-
nals: Core Kernel Architecture. Prentice Hall PTR,
first edition, 2000.

[9] J. Nieh, J. G. Hanko, J. D. Northcutt, and G. A.
Wall. SVR4 UNIX Scheduler Unacceptable for Mul-
timedia Applications. In Proceedings of the Fourth
International Workshop on Network and Operating
System Support for Digital Audio and Video, pages
35–48, Lancaster, U.K., 1993.

[10] J. K. Ousterhout. Scheduling Techniques for Con-
current Systems. International Conference on Dis-
tributed Computing Systems, pages 22–30, 1982.

[11] R. Patel, K. Smith, and B. Liu. MPEG Video in
Software: Representation, Transmission, and Play-
back. In Proc. High-Speed Networking and Multime-
dia Computing, San Jose, California, February 8-10
1994.

[12] Glenn E Reeves. What Really Happened on Mars
Rover Pathfinder. The Risks Digest, 19, 1997.

[13] Tristan Richardson, Quentin Stafford-Fraser, Ken-
neth R. Wood, and Andy Hopper. Virtual Network
Computing. IEEE Internet Computing, 2(1):33–38,
1998.

[14] Manfred Ruschitzka and Robert S. Fabry. A Uni-
fying Approach to Scheduling. Communications of
the ACM, 20(7):469–477, July 1977.

[15] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority
Inheritance Protocols: An Approach to Real-Time
Synchronization. IEEE Transactions on Comput-
ers, 39(9):1175–1185, September 1990.

[16] Patrick G. Sobalvarro, Scott Pakin, William E.
Weihl, and Andrew A. Chien. Dynamic Coschedul-
ing on Workstation Clusters. Lecture Notes in Com-
puter Science, 1459:231–257, 1998.

[17] S. Sommer. Removing Priority Inversion from an
Operating System. In Proceedings of Nineteenth
Australasian Computer Science, 1996.

[18] David C. Steere, Ashvin Goel, Joshua Gruen-
berg, Dylan McNamee, Calton Pu, and Jonathan
Walpole. A Feedback-driven Proportion Allocator
for Real-Rate Scheduling. In Proceedings of the 3rd
Symposium on Operating Systans Design and Im-
plementation (OSDI-99), pages 145–158, Berkeley,
CA, February 22–25 1999. Usenix Association.

[19] C. A. Waldspurger. Lottery and Stride Scheduling:
Flexible Proportional-share Resource Management.
PhD thesis, Massachusetts Institute of Technology,
1995.

14


