
KVM/ARM: The Design and Implementation
of the Linux ARM Hypervisor

Christoffer Dall
Department of Computer Science

Columbia University
cdall@cs.columbia.edu

Jason Nieh
Department of Computer Science

Columbia University
nieh@cs.columbia.edu

Abstract
As ARM CPUs become increasingly common in mobile devices
and servers, there is a growing demand for providing the ben-
efits of virtualization for ARM-based devices. We present our
experiences building the Linux ARM hypervisor, KVM/ARM,
the first full system ARM virtualization solution that can run
unmodified guest operating systems on ARM multicore hard-
ware. KVM/ARM introduces split-mode virtualization, allowing
a hypervisor to split its execution across CPU modes and be inte-
grated into the Linux kernel. This allows KVM/ARM to leverage
existing Linux hardware support and functionality to simplify hy-
pervisor development and maintainability while utilizing recent
ARM hardware virtualization extensions to run virtual machines
with comparable performance to native execution. KVM/ARM
has been successfully merged into the mainline Linux kernel,
ensuring that it will gain wide adoption as the virtualization
platform of choice for ARM. We provide the first measurements
on real hardware of a complete hypervisor using ARM hardware
virtualization support. Our results demonstrate that KVM/ARM
has modest virtualization performance and power costs, and
can achieve lower performance and power costs compared to
x86-based Linux virtualization on multicore hardware.

Categories and Subject Descriptors C.0 [Computer Systems
Organization]: General–Hardware/software interface, System
architectures; D.4.7 [Operating Systems]: Organization and
Design; D.4.8 [Operating Systems]: Performance

Keywords Virtualization, Hypervisors, Operating Systems,
Multicore, ARM, Linux

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than the author(s)
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
ASPLOS ’14, March 1–4, 2014, Salt Lake City, Utah, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2305-5/14/03. . . $15.00.
http://dx.doi.org/10.1145/2541940.2541946

1. Introduction
ARM-based devices are seeing tremendous growth across smart-
phones, netbooks, and embedded computers. While ARM CPUs
have benefited from their advantages in power efficiency in these
markets, ARM CPUs also continue to increase in performance
such that they are now within the range of x86 CPUs for many
classes of applications. This is spurring the development of new
ARM-based microservers and an upward push of ARM CPUs
into traditional server, PC, and network systems.

To help bring the benefits of virtualization to ARM-based
devices, ARM CPUs now include hardware support for virtual-
ization. Although virtualization is commonly used on x86-based
systems, there are key differences between ARM and x86 vir-
tualization. First, ARM and x86 virtualization extensions have
important differences such that x86 hypervisor designs are not
directly amenable to ARM. These differences impact hypervisor
performance and design, especially for multicore systems, but
have not been evaluated with real hardware. Second, unlike
x86-based systems, there is no PC-standard hardware equivalent
for ARM. The ARM market is fragmented with many different
vertically integrated ARM platforms with non-standard hardware.
Virtualizing ARM in a manner that works across the diversity
of ARM hardware in the absence of any real hardware standard
is a key challenge.

We describe our experiences building KVM/ARM [13, 23],
the ARM hypervisor in the mainline Linux kernel. KVM/ARM
is the first hypervisor to leverage ARM hardware virtualization
support to run unmodified guest operating systems (OSes) on
ARM multicore hardware. Our work makes four main contri-
butions. First, we introduce split-mode virtualization, a new
approach to hypervisor design that splits the core hypervisor
so that it runs across different privileged CPU modes to take
advantage of the specific benefits and functionality offered by
each CPU mode. This approach provides key benefits in the
context of ARM virtualization. ARM introduced a new CPU
mode for running hypervisors called Hyp mode, but Hyp mode
has its own set of features distinct from existing kernel modes.
Hyp mode targets running a standalone hypervisor underneath
the OS kernel, and was not designed to work well with a hosted
hypervisor design, where the hypervisor is integrated with a host

333

kernel. For example, standard OS mechanisms in Linux would
have to be significantly redesigned to run in Hyp mode. Split-
mode virtualization makes it possible to take advantage of the
benefits of a hosted hypervisor design by running the hypervisor
in normal privileged CPU modes to leverage existing OS mech-
anisms without modification while at the same time still using
Hyp mode to leverage ARM hardware virtualization features.

Second, we designed and implemented KVM/ARM from the
ground up as an open source project that would be easy to main-
tain and integrate into the Linux kernel. This is especially impor-
tant in the context of ARM systems which lack standard ways to
integrate hardware components, features for hardware discovery
such as a standard BIOS or PCI bus, and standard mechanisms
for installing low-level software. A standalone bare metal hy-
pervisor would need to be ported to each and every supported
hardware platform, a huge maintenance and development burden.
Linux, however, is supported across almost all ARM platforms
and by integrating KVM/ARM with Linux, KVM/ARM is auto-
matically available on any device running a recent version of the
Linux kernel. By using split-mode virtualization, we can leverage
the existing Kernel-based Virtual Machine (KVM) [22] hypervi-
sor interface in Linux and can reuse substantial pieces of existing
kernel code and interfaces to reduce implementation complexity.
KVM/ARM requires adding less than 6,000 lines of ARM code
to Linux, a much smaller code base to maintain than standalone
hypervisors. KVM/ARM was accepted as the ARM hypervisor
of the mainline Linux kernel as of the Linux 3.9 kernel, ensuring
its wide adoption and use given the dominance of Linux on ARM
platforms. Based on our open source experiences, we offer some
useful hints on transferring research ideas into implementations
likely to be adopted by the open source community.

Third, we demonstrate the effectiveness of KVM/ARM on
real multicore ARM hardware. Our results are the first measure-
ments of a hypervisor using ARM virtualization support on real
hardware. We compare against the standard widely-used Linux
KVM x86 hypervisor and evaluate its performance overhead
for running application workloads in virtual machines (VMs)
versus native non-virtualized execution. Our results show that
KVM/ARM achieves comparable performance overhead in most
cases, and significantly lower performance overhead for two
important applications, Apache and MySQL, on multicore plat-
forms. These results provide the first comparison of ARM and
x86 virtualization extensions on real hardware to quantitatively
demonstrate how the different design choices affect virtualization
performance. We show that KVM/ARM also provides power
efficiency benefits over Linux KVM x86.

Finally, we make several recommendations regarding future
hardware support for virtualization based on our experiences
building and evaluating a complete ARM hypervisor. We identify
features that are important and helpful to reduce the software
complexity of hypervisor implementations, and discuss mech-
anisms useful to maximize hypervisor performance, especially
in the context of multicore systems.

This paper describes the design and implementation of
KVM/ARM. Section 2 presents an overview of the ARM vir-
tualization extensions and a comparison with x86. Section 3
describes the design of the KVM/ARM hypervisor. Section 4
discusses the implementation of KVM/ARM and our experi-
ences releasing it to the Linux community and having it adopted
into the mainline Linux kernel. Section 5 presents experimental
results quantifying the performance and energy efficiency of
KVM/ARM, as well as a quantitative comparison of real ARM
and x86 virtualization hardware. Section 6 makes recommen-
dations for designing future hardware virtualization support.
Section 7 discusses related work. Finally, we present some
concluding remarks.

2. ARM Virtualization Extensions
Because the ARM architecture is not classically virtualiz-
able [27], ARM introduced hardware virtualization support
as an optional extension in the latest ARMv7 [6] and ARMv8 [7]
architectures. For example, the Cortex-A15 [4] is a current
ARMv7 CPU with hardware virtualization support. We present
a brief overview of the ARM virtualization extensions.

CPU Virtualization Figure 1 shows the CPU modes on the
ARMv7 architecture, including TrustZone (Security Extensions)
and a new CPU mode called Hyp mode. TrustZone splits the
modes into two worlds, secure and non-secure, which are or-
thogonal to the CPU modes. A special mode, monitor mode, is
provided to switch between the secure and non-secure worlds. Al-
though ARM CPUs always power up starting in the secure world,
ARM bootloaders typically transition to the non-secure world at
an early stage. The secure world is only used for specialized use
cases such as digital rights management. TrustZone may appear
useful for virtualization by using the secure world for hypervisor
execution, but this does not work because trap-and-emulate is not
supported. There is no means to trap operations executed in the
non-secure world to the secure world. Non-secure software can
therefore freely configure, for example, virtual memory. Any soft-
ware running at the highest non-secure privilege level therefore
has access to all non-secure physical memory, making it impos-
sible to isolate multiple VMs running in the non-secure world.

Hyp mode was introduced as a trap-and-emulate mechanism
to support virtualization in the non-secure world. Hyp mode is a

Non-Secure state

PL0 User

PL1 Kernel

PL2 Hyp

Monitor Mode (Secure PL1)

Secure state

PL0 User

PL1 Kernel

Figure 1: ARMv7 Processor Modes

334

CPU mode that is strictly more privileged than other CPU modes,
user and kernel modes. Software running in Hyp mode can con-
figure the hardware to trap from kernel mode into Hyp mode
on various sensitive instructions and hardware interrupts. To run
VMs, the hypervisor must at least partially reside in Hyp mode.
The VM will execute normally in user and kernel mode until
some condition is reached that requires intervention of the hyper-
visor. At this point, the hardware traps into Hyp mode giving con-
trol to the hypervisor, which can then manage the hardware and
provide the required isolation across VMs. Once the condition
is processed by the hypervisor, the CPU can be switched back
into user or kernel mode and the VM can continue executing.

