
Encrypted Cloud Photo Storage Using Google Photos
John S. Koh

koh@cs.columbia.edu
Columbia University

Jason Nieh
nieh@cs.columbia.edu
Columbia University

StevenM. Bellovin
smb@cs.columbia.edu
Columbia University

ABSTRACT
Cloud photo services are widely used for persistent, convenient, and
often free photo storage, which is especially useful for mobile de-
vices. As users store more and more photos in the cloud, significant
privacy concerns arise because even a single compromise of a user’s
credentials give attackers unfettered access to all of the user’s photos.
We have created Easy Secure Photos (ESP) to enable users to protect
their photos on cloud photo services such as Google Photos. ESP
introduces a new client-side encryption architecture that includes a
novel format-preserving image encryption algorithm, an encrypted
thumbnail displaymechanism, andausable keymanagement system.
ESP encrypts image data such that the result is still a standard format
image like JPEG that is compatible with cloud photo services. ESP
efficiently generates and displays encrypted thumbnails for fast and
easy browsing of photo galleries from trusted user devices. ESP’s key
management makes it simple to authorize multiple user devices to
view encrypted image content via a process similar to device pairing,
but using the cloud photo service as a QR code communication chan-
nel. We have implemented ESP in a popular Android photos app for
use with Google Photos and demonstrate that it is easy to use and
provides encryption functionality transparently to users, maintains
good interactive performance and image quality while providing
strong privacy guarantees, and retains the sharing and storage ben-
efits of Google Photos without any changes to the cloud service.

CCS CONCEPTS
• Security and privacy→Keymanagement; Public key encryp-
tion; Mobile and wireless security; Usability in security and
privacy; Privacy protections; Software security engineering; Dis-
tributed systems security; •Computer systems organization→
Cloud computing; •Human-centered computing→ Ubiquitous
and mobile devices; • Information systems→Web services.

KEYWORDS
Image encryption; key management; usable security; Google Photos

ACMReference Format:
John S. Koh, Jason Nieh, and Steven M. Bellovin. 2021. Encrypted Cloud
Photo Storage Using Google Photos. In The 19th Annual International Con-
ference on Mobile Systems, Applications, and Services (MobiSys ’21), June
24–July 2, 2021, Virtual, WI, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3458864.3468220

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8443-8/21/06.
https://doi.org/10.1145/3458864.3468220

1 INTRODUCTION
Therapidproliferationof smartphoneswith increasinglyhigh-quality
built-in cameras is driving enormousgrowth in thenumber of photos
being taken, with well over a trillion photos captured each year [28].
Since smartphones often have low storage capacity and are prone
to accidental damage and loss, many users use the cloud to perma-
nently store their photos online via cloud photo services such as
those offered by Google, Apple, Flickr, and others. Google Photos is
particularly popular with over a billion users [37]. However, users’
photo collections often represent a gold mine of personal informa-
tionwhich is valuable not only to the services, but to attackers aswell.
Even if users trust cloud photo services with their data, the threat of
attackers compromising user accounts and data is tangible. External
attackers often target one of the weakest points of account security,
passwords, to gain access to personal photos such as in the case of the
2014 celebrity nude photo hacks [34]. Because passwords are such a
weak defense that is often compromised through social engineering,
phishing, or password leaks, many services augment account securi-
ty with two-factor authentication (2FA), but this is still not enough.
One important reason is because adversaries may be internal, such
as rogue employees at cloud services abusing their access privileges
to snoop on user data [9, 14–16], and bugs or errors may reveal user
data to unintended recipients, such as the recent case of Google Pho-
tos accidentally sharing users’ private videos with other completely
unrelated users [3]. In all cases, it takes only a single compromise
of a user’s account to expose their entire photo collection.

Encryption offers a well-known solution to this problem: if users
encrypt their photos, then they become indecipherable even if an
attacker compromises user accounts. However, existing encryption
schemes are incompatible with cloud photo services. Google Photos
expects uploaded files to be valid images, and compresses them to
reduce file sizes. Image compression is incompatible with general
and photo-specific encryption techniques, causing corruption of en-
crypted images. Even if image compressionwere compatible, mobile
users expect to quickly browse through identifiable photo thumb-
nails which are typically generated by cloud photo services; this is
not possible with any existing photo encryption schemes. Finally,
encrypting data andmanagingkeys is too complicated formost users
especially if public key cryptography is involved [49]. This is made
more difficult for modern users who use multiple mobile devices
which each must decrypt their photos. Some third-party photo ser-
vices promise image encryption anduser privacy, andothers propose
new external secure photo hosting services [27, 41, 42, 54, 56, 57, 59],
but they all require users to abandon existing widely-used cloud
photo services such as Google Photos.

To address this problem, we have created Easy Secure Photos
(ESP), a system that enables mobile users to use popular cloud pho-
to services such as Google Photos while protecting their photos
against account compromises. ESP encrypts uploaded photos so that
attackers cannot decipher them, yet the encryption is transparent to

136

https://doi.org/10.1145/3458864.3468220
https://doi.org/10.1145/3458864.3468220
https://www.acm.org/publications/policies/artifact-review-and-badging-current


MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA John S. Koh, Jason Nieh, and StevenM. Bellovin

authorized users who can visually browse and display images as if
they were unencrypted images. ESP achieves this by introducing a
new client-side encryption architecture that is compatible with and
requires no changes to cloud photo services such as Google Photos,
and has no reliance on any external third-party system or service
provider. The architecture includes three key components: a format-
preserving image encryption algorithm, an encrypted thumbnail
display mechanism, and an easy-to-use key management system.

ESP’s image encryption algorithm works for lossy and lossless
image formats such as JPEG and PNG, is compatible with image
compression and is efficient enough formobile devices. ESP converts
an image to RGB, encrypts it in RGB color space using a block-based
Fisher-Yates shuffle [19] with a per-image encryption key, splits the
RGB channels into three separate grayscale ciphertext images, then
converts them back into the original image format, including com-
pression for JPEG. This novel encrypted grayscale approach main-
tains the original image dimensions and ensures compatibility with
standard JPEG compression, widely-used compression techniques
such as Guetzli [4, 5] JPEG encoding, and JPEG chroma subsampling.

ESP provides an encrypted thumbnail display mechanism that is
compatible with cloud photo services. ESP uploads client-generated,
encrypted thumbnails and redirects the client image browser to view
the uploaded thumbnails rather than server-generated ones. This
makes it easy to interactively browse and view thumbnail galleries.

ESP includes easy-to-use key management that supports multi-
ple devices, yet eliminates the need for users to know about and
move private keys from one device to another. ESP uses verified
self-generated keypairs that build up a chain of trust from one de-
vice to another by leveraging the cloud photo service itself as a
communication channel for a QR code-based message protocol.

We have implemented ESP on Android in the Simple Gallery
app, a popular photo gallery app with millions of users, adding the
ability to use Google Photos for encrypted photo storage. ESP con-
sists of only client-side modifications that use the Google Photos
API and requires no changes to the Google Photos cloud service.
We have evaluated ESP using images from Google’s Open Images
Dataset V5 [23]. Our experimental results show that ESP (1) works
seamlessly with Google Photos even with their image compression
techniques, (2) produces encrypted images with quality comparable
to the original images, (3) provides strong security against practi-
cal threats including account compromises and machine learning
analysis, (4) provides fast encrypted image upload, download, and
browsing times with modest overhead, and (5) is easy to use across
multiple devices. ESP is also compatible with other popular cloud
photo services such as Flickr and Imgur.

The contributions of this work are the design, implementation,
and evaluationof anewsystem for encrypting images storedonexist-
ingcloudphotoservices,withnoserver-sidemodifications, requiring
no trust in the photo services or their servers. The system includes
a novel format-preserving image encryption scheme coupled with
a key management solution for users. To the best of our knowledge,
we are the first to address practical issues such as key management,
usability, image sharing, and compatibilitywith existing cloud photo
services without needing to trust them, all in a single system.

2 THREATMODEL
ESP protects the privacy of images stored remotely in cloud services
with no changes to software or protocols other than the installing
a client-side ESP app. Attackers may be inside or outside the cloud
photo service, and may compromise user accounts by obtaining
passwords or abusing privileged access. They may be sophisticated,
but not at the level of a nation-state intelligence agency; they do not
have the computing resources to break encryption via brute force.

We assume that user devices with ESP clients are secure and
trustworthy. Protecting users’ devices is an orthogonal concern that
should be managed by device hardware or at the operating system
level. A compromise of a user’s device would mean the attacker has
access to the private keys that can be used to decrypt any encrypted
images belonging to the user.

3 USAGEMODEL
ESP is easy to use. A user installs an ESP photos app, then authen-
ticates it with a cloud photo service such as Google Photos. Our
Android ESP app’s only setup step is to select the Google account
to use. The app appears like any regular photos app, except that it
automatically and transparent encrypts images before uploading
them to Google Photos and decrypts them on download. Users are
free to perform common image operations, such as viewing thumb-
nail galleries, moving photos to albums, assigning labels, modifying
metadata, editing pictures, and sharing themwith others.

ESP assumes that reasonable users only access encrypted images
on trusted devices; it is uncommon (and inadvisable) to view photos
on untrusted devices such as public computers. In other words, ESP
is not compatible with using untrusted computers such as those at
an Internet cafe, nor should it be if users care about their privacy.

Any device that a user trusts can decrypt and view images from
the cloud photo service. Users are free to use ESP on as many de-
vices as desired. Each app installation on a new device after the first
requires a short and simple setup step to verify it with any previous-
ly configured device. This process appears conceptually similar to
device pairing: a user verifies his new ESP device using one of his
existing ESP devices. In contrast to normal pairing, the user only
needs to complete this verification step once per new device with
only one other existing ESP device. Verification involves (1) the user
configuring a newdevicewith ESP, (2) it displaying a randomphrase,
and (3) the user copying the randomphrase to one other existing ESP
device. Successful completion of these steps ends the new device’s
setup. The device can then upload and download encrypted images
on the user’s chosen cloud photo service.

Users can remove devices from their ESP ecosystem to revoke
device access to their photos. Any configured ESP device can be used
to remove any other device. If the user indicates that a device is being
removed because it was lost, ESP informs the user that his photos
will be re-encrypted for security reasons.

ESP intrinsically prevents users from losing access to their en-
crypted photos if they have more than one ESP device. A user may
lose one, but can access his encrypted photos on the remaining de-
vices. However, if a user loses all of them, a recovery password is
needed to regain access; this is also standard on popular operating
systems for disk encryption schemes [8, 38].

137



Encrypted Cloud Photo Storage Using Google Photos MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA

Figure 1: The ESP encryption architecture for JPEGs.

Since ESP apps encrypt the images stored in the cloud photo
provider, apps which do not support ESP will be unable to decrypt
them. The encrypted images, however, can be opened in image apps
and editors for viewing the ciphertext, and are valid JPEGfiles. Users
of services with web browser interfaces may install ESP browser
extensions to decrypt and view their photos.

4 ARCHITECTURE
ESP is designed for compatibility with existing cloud photo services,
preservation of image formats when encrypted, and end-user us-
ability with respect to browsing images and managing keys. While
ESP works with multiple cloud photo services, we focus on Google
Photos given its popularity. Google has no stipulations in its terms
of service that prohibit users from encrypting their data [24].

