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What is the output?

int x;
foo(){

int m;
m = qux();
x = x + m;

}
bar(){

int n;
n = baz();
x = x + n;

}
main() {

x = 2;
foo() par bar();
print(x);

}

main

foo bar

main

x = 2

m = qux()

x = x + m

n = baz()

x = x + n

print x
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What is the output?

int x;
foo(){

int m;
m = qux();
x = x + m;

}
bar(){

int n;
n = baz();
x = x + n;

}
main() {

x = 2;
foo() par bar();
print(x);

}

main

foo bar

main

x = 2

m = qux()

x = x + m

n = baz()

x = x + n

print x

Data Race
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Eliminating Data Races

int x;
foo(){

int m;
m = qux();
lock(x);

x = x + m;
unlock(x);

}
bar(){

int n;
n = baz();
lock(x);

x = x + n;
unlock(x);

}
main() {

x = 2;
foo() par bar();
print(x);

}

main

foo bar

main

x = 2

m = qux()

x = x + m

n = baz()

x = x + n

print x
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Eliminating Data Races

int x;
foo(){

int m;
m = qux();
lock(x);

x = x + m;
unlock(x);

}
bar(){

int n;
n = baz();
lock(x);

x = x + n;
unlock(x);

}
main() {

x = 2;
foo() par bar();
print(x);

}

main

foo bar

main

x = 2

m = qux()

x = x + m

n = baz()

x = x + n

print x

if m = n = 2

x = (2 + 2) + 2 = 6
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Another Example

int x;
foo(){

int m;
m = qux();
x = x + m;

}
bar(){

int n;
n = baz();
x = x ∗ n;

}
main() {

x = 2;
foo() par bar();
print(x);

}

main

foo bar

main

x = 2

m = qux()

x = x + m

n = baz()

x = x * n

print x
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Eliminating Data Races

int x;
foo(){

int m;
m = qux();
lock(x);

x = x + m;
unlock(x);

}
bar(){

int n;
n = baz();
lock(x);

x = x ∗ n;
unlock(x);

}
main() {

x = 2;
foo() par bar();
print(x);

}

main

foo bar

main

x = 2

m = qux()

x = x + m

n = baz()

x = x * n

print x

Dealing with Concurrency Problems, Nalini Vasudevan – p. 5



Eliminating Data Races

int x;
foo(){

int m;
m = qux();
lock(x);

x = x + m;
unlock(x);

}
bar(){

int n;
n = baz();
lock(x);

x = x ∗ n;
unlock(x);

}
main() {

x = 2;
foo() par bar();
print(x);

}

main

foo bar

main

x = 2

m = qux()

x = x + m

n = baz()

x = x * n

print x

if m = n = 2

x = (2 + 2) * 2 = 8

x = (2 * 2) + 2 = 6
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Eliminating Data Races

int x;
foo(){

int m;
m = qux();
lock(x);

x = x + m;
unlock(x);

}
bar(){

int n;
n = baz();
lock(x);

x = x ∗ n;
unlock(x);

}
main() {

x = 2;
foo() par bar();
print(x);

}

main

foo bar

main

x = 2

m = qux()

x = x + m

n = baz()

x = x * n

print x

if m = n = 2

x = (2 + 2) * 2 = 8

x = (2 * 2) + 2 = 6

Non-determinism
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Problem with Locks

int x = 0;
int y = 0;

foo() {
lockx();
locky();
x++;
y++;
unlocky();
unlockx();

}

bar(){
locky();
lockx();
y++;
x++;
unlockx();
unlocky();

}

main() {
foo(x) par bar(x);
print(x);

}

foo bar
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Problem with Locks

int x = 0;
int y = 0;

foo() {
lockx();
locky();
x++;
y++;
unlocky();
unlockx();

}

bar(){
locky();
lockx();
y++;
x++;
unlockx();
unlocky();

}

main() {
foo(x) par bar(x);
print(x);

}

foo bar

Deadlock
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Motivation

Parallel

Computers

Library

Support
Parallel

Languages

Performance

Non-

Determinism

Deadlocks

Hard-to-Debug
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Motivation

Determinism ?

Deadlock Freedom ? Efficiency ?
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Determinism: The SHIM Model

• Stands for Software Hardware Integration Medium

• Race free, scheduling independent, concurrent model

• Blocking synchronous rendezvous communication

Task 1

Task 1

Task 2

Task 3

Send

Recv

Recv

Recv
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The SHIM Language

An imperative language with familiar C/Java-like syntax

int gcd(int a, int b) {
while (a != b) {

if (a > b)
a −= b;

else
b −= a;

}
return a;

}
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Additional Constructs

stmt1 par stmt2 Run stmt1 and stmt2 concurrently

send var Send on channel var

recv var Receive on channel var
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Communication

• Blocking: wait for all processes connected to c

void f(chan int a) { // a is a copy of c
a = 3; // change local copy
recv a; // receive (wait for g)
// a now 5

}
void g(chan int &b) { // b is an alias of c

b = 5; // sets c
send b; // send (wait for f)