The ARM architecture allows each trap to be configured to
trap directly into a VM’s kernel mode instead of going through
Hyp mode. For example, traps caused by system calls or page
faults from user mode can be configured to trap to a VM’s kernel
mode directly so that they are handled by the guest OS without
intervention of the hypervisor. This avoids going to Hyp mode on
each system call or page fault, reducing virtualization overhead.
Additionally, all traps into Hyp mode can be disabled and a
single non-virtualized kernel can run in kernel mode and have
complete control of the system.

ARM designed the virtualization support around a separate
CPU mode distinct from existing kernel mode, because they envi-
sioned a standalone hypervisor underneath a more complex rich
OS kernel [14]. They wanted to make it simpler for hypervisor
developers to implement the hypervisors, and therefore reduced
the number of control registers available in Hyp mode compared
to kernel mode. Similarly, they mandated certain bits to be set in
the page table entries, because they did not envision a hypervisor
sharing page tables with software running in user space, which
is for example what the Linux kernel does with kernel mode.

Memory Virtualization ARM also provides hardware support
to virtualize physical memory. When running a VM, the physical
addresses managed by the VM are actually Intermediate Physical
Addresses (IPAs), also known as guest physical addresses, and
need to be translated into physical addresses (PAs), also known
as host physical addresses. Similarly to nested page tables on
x86, ARM provides a second set of page tables, Stage-2 page
tables, which translate from IPAs to PAs corresponding to guest
and host physical addresses, respectively. Stage-2 translation can
be completely disabled and enabled from Hyp mode. Stage-2
page tables use ARM’s new LPAE page table format, with subtle
differences from the page tables used by kernel mode.

Interrupt Virtualization ARM defines the Generic Interrupt
Controller (GIC) architecture [5]. The GIC routes interrupts from
devices to CPUs and CPUs query the GIC to discover the source
of an interrupt. The GIC is especially important in multicore
configurations, because it is used to generate Inter-Processor
Interrupts (IPIs) from one CPU core to another. The GIC is split
in two parts, the distributor and the CPU interfaces. There is
only one distributor in a system, but each CPU core has a GIC
CPU interface. Both the CPU interfaces and the distributor are
accessed over a Memory-Mapped interface (MMIO). The dis-

tributor is used to configure the GIC, for example, to configure
the CPU core affinity of an interrupt, to completely enable or
disable interrupts on a system, or to send an IPI to another CPU
core. The CPU interface is used to acknowledge (ACK) and to
signal End-Of-Interrupt (EOI). For example, when a CPU core
receives an interrupt, it will read a special register on the GIC
CPU interface, which ACKs the interrupt and returns the number
of the interrupt. The interrupt will not be raised to the CPU again
before the CPU writes to the EOI register of the CPU interface
with the value retrieved from the ACK register.

Interrupts can be configured to trap to either Hyp or kernel
mode. Trapping all interrupts to kernel mode and letting OS
software running in kernel mode handle them directly is efficient,
but does not work in the context of VMs, because the hypervisor
loses control over the hardware. Trapping all interrupts to Hyp
mode ensures that the hypervisor retains control, but requires
emulating virtual interrupts in software to signal events to VMs.
This is cumbersome to manage and expensive because each step
of interrupt and virtual interrupt processing, such as ACKing and
EOIing, must go through the hypervisor.

The GIC v2.0 includes hardware virtualization support in the
form of a virtual GIC (VGIC) so that receiving virtual interrupts
does not need to be emulated in software by the hypervisor. The
VGIC introduces a VGIC CPU interface for each CPU and a
corresponding hypervisor control interface for each CPU. VMs
are configured to see the VGIC CPU interface instead of the
GIC CPU interface. Virtual interrupts are generated by writing to
special registers, the list registers, in the VGIC hypervisor control
interface, and the VGIC CPU interface raises the virtual inter-
rupts directly to a VM’s kernel mode. Because the VGIC CPU
interface includes support for ACK and EOI, these operations no
longer need to trap to the hypervisor to be emulated in software,
reducing overhead for receiving interrupts on a CPU. For ex-
ample, emulated virtual devices typically raise virtual interrupts
through a software API to the hypervisor, which can leverage the
VGIC by writing the virtual interrupt number for the emulated
device into the list registers. This causes the VGIC to interrupt the
VM directly to kernel mode and lets the guest OS ACK and EOI
the virtual interrupt without trapping to the hypervisor. Note that
the distributor must still be emulated in software and all accesses
to the distributor by a VM must still trap to the hypervisor. For
example, when a virtual CPU sends a virtual IPI to another vir-
tual CPU, this will cause a trap to the hypervisor, which emulates
the distributor access in software and programs the list registers
on the receiving CPU’s GIC hypervisor control interface.

Timer Virtualization ARM defines the Generic Timer Archi-
tecture which includes support for timer virtualization. Generic
timers provide a counter that measures passing of time in real-
time, and a timer for each CPU, which is programmed to raise
an interrupt to the CPU after a certain amount of time has passed.
Timers are likely to be used by both hypervisors and guest OSes,
but to provide isolation and retain control, the timers used by
the hypervisor cannot be directly configured and manipulated by
guest OSes. Such timer accesses from a guest OS would need to

335

trap to Hyp mode, incurring additional overhead for a relatively
frequent operation for some workloads. Hypervisors may also
wish to virtualize VM time, which is problematic if VMs have
direct access to counter hardware.

ARM provides virtualization support for the timers by intro-
ducing a new counter, the virtual counter and a new timer, the vir-
tual timer. A hypervisor can be configured to use physical timers
while VMs are configured to use virtual timers. VMs can then
access, program, and cancel virtual timers without causing traps
to Hyp mode. Access to the physical timer and counter from ker-
nel mode is controlled from Hyp mode, but software running in
kernel mode always has access to the virtual timers and counters.

Comparison with x86 There are a number of similarities and
differences between the ARM virtualization extensions and
hardware virtualization support for x86 from Intel and AMD.
Intel and AMD extensions are very similar, so we limit our
comparison to ARM and Intel. ARM supports virtualization
through a separate CPU mode, Hyp mode, which is a separate
and strictly more privileged CPU mode than previous user and
kernel modes. In contrast, Intel has root and non-root mode [20],
which are orthogonal to the CPU protection modes. While sensi-
tive operations on ARM trap to Hyp mode, sensitive operations
can trap from non-root mode to root mode while staying in the
same protection level on Intel. A crucial difference between the
two hardware designs is that Intel’s root mode supports the same
full range of user and kernel mode functionality as its non-root
mode, whereas ARM’s Hyp mode is a strictly different CPU
mode with its own set of features. A hypervisor using ARM’s
Hyp mode has an arguably simpler set of features to use than the
more complex options available with Intel’s root mode.

Both ARM and Intel trap into their respective Hyp and root
modes, but Intel provides specific hardware support for a VM
control block which is automatically saved and restored when
switching to and from root mode using only a single instruction.
This is used to automatically save and restore guest state when
switching between guest and hypervisor execution. In contrast,
ARM provides no such hardware support and any state that needs
to be saved and restored must be done explicitly in software.
This provides some flexibility in what is saved and restored
in switching to and from Hyp mode. For example, trapping to
ARM’s Hyp mode is potentially faster than trapping to Intel’s
root mode if there is no additional state to save.

ARM and Intel are quite similar in their support for virtual-
izing physical memory. Both introduce an additional set of page
tables to translate guest to host physical addresses. ARM ben-
efited from hindsight in including Stage-2 translation whereas
Intel did not include its equivalent Extended Page Table (EPT)
support until its second generation virtualization hardware.

ARM’s support for virtual timers have no real x86 counterpart,
and until the recent introduction of Intel’s virtual APIC sup-
port [20], ARM’s support for virtual interrupts also had no x86
counterpart. Without virtual APIC support, EOIing interrupts in
an x86 VM requires traps to root mode, whereas ARM’s virtual
GIC avoids the cost of trapping to Hyp mode for those interrupt

handling mechanisms. Executing similar timer functionality by
a guest OS on x86 will incur additional traps to root mode com-
pared to the number of traps to Hyp mode required for ARM.
Reading a counter, however, is not a privileged operation on
x86 and does not trap, even without virtualization support in the
counter hardware.

3. Hypervisor Architecture
Instead of reinventing and reimplementing complex core func-
tionality in the hypervisor, and potentially introducing tricky
and fatal bugs along the way, KVM/ARM builds on KVM and
leverages existing infrastructure in the Linux kernel. While a stan-
dalone bare metal hypervisor design approach has the potential
for better performance and a smaller Trusted Computing Base
(TCB), this approach is less practical on ARM. ARM hardware
is in many ways much more diverse than x86. Hardware compo-
nents are often tightly integrated in ARM devices in non-standard
ways by different device manufacturers. ARM hardware lacks
features for hardware discovery such as a standard BIOS or a
PCI bus, and there is no established mechanism for installing
low-level software on a wide variety of ARM platforms. Linux,
however, is supported across almost all ARM platforms and by
integrating KVM/ARM with Linux, KVM/ARM is automati-
cally available on any device running a recent version of the
Linux kernel. This is in contrast to bare metal approaches such
as Xen [32], which must actively support every platform on
which they wish to install the Xen hypervisor. For example, for
every new SoC that Xen needs to support, the developers must
implement a new serial device driver in the core Xen hypervisor.

While KVM/ARM benefits from its integration with Linux in
terms of portability and hardware support, a key problem we had
to address was that the ARM hardware virtualization extensions
were designed to support a standalone hypervisor design where
the hypervisor is completely separate from any standard kernel
functionality, as discussed in Section 2. In the following, we
describe how KVM/ARM’s novel design makes it possible to
benefit from integration with an existing kernel and at the same
time take advantage of the hardware virtualization features.