4.1 Format-Preserving Encrypted Images
ESP’s image encryption algorithm is compatible with cloud photo
serviceswhich support standard image formats including JPEG,PNG,
WebP, and RAW. Compatibility means uploading encrypted images
without thembeing rejected, and decrypting themwithminimal loss
of quality beyond any compression by the service.We focus on JPEG
since it is the most commonly used image format, though ESP’s en-
cryptionmethodworkswith others.We also focus onGoogle Photos’
free tier of servicewhich compresses and processes uploaded images.
Google Photos does not publicly specify its processing pipeline, but
we observe it to downsample the JPEG chroma format to 4:2:0, and
to apply compressionwith possibly a noise filter. The compression is
likely a standard JPEG quantization plus Google’s own Guetzli JPEG
encoder [4, 5]. ESP encryption must account for these techniques or
images will be corrupted. It must also be fast and efficient, as many
users use resource-constrained mobile devices.

To understand how ESP’s encryption works, it is necessary to
understand JPEG compression. Images rendered on a user’s screen
generally consist of pixels, each of which has red (R), green (G), and
blue (B) components; each component is an 8-bit value in the range 0
to 255. Converting RGB data to JPEG format takes four steps. (1) The
RGB components are converted into luminance, chroma-blue, and
chroma-red (YCbCr) components. Sometimes the chroma is subsam-
pled to reduce the sizes of Cb and Cr which are less important for
image quality. An image with full size, half size, and quarter size
CbCr are in 4:4:4, 4:2:2, and 4:2:0 format, respectively. (2) YCbCr com-
ponents are transformed using a discrete cosine transform (DCT)
to output DCT coefficients. (3) The DCT coefficients are quantized

Figure 2: An image and its encrypted RGB components.

to reduce the number of bits representing them. Quantization is the
main lossy compression step of JPEG, is controlled via a JPEG quality
parameter, and is performed on 8×8 blocks of pixels. (4) Lossless
compression techniques further reduce the image file size. Cloud
photo services’ compression practices are problematic for encrypted
images due to data loss caused by quantization and chroma subsam-
pling. We have confirmed images encrypted using common DCT
coefficient diffusion and confusion techniques experience visual
corruption and are unusable.

As shown in Figure 1, ESP is an encrypt-then-compress mecha-
nism that shuffles 8×8 pixel blocks. It encrypts by scrambling the
order of 8×8 pixel blocks in the image, thenperforms image compres-
sion on the scrambled image. Because it does not modify the values
or positions of pixels within the 8× 8 blocks, ESP’s encryption is
unaffected by any intra-block pixel-based lossy operations, making
it robust in the presence of JPEG compression. Decryption means
moving each block back to its original position, so any lossy com-
pression of pixels within each block is unrelated to the decryption.
In contrast, standard image encryptionmethods modify pixel values
and shuffle pixels within blocks. Lossy compression furthermodifies
these encrypted pixel values, but in a non-uniform manner, mak-
ing it impossible to reconstruct the original values. This resulting
corruption appears visually, and is even worse for color images.

As shown in Figure 1, encryption and decryption are performed
on RGB data. On encryption, the image is (1) decoded and decom-
pressed toRGB color space, (2) separated into three grayscale images,
one for each of the RGB color channels, (3) encrypted by shuffling
the pixel blocks of the grayscale images, and (4) JPEG compressed,
resulting in three separate grayscale ciphertext JPEG images; users
may choose a JPEG quality setting that balances preservation of
visual quality with larger ciphertext file sizes. Since the ciphertext
JPEGs are legitimate JPEGs, they can be displayed like regular JPEGs
but do not reveal the original images. Figure 2 shows a sample im-
age encryption produced by ESP. Grayscale ciphertext images are
also immune to chroma subsampling because they have no chroma
components, only a luminance (Y) component. One beneficial side
effect of this is that ESP images can retain higher resolution chroma
channels in the decrypted JPEGs compared to unencrypted images,
which may have their chroma subsampled by Google Photos. On
decryption, the encrypted image is (1) decoded by decompressing
the three ciphertext JPEGs to their grayscale values, (2) moving
each pixel block back to its original position, and (3) combining the
grayscale images into an RGB image, which can then be rendered
for viewing or compressed again to be stored on disk.

138



MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA John S. Koh, Jason Nieh, and StevenM. Bellovin

Figure 3: Example of 8×8 block permutation.

Toencrypt,ESPshufflespixelblockswithinandacross thegrayscale
images representing theRGBcomponents of the imageusingpseudo-
random number generators (PRNGs) with known secret seed values.
The encryption method, ESP-FY, computes three initial secret seed
values, (𝑠𝑅,𝑠𝐺 ,𝑠𝐵), one for each RGB component, to derive (𝑠 ′

𝑅
,𝑠 ′
𝐺
,𝑠 ′
𝐵
)

valueswith the appropriate seed length to use as inputs to thePRNGs.
(𝑠𝑅,𝑠𝐺 ,𝑠𝐵) are unique per image, making them adaptive secret seeds
generated from a user’s secret key and properties of the image. An
identifer for the algorithm used to encrypt an image is stored in
its metadata, which can be EXIF format, and used on decryption
to identify the decryption algorithm to use. This is similar to how
widely-used cryptosystems such as TLS supportmultiple algorithms,
and allows ESP to also support alternative or new crypto methods.

Figure 3 depicts an example of ESP-FY’s encryption process ap-
plied to a 32×16 pixel image,which consists of 4×2 blocks of 8×8 pix-
els. ESPpads imagedimensions to thenearestmultiple of 8—the same
strategy as the JPEG format. ESP-FY first does a Fisher-Yates shuffle
for all 8×8 blocks in each RGB channel. The shuffle is driven by three
PRNGs seeded by the (𝑠 ′

𝑅
,𝑠 ′
𝐺
,𝑠 ′
𝐵
) 256-byte secret seeds, whichmay be

truncated if they are too large for the PRNG. It then shuffles blocks
across the RGB components by pseudo-randomly swapping the 𝑖th
block in each iteration of the Fisher-Yates shufflewith the 𝑖th block of
the other channels. In other words, in the 𝑖th iteration of the Fisher-
Yates shuffle, blocks (𝑖𝑅,𝑖𝐺 ,𝑖𝐵) in each of the RGB channels are shuf-
fled. Which swaps occur is determined by 𝑠 ′

𝑅𝐺𝐵
=𝑠 ′

𝑅
⊕𝑠 ′

𝐺
⊕𝑠 ′

𝐵
as the

input to a PRNG. Then using this seeded PRNG, generate a uniformly
distributed random integer 𝑘𝑖 ∈ [0,5] on every block iteration. Each
𝑘𝑖 represents a unique ordering of (𝑖𝑅,𝑖𝐺 ,𝑖𝐵) of which there are 3!=6
permutations.Assume that𝑘𝑖 =0 ismapped to theordering (𝑖𝑅,𝑖𝐺 ,𝑖𝐵)
with no swaps. Now consider 𝑘𝑖 =1 mapped to (𝑖𝑅,𝑖𝐵,𝑖𝐺 ), meaning
block 𝑖𝐺 is swappedwith block 𝑖𝐵 , i.e. the 𝑖th green block is swapped
with the 𝑖th blue block. Therefore, each 𝑘𝑖 ∈ [0,5] generated by each
round of shuffling is mapped to a unique ordering of (𝑖𝑅,𝑖𝐺 ,𝑖𝐵).

The encryption algorithm is therefore a Fisher-Yates block shuffle
in each RGB channel, which on each iteration pseudo-randomly
swaps blocks (𝑖𝑅,𝑖𝐺 ,𝑖𝐵) across channels. Decryption is the inverse in
reverse order: reversing the inter-channel shuffle on each iteration
over the images’ blocks while reversing the Fisher-Yates shuffle of
the 8×8 blocks of pixels.

The security of shuffle-based encryption scales with the image
dimensions. Smaller images have fewer permutations, and larger

images have more. Block-based shuffling is not ideal for very simple
images, such as ones where the visual data is aligned to the blocks,
e.g., solid colors or simple patterns.However, fromaprivacy perspec-
tive, simple images are less likely to contain sensitive information.
Like all encryption schemes, an encrypted image which has been
resized cannot be decrypted. ESP therefore resizes images larger
than the maximum allowed sizes for cloud photo services prior to
encryption. Google Photos’ maximum size is 16 MP, so ESP scales
images to at most 16 MP before encrypting them. This is no worse
than a user uploading an unencrypted image larger than 16MP since
it will be resized in any case.

A crucial component of PRNG-based encryption is the selection
of the secret seed values; easily guessed ones are a security risk. ESP
adaptively generates unique seed values (𝑠𝑅,𝑠𝐺 ,𝑠𝐵) per encrypted
image. A user’s initial secret key 𝑆 is a sufficiently long, say 256-
bit, string of cryptographically secure random bits. 384-bit adaptive
seed values (𝑠𝑅,𝑠𝐺 ,𝑠𝐵) are randomly generated separately for each
image, then encrypted using 𝑆 as 𝐸𝑆 (𝑠𝑅,𝑠𝐺 ,𝑠𝐵). This is stored in the
encrypted grayscale images’ metadata either as EXIF format or via
anothermethodsuchasGooglePhoto’smetadatafields.The256-byte
secret seeds are derived from the 384-bit adaptive seed values.

4.2 Encrypted Thumbnails
A difficulty in supporting existing cloud services is constructing
a seamless and fast experience so that users can quickly browse
through thumbnail galleries of their photos. Without designing for
this, a user would only be shown thumbnails created from the ci-
phertexts, which are unusable, or would have a sluggish experience
with high bandwidth usage using a naive approach that generates
thumbnails as a user is browsing through them by downloading
and decrypting full resolution images. An alternative would be to
continuously check for newly encrypted images in the background
and create thumbnails evenwhen the user is not browsing, but this is
a laborious process involving all of a user’s ESP clients downloading
all the images at full resolution, decrypting them, resizing them, and
generating thumbnails.

ESP introduces a simple solution by generating thumbnails when
uploading new images. This removes thumbnail generation from the
critical path of browsing. It alsohides its overheadbecauseuploading
is all done in the background, so the user does not need to wait for
it and is free to continue using the app, and thumbnail generation
is cheap compared to encrypting the image itself. ESP prepares
two encrypted images (six grayscale ciphertext images). The first
is the original encrypted image, and the second is an encrypted,
resized thumbnail. The encrypted original is stored in the user’s
chosen location on Google Photos while the encrypted thumbnail
is uploaded to an album specifically for encrypted thumbnails; the
ESP client hides this album from the user under normal operation.

When the uploads complete, the ESP client maps encrypted im-
ages’ Google Photos media IDs to the corresponding encrypted
thumbnails’ media IDs. Thus, when the user is browsing an encrypt-
ed album for the first time, the client requests the smaller encrypt-
ed thumbnails rather than the full-size originals, and requests and
downloads full-size encrypted images at a lower priority. However,
it may prioritize requesting full-size images that the user is likely
to view next, for example, if the user is swiping through individual

139



Encrypted Cloud Photo Storage Using Google Photos MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA

images. The user’s other ESP clients that do not have the original-to-
thumbnail mappings recreate them independently by periodically
scanning the special album for new encrypted thumbnails.