// b now 5
}
void main() {

chan int c = 0;
f(c); par g(c);

}

f g

c
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Compiling to Quad-Core [DATE 2008]

• Intel Quad Core Machine

• Each task mapped to a pthread

• Example: JPEG decoder

Cores Tasks Time Speedup

1 Sequential 25s 1.0

4 3 16 1.6

4 4 9.3 2.7

4 5 8.7 2.9

4 6 8.2 3.05

4 7 8.6 2.9

Run on a 20 MB 21600 × 10800 image that expands to 668 MB.
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Compiling to Cell [SAC 2009]

• Generated Code for a Heterogeneous Multicore

• Computationally intensive tasks mapped on the SPUs

• Example: FFT
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More Examples in SHIM

void main() {
chan int a, b;
{

// Task p
send a = 5; // send a
send b = 10; // send b

} par {
// Task q
int c;
recv a; // recv a
recv b; // recv b
c = a + b;

}
}

p q

a

b
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The Problem

void main() {
chan int a, b;
{

// Task p
send a = 5; // send a
send b = 10; // send b

} par {
// Task q
int c;
recv b; // recv b
recv a; // recv a
c = a + b;

}
}

p q

a

b
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Static Deadlock Detection

Scheduling

independence

Data sharing

through

rendezvous

communication

Asynchronous parts

are independent

Reduces

state space

Just pick one schedule
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Deadlocks in SHIM

• Why SHIM? No data races.

• Deadlocks in SHIM are deterministic (always

reproducible).

• SHIM’s philosophy: It prefers deadlocks to races.
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Deterministic, Deadlock-Free Model

void f(shared int &a) {
/∗ a is 1 ∗/
a = 3;

/∗ a is 3 , x is still 1 ∗/
next; /∗ Apply reduction operator ∗/

/∗ a is now 8, x is 8 ∗/
}

void g(shared int &b) {
/∗ b is 1 ∗/
b = 5;

/∗ b is 5, x is still 1 ∗/
next; /∗ Apply reduction operator ∗/

/∗ b is now 8, x is 8 ∗/
}

void h (shared int &c) {
/∗ c is 1 , x is still 1 ∗/
next;

/∗ c is now 8, x is 8 ∗/
}

main() {
shared int (+) x = 1;
/∗ If there are multiple writers, reduce

using the + reduction operator ∗/
f(x) par g(x) par h(x);
/∗ x is 8 ∗/

}
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Deterministic, Deadlock-free Model

• Histogram Example

void histogram(int a[], int n) {
int b[10];
for (int i = 0; i < n; i++) par {

int index = a[i];
b[index]++;

}
print (b);

}
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Deterministic, Deadlock-free Model

• Histogram Example

void histogram(int a[], int n) {
shared int (+) b[10]
for (int i = 0; i < n; i++) par {

int index = a[i];
b[index] = 1;
next;

}
print (b);

}
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Deterministic, Deadlock-free Model

Determinism X

Deadlock Freedom X Efficiency ?
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Deterministic, Deadlock-free Model
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Future Work [PLDI’09 Fun Ideas and Thoughts]

Parallel

Computers

Library

Support
Parallel

Languages

Performance
A

Determinizing
Compiler!
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The Example

int x;
foo(){

int m;
m = qux();
x = x + m;

}
bar(){

int n;
n = baz();
x = x ∗ n;

}
main() {

x = 2;
foo() par bar();
print(x);

}

main

foo bar

main

x = 2

m = qux()

x = x + m

n = baz()

x = x * n

print x
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The Determinizing Compiler’s Role

int x;
foo(){

int m;
m = qux();
x = x + m;
sync(x);

}
bar(){

int n;
n = baz();
sync(x);
x = x ∗ n;

}
main() {

x = 2;
foo() par bar();
print(x);

}

main

foo bar

main

x = 2

m = qux()

x = x + m

n = baz()

x = x * n

print x
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The Determinizing Compiler’s Role

int x;
foo(){

int m;
m = qux();
x = x + m;
sync(x);

}
bar(){

int n;
n = baz();
sync(x);
x = x ∗ n;

}
main() {

x = 2;
foo() par bar();
print(x);

}

main

foo bar

main

x = 2

m = qux()

x = x + m

n = baz()

x = x * n

print x

if m = n = 2

x = (2 + 2) * 2 = 8

Always!
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Scalability

• Synchronization is expensive

• Synchronization = Sequentializing
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Scalability

• Synchronization is expensive

• Synchronization = Sequentializing

Suppose a program runs for 100s on a single processor.

80% of the program can be parallelized. What is the speed

up on running the program with

1. 2 processors

2. 4 processors

3. 8 processors
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Scalability

• Synchronization is expensive

• Synchronization = Sequentializing

Suppose a program runs for 100s on a single processor.

80% of the program can be parallelized. What is the speed

up on running the program with

1. 2 processors

2. 4 processors

3. 8 processors

Ans: 1.66, 2.5, 3.33 [Using Amdahl’s law]
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The Ultimate Goal

Determinism X

Deadlock Freedom X Efficiency X
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