3.1 Split-mode Virtualization
Simply running a hypervisor entirely in ARM’s Hyp mode is
attractive since it is the most privileged level. However, since
KVM/ARM leverages existing kernel infrastructure such as the
scheduler, running KVM/ARM in Hyp mode implies running the
Linux kernel in Hyp mode. This is problematic for at least two
reasons. First, low-level architecture dependent code in Linux is
written to work in kernel mode, and would not run unmodified
in Hyp mode, because Hyp mode is a completely different CPU
mode from normal kernel mode. The significant changes that
would be required to run the kernel in Hyp mode would be very
unlikely to be accepted by the Linux kernel community. More
importantly, to preserve compatibility with hardware without
Hyp mode and to run Linux as a guest OS, low-level code would
have to be written to work in both modes, potentially resulting

336

in slow and convoluted code paths. As a simple example, a page
fault handler needs to obtain the virtual address causing the page
fault. In Hyp mode this address is stored in a different register
than in kernel mode.

Second, running the entire kernel in Hyp mode would ad-
versely affect native performance. For example, Hyp mode has
its own separate address space. Whereas kernel mode uses two
page table base registers to provide the familiar 3GB/1GB split
between user address space and kernel address space, Hyp mode
uses a single page table register and therefore cannot have direct
access to the user space portion of the address space. Frequently
used functions to access user memory would require the kernel
to explicitly map user space data into kernel address space and
subsequently perform necessary teardown and TLB maintenance
operations, resulting in poor native performance on ARM.

These problems with running a Linux hypervisor using ARM
Hyp mode do not occur for x86 hardware virtualization. x86 root
mode is orthogonal to its CPU privilege modes. The entire Linux
kernel can run in root mode as a hypervisor because the same set
of CPU modes available in non-root mode are available in root
mode. Nevertheless, given the widespread use of ARM and the
advantages of Linux on ARM, finding an efficient virtualization
solution for ARM that can leverage Linux and take advantage
of the hardware virtualization support is of crucial importance.

KVM/ARM introduces split-mode virtualization, a new ap-
proach to hypervisor design that splits the core hypervisor so that
it runs across different privileged CPU modes to take advantage
of the specific benefits and functionality offered by each CPU
mode. KVM/ARM uses split-mode virtualization to leverage
the ARM hardware virtualization support enabled by Hyp mode,
while at the same time leveraging existing Linux kernel ser-
vices running in kernel mode. Split-mode virtualization allows
KVM/ARM to be integrated with the Linux kernel without
intrusive modifications to the existing code base.

This is done by splitting the hypervisor into two components,
the lowvisor and the highvisor, as shown in Figure 2. The lowvi-
sor is designed to take advantage of the hardware virtualization
support available in Hyp mode to provide three key functions.
First, the lowvisor sets up the correct execution context by appro-
priate configuration of the hardware, and enforces protection and
isolation between different execution contexts. The lowvisor di-
rectly interacts with hardware protection features and is therefore
highly critical and the code base is kept to an absolute minimum.
Second, the lowvisor switches from a VM execution context to
the host execution context and vice-versa. The host execution
context is used to run the hypervisor and the host Linux kernel.
We refer to an execution context as a world, and switching
from one world to another as a world switch, because the entire
state of the system is changed. Since the lowvisor is the only
component that runs in Hyp mode, only it can be responsible
for the hardware reconfiguration necessary to perform a world
switch. Third, the lowvisor provides a virtualization trap handler,
which handles interrupts and exceptions that must trap to the
hypervisor. The lowvisor performs only the minimal amount of

Host
Kernel

KVM
Highvisor

Host
User QEMU

PL 0 (User)

PL 1 (Kernel)

PL 2 (Hyp)

VM
Kernel

VM
User

Trap

Lowvisor

Trap

Figure 2: KVM/ARM System Architecture

processing required and defers the bulk of the work to be done
to the highvisor after a world switch to the highvisor is complete.

The highvisor runs in kernel mode as part of the host Linux
kernel. It can therefore directly leverage existing Linux function-
ality such as the scheduler, and can make use of standard kernel
software data structures and mechanisms to implement its func-
tionality, such as locking mechanisms and memory allocation
functions. This makes higher-level functionality easier to imple-
ment in the highvisor. For example, while the lowvisor provides
a low-level trap-handler and the low-level mechanism to switch
from one world to another, the highvisor handles Stage-2 page
faults from the VM and performs instruction emulation. Note
that parts of the VM run in kernel mode, just like the highvisor,
but with Stage-2 translation and trapping to Hyp mode enabled.

Because the hypervisor is split across kernel mode and Hyp
mode, switching between a VM and the highvisor involves
multiple mode transitions. A trap to the highvisor while running
the VM will first trap to the lowvisor running in Hyp mode.
The lowvisor will then cause another trap to run the highvisor.
Similarly, going from the highvisor to a VM requires trapping
from kernel mode to Hyp mode, and then switching to the VM.
As a result, split-mode virtualization incurs a double trap cost
in switching to and from the highvisor. On ARM, the only way
to perform these mode transitions to and from Hyp mode is by
trapping. However, as shown in Section 5, this extra trap is not
a significant performance cost on ARM.

KVM/ARM uses a memory mapped interface to share data be-
tween the highvisor and lowvisor as necessary. Because memory
management can be complex, we leverage the highvisor’s ability
to use the existing memory management subsystem in Linux to
manage memory for both the highvisor and lowvisor. Managing
the lowvisor’s memory involves additional challenges though,
because it requires managing Hyp mode’s separate address space.
One simplistic approach would be to reuse the host kernel’s page
tables and also use them in Hyp mode to make the address spaces
identical. This unfortunately does not work, because Hyp mode
uses a different page table format from kernel mode. Therefore,
the highvisor explicitly manages the Hyp mode page tables to
map any code executed in Hyp mode and any data structures
shared between the highvisor and the lowvisor to the same virtual
addresses in Hyp mode and in kernel mode.

337

Action Nr. State

Context Switch

38 General Purpose (GP) Registers
26 Control Registers
16 VGIC Control Registers
4 VGIC List Registers
2 Arch. Timer Control Registers

32 64-bit VFP registers
4 32-bit VFP Control Registers

Trap-and-Emulate

- CP14 Trace Registers
- WFI Instructions
- SMC Instructions
- ACTLR Access
- Cache ops. by Set/Way
- L2CTLR / L2ECTLR Registers

Table 1: VM and Host State on a Cortex-A15

3.2 CPU Virtualization
To virtualize the CPU, KVM/ARM must present an interface to
the VM which is essentially identical to the underlying real hard-
ware CPU, while ensuring that the hypervisor remains in control
of the hardware. This involves ensuring that software running in
the VM must have persistent access to the same register state as
software running on the physical CPU, as well as ensuring that
physical hardware state associated with the hypervisor and its
host kernel is persistent across running VMs. Register state not
affecting VM isolation can simply be context switched by saving
the VM state and restoring the host state from memory when
switching from a VM to the host and vice versa. KVM/ARM
configures access to all other sensitive state to trap to Hyp mode,
so it can be emulated by the hypervisor.

Table 1 shows the CPU register state visible to software run-
ning in kernel and user mode, and KVM/ARM’s virtualization
method for each register group. The lowvisor has its own dedi-
cated configuration registers only for use in Hyp mode, and is not
shown in Table 1. KVM/ARM context switches registers during
world-switches whenever the hardware supports it, because it
allows the VM direct access to the hardware. For example, the
VM can directly program the Stage-1 page table base register
without trapping to the hypervisor, a fairly common operation
in most guest OSes. KVM/ARM performs trap and emulate on
sensitive instructions and when accessing hardware state that
could affect the hypervisor or would leak information about
the hardware to the VM that violates its virtualized abstraction.
For example, KVM/ARM traps if a VM executes the WFI in-
struction, which causes the CPU to power down, because such
an operation should only be performed by the hypervisor to
maintain control of the hardware. KVM/ARM defers switching
certain register state until absolutely necessary, which slightly
improves performance under certain workloads.

The difference between running inside a VM in kernel or user
mode and running the hypervisor in kernel or user mode is deter-
mined by how the virtualization extensions have been configured
by Hyp mode during the world switch. A world switch from the
host to a VM performs the following actions: (1) store all host GP

registers on the Hyp stack, (2) configure the VGIC for the VM,
(3) configure the timers for the VM, (4) save all host-specific con-
figuration registers onto the Hyp stack, (5) load the VM’s config-
uration registers onto the hardware, which can be done without af-
fecting current execution, because Hyp mode uses its own config-
uration registers, separate from the host state, (6) configure Hyp
mode to trap floating-point operations for lazy context switch-
ing, trap interrupts, trap CPU halt instructions (WFI/WFE), trap
SMC instructions, trap specific configuration register accesses,
and trap debug register accesses, (7) write VM-specific IDs into
shadow ID registers, (8) set the Stage-2 page table base register
(VTTBR) and enable Stage-2 address translation, (9) restore all
guest GP registers, and (10) trap into either user or kernel mode.

The CPU will stay in the VM world until an event occurs,
which triggers a trap into Hyp mode. Such an event can be
caused by any of the traps mentioned above, a Stage-2 page fault,
or a hardware interrupt. Since the event requires services from
the highvisor, either to emulate the expected hardware behavior
for the VM or to service a device interrupt, KVM/ARM must
perform another world switch back into the highvisor and its
host. The world switch back to the host from a VM performs
the following actions: (1) store all VM GP registers, (2) disable
Stage-2 translation, (3) configure Hyp mode to not trap any
register access or instructions, (4) save all VM-specific config-
uration registers, (5) load the host’s configuration registers onto
the hardware, (6) configure the timers for the host, (7) save
VM-specific VGIC state, (8) restore all host GP registers, and
(9) trap into kernel mode.