4.3 Image Sharing
ESP users can share their images and albums with others normally
or securely. Normally sharing images appears the same as sharing a
regular unencrypted image. If the source image is available locally, it
is uploaded unencrypted as a separate copy to the service and shared
with the recipient via the service’s normal mechanism. If the image
is not available locally, the image in Google Photos is downloaded,
decrypted, and re-uploaded to be shared with the recipient. The user
is notified that normal sharing is insecure and may compromise the
image. However, the willingness to share a photo already represents
a security risk as no guarantee can be made that the recipient is
trustworthy. For example, the recipient may copy the image and
distribute it; the sender has no control over this.

ESP users may securely share images and albums with other ESP
users. Suppose Alice wishes to share an encrypted photo albumwith
Bob. If this is their first time sharing albums with each other, they
perform a one-time handshakewhich is a public key exchange. Alice
asks Bob to share his handshake link (URL) generated by his ESP app.
Bob’s ESP public key and other metadata are encoded into this URL;
it is then shortened, for example, viaGoogle FirebaseDynamic Links,
so that if Alice opens it onAndroid or iOS, it will be routed to the ESP
app and add Bob’s public key. Alice also shares her handshake URL
with Bob whose ESP app performs the same process. This completes
the public key exchange without them knowing what a public key is.

NowAlicebeginssharing𝐸 (𝐴𝑙𝑏𝑢𝑚𝐴)𝑆𝐴 , theencryptionof𝐴𝑙𝑏𝑢𝑚𝐴

using her secret key (𝑆𝐴). Alice selects𝐴𝑙𝑏𝑢𝑚𝐴 to share and chooses
Bob from her list of known ESP users. Alice’s client creates a new
album 𝐴𝑙𝑏𝑢𝑚𝐴𝐵 , invisible to her, to share with Bob; the original
𝐴𝑙𝑏𝑢𝑚𝐴 is not shared. Alice’s client then generates 𝑆𝐴𝐵 , a new se-
cret key shared by Alice and Bob. Alice decrypts 𝐸 (𝐴𝑙𝑏𝑢𝑚𝐴)𝑆𝐴 , and
re-encrypts and stores it in𝐴𝑙𝑏𝑢𝑚𝐴𝐵 , resulting in 𝐸 (𝐴𝑙𝑏𝑢𝑚𝐴𝐵)𝑆𝐴𝐵

.
Alice then encrypts 𝑆𝐴𝐵 using both her own and Bob’s public keys,
resulting in 𝐸 (𝑆𝐴𝐵) (𝐴𝑙𝑖𝑐𝑒,𝐵𝑜𝑏) . Next, if Alice’s cloud photo service
supports its own sharing mechanism, Alice’s client ensures that
𝐴𝑙𝑏𝑢𝑚𝐴𝐵 is viewable by Bob and retrieves the service’s URL for
𝑈𝑅𝐿(𝐴𝑙𝑏𝑢𝑚𝐴𝐵). Finally, Alice’s client presents herwith a shortened
share URL𝑈𝐴𝑙𝑖𝑐𝑒,𝐵𝑜𝑏 to send to Bob. When expanded,𝑈𝐴𝑙𝑖𝑐𝑒,𝐵𝑜𝑏 =
{𝑈𝑅𝐿(𝐴𝑙𝑏𝑢𝑚𝐴𝐵),𝐸 (𝑆𝐴𝐵) (𝐴𝑙𝑖𝑐𝑒,𝐵𝑜𝑏) }. Bob’s device receives and au-
tomaticallyopens it inESP.Bob’s clientuses its privatekey todecrypt
𝐸 (𝑆𝐴𝐵) (𝐴𝑙𝑖𝑐𝑒,𝐵𝑜𝑏) and retrieve 𝑆𝐴𝐵 to decrypt the album.

Alice andBob’s clients also support viewing𝐴𝑙𝑏𝑢𝑚𝐴𝐵 onmultiple
devices. When Alice’s client constructs𝑈𝐴𝑙𝑖𝑐𝑒,𝐵𝑜𝑏 , it is also synchro-
nized among all of Alice’s devices in the form of a IKM broadcast
message, the protocol for which is discussed in Section 4.5. Any of
Alice’s devices which trust the broadcasting device will accept the
message, decrypt the contained encrypted shared seeds, and record
the seeds’ association with𝑈𝑅𝐿(𝐴𝑙𝑏𝑢𝑚𝐴𝐵). Bob’s client performs
the same steps. If Alice shares 𝐴𝑙𝑏𝑢𝑚𝐴 with multiple people, ESP
adds their public keys to the list of keys used to encrypt the shared
seeds 𝐸 (𝑆𝐴𝐵...) (𝐴𝑙𝑖𝑐𝑒,𝐵𝑜𝑏,...).

Alice revokes Bob’s access to 𝐴𝑙𝑏𝑢𝑚𝐴𝐵 by removing him from
𝐴𝑙𝑏𝑢𝑚𝐴 . Alice’s client first revokes any granted access controls via

the cloud service itself, and then deletes𝐴𝑙𝑏𝑢𝑚𝐴𝐵 from the service.
ESP cannot prevent Bob from accessing any copies of𝐴𝑙𝑏𝑢𝑚𝐴𝐵 that
he may have saved. Alice revoking Bob’s access only prevents Bob
from viewing the album via the cloud service. If Alice has shared it
with multiple people, then she may only revoke all of their access
at once. If Alice desires granular access revocation, she must share
her albumwith each user separately.

4.4 Other Features and Limitations
ESP is incompatible with cloud photo services’ features that rely on
server-side access to photo image data. This includes facial recogni-
tion and detection, machine learning-based labeling and classifica-
tion, image searching, and other similar functionality. For example,
Google Photos uses server-side machine learning to classify images
ostensibly for supporting search. However, this feature is incompat-
ible with encrypted images, as it is run on Google’s servers which
cannot decrypt ESP images. Moreover, server-side classification
of images compromises their privacy. Consequently, ESP utilizes
client-side image classification, similar to what Apple does on their
Photos app on mobile devices, to protect their users’ privacy [6]. In
fact, both Google and Apple provide on-device classificationmodels,
Google via ML Kit [25] and Apple via Core ML [7]. Although ML
Kit provides fewer labels for on-device classification compared to
Google’s cloud-based one, Apple’s Core ML has no such limitations.
Once labeled, images can be searched.

Users may wish to edit images such as by adding filters or crop-
ping them. Images are edited locally by first decrypting the image,
applying themodifications, then re-encrypting the image. ESP canbe
supported on web browsers via browser extensions. Such an exten-
sion implements all the features of a normal ESP client. Depending
on local storage constraints, decrypted imagesmay be cached locally.
If storage is constrained, then the extension fetches ESP encrypted
thumbnails to ensure a smooth user experience.

Existing cloud photo services could change their systems or for-
mat requirements in ways that impact ESP users. ESP assumes that
services adhere to existing image standards and will not deviate
from them, i.e. services will not arbitrarily convert users’ photos
to different formats. This is unlikely to happen, but if it does, ESP
clients would not overwrite their local encrypted ESP images with
the copies that the cloud photo service has converted. Since ESP
clients keep mappings of photo identifiers, these records can also
be used to detect arbitrary modifications by services and retain the
copies of the images prior to their modifications, allowing ESP to
re-encrypt the images to the new format. However, this requires
users tomaintain local copies of their photos,making this a potential
limitation of ESP if services decide to arbitrarily convert users’ photo
file formats. Another possibility is that services may release sup-
port for encrypted images themselves which would compete with
ESP. This is actually a desirable outcome. The motivation of ESP is
to satisfy users’ desires for privacy via a client-side solution with
no reliance on any third-party services, since cloud photo services
do not provide this feature themselves. If services begin to provide
features similar to ESP, this would be an overall win for users as
the user experience, integration, and feature support can be further
improved with support from the services themselves.

140



MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA John S. Koh, Jason Nieh, and StevenM. Bellovin

4.5 KeyManagement forMultiple Devices
ESP’s secret keyused to encrypt anddecrypt images is never exposed
to the user and never leaves a ESP device without being encrypted.
A user’s ESP device maintains self-generated public/private keys
such as PGP keypairs, which have no reliance on PKI. The keypairs
are used for encrypting and decrypting secret key 𝑆 . The encrypted
𝑆 , denoted as 𝐸 (𝑆), is also stored remotely in the cloud photo ser-
vice as a QR code image. Any user’s ESP device can recover 𝑆 from
𝐸 (𝑆). The challenge lies in how ESP should manage keypairs for
users, including granting and revoking access to 𝐸 (𝑆) for multiple
devices, since public key cryptography and key management are
extraordinarily confusing for users [49].

To address these problems, ESP introduces Image-based KeyMan-
agement (IKM), building on our previous work on key management
for encrypted email [35]. IKM has a simple usage model for users,
hiding themany confusing aspects of keymanagement and exposing
to users only the concept of device management, which they readily
understand. IKM’s primary principle is that a user should not need
to synchronize a private key across their devices, but instead only
synchronize their devices’ public keys. Thus, when a user installs
ESP on anewdevice, it generates a newkeypair anduses the IKMver-
ification process to gain the trust of another existing ESP device. This
already-trusted device thenbroadcasts thenewdevice’s public key in
a signed message encoded as a QR code uploaded to the cloud photo
service. The user’s other ESP devices accept the broadcast since they
already trust the announcing device. So adding a new device builds
up a chain of trust inwhich devices that trust each other also trust the
other devices they each trust. Device revocation is handled similarly;
trusted devices broadcast the removal of another device.

IKM uses the cloud photo service as the communication channel
formessages. For example, withGoogle Photos, ESP creates a special
album named #IKM-QR-CODES, which is invisible to the user in the
app, and uploads IKMQR code messages to it. We chose QR codes as
they can be represented as images which are robust against image
compression and resizing. IKMmessages are not encrypted but are
signed and verified by every trusted ESP client.

Adding and verifying a new ESP device so that it becomes trusted
happens through a synchronization process reminiscient of Blue-
tooth pairing. It is carried out either via a platform-independent
verification step that workswith any device that has a display screen
and a connection to the cloud photo service, or via near-field commu-
nication (NFC) when supported. Adding a new device begins when
the user sets up ESP on it. ESP displays a random phrase to the user,
which the user must input on any of his existing ESP devices. The
random phrase may be 3 to 5 randomwords from curated lists such
as the PGPWord List [33]. This random phrase—conveyed by the
user, who acts as a secondary, out-of-band communication channel—
is the password input to a Password-Authenticated Key Exchange
(PAKE) [2] completed over the primary communication channel, the
cloud photo service. The PAKE allows the two devices to indepen-
dently generate a secret session key for constructing an encrypted
tunnel. Since the user copied the random phrase—the password—
out of band, the photo service cannot learn the secret session key
or intercept the tunnel. Once the encrypted tunnel has been estab-
lished, the two devices can exchange public keys and authenticate
themwithout risk of eavesdropping or man-in-the-middle attacks.

The existing ESP device then uses the IKM protocol as normal to
broadcast the new device’s public key.