3.3 Memory Virtualization
KVM/ARM provides memory virtualization by enabling Stage-
2 translation for all memory accesses when running in a VM.
Stage-2 translation can only be configured in Hyp mode, and
its use is completely transparent to the VM. The highvisor man-
ages the Stage-2 translation page tables to only allow access
to memory specifically allocated for a VM; other accesses will
cause Stage-2 page faults which trap to the hypervisor. This
mechanism ensures that a VM cannot access memory belonging
to the hypervisor or other VMs, including any sensitive data.
Stage-2 translation is disabled when running in the highvisor and
lowviser because the highvisor has full control of the complete
system and directly manages the host physical addresses. When
the hypervisor performs a world switch to a VM, it enables Stage-
2 translation and configures the Stage-2 page table base register
accordingly. Although both the highvisor and VMs share the
same CPU modes, Stage-2 translations ensure that the highvisor
is protected from any access by the VMs.

KVM/ARM uses split-mode virtualization to leverage existing
kernel memory allocation, page reference counting, and page ta-
ble manipulation code. KVM/ARM handles Stage-2 page faults
by considering the IPA of the fault, and if that address belongs to
normal memory in the VM memory map, KVM/ARM allocates
a page for the VM by simply calling an existing kernel function,
such as get_user_pages, and maps the allocated page to
the VM in the Stage-2 page tables. In comparison, a bare metal

338

hypervisor would be forced to either statically allocate memory
to VMs or write an entire new memory allocation subsystem.

3.4 I/O Virtualization
KVM/ARM leverages existing QEMU and Virtio [29] user space
device emulation to provide I/O virtualization. At a hardware
level, all I/O mechanisms on the ARM architecture are based
on load/store operations to MMIO device regions. With the
exception of devices directly assigned to VMs, all hardware
MMIO regions are inaccessible from VMs. KVM/ARM uses
Stage-2 translations to ensure that physical devices cannot be ac-
cessed directly from VMs. Any access outside of RAM regions
allocated for the VM will trap to the hypervisor, which can route
the access to a specific emulated device in QEMU based on the
fault address. This is somewhat different from x86, which uses
x86-specific hardware instructions such as inl and outl
for port I/O operations in addition to MMIO. As we show in
Section 5, KVM/ARM achieves low I/O performance overhead
with very little implementation effort.

3.5 Interrupt Virtualization
KVM/ARM leverages its tight integration with Linux to reuse
existing device drivers and related functionality, including han-
dling interrupts. When running in a VM, KVM/ARM configures
the CPU to trap all hardware interrupts to Hyp mode. On each
interrupt, it performs a world switch to the highvisor and the host
handles the interrupt, so that the hypervisor remains in complete
control of hardware resources. When running in the host and
the highvisor, interrupts trap directly to kernel mode, avoiding
the overhead of going through Hyp mode. In both cases, all
hardware interrupt processing is done in the host by reusing
Linux’s existing interrupt handling functionality.

However, VMs must receive notifications in the form of vir-
tual interrupts from emulated devices and multicore guest OSes
must be able to send virtual IPIs from one virtual core to another.
KVM/ARM uses the VGIC to inject virtual interrupts into VMs
to reduce the number of traps to Hyp mode. As described in
Section 2, virtual interrupts are raised to virtual CPUs by pro-
gramming the list registers in the VGIC hypervisor CPU control
interface. KVM/ARM configures the Stage-2 page tables to
prevent VMs from accessing the control interface and to allow
access only to the VGIC virtual CPU interface, ensuring that
only the hypervisor can program the control interface and that
the VM can access the VGIC virtual CPU interface directly.
However, guest OSes will still attempt to access a GIC distrib-
utor to configure the GIC and to send IPIs from one virtual core
to another. Such accesses will trap to the hypervisor and the
hypervisor must emulate the distributor.

KVM/ARM introduces the virtual distributor, a software
model of the GIC distributor as part of the highvisor. The vir-
tual distributor exposes an interface to user space, so emulated
devices in user space can raise virtual interrupts to the virtual
distributor and exposes an MMIO interface to the VM identical
to that of the physical GIC distributor. The virtual distributor
keeps internal software state about the state of each interrupt and

uses this state whenever a VM is scheduled, to program the list
registers to inject virtual interrupts. For example, if virtual CPU0
sends an IPI to virtual CPU1, the distributor will program the list
registers for virtual CPU1 to raise a virtual IPI interrupt the next
time virtual CPU1 runs.

Ideally, the virtual distributor only accesses the hardware list
registers when necessary, since device MMIO operations are
typically significantly slower than cached memory accesses. A
complete context switch of the list registers is required when
scheduling a different VM to run on a physical core, but not
necessarily required when simply switching between a VM and
the hypervisor. For example, if there are no pending virtual inter-
rupts, it is not necessary to access any of the list registers. Note
that once the hypervisor writes a virtual interrupt to a list register
when switching to a VM, it must also read the list register back
when switching back to the hypervisor, because the list register
describes the state of the virtual interrupt and indicates, for ex-
ample, if the VM has ACKed the virtual interrupt. The initial
unoptimized version of KVM/ARM uses a simplified approach
which completely context switches all VGIC state including the
list registers on each world switch.

3.6 Timer Virtualization
Reading counters and programming timers are frequent opera-
tions in many OSes for process scheduling and to regularly poll
device state. For example, Linux reads a counter to determine
if a process has expired its time slice, and programs timers to
ensure that processes don’t exceed their allowed time slices.
Application workloads also often leverage timers for various
reasons. Trapping to the hypervisor for each such operation is
likely to incur noticeable performance overheads, and allowing a
VM direct access to the time-keeping hardware typically implies
giving up timing control of the hardware resources as VMs can
disable timers and control the CPU for extended periods of time.

KVM/ARM leverages ARM’s hardware virtualization fea-
tures of the generic timers to allow VMs direct access to reading
counters and programming timers without trapping to Hyp mode
while at the same time ensuring the hypervisor remains in control
of the hardware. Since access to the physical timers is controlled
using Hyp mode, any software controlling Hyp mode has access
to the physical timers. KVM/ARM maintains hardware control
by using the physical timers in the hypervisor and disallowing
access to physical timers from the VM. The Linux kernel running
as a guest OS only accesses the virtual timer and can therefore
directly access timer hardware without trapping to the hypervisor.

Unfortunately, due to architectural limitations, the virtual
timers cannot directly raise virtual interrupts, but always raise
hardware interrupts, which trap to the hypervisor. KVM/ARM
detects when a VM virtual timer expires, and injects a corre-
sponding virtual interrupt to the VM, performing all hardware
ACK and EOI operations in the highvisor. The hardware only
provides a single virtual timer per physical CPU, and multiple
virtual CPUs may be multiplexed across this single hardware
instance. To support virtual timers in this scenario, KVM/ARM
detects unexpired timers when a VM traps to the hypervisor

339

and leverages existing OS functionality to program a software
timer at the time when the virtual timer would have otherwise
fired, had the VM been left running. When such a software timer
fires, a callback function is executed, which raises a virtual timer
interrupt to the VM using the virtual distributor described above.

4. Implementation and Adoption
We have successfully integrated our work into the Linux kernel
and KVM/ARM is now the standard ARM hypervisor on Linux
platforms, as it is included in every kernel beginning with
version 3.9. Its relative simplicity and rapid completion was
faciliated by specific design choices that allow it to leverage
substantial existing infrastructure despite differences in the
underlying hardware. We share some lessons we learned from our
experiences in hopes that they may be helpful to others in getting
research ideas widely adopted by the open source community.

Code maintainability is key. It is a common misconception
that a research software implementation providing potential
improvements or interesting new features can simply be open
sourced and thereby quickly integrated by the open source com-
munity. An important point that is often not taken into account
is that any implementation must be maintained. If an implemen-
tation requires many people and much effort to be maintained,
it is much less likely to integrated into existing open source
code bases. Because maintainability is so crucial, reusing code
and interfaces is important. For example, KVM/ARM builds
on existing infrastructure such as KVM and QEMU, and from
the very start we prioritized addressing code review comments
to make our code suitable for integration into existing systems.
An unexpected but important benefit of this decision was that
we could leverage the community for help to solve hard bugs or
understand intricate parts of the ARM architecture.

Be a known contributor. Convincing maintainers to integrate
code is not just about the code itself, but also about who submits
it. It is not unusual for researchers to complain about kernel
maintainers not accepting their code into Linux only to have
some known kernel developer submit the same idea and have
it accepted. The reason is an issue of trust. Establishing trust is
a catch-22: one must be well-known to submit code, yet one
cannot become known without submitting code. One way to
do this is to start small. As part of our work, we also made
various small changes to KVM to prepare support for ARM,
which included cleaning up existing code to be more generic
and improving cross platform support. The KVM maintainers
were glad to accept these small improvements, which generated
goodwill and helped us become known to the KVM community.

Make friends and involve the community. Open source de-
velopment turns out to be quite a social enterprise. Networking
with the community helps tremendously, not just online, but in
person at conferences and other venues. For example, at an early
stage in the development of KVM/ARM, we traveled to ARM
headquarters in Cambridge, UK to establish contact with both

ARM management and the ARM kernel engineering team, who
both contributed to our efforts.

As another example, an important issue in integrating
KVM/ARM into the kernel was agreeing on various interfaces
for ARM virtualization, such as reading and writing control
registers. Since it is an established policy to never break released
interfaces and compatibility with user space applications, exist-
ing interfaces cannot be changed, and the community puts great
effort into designing extensible and reusable interfaces. Deciding
on the appropriateness of an interface is a judgment call and not
an exact science. We were fortunate enough to receive help from
well-known kernel developers such as Rusty Russell, who helped
us drive both the implementation and communication about our
interfaces, specifically for user space save and restore of registers,
a feature useful for both debugging and VM migration. Working
with an established developer like Rusty was a tremendous help
because we benefited from both his experience and strong voice
in the kernel community.

Involve the community early. An important issue in develop-
ing KVM/ARM was how to get access to Hyp mode across the
plethora of available ARM SoC platforms supported by Linux.
One approach would be to initialize and configure Hyp mode
when KVM is initialized, which would isolate the code changes
to the KVM subsystem. However, because getting into Hyp
mode from the kernel involves a trap, early stage bootloader
must have already installed code in Hyp mode to handle the trap
and allow KVM to run. If no such trap handler was installed,
trapping to Hyp mode could end up crashing the kernel. We
worked with the kernel community to define the right ABI be-
tween KVM and the bootloader, but soon learned that agreeing
on ABIs with SoC vendors had historically been difficult.

In collaboration with ARM and the open source community,
we reached the conclusion that if we simply required the kernel
to be booted in Hyp mode, we would not have to rely on fragile
ABIs. The kernel then simply tests when it starts up whether it is
in Hyp mode, in which case it installs a trap handler to provide
a hook to re-enter Hyp mode at a later stage. A small amount of
code must be added to the kernel boot procedure, but the result is
a much cleaner and robust mechanism. If the bootloader is Hyp
mode unaware and the kernel does not boot up in Hyp mode,
KVM/ARM will detect this and will simply remain disabled.
This solution avoids the need to design a new ABI and it turned
out that legacy kernels would still work, because they always
make an explicit switch into kernel mode as their first instruction.
These changes were merged into the mainline Linux 3.6 kernel,
and official ARM kernel boot recommendations were modified
to recommend that all bootloaders boot the kernel in Hyp mode
to take advantage of the new architecture features.

Know the chain of command. There were multiple possible
upstream paths for KVM/ARM. Historically, other architectures
supported by KVM such as x86 and PowerPC were merged
through the KVM tree directly into Linus Torvalds’ tree with
the appropriate approval of the respective architecture maintain-
ers. KVM/ARM, however, required a few minor changes to

340

ARM-specific header files and the idmap subsystem, and it was
therefore not clear whether the code would be integrated via
the KVM tree with approval from the ARM kernel maintainer
or via the ARM kernel tree. Russell King is the ARM kernel
maintainer, and Linus pulls directly from his ARM kernel tree
for ARM-related code. The situation was particularly interesting,
because Russell King did not want to merge virtualization sup-
port in the mainline kernel [24] and he did not review our code.
At the same time, the KVM community was quite interested in
integrating our code, but could not do so without approval from
the ARM maintainers, and Russell King refused to engage in a
discussion about this procedure.

Be persistent. While we were trying to merge our code into
Linux, a lot of changes were happening around Linux ARM
support in general. The amount of churn in SoC support code
was becoming an increasingly big problem for maintainers, and
much work was underway to reduce board specific code and sup-
port a single ARM kernel binary bootable across multiple SoCs.
In light of these ongoing changes, getting enough time from
ARM kernel maintainers to review the code was challenging, and
there was extra pressure on the maintainers to be highly critical
of any new code merged into the ARM tree. We had no choice
but to keep maintaining and improving the code, and regularly
send out updated patch series that followed upstream kernel
changes. Eventually Will Deacon, one of the ARM maintainers,
made time for several comprehensive and helpful reviews, and
after addressing his concerns, he gave us his approval of the
code. After all this, when we thought we were done, we finally
received some feedback from Russell King.

When MMIO operations trap to the hypervisor, the virtualiza-
tion extensions populate a register which contains information
useful to emulate the instruction (whether it was a load or a store,
source/target registers, and the length of MMIO accesses). A
certain class of instructions used by older Linux kernels do not
populate such a register. KVM/ARM therefore loads the instruc-
tion from memory and decodes it in software. Even though the
decoding implementation was well tested and reviewed by a large
group of people, Russell King objected to including this feature.
He had already implemented multiple forms of instruction de-
coding in other subsystems and demanded that we either rewrite
significant parts of the ARM kernel to unify all instruction de-
coding to improve code reuse, or drop the MMIO instruction
decoding support from our implementation. Rather than pursue
a rewriting effort that could drag on for months, we abandoned
the otherwise well-liked and useful code base. We can only spec-
ulate about the true motives behind this decision, as the ARM
maintainer would not engage in a discussion about the subject.

After 15 main patch revisions and more than 18 months, the
KVM/ARM code was successfully merged into Linus’s tree via
Russell King’s ARM tree in February 2013. In getting all these
things to come together in the end before the 3.9 merge window,
the key was having a good relationship with many of the kernel
developers to get their help, and being persistent in continuing to
push to have the code merged in the face of various challenges.

5. Experimental Results
We present some experimental results that quantify the perfor-
mance of KVM/ARM on multicore ARM hardware. We evaluate
the virtualization overhead of KVM/ARM compared to native
execution by running both microbenchmarks and real application
workloads within VMs and directly on the hardware. We measure
and compare the performance, energy, and implementation costs
of KVM/ARM versus KVM x86 to demonstrate the effectiveness
of KVM/ARM against a more mature hardware virtualization
platform. These results provide the first real hardware measure-
ments of the performance of ARM hardware virtualization sup-
port as well as the first comparison between ARM and x86.

5.1 Methodology
ARM measurements were obtained using an Insignal Arndale
board [19] with a dual core 1.7GHz Cortex A-15 CPU on a
Samsung Exynos 5250 SoC. This is the first and most widely
used commercially available development board based on the
Cortex A-15, the first ARM CPU with hardware virtualization
support. Onboard 100Mb Ethernet is provided via the USB bus
and an external 120GB Samsung 840 series SSD drive was con-
nected to the Arndale board via eSATA. x86 measurements were
obtained using both a low-power mobile laptop platform and
an industry standard server platform. The laptop platform was
a 2011 MacBook Air with a dual core 1.8GHz Core i7-2677M
CPU, an internal Samsung SM256C 256GB SSD drive, and an
Apple 100Mb USB Ethernet adapter. The server platform was a
dedicated OVH SP 3 server with a dual core 3.4GHz Intel Xeon
E3 1245v2 CPU, two physical SSD drives of which only one
was used, and 1GB Ethernet connected to a 100Mb network
infrastructure. x86 hardware with virtual APIC support was not
yet available at the time of our experiments.

Given the differences in hardware platforms, our focus was
not on measuring absolute performance, but rather the relative
performance differences between virtualized and native execu-
tion on each platform. Since our goal is to evaluate hypervisors,
not raw hardware performance, this relative measure provides
a useful cross-platform basis for comparing the virtualization
performance and power costs of KVM/ARM versus KVM x86.

To provide comparable measurements, we kept the software
environments across all hardware platforms the same as much
as possible. Both the host and guest VMs on all platforms were
Ubuntu version 12.10. We used the mainline Linux 3.10 kernel
for our experiments, with patches for huge page support applied
on top of the source tree. Since the experiments were performed
on a number of different platforms, the kernel configurations
had to be slightly different, but all common features were con-
figured similarly across all platforms. In particular, Virtio drivers
were used in the guest VMs on both ARM and x86. We used
QEMU version v1.5.0 for our measurements. All systems were
configured with a maximum of 1.5GB of RAM available to
the respective guest VM or host being tested. Furthermore, all
multicore measurements were done using two physical cores and
guest VMs with two virtual CPUs, and single-core measurements

341

were configured with SMP disabled in the kernel configuration
of both the guest and host system; hyperthreading was disabled
on the x86 platforms. CPU frequency scaling was disabled to
ensure that native and virtualized performance was measured at
the same clock rate on each platform.

For measurements involving the network and another server,
100Mb Ethernet was used on all systems. The ARM and x86 lap-
top platforms were connected using a Netgear GS608v3 switch,
and a 2010 iMac with a 3.2GHz Core i3 CPU with 12GB of
RAM running Mac OS X Mountain Lion was used as a server.
The x86 server platform was connected to a 100Mb port in the
OVH network infrastructure, and another identical server in the
same data center was used as the server. While there are some
differences in the network infrastructure used for the x86 server
platform because it is controlled by someone else, we do not
expect these differences to have any significant impact on the
relative performance between virtualized and native execution.

We present results for four sets of experiments. First, we mea-
sured the cost of various micro architectural characteristics of
the hypervisors on multicore hardware using custom small guest
OSes [11, 21] with some bugfix patches applied. We further
instrumented the code on both KVM/ARM and KVM x86 to
read the cycle counter at specific points along critical paths to
more accurately determine where overhead time was spent.

Second, we measured the cost of a number of common low-
level OS operations using lmbench [25] v3.0 on both single-core
and multicore hardware. When running lmbench on multicore
configurations, we pinned each benchmark process to a separate
CPU to measure the true overhead of interprocessor communi-
cation in VMs on multicore systems.

Third, we measured real application performance using a
variety of workloads on both single-core and multicore hardware.
Table 2 describes the eight application workloads we used.