Next, the existing device decrypts 𝐸 (𝑆) and re-encrypts 𝑆 using
the newdevice’s public key plus all other existing ones. The resulting
𝐸 ′(𝑆) is stored as normal, completing the new device setup. The new
device can now decrypt 𝐸 ′(𝑆) to get 𝑆 , which it can use to decrypt
any encrypted image. Deleting a device is similar: the user selects
it from one of his existing devices, then the remotely stored 𝐸 (𝑆)
is re-encrypted using the public keys of all devices except for the
deleted one. This simple deletion mode is suitable when the user
is still in control of the deleted device. However, if the device to
delete was lost, this requires more work since the goal is to ensure
that the lost device cannot continue to download and decrypt im-
ages from the cloud photo service; a lost device still has access to
previously locally stored images. Wemake a distinction between a
lost device and a compromised device. ESP does not defend against
device compromise where the attacker has bypassed the hardware
or OS security because then the attacker has access to the secret
key regardless of the security or encryption scheme. The purpose
of device deletion is to revoke device access.

Deleting a lost device replaces 𝐸 (𝑆) with a new secret key 𝑆 ′,
which is then used to re-encrypt all of the user’s images. 𝑆 ′ is en-
crypted using all public keys except for the key of the lost device. The
other devices detect this changeandupdate their local caches. Thede-
vices then begin re-encrypting the user’s images using𝑆 ′. The device
which initiated the deletion request chooses how to parallelize the re-
encryption effort among other devices by broadcasting distribution
ofwork. For example, it canpartition images by albumor time ranges.

In extreme cases, a user may lose all of his ESP devices, thus ne-
cessitating recovering access to his encrypted images.What the user
has lost is all of his private keys which can decrypt 𝐸 (𝑆). Therefore,
when a new ESP client does not detect an existing one in the cloud
photo service, it also provides the user with a recovery key that they
must write down. The recovery key is a symmetric key that can
decrypt a copy of 𝐸 (𝑆).

5 SECURITYANALYSIS
ESP acts as a significant security barrier to compromises of priva-
cy. As the following security analysis shows, it is difficult to break
encryption for even one photo. If a user encrypts many photos, the
difficulty of breaking encryption for all those photos becomes al-
most impossible. Adversaries need to expend immense computing
resources to break the encryption of even one photo, and more so
with many photos since each photo has a unique random seed for its
encryption. Even then, the output of attack attempts would need ad-
ditional resources, either computing or manual human verification,
to determine whether the attempts at decrypting photos are correct
or not. It therefore becomes intractable for an attacker to successfuly
decrypt many encrypted photos uploaded by a user.

Given significant resources, an attacker might break the encryp-
tion of a photo, but it may be more likely that the adversary would
attempt to break the encryption via other means, such as stealing a
user’s trusted device or exploiting vulnerabilities on a user’s device.
As we discuss in Section 2, defenses against attacks like these are
orthogonal to the core of ESP design, and would be better handled
at the hardware, OS, or even application platform level, i.e. Android

141



Encrypted Cloud Photo Storage Using Google Photos MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA

and iOS providingmechanisms for secure keymanagement resilient
against attackers. Even though ESP considers device security to be
out of scope, ESP still represents a significant improvement to cloud
photo service security that attackers must overcome as it is much
more difficult to obtain users’ ESP secret keys compared to the cur-
rent norm of needing only user account names and passwords to
access their photos.

Our security analysis focuses on ESP’s two main security guaran-
tees: (1) ESP’s devicemanagement ensures that photos are encrypted
using only authenticated public keys. (2) ESP’s encryption protects
the confidentiality of photos. We describe ESP’s properties to use as
building blocks for these claims.
Property 1. The first configured ESP device is trusted.

ESP relies on a trust on first use approach since all keypairs are
self-generated. This first device’s keypair is used as the starting point
for adding further devices.
Property 2.Attackers cannot add their malicious devices to a user’s
chain of trust.

To compromise a user’s trusted device chain, an attacker could
try to force one of the victim’s trusted ESP devices to authenticate
a malicious one. The attacker would need access to the user’s cloud
photo service account and initiate the protocol to add a new device.
Next, the attacker needs the victim to authenticate the attacker’s ma-
licious device. However, since the user did not initiate the protocol,
they will not recognize the request or know the correct verification
phrase, so the malicious device will not be authenticated.

Another approach is to wait for the user to legitimately add a
new device and then perform a man-in-the-middle attack. However,
this is not possible due to the use of the PAKE, in which the user
manually inputs the random phrase as the password to the PAKE.
Since the PAKE’s password is never exposed to the network, the
attacker cannot intercept it and learn it remotely. To compromise
the PAKE, the attacker would need to have either already compro-
mised one of the user’s devices, or be physically watching the user to
learn the password. Guessing the PAKE password is also intractable
because the PAKE protocol detects failed attempts and aborts when
they occur. If this happens, the user must restart the protocol, and
a new random phrase will be selected. The attacker must therefore
guess the PAKE password with replacement and also with innate
rate-limiting, as it will take more than a few seconds for the user to
restart the protocol after every failure.
Property 3. Any device which is trusted by the first ESP device is also
a trusted device.

This follows from Properties 1 and 2. If the first device authenti-
cates a new device, then it is trusted by definition.
Property 4. Any device trusted by a given trusted device is also trusted
by every other device.

This is the generalized version of Property 3, and holds true due
to trust by transitivity. If a device trusts another one, then the first
also trusts every device trusted by the second.
Property 5. ESP incrementally builds up trust among devices using
only a single completed verification process per device.

When a user adds a new device, it does not need to be individually
verified by every other existing device. Instead, it is only verified
by one other device. We prove this property by induction. Suppose

a user has a single device, then by Property 1, it is trusted. If the
user obtains a second device, then the first is trusted, and the second
device is verified by the first and becomes trusted. The result is that
both devices trust each other and have exchanged their public keys.

Now the user adds a third device and has devices𝐴, 𝐵, and𝐶 .𝐴
and 𝐵 already trust each other. Then, the user uses 𝐵 to verify 𝐶 ,
after which point they trust each other. Since𝐵 trusts𝐴,𝐵 knows𝐴’s
public key and provides it to𝐶 , so𝐶 can also trust𝐴 despite having
never interactedwith it. The question is then how𝐴 learns about𝐶’s
public key. 𝐵 publishes its set of trusted public keys, signed by itself
and containing𝐶’s public key, by uploading it to the photo service.𝐴
will detect the signed set of trusted public keys, and since𝐴 trusts 𝐵,
it will therefore accept𝐶’s public key.𝐴, 𝐵, and𝐶 now know every
trusted public key and trust each other.

This same logic applies even if the user has 𝑁 devices and adds
a new device𝑍 , resulting in 𝑁 +1 devices. The user adds new device
𝑍 by using trusted device𝐾 ∈ {𝑁 } to verify𝑍 . Afterwards,𝐾 and𝑍
trust each other, and𝑍 has received the public keys of all 𝑁 devices.
𝐾 publishes an updated set of trusted public keys containing 𝑍 ’s
public key, signed by𝐾 . The remaining {𝑁 −𝐾} devices observe𝑍 ’s
new public key in the set, and seeing that it was signed by𝐾 , accept
it, thereby also accepting𝑍 ’s public key. In summary, the user has
performed only a single verification step for new device𝑍 in order
for it to join their ecosystem of trusted ESP devices.
Property 6. ESP devices that do not participate in the verification step
only add authenticated public keys.

This follows from Property 4. Trusted devices only accept public
key lists from known, trusted devices, so they reject any messages
or public keys signed by an untrusted public key.
Property 7. ESP’s device management ensures that photos are en-
crypted using only authenticated public keys.

This follows from Properties 1–6.
Property 8. ESP’s encryption is robust and secure.

ESP is resistant to brute force attacks on the secret seed values and
images.Asdescribed inSection4.1, (𝑠𝑅,𝑠𝐺 ,𝑠𝐵) are 384-bit seedvalues,
so thereare (2384)3 possiblevalues for (𝑠𝑅,𝑠𝐺 ,𝑠𝐵)—asufficiently large
key space. Even if an attacker only wishes to brute force the seed
value for a single channel, the complexity is still 2384, and does not
even account for the additional effort still needed to reverse the
inter-channel shuffle.

A brute force attack could also be performed on the images. Such
an attack must find both the correct permutation of 8×8 blocks and
ordering of inter-channel swapped RGB blocks to reconstruct the
image. There are consequently𝑂 (𝐵𝑅 !×𝐵𝐺 !×𝐵𝐵 !) possible permu-
tations of blocks to reconstruct the entire original image, so brute
force attacks are impractical for all but the smallest of images. For
example even a small (by modern standards) 1280×720 pixel image
contains 14400 blocks, for a search space of 14400!3.

An extension of the brute force attack is to treat shuffle-based
encrypted images as if they were unsolved jigsaw puzzles. A jigsaw
puzzle solver attack leverages perceivable outlineswithin an image’s
shuffled blocks to try to re-assemble them into recognizable features.
The solver running time increases exponentially with the number of
blocks, and shuffling blocks across color components significantly
reduces the output quality [12]. Using a small block size such as 8×8
pixel blocks also acts as an important defense [13]. Even when the

142



MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA John S. Koh, Jason Nieh, and StevenM. Bellovin

Figure 4: The image and its two ciphertexts that do not pass
the NPCR randomness test by a slimmargin.

solvers run to completion, there is often a low or zero reconstruction
rate of the source image’s recognizable features.

Attackersmay not need the correct position of every block to gain
useful information. For example, an imagemaycontain sensitivedata
in only a small portion of it which a puzzle solver or outline counting
attackmay reconstruct, or a “close enough” guess can reveal the con-
text of the image. Since more than 1 billion images were uploaded to
Google Photos in 2019 [37], ESP is a significant barrier to adversaries
like the cloud service itself analyzing user images. It is less clearwhat
happens if the adversary is targeting just a few images, e.g. in the con-
text of a specific investigation; this is the subject of ongoing research.

ESP is resistant to known plaintext attacks due to its adaptive key
scheme: the encryption keys (seed values) used to encrypt every im-
age is different. It is also robust against differential cryptanalysis [52].
We evaluate this using a commonly used measurement, the number
of pixel change rate (NPCR) [11, 52], which compares two ciphertext
images𝐶1 and𝐶2 for a source image which has been modified by
1 pixel. We computed the NPCR for 100 images we selected from
the Open Images Dataset V5 [23] and encrypting the original and
modified versions. Since ESP splits RGB images into three encrypted
grayscale images, the inputs𝐶1 and𝐶2 were constructed by combin-
ing each of their three grayscale ciphertext images into a single RGB
ciphertext image. 99 of 100 images passed the NPCR randomness
test such that NPCR(𝐶1,𝐶2)>NPCR∗𝛼=0.05 for each pair of images
𝐶1 and𝐶2, suggesting that ESP’s encryption scheme is substantially
resistant to differential cryptanalysis. Figure 4 shows the one image
that was very close to passing this test but did not; we believe that
minor improvements to our algorithmwill bring it to a passing score.
Property 9. ESP guarantees the confidentiality of its secret key and
secret seed values.

ESP uses standard public key encryption for protecting the secret
keys which encrypt the secret seed values per image that drive the
ESP-FY encryption scheme. The asymmetric public keys from each
of a user’s devices encrypt theESP secret key,which is a high entropy,
randomly generated symmetric AES key, and this key encrypts the
secret seed values for each encrypted image.
Property 10. ESP’s encryption protects the confidentiality of photos.