Fourth, we measured energy efficiency using the same eight
application workloads used for measuring application perfor-
mance. ARM power measurements were performed using an
ARM Energy Probe [3] which measures power consumption
over a shunt attached to the power supply of the Arndale board.
Power to the external SSD was delivered by attaching a USB
power cable to the USB ports on the Arndale board thereby
factoring storage power into the total SoC power measured at
the power supply. x86 power measurements were performed
using the powerstat tool, which reads ACPI information.
powerstat measures total system power draw from the bat-
tery, so power measurements on the x86 system were run from
battery power and could only be run on the x86 laptop platform.
Although we did not measure the power efficiency of the x86
server platform, it is expected to be much less efficient that the
x86 laptop platform, so using the x86 laptop platform provides
a conservative comparison of energy efficiency against ARM.
The display and wireless features of the x86 laptop platform
were turned off to ensure a fair comparison. Both tools reported
instantaneous power draw in watts with a 10Hz interval. These

apache Apache v2.2.22 Web server running ApacheBench v2.3
on the local server, which measures number of handled
requests per seconds serving the index file of the GCC
4.4 manual using 100 concurrent requests

mysql MySQL v14.14 (distrib 5.5.27) running the SysBench
OLTP benchmark using the default configuration

memcached memcached v1.4.14 using the memslap benchmark
with a concurrency parameter of 100

kernel
compile

kernel compilation by compiling the Linux 3.6.0 kernel
using the vexpress defconfig for ARM using GCC
4.7.2 on ARM and the GCC 4.7.2 arm-linux-
gnueabi- cross compilation toolchain on x86

untar untar extracting the 3.6.0 Linux kernel image
compressed with bz2 compression using the standard
tar utility

curl 1K curl v7.27.0 downloading a 1KB randomly gener-
ated file 1,000 times from the respective iMac or OVH
server and saving the result to /dev/null with
output disabled, which provides a measure of network
latency

curl 1G curl v7.27.0 downloading a 1GB randomly gen-
erated file from the respective iMac or OVH server
and saving the result to /dev/null with output dis-
abled, which provides a measure of network throughput

hackbench hackbench [26] using unix domain sockets and 100
process groups running with 500 loops

Table 2: Benchmark Applications

measurements were averaged and multiplied by the duration of
the test to obtain an energy measure.

5.2 Performance and Power Measurements
Table 3 presents various micro-architectural costs of virtual-
ization using KVM/ARM on ARM and KVM x86 on x86.
Measurements are shown in cycles instead of time to provide
a useful comparison across platforms with different CPU fre-
quencies. We show two numbers for the ARM platform where
possible, with and without VGIC and virtual timers support.

Hypercall is the cost of two world switches, going from the
VM to the host and immediately back again without doing any
work in the host. KVM/ARM takes three to four times as many
cycles for this operation versus KVM x86 due to two main
factors. First, saving and restoring VGIC state to use virtual inter-
rupts is quite expensive on ARM; available x86 hardware does
not yet provide such mechanism. The ARM no VGIC/vtimers
measurement does not include the cost of saving and restoring
VGIC state, showing that this accounts for over half of the cost of
a world switch on ARM. Second, x86 provides hardware support
to save and restore state on the world switch, which is much
faster. ARM requires software to explicitly save and restore state,
which provides greater flexibility, but higher costs. Nevertheless,
without the VGIC state, the hypercall costs are only about 600
cycles more than the hardware accelerated hypercall cost on the
x86 server platform. The ARM world switch costs have not been
optimized and can be reduced further. For example, a small patch
eliminating unnecessary atomic operations reduces the hypercall
cost by roughly 300 cycles, but did not make it into the mainline
kernel until after v3.10 was released. As another example, if
parts of the VGIC state were lazily context switched instead of

342

Micro Test ARM ARM no x86 x86
VGIC/vtimers laptop server

Hypercall 5,326 2,270 1,336 1,638
Trap 27 27 632 821
I/O Kernel 5,990 2,850 3,190 3,291
I/O User 10,119 6,704 10,985 12,218
IPI 14,366 32,951 17,138 21,177
EOI+ACK 427 13,726 2,043 2,305

Table 3: Micro-Architectural Cycle Counts

being saved and restored on each world switch, this may also
reduce the world switch costs.

Trap is the cost of switching the hardware mode from the VM
into the respective CPU mode for running the hypervisor, Hyp
mode on ARM and root mode on x86. ARM is much faster than
x86 because it only needs to manipulate two registers to perform
this trap, whereas the cost of a trap on x86 is roughly the same
as the cost of a world switch because the same amount of state
is saved by the hardware in both cases. The trap cost on ARM
is a very small part of the world switch costs, indicating that the
double trap incurred by split-mode virtualization on ARM does
not add much overhead.

I/O Kernel is the cost of an I/O operation from the VM to
a device, which is emulated inside the kernel. I/O User shows
the cost of issuing an I/O operation to a device emulated in user
space, adding to I/O Kernel the cost of transitioning from the ker-
nel to a user space process and doing a small amount of work in
user space on the host for I/O. This is representative of the cost of
using QEMU. Since these operations involve world switches, sav-
ing and restoring VGIC state is again a significant cost on ARM.
KVM x86 is faster than KVM/ARM on I/O Kernel, but slightly
slower on I/O User. This is because the hardware optimized world
switch on x86 constitutes the majority of the cost of performing
I/O in the kernel, but transitioning from kernel to a user space pro-
cess on the host side is more expensive on x86 because x86 KVM
saves and restores additional state lazily when going to user space.
Note that the added cost of going to user space includes saving
additional state, doing some work in user space, and returning to
the kernel and processing the KVM_RUN ioctl call for KVM.

IPI is the cost of issuing an IPI to another virtual CPU core
when both virtual cores are running on separate physical cores
and both are actively running inside the VM. IPI measures time
starting from sending an IPI until the other virtual core responds
and completes the IPI. It involves multiple world switches and
sending and receiving a hardware IPI. Despite its higher world
switch cost, ARM is faster than x86 because the underlying
hardware IPI on x86 is expensive, x86 APIC MMIO operations
require KVM x86 to perform instruction decoding not needed
on ARM, and completing an interrupt on x86 is more expen-
sive. ARM without VGIC/vtimers is significantly slower than
with VGIC/vtimers even though it has lower world switch costs
because sending, EOIing and ACKing interrupts trap to the
hypervisor and are handled by QEMU in user space.

EOI+ACK is the cost of completing a virtual interrupt on
both platforms. It includes both interrupt acknowledgment and
completion on ARM, but only completion on the x86 platform.
ARM requires an additional operation, the acknowledgment, to
the interrupt controller to determine the source of the interrupt.
x86 does not because the source is directly indicated by the
interrupt descriptor table entry at the time when the interrupt is
raised. However, the operation is roughly 5 times faster on ARM
than x86 because there is no need to trap to the hypervisor on
ARM because of VGIC support for both operations. On x86, the
EOI operation must be emulated and therefore causes a trap to the
hypervisor. This operation is required for every virtual interrupt
including both virtual IPIs and interrupts from virtual devices.

Figures 3 to 7 show virtualized execution measurements
normalized relative to their respective native execution measure-
ments, with lower being less overhead. Figures 3 and 4 show
normalized performance for running lmbench in a VM versus
running directly on the host. Figure 3 shows that KVM/ARM and
KVM x86 have similar virtualization overhead in a single core
configuration. For comparison, we also show KVM/ARM per-
formance without VGIC/vtimers. Overall, using VGIC/vtimers
provides slightly better performance except for the pipe and
ctxsw workloads where the difference is substantial. The reason
for the high overhead in this case is caused by updating the run-
queue clock in the Linux scheduler every time a process blocks,
since reading a counter traps to user space without vtimers on the
ARM platform. We verified this by running the workload with
VGIC support, but without vtimers, and we counted the number
of timer read exits when running without vtimers support.

Figure 4 shows more substantial differences in virtualization
overhead between KVM/ARM and KVM x86 in a multicore
configuration. KVM/ARM has less overhead than KVM x86
fork and exec, but more for protection faults. Both systems have
the worst overhead for the pipe and ctxsw workloads, though
KVM x86 is more than two times worse for pipe. This is due
to the cost of repeatedly sending an IPI from the sender of the
data in the pipe to the receiver for each message and the cost of
sending an IPI when scheduling a new process. x86 not only has
higher IPI overhead than ARM, but it must also EOI each IPI,
which is much more expensive on x86 than on ARM because
this requires trapping to the hypervisor on x86 but not on ARM.
Without using VGIC/vtimers, KVM/ARM also incurs high over-
head comparable to KVM x86 because it then also traps to the
hypervisor to ACK and EOI the IPIs.

Figures 5 and 6 show normalized performance for running
application workloads in a VM versus running directly on the
host. Figure 5 shows that KVM/ARM and KVM x86 have sim-
ilar virtualization overhead across all workloads in a single core
configuration except for the MySQL workloads, but Figure 6
shows that there are more substantial differences in performance
on multicore. On multicore, KVM/ARM has significantly less
virtualization overhead than KVM x86 on Apache and MySQL.
Overall on multicore, KVM/ARM performs within 10% of
running directly on the hardware for all application workloads,

343

	 	 	
3.
8	

	 	 	
5.
5	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

fork	 exec	 pipe	 ctxsw	 prot	
fault	

page	
fault	

af_unix	 tcp	

ARM	
ARM	 no	 VGIC/vDmers	
x86	 Laptop	
x86	 Server	

Figure 3: UP VM Normalized lmbench Performance

	 	 	
3.
0	

	 	 	
4.
9	

	 	 	
9.
7	

20
.0
	

	 	 	
6.
5	

	 	 	
7.
7	

	 	 	
6.
0	

	 	 	
4.
6	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

fork	 exec	 pipe	 ctxsw	 prot	
fault	

page	
fault	

af_unix	 tcp	

ARM	
ARM	 no	 VGIC/vGmers	
x86	 Laptop	
x86	 Server	

Figure 4: SMP VM Normalized lmbench Performance

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

Apa
che	

MyS
QL	

mem
cach

ed	 kern
el	

unta
r	

curl1
k	

curl1
g	

hack
ben

ch	

ARM	
ARM	 no	 VGIC/vEmers	
x86	 Laptop	
x86	 Server	

Figure 5: UP VM Normalized Application Performance

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

Apa
che	

MyS
QL	

mem
cach

ed	 kern
el	

unta
r	

curl1
k	

curl1
g	

hack
ben

ch	

ARM	
ARM	 no	 VGIC/vEmers	
x86	 Laptop	
x86	 Server	

Figure 6: SMP VM Normalized Application Performance

while the more mature KVM x86 system has significantly higher
virtualization overheads for Apache and MySQL. KVM/ARM’s
split-mode virtualization design allows it to leverage ARM
hardware support with comparable performance to a traditional
hypervisor using x86 hardware support. The measurements
also show that KVM/ARM performs better overall with ARM
VGIC/vtimers support than without.

Figure 7 shows normalized power consumption of using
virtualization versus direct execution for various application
workloads on multicore. We only compared KVM/ARM on
ARM against KVM x86 on x86 laptop. The Intel Core i7 CPU
used in these experiments is one of Intel’s more power opti-
mized processors, and we expect that server power consumption
would be even higher. The measurements show that KVM/ARM
using VGIC/vtimers is more power efficient than KVM x86
virtualization in all cases except memcached and untar. Both
workloads are not CPU bound on both platforms and the power
consumption is not significantly affected by the virtualization
layer. However, due to ARM’s slightly higher virtualization
overhead for these workloads, the energy virtualization overhead
is slightly higher on ARM for the two workloads. While a more
detailed study of energy aspects of virtualization is beyond the
scope of this paper, these measurements nevertheless provide
useful data comparing ARM and x86 virtualization energy costs.

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

Apa
che	

MyS
QL	

mem
cach

ed	 kern
el	

unta
r	

curl1
k	

curl1
g	

hack
ben

ch	

ARM	
ARM	 no	 VGIC/vEmers	
x86	 Laptop	

Figure 7: SMP VM Normalized Energy Consumption

5.3 Implementation Complexity
We compare the code complexity of KVM/ARM to its KVM
x86 counterpart in Linux 3.10. KVM/ARM is 5,812 lines of
code (LOC), counting just the architecture-specific code added to
Linux to implement it, of which the lowvisor is a mere 718 LOC.
As a conservative comparison, KVM x86 is 25,367 LOC, ex-
cluding guest performance monitoring support, not yet supported
by KVM/ARM, and 3,311 LOC required for AMD support.
These numbers do not include KVM’s architecture-generic code,
7,071 LOC, which is shared by all systems. Table 4 shows a

344

Component KVM/ARM KVM x86 (Intel)
Core CPU 2,493 16,177
Page Fault Handling 738 3,410
Interrupts 1,057 1,978
Timers 180 573
Other 1,344 1,288
Architecture-specific 5,812 25,367

Table 4: Code Complexity in Lines of Code (LOC)

breakdown of the total hypervisor architecture-specific code into
its major components.

By inspecting the code we notice that the striking additional
complexity in the x86 implementation is mainly due to the five
following reasons: (1) Since EPT was not supported in earlier
hardware versions, KVM x86 must support shadow page tables.
(2) The hardware virtualization support have evolved over time,
requiring software to conditionally check for support for a large
number of features such as EPT. (3) A number of operations
require software decoding of instructions on the x86 platform.
KVM/ARM’s out-of-tree MMIO instruction decode implemen-
tation was much simpler, only 462 LOC. (4) The various paging
mode on x86 requires more software logic to handle page faults.
(5) x86 requires more software logic to support interrupts and
timers than ARM, which provides VGIC/vtimers hardware
support that reduces software complexity.

KVM/ARM’s LOC is less than partially complete bare-metal
microvisors written for Hyp mode [31], with the lowvisor LOC
almost an order of magnitude smaller. Unlike standalone hyper-
visors, KVM/ARM’s code complexity is so small because lots
of functionality simply does not have to be implemented because
it is already provided by Linux. Table 4 does not include other
non-hypervisor architecture-specific Linux code, such as basic
bootstrapping, which is significantly more code. Porting a stan-
dalone hypervisor such as Xen from x86 to ARM is much more
complicated because all of that ARM code for basic system func-
tionality needs to be written from scratch. In contrast, since Linux
is dominant on ARM, KVM/ARM just leverages existing Linux
ARM support to run on every platform supported by Linux.

6. Recommendations
From our experiences building KVM/ARM, we offer a few rec-
ommendations for hardware designers to simplify and optimize
future hypervisor implementations.

Share kernel mode memory model. The hardware mode to
run a hypervisor should use the same memory model as the
hardware mode to run OS kernels. Software designers then have
greater flexibility in deciding how tightly to integrate a hypervisor
with existing OS kernels. ARM Hyp mode unfortunately did not
do this, preventing KVM/ARM from simply reusing the kernel’s
page tables in Hyp mode. This reuse would have simplified the
implementation and allowed for performance critical emulation
code to run in Hyp mode, avoiding a complete world switch in
some cases. Some might argue that this recommendation makes

for more complicated standalone hypervisor implementations,
but this is not really true. For example, ARM kernel mode al-
ready has a simple option to use one or two page table base
registers to unify or split the address space. Our recommendation
is different from the x86 virtualization approach, which does
not have a separate and more privileged, hypervisor CPU mode.
Having a separate CPU mode potentially improves stand-alone
hypervisor performance and implementation, but not sharing
the kernel memory model complicates the design of hypervisors
integrated with host kernels.

Make VGIC state access fast, or at least infrequent. While
VGIC support can improve performance especially on multicore
systems, our measurements also show that access to VGIC state
adds substantial overhead to world switches. This is caused by
slow MMIO access to the VGIC control interface in the critical
path. Improving the MMIO access time is likely to improve VM
performance, but if this is not possible or cost-effective, MMIO
accesses to the VGIC could at least be made less frequent. For
example, a summary register could be introduced describing
the state of each virtual interrupt. This could be read when per-
forming a world switch from the VM to the hypervisor to get
information which can currently only be obtained by reading all
the list registers (see Section 3.5) on each world switch.

Completely avoid IPI traps. Hardware support to send virtual
IPIs directly from VMs without the need to trap to the hypervisor
would improve performance. Hardware designers may underes-
timate how frequent IPIs are on modern multicore OSes, and our
measurements reveal that sending IPIs adds significant overhead
for some workloads. The current VGIC design requires a trap
to the hypervisor to emulate access to the IPI register in the dis-
tributor, and this emulated access must be synchronized between
virtual cores using a software locking mechanism, which adds
significant overhead for IPIs. Current ARM hardware supports
receiving the virtual IPIs, which can be ACKed and EOIed with-
out traps, but unfortunately does not address the also important
issue of sending virtual IPIs.

7. Related Work
Virtualization has a long history [27], but has enjoyed a resur-
gence starting in the late 1990s. Most efforts have almost ex-
clusively focused on virtualizing the x86 architecture. While
systems such as VMware [1, 10] and Xen [8] were originally
based on software-only approaches before the introduction of
x86 hardware virtualization support, all x86 virtualization plat-
forms, VMware [2], Xen, and KVM [22], now leverage x86
hardware virtualization support. Because x86 hardware virtual-
ization support differs substantially from ARM in the ability to
completely run the hypervisor in the same mode as the kernel,
x86 virtualization approaches do not lend themselves directly to
take advantage of ARM hardware virtualization support.

Some x86 approaches also leverage the host kernel to pro-
vide functionality for the hypervisor. VMware Workstation’s
hypervisor creates a VMM separate from the host kernel, but this

345

approach is different from KVM/ARM in a number of important
ways. First, the VMware VMM is not integrated into the host ker-
nel source code and therefore cannot reuse existing host kernel
code, for example, for populating page tables relating to the VM.
Second, since the VMware VMM is specific to x86 it does not
run across different privileged CPU modes, and therefore does
not use a design similar to KVM/ARM. Third, most of the em-
ulation and fault-handling code required to run a VM executes at
the most privileged level inside the VMM. KVM/ARM executes
this code in the less privileged kernel mode, and only executes a
minimal amount of code in the most privileged mode. In contrast,
KVM benefits from being integrated with the Linux kernel like
KVM/ARM, but the x86 design relies on being able to run
the kernel and the hypervisor together in the same hardware
hypervisor mode, which is problematic on ARM.

Full-system virtualization of the ARM architecture is a rela-
tively unexplored research area. Most approaches are software
only. A number of standalone bare metal hypervisors have been
developed [16, 17, 28], but these are not widespread, are devel-
oped specifically for the embedded market, and must be modified
and ported to every single host hardware platform, limiting their
adoption. An abandoned port of Xen for ARM [18] requires
comprehensive modifications to the guest kernel, and was never
fully developed. An earlier prototype for KVM on ARM [12, 15]
used an automated lightweight paravirtualization approach to
automatically patch kernel source code to run as a guest kernel,
but had poor performance. VMware Horizon Mobile [9] uses
hosted virtualization to leverage Linux’s support for a wide range
of hardware platforms, but requires modifications to guest OSes
and its performance is unproven. None of these paravirtualization
approaches could run unmodified guest OSes.