This follows from Properties 8–9.

6 IMPLEMENTATION
We implemented ESP on Android by modifying Simple-Gallery, a
popular open-source imagegallery appusedbymillions of users [44],
and the Android Fresco image loading library [18], which uses the
libjpeg-turbo [36] librarywritten inC. Simple-Gallerywas originally
an offline image gallery app, so we modified it to support Google
Photos. We implemented IKM by adapting a separate Android key

management app, OpenKeychain. We implemented the JPEG en-
cryption algorithm in C/C++. Wemodified Fresco’s image pipeline
to invoke the encryption and decryption routines when requested.

Since Simple-Gallery had no support for online services, nearly
all the added code, about 4.5K lines of code (LOC), was for interfac-
ing with Google Photos. The Java code added to the Fresco library
mainly consisted of abstraction layers orthogonal to encryption to
accommodate the software design patterns for their image pipeline.
The encryption algorithmwritten in C/C++ only required about 1K
LOC, not including the GNUMultiple Precision Arithmetic (GMP)
Library [20] for arbitrary precision floating point values.

7 EXPERIMENTALRESULTS
We evaluate ESP in terms of its compatibility with popular photo ser-
vices, robustness againstML labelers, its performance overhead, and
its usability. Unless otherwise indicated, we ran our tests with 2500
JPEG images selected from the Open Images Dataset V5 [23]. The se-
lection process consisted of randomly choosing 𝑁 =2500 rows from
the dataset CSVfile, discarding the𝐷𝑁 numberwith dead links, then
selecting 𝑁 −𝐷𝑁 new images and repeating this process until the
number of unique images totaled𝑁 . To avoidGoogle Photos resizing
images, ESP resized any greater than 16MP (4920×3264) using bilin-
ear downsampling, and saved the result as an 85quality JPEG.All per-
formance tests were executed on a Samsung Galaxy S7 smartphone
with a Snapdragon 820 processor and 4 GB RAM on Android 8.0 us-
ing our modified Simple-Gallery app retrofitted with the Fresco and
libjpeg-turbo libraries. Internet accesswasvia the smartphone’sWiFi
connected to a Verizon QuantumGateway G1100 5 GHzWiFi router
with a Verizon FiOS 300/300 Mbps residential fiber optic connection.

7.1 Compatibility and Interoperability
Weensured that ESP is compatiblewithpopular cloudphoto services,
namely Google Photos, Flickr, and Imgur. We randomly selected 100
of the 2500 images randomly selected from Open Images Dataset
and encrypted themusing ESP. For each service, wewe uploaded the
encrypted images, waited a period of time to ensure the images were
processed by the service, such as applying compression, then down-
loaded, decrypted and manually imspected each image. In general,
ESP images are compatible with any photo hosting service if they
are not resized or if the full resolution versions are available. Flickr
displays small resized images but also provides links to the originals.
Links to full size versions can be used by ESP to correctly decrypt
images.Most services have an arbitrarymaximum limit onfile size or
image dimensions but this has little bearing onESPwhich can simply
resize images to each service’s limits. All services apply compression
of varying strengths, but images remain compatible with ESP in
the sense that they do not suffer from visual artifacts or corruption
beyondwhat is normally caused by JPEG compression.Wemanually
inspected the images on a high resolution display and found that the
differences in quality formost images compared to the source images
were imperceptible unlesswe greatlymagnified them, and even then
it was difficult to say which looked definitively better from a psy-
chovisual perspective; it was more a matter of individual preference.
For the remaining experiments, we focused on Google Photos.

For Google Photos, we also confirmed that ESP has acceptable
image quality across all 2500 images in our sample set. To provide a

143



Encrypted Cloud Photo Storage Using Google Photos MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA

Source Image (Smallest to Largest Resolution, 50 Quality)0

10

20

30

40

50

60

Pe
ak

 S
ig

na
l-t

o-
No

ise
 R

at
io

 (d
B)

PSNR Sorted by Source Resolution
Google Photos
ESP (Q50)
ESP Google Photos (Q50)

0.0 0.2 0.4 0.6 0.8 1.0
Probability

Quantile Function
Google Photos
ESP (Q50)
ESP Google Photos (Q50)

Source Image (Smallest to Largest Resolution, 85 Quality)0

10

20

30

40

50

60

Pe
ak

 S
ig

na
l-t

o-
No

ise
 R

at
io

 (d
B)

PSNR Sorted by Source Resolution
Google Photos
ESP (Q85)
ESP Google Photos (Q85)

0.0 0.2 0.4 0.6 0.8 1.0
Probability

Quantile Function
Google Photos
ESP (Q85)
ESP Google Photos (Q85)

Source Image (Smallest to Largest Resolution, 100 Quality)0

10

20

30

40

50

60

Pe
ak

 S
ig

na
l-t

o-
No

ise
 R

at
io

 (d
B)

PSNR Sorted by Source Resolution
Google Photos
ESP (Q100)
ESP Google Photos (Q100)

0.0 0.2 0.4 0.6 0.8 1.0
Probability

Quantile Function
Google Photos
ESP (Q100)
ESP Google Photos (Q100)

Figure 5: Image qualitymeasured using PSNR relative to source images.

Source Image (Smallest to Largest Resolution, 50 Quality)
0

1

2

3

Si
ze

 (N
or

m
al

ize
d 

to
 S

ou
rc

e 
Im

ag
e) ESP

ESP Google Photos
Google Photos

ESP Thumbnails
ESP Thumbnails Google Photos
Source

Source Image (Smallest to Largest Resolution, 85 Quality)
0

1

2

3

4

5
Si

ze
 (N

or
m

al
ize

d 
to

 S
ou

rc
e 

Im
ag

e) ESP
ESP Google Photos
Google Photos

ESP Thumbnails
ESP Thumbnails Google Photos
Source

Source Image (Smallest to Largest Resolution, 100 Quality)
0
1
2
3
4
5
6
7
8
9

10
11
12

Si
ze

 (N
or

m
al

ize
d 

to
 S

ou
rc

e 
Im

ag
e) ESP

ESP Google Photos
Google Photos

ESP Thumbnails
ESP Thumbnails Google Photos
Source

Figure 6: Image file size overhead normalized against source images.

quantitative measure of image quality, we measured the peak signal-
to-noise ratio (PSNR) to compare the following against the source im-
ages: source images processed by Google Photos (Google Photos), de-
crypted ESP images (ESP), and ESP images processed by Google Pho-
tos before decryption (ESP Google Photos). For ESP, we obtainedmea-
surements for encrypting images using three levels of JPEG quality,
50, 85, and 100. Figure 5 shows the PSNR for each; a higher PSNR sug-
gests that the level of noise in the image ismore similar to the original
and is therefore of better image quality. Each graph shows PSNR for
each individual image ordered from smallest to largest image resolu-
tion, aswell as aquantile function,which is an inverse cumulativedis-
tribution function (CDF).Google Photos’s average andmedian PSNRs
were 40 dB. ESP’s average and median PSNRs were both 38 dB for 50
quality, 39 dB and 38 dB for 85 quality, and both 40 dB for 100 quality.
ESP Google Photos’s average and median values were both 36 dB for
50 quality, both 37 dB for 85 quality, and both 38 dB for 100 quality.

Although ESP has some effect on image quality from compressing
the grayscale ciphertext images, the PSNRs for ESP and ESP Google
Photos were on average not that different from using Google Photos
directly. Industry recommendations indicate that a PSNR between
30 to 50 dB is considered good, with higher being better [47]. On
average, both ESP and ESP Google Photos provide PSNRs within that
range. As the results indicate, ESP users may choose higher JPEG
quality settings for better image quality as measured by the higher
PSNRs for higher levels of JPEG quality.

A small minority of images for ESP Google Photos images had
PSNRs below 30 dB. For example, the worst case PSNRwas 25 dB for
85 quality.Wemanually inspected the imageswithPSNRs lower than
30 dB and observed two things. First, the visual quality of these im-
agescompared to thesource imageswasnotnoticeablydifferent from
the other images we manually inspected as part of our compatibility

testing. Second, the lower PSNRs occurred for images that could be
described as being low quality images in the first place, in the sense
that the source imageswere generally lowresolution andblurry. This
suggests that the lower PSNRs are unlikely to occur for real photos of
interest that are encryptedusingESPand storedusingGooglePhotos.

For some images, ESP has a lower PSNR compared to ESP Google
Photos. In these cases, the noise introduced by ESP’s intermediate
compression was specifically reduced by Google Photos’ processing
pipeline, which suggests that a noise filter is applied to uploaded
images. ESP clients could also use noise filters or similar algorithms
to improve image quality if an unusually noisy picture is detected.

Since one of ESP’s threats is the ML classifiers used by cloud
services, we ensured that they fail to correctly label ESP images.
We ran Google’s ML Kit image labeler on our test images and their
ESP-encrypted versions.We then compared the labels to verify if any
matched. ML Kit labeled the encrypted images with “Pattern” which
none of the images contained. Some encrypted images also experi-
enced other false positives, having labels unrelated to the originals.

7.2 Performance Overhead
We compared the performance of using Google Photos directly ver-
sus using Google Photos with ESP. First, we compared performance
in termsof the imagefilesizesuploadedanddownloaded fromGoogle
Photos. For ESP, we used the same encrypted images at the three
levels of JPEG quality, 50, 85, and 100, discussed in Section 7.1. ESP
also creates an encrypted thumbnail for each image, whichwas done
by first scaling source images to the 1/8 factor nearest to a target
dimension of 400×400 pixels; resizing JPEGs thisway is significantly
faster than downsampling them to precisely fit within a 400×400
pixel box. Thumbnails were encrypted at JPEG quality 50. We only
created thumbnails for source images larger than 800×800 pixels.

144



MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA John S. Koh, Jason Nieh, and StevenM. Bellovin

Figure 6 shows the measurements for the 2500 images, with file
sizes normalized to the respective source image file sizes; smaller is
better. When using Google Photos directly, the uploaded image file
is the source image (Source), and the downloaded image file is after
Google Photos compresses the image (Google Photos). When using
Google Photos with ESP, the uploaded image files consist of the
encrypted ESP image files (ESP) and the encrypted ESP thumbnails
(ESP Thumbnails), and the downloaded image files consist of the
encrypted ESP images after they are compressed by Google Pho-
tos (ESP Google Photos), and encrypted ESP thumbnails after they
are processed by Google Photos (ESP Thumbnails Google Photos).
Although ESP generates three separate grayscale JPEG images, we
treat them as one andmeasure the sum total of all the image file sizes.

UsingESP,file sizeoverhead increaseswithESP’s JPEGquality set-
ting. The averagefile size forESPwas 1.2, 2.5, and 6.5 times the source
image file size for 50, 85, and 100 quality, respectively, quantifying
the file size overhead for the encrypted image that is uploaded to
Google Photos. File size overhead for ESP Thumbnailswas negligible
except for the lowest resolution images since in those cases, thumb-
nail resolution and file size were no longer insignificant compared to
the source images. The file size for ESP Thumbnails was on average
less than a tenth of the source image size, but in theworst case, it was
.6 times the source image file size for the lowest resolution image.