An earlier study attempted to estimate the performance of
ARM hardware virtualization support using a software simulator
and a simple hypervisor lacking important features like SMP
support and use of storage and network devices by multiple
VMs [31]. Because of the lack of hardware or a cycle-accurate
simulator, no real performance evaluation was possible. In con-
trast, we present the first evaluation of ARM virtualization exten-
sions using real hardware, provide a direct comparison with x86,
and present the design and implementation of a complete hypervi-
sor using ARM virtualization extensions, including SMP support.

A newer version of Xen exclusively targeting servers [32] is
being developed using ARM hardware virtualization support. Be-
cause Xen is a bare metal hypervisor that does not leverage kernel
functionality, it can be architected to run entirely in Hyp mode
rather than using split-mode virtualization. At the same time, this
requires a substantial commercial engineering effort. Since Xen
is a standalone hypervisor, porting Xen from x86 to ARM is dif-
ficult in part because all ARM-related code must be written from
scratch. Even after getting Xen to work on one ARM platform,
it must be manually ported to each different ARM device that
Xen wants to support. Because of Xen’s custom I/O model using
hypercalls from VMs for device emulation on ARM, Xen unfor-
tunately cannot run guest OSes unless they have been configured

to include Xen’s hypercall layer and include support for XenBus
paravirtualized drivers. In contrast, KVM/ARM uses standard
Linux components to enable faster development, full SMP sup-
port, and the ability to run unmodified OSes. KVM/ARM is
easily supported on new devices with Linux support, and we
spent almost no effort to support KVM/ARM on ARM’s Versa-
tile Express boards, the Arndale board, and hardware emulators.
While Xen can potentially reduce world switch times for opera-
tions that can be handled inside the Xen hypervisor, switching to
Dom0 for I/O support or switching to other VMs would involve
context switching the same state as KVM/ARM.

Microkernel approaches for hypervisors [16, 30] have been
used to reduce the hypervisor TCB and run other hypervisor ser-
vices in user mode. These approaches differ both in design and
rationale from split-mode virtualization, which splits hypervisor
functionality across privileged modes to leverage virtualization
hardware support. Split-mode virtualization also provides a differ-
ent split of hypervisor functionality. KVM/ARM’s lowvisor is a
much smaller code base that implements only the lowest level hy-
pervisor mechanisms. It does not include higher-level functional-
ity present in the hypervisor TCB used in these other approaches.

8. Conclusions
KVM/ARM is the mainline Linux ARM hypervisor and the
first system that can run unmodified guest operating systems
on ARM multicore hardware. KVM/ARM’s split-mode virtu-
alization makes it possible to use ARM hardware virtualization
extensions while leveraging Linux kernel mechanisms and hard-
ware support. Our experimental results show that KVM/ARM
(1) incurs minimal performance impact from the extra traps in-
curred by split-mode virtualization, (2) has modest virtualization
overhead and power costs, within 10% of direct native execution
on multicore hardware for real application workloads, and (3)
achieves comparable or lower virtualization overhead and power
costs on multicore hardware compared to widely-used KVM x86
virtualization. Based on our experiences integrating KVM/ARM
into the mainline Linux kernel, we provide some hints on getting
research ideas and code adopted by the open source community,
and recommendations for hardware designers to improve future
hypervisor implementations.

9. Acknowledgments
Marc Zyngier helped with development, implemented VGIC
and vtimers support, and assisted us with hardware bring up.
Rusty Russell worked on the coprocessor user space interface
and assisted with upstreaming. Will Deacon and Avi Kivity
provided numerous helpful code reviews. Peter Maydell helped
with QEMU support and debugging. Gleb Natapov helped us
better understand KVM x86 performance. Marcelo Tosatti and
Nicolas Viennot helped with resolving what became known as
the voodoo bug. Keith Adams, Hani Jamjoom, and Emmett
Witchel provided helpful comments on earlier drafts of this
paper. This work was supported in part by ARM and NSF grants
CNS-1162447, CCF-1162021, and CNS-1018355.

346

References
[1] K. Adams and O. Agesen. A Comparison of Software and Hard-

ware Techniques for x86 Virtualization. In Proceedings of the 12th
International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 2–13, Oct. 2006.

[2] O. Agesen, J. Mattson, R. Rugina, and J. Sheldon. Software
Techniques for Avoiding Hardware Virtualization Exits. In
Proceedings of the 2012 USENIX Annual Technical Conference,
pages 373–385, June 2012.

[3] ARM Ltd. ARM Energy Probe. http://www.arm.com/
products/tools/arm-energy-probe.php.

[4] ARM Ltd. ARM Cortex-A15 Technical Reference Manual ARM
DDI 0438C, Sept. 2011.

[5] ARM Ltd. ARM Generic Interrupt Controller Architecture version
2.0 ARM IHI 0048B, June 2011.

[6] ARM Ltd. ARM Architecture Reference Manual ARMv7-A
DDI0406C.b, July 2012.

[7] ARM Ltd. ARM Architecture Reference Manual ARMv8-A
DDI0487A.a, Sept. 2013.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of
Virtualization. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles, pages 164–177, Oct. 2003.

[9] K. Barr, P. Bungale, S. Deasy, V. Gyuris, P. Hung, C. Newell,
H. Tuch, and B. Zoppis. The VMware Mobile Virtualization
Platform: is that a hypervisor in your pocket? SIGOPS Operating
Systems Review, 44(4):124–135, Dec. 2010.

[10] E. Bugnion, S. Devine, M. Rosenblum, J. Sugerman, and E. Y.
Wang. Bringing Virtualization to the x86 Architecture with the
Original VMware Workstation. ACM Transactions on Computer
Systems, 30(4):12:1–12:51, Nov. 2012.

[11] C. Dall and A. Jones. KVM/ARM Unit Tests.
https://github.com/columbia/kvm-unit-tests.

[12] C. Dall and J. Nieh. KVM for ARM. In Proceedings of the
Ottawa Linux Symposium, pages 45–56, July 2010.

[13] C. Dall and J. Nieh. Supporting KVM on the ARM architecture.
LWN.net, July 2013. http://lwn.net/Articles/
557132/.

[14] David Brash, Architecture Program Manager, ARM Ltd. Personal
communication, Nov. 2012.

[15] J.-H. Ding, C.-J. Lin, P.-H. Chang, C.-H. Tsang, W.-C. Hsu,
and Y.-C. Chung. ARMvisor: System Virtualization for ARM.
In Proceedings of the Ottawa Linux Symposium (OLS), pages
93–107, July 2012.

[16] General Dynamics. OKL4 Microvisor. http:
//www.ok-labs.com/products/okl4-microvisor.

[17] Green Hills Software. INTEGRITY Secure Virtualiza-
tion. http://www.ghs.com/products/rtos/
integrity_virtualization.html.

[18] J. Hwang, S. Suh, S. Heo, C. Park, J. Ryu, S. Park, and C. Kim.
Xen on ARM: System Virtualization using Xen Hypervisor for
ARM-based Secure Mobile Phones. In Proceedings of the 5th
Consumer Communications and Newtork Conference, Jan. 2008.

[19] InSignal Co. ArndaleBoard.org. http://arndaleboard.
org.

[20] Intel Corporation. Intel 64 and IA-32 Architectures Software
Developers Manual, 325462-044US, Aug. 2012.

[21] A. Kivity. KVM Unit Tests. https://git.kernel.org/
cgit/virt/kvm/kvm-unit-tests.git.

[22] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm:
The Linux Virtual Machine Monitor. In Proceedings of the Ottawa
Linux Symposium (OLS), volume 1, pages 225–230, June 2007.

[23] KVM/ARM Mailing List. https://lists.cs.
columbia.edu/cucslists/listinfo/kvmarm.

[24] Linux ARM Kernel Mailing List. A15 H/W Virtualization
Support, Apr. 2011. http://archive.arm.linux.org.
uk/lurker/message/20110412.204714.a36702d9.
en.html.

[25] L. McVoy and C. Staelin. lmbench: Portable Tools for Perfor-
mance Analysis. In Proceedings of the 1996 USENIX Annual
Technical Conference, pages 279–294, Jan. 1996.

[26] I. Molnar. Hackbench. http://people.redhat.com/
mingo/cfs-scheduler/tools/hackbench.c.

[27] G. J. Popek and R. P. Goldberg. Formal Requirements for
Virtualizable Third Generation Architectures. Communications
of the ACM, 17(7):412–421, July 1974.

[28] Red Bend Software. vLogix Mobile. http://www.redbend.
com/en/mobile-virtualization.

[29] R. Russell. virtio: Towards a De-Facto Standard for Virtual I/O
Devices. SIGOPS Operating Systems Review, 42(5):95–103, July
2008.

[30] U. Steinberg and B. Kauer. Nova: A Microhypervisor-Based
Secure Virtualization Architecture. In Proceedings of the 5th Euro-
pean Conference on Computer Systems, pages 209–222, Apr. 2010.

[31] P. Varanasi and G. Heiser. Hardware-Supported Virtualization on
ARM. In Proceedings of the Second Asia-Pacific Workshop on
Systems, pages 11:1–11:5, July 2011.

[32] Xen.org. Xen ARM. http://xen.org/products/xen_
arm.html.

347