ForESP, other than the JPEGquality setting for encryption, thepri-
mary determining factors of the encrypted image file sizes were the
permutationof pixel blocks for agivenencrypted imageand theprop-
erties of the source image itself. A shuffled image is unlikely to have
sizable regions of consistent color and generally appears close to ran-
dom noise, thus preventing efficient compression, so encrypted im-
age file sizes are larger. Other factors include properties of the source
image, including its original JPEG quality and chroma subsampling
format. If the source image itself was saved with a high JPEG quality,
i.e. higher than85, then converting itsRGBdata to three grayscale im-
ageswith 85 quality results in greater file size compression.However
if the source image is already savedwith low JPEGquality, there is lit-
tle gain fromcompressing it further, resulting in a largerfile size over-
head. Similarly, if the source image uses chroma subsampling such as
4:2:0, the CbCr components are a quarter of the size of the Y compo-
nent but the output encrypted RGB grayscale images are all full size
and not downsampled. In contrast, if the source image has full size
CbCrcomponents (4:4:4 format), thentheoutputencryptedgrayscale
images are effectively the same resolution as all of the YCbCr com-
ponents in the original image, resulting in less inefficiency.

Figure 6 also shows the file size overhead for encrypted images
downloaded from Google Photos, which is different from uploaded
images because Google Photos compresses them. The average file
size for ESP Google Photos was .9, 1.7, and 1.4 times the source image
file size for 50, 85, and 100 quality, respectively, quantifying the file
size overhead for encrypted images downloaded fromGoogle Photos.
File size overhead for ESP Thumbnails Google Photos was negligible
except for the lowest resolution images. In comparison, the average
file size for Google Photoswas half of the source image file size.

The ESP-encrypted images processed by Google Photos are some-
times larger than theESP images before theyareprocessedbyGoogle
Photos. One explanation for this phenomenon is an apparent over-
sight by Google Photos’ image processing and compression pipeline
at the time of writing. The original unprocessed encrypted grayscale

images output by ESP are true grayscale JPEGs with only one color
component, the luminance (Y) channel. However, Google Photos
seemingly processes all images as if they are color JPEGs with the
YCbCr colorspace. In other words, Google Photos converts true
grayscale JPEGs (Y) to color JPEGs (YCbCr), and needlessly popu-
lates the Cb and Cr components with the luminance data. Although
Google Photos also forces its output images to use 4:2:0 chroma
subsampling meaning that the CbCr components are downsampled,
they still represent extraneous overhead. An optimization for ESP’s
encryption would be to output each encrypted grayscale JPEG as a
color JPEG while only keeping the useful data in the Y channel, and
populating the Cb and Cr channels with zeros.

Although source images are typically not saved with JPEG qual-
ity 100, the measurements suggest that this quality setting may be
useful for ESP because Google Photos appears to more aggressively
compress the large JPEG images with 100 quality compared to the
lower JPEG quality settings. For ESP Google Photos the average file
size overhead for 100 quality was surprisingly less than that for 85
quality. The main downside to using the 100 quality setting would
be that it could take much longer to upload the photos to Google
if only a low bandwidth network connection is available, since the
average file size to upload is much larger for 100 quality than for
85 quality. However, using 100 quality would not need to consume
much more local storage space if only the original unencrypted im-
ages are retained locally. Note that the file size overhead can greatly
vary depending on the properties of the source image. For example,
one ESP photo in the graph showing JPEG quality 100 size overhead
has a distinctly lower file size of about 2.4 times the source image
file size, compared to the average of 6.5 times, because it is a high
resolution photo of the night skywith nearly no stars visible,making
it an almost solid black JPEG photo.

Next, we compared performance in terms of the time to upload to
anddownload fromGooglePhotos. For thesemeasurements,weused
the 100 images randomly selected from the 2500 image sample set
whichweoriginally used formanually testing compability.Whenup-
loading an image, ESP first concurrently encrypts the source image
and a thumbnail, which results in three separate grayscale JPEG im-
ages for the image and three more for the thumbnail, which are then
concurrently uploaded to Google Photos by invoking a Google Pho-
tos API to register the uploaded images to Google Photos as Google
media items. Wemeasure the entirety of ESP’s encryption and up-
loading time for all six images together (ESP (Upload)). When down-
loading an image, ESP separately downloads and decrypts the en-
crypted images and thumbnails, so we can measure their respective
download and decrypt times (ESP (Download) and ESP Thumbnails
(Download)) separately. For comparison, we alsomeasure the time to
upload theunmodified source image toGoogle Photos (Google Photos
(Upload)) and download the respective image fromGoogle Photos af-
ter it has been compressed and processed (Google Photos (Download)).

Figure 7 shows the upload and download times for ESP for 50, 85,
and 100 quality, respectively. Although ESP’s upload and download
times are slightly higher with higher quality, the difference is small,
suggesting that, at least for a fast residential Internet connection,
the choice of JPEG quality setting for ESP should be based on factors
other than upload and download times.

145



Encrypted Cloud Photo Storage Using Google Photos MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA

Source Image (Smallest to Largest Resolution, 50 Quality)
0

1

2

3

4

5

6

7

8

Ti
m

e 
(S

ec
on

ds
)

Google Photos (Upload)
ESP (Upload)
ESP (Upload w/o Encrypt)
Google Photos (Download)

ESP (Download)
ESP (Download w/o Decrypt)
ESP Thumbnails (Download)

Source Image (Smallest to Largest Resolution, 85 Quality)
0

1

2

3

4

5

6

7

8

Ti
m

e 
(S

ec
on

ds
)

Google Photos (Upload)
ESP (Upload)
ESP (Upload w/o Encrypt)
Google Photos (Download)

ESP (Download)
ESP (Download w/o Decrypt)
ESP Thumbnails (Download)

Source Image (Smallest to Largest Resolution, 100 Quality)
0

1

2

3

4

5

6

7

8

Ti
m

e 
(S

ec
on

ds
)

Google Photos (Upload)
ESP (Upload)
ESP (Upload w/o Encrypt)
Google Photos (Download)

ESP (Download)
ESP (Download w/o Decrypt)
ESP Thumbnails (Download)

Figure 7: Image upload and download times using Google Photos.

ESP upload and download times are larger than directly using
Google Photos, which is not surprising given the added encryp-
tion and decryption costs and the fact that the image files being
transferred between client and server are also larger. Nevertheless,
the difference in both upload and download times between direct-
ly using Google Photos and using ESP is at most a few seconds in
all cases, though the difference is larger for uploading than down-
loading. Although the encrypt and upload times are larger than the
download and decrypt times, encrypting and uploading occurs in
the background and is not in the critical path of the user, who is free
to continue using the app and perform other actions. This usage
model is no different from the official Google Photos app, which also
does background uploads. ESP’s higher upload and download times,
especially given that uploading can be done in the background, is
arguably worth the additional security benefit it provides.

Figure 7 also shows the upload and download times (ESP (Upload
w/o Encrypt) and ESP (Download w/o Decrypt)) without including the
time to encrypt and decrypt the grayscale JPEG images, respectively.
Comparing ESP (Upload) and versus (ESP (Upload w/o Encrypt), we
can see that most of the time is spent on uploading rather than en-
crypting, though encryption costs as a percentage of the total time
increases at larger image resolutions. On the other hand, comparing
ESP (Download) and versus ESP (Download w/o Decrypt), we can see
thatmost of the time is spent on decrypting rather thandownloading.
While downloading the encrypted images is notmuch different from
downloading the processed source image from Google Photos, it is
so fast that decrypting the full size images adds significant overhead.

Downloading and decrypting ESP thumbnails (ESP Thumbnails
(Download)) is faster than downloading unencrypted images from
Google Photos on average. This highlights the importance of lever-
aging encrypted thumbnails; they exhibit far lower overheads, gen-
erally less than 250 ms, to download and decrypt. ESP stores images
locally inplaintextafterdecrypting themsodownloadingESP images
and thumbnails are a one-time cost per device, but the usage of en-
crypted thumbnails is still a critical point for providing a smoothuser
experience when browsing newly synchronized images. A cleverly
implementedappcanaggressively fetchanddecrypt thumbnails, and
lazily fetch full size images as the user selects them. Then adjacent
images can also be fetched and decrypted in the background. The
user will then only notice loading times if swiping quickly through
full size images that have not yet been cached locally on the device.
The overhead can also be eliminated from the user’s perspective
if images are preloaded and decrypted locally ahead of time in the
background while the user is looking at an image or the app is idle.

Mean Stdev. Min. Q1 Median Q3 Max
79 18 43 67 83 92 100

Table 1: SystemUsability Scale summarized scores.

7.3 Usability
ESP’s daily operation is transparent to users: the experience is the
same as with a regular image app. The main difference in ESP is
new device configuration, which includes setting up the first ESP
device and adding any others. Either case requires the only signifi-
cant new interaction from the user compared to a normal app. We
consequently performed a small pilot user study of ESP with a focus
on the configuration steps necessary for key management.

We administered a user study approved by our institutions’ Insti-
tutional Review Board (IRB) with 18 study participants who used the
IKM system for ESP. Due to the government and IRB enforced prohi-
bition of human interaction in response to the on-going COVID-19
pandemic, we were limited in our ability to hold sessions with more
users. Participants were allotted 60minutes but none used the entire
time. Twelvewere 20 to 29 years old, fourwere 30 to 39, onewas 40 to
49, and the lastwas 50 to 59.Weasked them to setup the appon twoof
their Android devices if possible, otherwise we provided themwith
either a SamsungGalaxy S7 and aHuaweiHonor 5X, or an LGK9 and
Google Pixel 2 XL. We supplied Google accounts, which we helped
users setupontheirdevices, touse forGooglePhotos.Users setup the
app on one device and completed any required configuration steps.
Next, theywere asked to repeat this identical process on their second
device and thenperform theverification step. In our study, users used
the verification phrase method. All users finished in 5 to 10 minutes.

Finally, users completed the System Usability Scale (SUS) [48], an
industry-standard survey used to evaluate the overall usability of
a system. The SUS scores are summarized in Table 1; a higher score
correlates with better usability. For example, a score of 85 to 100
suggests Excellent usability, 71 to 85meansGood, and 51 to 70means
OK [1]. Although ESP’s median SUS score is 83, in fact 9, or half, of
the users gave SUS scores of 85 or higher and therefore rated the
system as having Excellent usability, while the remainder felt it had
betweenOK andGood usability. Only one user gave a score lower
than 51; however this user expressed disinterest in the concept of
photo security and encryption which may have biased their survey
choices. Other user comments such as “That was easy” during the
sessions suggests that the primary usability overhead of ESP, new
device configuration, is simple and intuitive.

146



MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA John S. Koh, Jason Nieh, and StevenM. Bellovin

8 RELATEDWORK
Many approaches have been explored for encrypting images, espe-
cially JPEGs. Much of this work in computer vision and signal and
image processing was inspired by [21], which first introduced the
idea of using chaotic maps such as the logistic map to drive image
encryption. Different kinds of chaotic maps have been tried, such as
Arnold’s cat map [11, 22, 53, 58, 60], and maps have been combined
to generate improved distributions [32]. All of these approaches
either assume a raw bitmap without accounting for inefficient JPEG
compression, ormodify and permuteDCandACcoefficients inways
that break JPEG compression algorithms.

The concept of format-preserving encryption, where an encryp-
tion outputs a ciphertext which retains the formatting and length
of the original plaintext [10], has been used for encrypting im-
ages [31, 46]. A common approach is to scramble JPEGs within
the constraints of its format by modifying DCT coefficients, directly
obscuring [17, 30, 50] or scrambling them [55]. Some approaches
specifically preserve JPEG image file sizes [26, 39, 40]. While there
are many secure JPEG scrambling schemes [26, 30, 32, 39, 50], they
are not compatiblewith existing cloud photo services. Our own expe-
rience implementing and testing these encryption schemes confirm
that they are incompatible with services such as Google Photos.

While some approaches are designed for cloud storage, they often
break the JPEG format and therefore require a third-party service
exclusively tailored for their ciphertext format [27, 42, 54, 56, 57].
Others introduce unreasonably large performance overheads [45,
51, 53, 60] or sacrifice significant image quality [51]. Some build on
format-preservingencryptionbynotonlyencrypting theoriginal im-
age but also outputting recognizable encrypted thumbnails [45, 51],
but suffer from performance issues. Others encrypt only specific
regions of interest (ROI) within images to obfuscate identities or sen-
sitive material [27, 42, 54, 56, 57]. These approaches tend to encrypt
the ROIs of an image, extract them from the remaining unencrypted
parts, and store them separately in either generic cloud storage of-
ferings or their own servers. They are not compatible with existing
cloud photo services such as Google Photos.

The security of ROI encryption is not well understood [45]. In lay
terms, the privacy guarantees are unclear because there are no well-
definedmodels for judgingwhether an encrypted ROI protects users.
AnROIapproachcoulddefineROIs ashuman faces andobscure them,
but the remaining visible portions of the image may yield sensitive
information such as location, time, relationships, etc. Some solutions
ask users to themselves select the ROIs in an image,which is not only
tediousbut alsounreliable asusers donotunderstand theprivacyand
security implications of ROIs. Although not strictly an ROI-based ap-
proach, Fawkes [43] allows users to “cloak” their uploaded photos to
shield them against facial recognition software, which ostensibly is
also effective againstML labelers in general. Fawkes’ strategy resem-
bles ROI approaches in someways, as it focuses on obscuring human
subjects’ faces rather then encrypting entire images. Fawkes there-
fore suffers from potential privacy issues from other threats beyond
facial recognition software sinceenvironmental andcontextual infor-
mation is left uncloaked. One of Fawkes’ important claims is that the
cloak consists of changes at the pixel level which are imperceptible
to the human eye, but independent evaluations observe significant
unwanted visual modifications to photos [29]. In contrast to Fawkes,

ESP encrypts entire photos, thereby shielding users against any kind
of adversary, with negligible effects on visual quality.

ESP’s encryption algorithm is inspired in part by a previous
encrypt-then-compress strategy [13], but that approach suffers from
twomajor problems that make it unworkable for usewith cloud pho-
to services. First, it is not compatible with services such as Google
Photos because it modifies pixel values in a way that results in cor-
ruption after compression. Second, it results in a massive increase
in file size and a 3× increase in image dimensions. The increase in
image dimensions of their ciphertext images reduces users’ effective
maximum upload dimensions for Google Photos from 16MP to 5.3
MP. ESP introduces a new encryption algorithmwhich is compatible
with Google Photos’ compression and does not have file and image
size problems, avoiding prematurely bumping into the 16MPGoogle
Photos limit. ESP also introduces other key features to support cloud
photo services, such as encrypted thumbnails, photo sharing, and
end-user key management.

Previous image encryption approaches do little, if anything, for
keymanagement. Some briefly suggest that the secret (private key or
password)used todecrypt imagesonotherdevices—theuser’sownor
another person’s—for viewing should be distributed via a secondary
out-of-bandchannelwhich isnever specifiedor evaluated [42, 45, 46].
IKM builds on E3 [35], which was introduced for email encryption.
However, E3 relies on the trustworthiness of the email server used
for communications and requires re-encrypting all of a user’s emails
every time a device is added or removed. ESP requires no trust in
servers, and only re-encrypts photos when a user loses a device.

9 CONCLUSIONS
Easy Secure Photos (ESP) makes it possible for users to encrypt their
images and use them with existing cloud photo services such as
Google Photos, thereby providing privacy against cloud providers
and other adversaries. ESP achieves this with purely client-sidemod-
ifications by introducing a format-preserving encryption method
for JPEG images and a unique key management solution which
leverages the cloud photo service itself rather than any third parties.
Moreover, the encryption method is compatible with compression
algorithms used by real services such as Google Photos. We have
implemented ESP by integrating it in an existingAndroid photos app
and evaluated its security, performance, and usability with existing
cloud photo services such as Google Photos. Our results show that
ESP (1) is compatible with popular cloud photo services, including
Google Photos and Flickr, (2) is resistant to various attacks including
differential cryptanalysis, (3) maintains good image quality for en-
crypted images even after being processed through Google Photos’
image processing and compression pipeline, (4) incurs only modest
overhead on upload and download times when used with Google
Photos, and (5) is easy to use as encryption and decryption is trans-
parent to users, setting up a device to use ESP is simple, and everyday
usage of ESP is no different from a regular photos app.

10 ACKNOWLEDGMENTS
This work was supported in part by NSF grants CNS-1717801, CNS-
1563555, CCF-1918400, and CNS-2052947.

147



Encrypted Cloud Photo Storage Using Google Photos MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA

REFERENCES
[1] J. M. Aaron Bangor, Philip Kortum. Determining What Individual SUS Scores

Mean: Adding an Adjective Rating Scale. In Journal of Usability Studies, volume 4,
pages 114–123. JUS, May 2009.

[2] M. Abdalla and D. Pointcheval. Simple password-based encrypted key exchange
protocols. In Proceedings of the 2005 International Conference on Topics in
Cryptology, CT-RSA’05, pages 191–208, Berlin, Heidelberg, 2005. Springer-Verlag.

[3] L. Abrams. Google Bug Sent Private Google Photos Videos to Other Users.
https://www.bleepingcomputer.com/news/google/google-bug-sent-private-
google-photos-videos-to-other-users/, Feb. 2020.

[4] J. Alakuijala, R. Obryk, O. Stoliarchuk, Z. Szabadka, L. Vandevenne, and J. Wassen-
berg. Guetzli: PerceptuallyGuided JPEGEncoder. CoRR, abs/1703.04421,Mar. 2017.

[5] J. Alakuijala, R. Obryk, O. Stoliarchuk, Z. Szabadka, L. Vandevenne, and J. Wassen-
berg. google/guetzli: Perceptual JPEG encoder. https://github.com/google/guetzli,
Jan. 2020.

[6] Apple Inc. Photos - Private, on-device technologies to browse and edit photos
and videos on iOS and iPadOS. https://www.apple.com/ios/photos/pdf/
Photos_Tech_Brief_Sept_2019.pdf, Sept. 2019.

[7] Apple Inc. Core ML - Machine Learning - Apple Developer. https:
//developer.apple.com/machine-learning/core-ml/, Jan. 2020.

[8] Apple Inc. Use FileVault to encrypt the startup disk on your Mac - Apple Support.
https://support.apple.com/en-us/HT204837, Jan. 2020.

[9] BBC News. Trend Micro rogue employee exposes customer data - BBC News.
https://www.bbc.com/news/technology-50315544, Nov. 2019.

[10] J. BlackandP.Rogaway. CipherswithArbitraryFiniteDomains. InCryptographers’
Track at the RSA Conference, pages 114–130. Springer, Feb. 2002.

[11] G. Chen, Y. Mao, and C. K. Chui. A symmetric image encryption scheme based
on 3D chaotic cat maps. Chaos, Solitons & Fractals, 21(3):749–761, July 2004.

[12] T. Chuman, K. Kurihara, and H. Kiya. On the Security of Block Scrambling-Based
EtC Systems against Extended Jigsaw Puzzle Solver Attacks. IEICE Transactions
on Information and Systems, 101(1):37–44, Jan. 2018.

[13] T. Chuman,W. Sirichotedumrong, and H. Kiya. Encryption-Then-Compression
Systems Using Grayscale-Based Image Encryption for JPEG Images. IEEE
Transactions on Information Forensics and Security, 14(6):1515–1525, June 2019.

[14] J. Cox. Snapchat Employees Abused Data Access to Spy on Users - VICE.
https://www.vice.com/en_uk/article/xwnva7/snapchat-employees-abused-
data-access-spy-on-users-snaplion, May 2019.

[15] J. Cox. Ring Fired Employees for Watching Customer Videos - VICE.
https://www.vice.com/en_us/article/y3mdvk/ring-fired-employees-abusing-
video-data, Jan. 2020.

[16] J. Cox andM. Hoppenstedt. Sources: Facebook Has Fired Multiple Employees for
Snooping on Users - VICE. https://www.vice.com/en_us/article/bjp9zv/facebook-
employees-look-at-user-data, May 2018.

[17] F. Dufaux and T. Ebrahimi. Toward a secure JPEG, volume 6312 of Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series, page 63120K.
Society of Photo-Optical Instrumentation Engineers, 2006.

[18] Facebook Open Source. Fresco - an image management library. | fresco.
https://frescolib.org/, Jan. 2020.

[19] R. A. Fisher and F. Yates. Statistical Tables: For Biological, Agricultural and Medical
Research. Oliver and Boyd, 1938.

[20] Free Software Foundation. The GNUMP Bignum Library. https://gmplib.org/,
Jan. 2020.

[21] J. Fridrich. Image Encryption Based On Chaotic Maps. In 1997 IEEE International
Conference on Systems, Man, and Cybernetics. Computational Cybernetics and
Simulation, volume 2, pages 1105–1110, Oct. 1997.

[22] C. Fu, J.-B. Huang, N.-N. Wang, Q.-B. Hou, andW. Lei. A Symmetric Chaos-Based
Image Cipher with an Improved Bit-Level Permutation Strategy. Entropy, 16, Jan.
2014.

[23] Google, Inc. Download Open Images V5. https://storage.googleapis.com/
openimages/web/download.html, Jan. 2020.

[24] Google, Inc. Google Terms of Service – Privacy & Terms – Google.
https://policies.google.com/terms, Jan. 2020.

[25] Google, Inc. ML Kit | Google Developers. https://developers.google.com/ml-kit,
Jan. 2020.

[26] J. He, S. Huang, S. Tang, and J. Huang. JPEG Image EncryptionWith Improved
Format Compatibility and File Size Preservation. IEEE Transactions onMultimedia,
20(10):2645–2658, Oct. 2018.

[27] J. He, B. Liu, D. Kong, X. Bao, N. Wang, H. Jin, and G. Kesidis. PUPPIES:
Transformation-Supported Personalized Privacy Preserving Partial Image
Sharing. In 2016 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 359–370, June 2016.

[28] S. Heyman. Photos, Photos Everywhere - The New York Times.
https://www.nytimes.com/2015/07/23/arts/international/photos-photos-
everywhere.html, July 2015.

[29] K. Hill. This Tool Could Protect Your Photos From Facial Recognition - The
New York Times. https://www.nytimes.com/2020/08/03/technology/fawkes-
tool-protects-photos-from-facial-recognition.html?action=click&module=

News&pgtype=Homepage, Aug. 2020.
[30] T. Honda, Y. Murakami, Y. Yanagihara, T. Kumaki, and T. Fujino. Hierarchical

Image-scrambling Method with Scramble-level Controllability for Privacy
Protection. 2013 IEEE 56th International Midwest Symposium on Circuits and
Systems (MWSCAS), pages 1371–1374, Aug. 2013.

[31] HongjunWu and Di Ma. Efficient and secure encryption schemes for JPEG2000.
In 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing,
volume 5, pages V–869, May 2004.

[32] Z. Hua, Y. Zhou, and H. Huang. Cosine-transform-based chaotic system for image
encryption. Information Sciences, 480:403 – 419, 2019.

[33] P. Juola and P. Zimmermann. Whole-word phonetic distances and the pgpfone al-
phabet. InProceeding of 4th InternationalConference on SpokenLanguage Processing
(ICSLP ’96), volume 1, pages 98–101, Philadelphia, PA, USA, Oct. 1996. IEEE.

[34] J. Kastrenakes. Apple denies iCloud breach in celebrity nude photo hack -
The Verge. https://www.theverge.com/2014/9/2/6098107/apple-denies-icloud-
breach-celebrity-nude-photo-hack, Sept. 2014.

[35] J. S. Koh, S. M. Bellovin, and J. Nieh. Why Joanie Can Encrypt: Easy Email
Encryption with Easy Key Management. In Proceedings of the 14th EuroSys
Conference 2019, pages 2:1–2:16, Dresden, Germany, Mar. 2019.

[36] libjpeg-turbo. libjpeg-turbo | main / libjpeg-turbo. https://libjpeg-turbo.org/,
Jan. 2020.

[37] H. McCracken. How Google Photos reached a billion users. https:
//www.fastcompany.com/90380618/how-google-photos-joined-the-billion-
user-club, July 2019.

[38] Microsoft. Finding your BitLocker recovery key in Windows 10.
https://support.microsoft.com/en-us/help/4530477/windows-10-finding-
your-bitlocker-recovery-key, Jan. 2020.

[39] K. Minemura, Z. Moayed, K. Wong, X. Qi, and K. Tanaka. JPEG Image Scrambling
Without Expansion in Bitstream Size. In 2012 19th IEEE International Conference
on Image Processing, pages 261–264, Sept. 2012.

[40] X. Niu, C. Zhou, J. Ding, and B. Yang. JPEG Encryption with File Size Preservation.
In 2008 International Conference on Intelligent Information Hiding and Multimedia
Signal Processing, pages 308–311, Aug. 2008.

[41] P. Privacy. P3 image. https://www.p3image.com/, Nov. 2019.
[42] M.-R. Ra, R. Govindan, and A. Ortega. P3: Toward Privacy-preserving Photo

Sharing. In Proceedings of the 10th USENIX Conference on Networked Systems
Design and Implementation (NSDI ’13), pages 515–528, Berkeley, CA, USA, Apr.
2013. USENIX Association.

[43] S. Shan, E. Wenger, J. Zhang, H. Li, H. Zheng, and B. Y. Zhao. Fawkes: Protecting
PrivacyagainstUnauthorizedDeepLearningModels. In 29thUSENIXSecurity Sym-
posium (USENIX Security 20), pages 1589–1604. USENIX Association, Aug. 2020.

[44] SimpleMobileTools. SimpleMobileTools/Simple-Gallery: Browse your
memories without any interruptions with this photo and video gallery.
https://github.com/SimpleMobileTools/Simple-Gallery, Jan. 2020.

[45] K. Tajik, A. Gunasekaran, R. Dutta, B. Ellis, R. B. Bobba, M. Rosulek, C. V. Wright,
andW. Feng. Balancing Image Privacy and Usability with Thumbnail-Preserving
Encryption. In 26th Annual Network and Distributed System Security Symposium,
NDSS 2019, San Diego, California, USA, February 24-27, 2019, Feb. 2019.

[46] M.Tierney, I. Spiro, C. Bregler, andL. Subramanian. Cryptagram: Photo Privacy for
Online Social Media. In COSN 2013 - Proceedings of the 2013 Conference on Online
Social Networks, pages 75–87. Association for Computing Machinery, Oct. 2013.

[47] I. T. Union. Objective perceptual multimedia video quality measurement in the
presence of a full reference. Recommendation, International Telecommunication
Union, Geneva, CH, Aug. 2008.

[48] U.S. Department of Health & Human Services. System usability scale (sus), 2015.
[49] A. Whitten and J. D. Tygar. Why Johnny can’t encrypt: A usability evaluation

of PGP 5.0. In Proceedings of the 8th USENIX Security Symposium, pages 169–184,
Washington, D.C., USA, Aug. 1999. USENIX Association.

[50] K. Wong and K. Tanaka. DCT based scalable scrambling method with reversible
data hiding functionality. In 2010 4th International Symposium on Communications,
Control and Signal Processing (ISCCSP), pages 1–4, Mar. 2010.

[51] C. V. Wright, W.-c. Feng, and F. Liu. Thumbnail-Preserving Encryption for JPEG.
In Proceedings of the 3rd ACMWorkshop on Information Hiding and Multimedia
Security, IH &MMSec ’15, pages 141–146, New York, NY, USA, June 2015. ACM.

[52] Y. Wu, J. P. Noonan, and S. Agaian. NPCR and UACI Randomness Tests for Image
Encryption. Cyber Journals: Multidisciplinary Journals in Science and Technology,
Journal of Selected Areas in Telecommunications (JSAT), 1(2):31–38, Apr. 2011.

[53] W. Xingyuan and Z. Hongyu. Cracking and Improvement of an Image Encryption
Algorithm Based on Bit-Level Permutation and Chaotic System. IEEE Access,
7:112836–112847, 2019.

[54] L. Yuan, P. Korshunov, and T. Ebrahimi. Privacy-Preserving Photo Sharing
based on a Secure JPEG. In 2015 IEEE Conference on Computer Communications
Workshops (INFOCOMWKSHPS), volume 2015, Apr. 2015.

[55] L. Yuan, P. Korshunov, and T. Ebrahimi. Secure JPEG Scrambling Enabling Privacy
in Photo Sharing. In 2015 11th IEEE International Conference and Workshops on
Automatic Face and Gesture Recognition (FG), volume 04, pages 1–6, May 2015.

[56] L. Yuan, D.McNally, A. Küpçü, and T. Ebrahimi. Privacy-preserving photo sharing
based on a public key infrastructure. In A. G. Tescher, editor, Applications of

148

https://www.bleepingcomputer.com/news/google/google-bug-sent-private-google-photos-videos-to-other-users/
https://www.bleepingcomputer.com/news/google/google-bug-sent-private-google-photos-videos-to-other-users/
https://github.com/google/guetzli
https://www.apple.com/ios/photos/pdf/Photos_Tech_Brief_Sept_2019.pdf
https://www.apple.com/ios/photos/pdf/Photos_Tech_Brief_Sept_2019.pdf
https://developer.apple.com/machine-learning/core-ml/
https://developer.apple.com/machine-learning/core-ml/
https://support.apple.com/en-us/HT204837
https://www.bbc.com/news/technology-50315544
https://www.vice.com/en_uk/article/xwnva7/snapchat-employees-abused-data-access-spy-on-users-snaplion
https://www.vice.com/en_uk/article/xwnva7/snapchat-employees-abused-data-access-spy-on-users-snaplion
https://www.vice.com/en_us/article/y3mdvk/ring-fired-employees-abusing-video-data
https://www.vice.com/en_us/article/y3mdvk/ring-fired-employees-abusing-video-data
https://www.vice.com/en_us/article/bjp9zv/facebook-employees-look-at-user-data
https://www.vice.com/en_us/article/bjp9zv/facebook-employees-look-at-user-data
https://frescolib.org/
https://gmplib.org/
https://storage.googleapis.com/openimages/web/download.html
https://storage.googleapis.com/openimages/web/download.html
https://policies.google.com/terms
https://developers.google.com/ml-kit
https://www.nytimes.com/2015/07/23/arts/international/photos-photos-everywhere.html
https://www.nytimes.com/2015/07/23/arts/international/photos-photos-everywhere.html
https://www.nytimes.com/2020/08/03/technology/fawkes-tool-protects-photos-from-facial-recognition.html?action=click&module=News&pgtype=Homepage
https://www.nytimes.com/2020/08/03/technology/fawkes-tool-protects-photos-from-facial-recognition.html?action=click&module=News&pgtype=Homepage
https://www.nytimes.com/2020/08/03/technology/fawkes-tool-protects-photos-from-facial-recognition.html?action=click&module=News&pgtype=Homepage
https://www.theverge.com/2014/9/2/6098107/apple-denies-icloud-breach-celebrity-nude-photo-hack
https://www.theverge.com/2014/9/2/6098107/apple-denies-icloud-breach-celebrity-nude-photo-hack
https://libjpeg-turbo.org/
https://www.fastcompany.com/90380618/how-google-photos-joined-the-billion-user-club
https://www.fastcompany.com/90380618/how-google-photos-joined-the-billion-user-club
https://www.fastcompany.com/90380618/how-google-photos-joined-the-billion-user-club
https://support.microsoft.com/en-us/help/4530477/windows-10-finding-your-bitlocker-recovery-key
https://support.microsoft.com/en-us/help/4530477/windows-10-finding-your-bitlocker-recovery-key
https://www.p3image.com/
https://github.com/SimpleMobileTools/Simple-Gallery


MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA John S. Koh, Jason Nieh, and StevenM. Bellovin

Digital Image Processing XXXVIII, volume 9599, pages 515 – 527. International
Society for Optics and Photonics, SPIE, Sept. 2015.

[57] L. Zhang, T. Jung, C. Liu, X. Ding, X.-Y. Li, and Y. Liu. POP: Privacy-Preserving
Outsourced Photo Sharing and Searching for Mobile Devices. In 2015 IEEE 35th In-
ternationalConference onDistributedComputing Systems, pages 308–317, June 2015.

[58] Y.-Q. Zhang andX.Wang. Analysis and Improvement of a Chaos-based Symmetric
Image Encryption Scheme Using a Bit-level Permutation. Nonlinear Dynamics,

77:687–698, Aug. 2014.
[59] M. Zhu, T. Moataz, and S. Kamara. Pixek. https://pixek.io/, Nov. 2019.
[60] Z.-l. Zhu, W. Zhang, K.-w. Wong, and H. Yu. A Chaos-Based Symmetric Image

Encryption Scheme Using a Bit-Level Permutation. Inf. Sci., 181(6):1171–1186,
Mar. 2011.

149


	Abstract
	1 Introduction
	2 Threat Model
	3 Usage Model
	4 Architecture
	4.1 Format-Preserving Encrypted Images
	4.2 Encrypted Thumbnails
	4.3 Image Sharing
	4.4 Other Features and Limitations
	4.5 Key Management for Multiple Devices

	5 Security Analysis
	6 Implementation
	7 Experimental Results
	7.1 Compatibility and Interoperability
	7.2 Performance Overhead
	7.3 Usability

	8 Related Work
	9 Conclusions
	10 Acknowledgments
	References

