
Dealing with Concurrency Problems

Nalini Vasudevan

Columbia University

Dealing with Concurrency Problems, Nalini Vasudevan – p. 1

What is the output?

int x;
foo(){

int m;
m = qux();
x = x + m;

}
bar(){

int n;
n = baz();
x = x + n;

}
main() {

x = 2;
foo() par bar();
print(x);

}

main

foo bar

main

x = 2

m = qux()

x = x + m

n = baz()

x = x + n

print x

Dealing with Concurrency Problems, Nalini Vasudevan – p. 2

What is the output?

int x;
foo(){

int m;
m = qux();
x = x + m;

}
bar(){

int n;
n = baz();
x = x + n;

}
main() {

x = 2;
foo() par bar();
print(x);

}

main

foo bar

main

x = 2

m = qux()

x = x + m

n = baz()

x = x + n

print x

Data Race

Dealing with Concurrency Problems, Nalini Vasudevan – p. 2

Eliminating Data Races

int x;
foo(){

int m;
m = qux();
lock(x);

x = x + m;
unlock(x);

}
bar(){

int n;
n = baz();
lock(x);

x = x + n;
unlock(x);

}
main() {

x = 2;
foo() par bar();
print(x);

}

main

foo bar

main

x = 2

m = qux()

x = x + m

n = baz()

x = x + n

print x

Dealing with Concurrency Problems, Nalini Vasudevan – p. 3

Eliminating Data Races

int x;
foo(){

int m;
m = qux();
lock(x);

x = x + m;
unlock(x);

}
bar(){

int n;
n = baz();
lock(x);

x = x + n;
unlock(x);

}
main() {

x = 2;
foo() par bar();
print(x);

}

main

foo bar

main

x = 2

m = qux()

x = x + m

n = baz()

x = x + n

print x

if m = n = 2

x = (2 + 2) + 2 = 6

Dealing with Concurrency Problems, Nalini Vasudevan – p. 3

Another Example

int x;
foo(){

int m;
m = qux();
x = x + m;

}
bar(){

int n;
n = baz();
x = x ∗ n;

}
main() {

x = 2;
foo() par bar();
print(x);

}

main

foo bar

main

x = 2

m = qux()

x = x + m

n = baz()

x = x * n

print x

Dealing with Concurrency Problems, Nalini Vasudevan – p. 4

Eliminating Data Races

int x;
foo(){

int m;
m = qux();
lock(x);

x = x + m;
unlock(x);

}
bar(){

int n;
n = baz();
lock(x);

x = x ∗ n;
unlock(x);

}
main() {

x = 2;
foo() par bar();
print(x);

}

main

foo bar

main

x = 2

m = qux()

x = x + m

n = baz()

x = x * n

print x

Dealing with Concurrency Problems, Nalini Vasudevan – p. 5

Eliminating Data Races

int x;
foo(){

int m;
m = qux();
lock(x);

x = x + m;
unlock(x);

}
bar(){

int n;
n = baz();
lock(x);

x = x ∗ n;
unlock(x);

}
main() {

x = 2;
foo() par bar();
print(x);

}

main

foo bar

main

x = 2

m = qux()

x = x + m

n = baz()

x = x * n

print x

if m = n = 2

x = (2 + 2) * 2 = 8

x = (2 * 2) + 2 = 6

Dealing with Concurrency Problems, Nalini Vasudevan – p. 5

Eliminating Data Races

int x;
foo(){

int m;
m = qux();
lock(x);

x = x + m;
unlock(x);

}
bar(){

int n;
n = baz();
lock(x);

x = x ∗ n;
unlock(x);

}
main() {

x = 2;
foo() par bar();
print(x);

}

main

foo bar

main

x = 2

m = qux()

x = x + m

n = baz()

x = x * n

print x

if m = n = 2

x = (2 + 2) * 2 = 8

x = (2 * 2) + 2 = 6

Non-determinism

Dealing with Concurrency Problems, Nalini Vasudevan – p. 5

Problem with Locks

int x = 0;
int y = 0;

foo() {
lockx();
locky();
x++;
y++;
unlocky();
unlockx();

}

bar(){
locky();
lockx();
y++;
x++;
unlockx();
unlocky();

}

main() {
foo(x) par bar(x);
print(x);

}

foo bar

Dealing with Concurrency Problems, Nalini Vasudevan – p. 6

Problem with Locks

int x = 0;
int y = 0;

foo() {
lockx();
locky();
x++;
y++;
unlocky();
unlockx();

}

bar(){
locky();
lockx();
y++;
x++;
unlockx();
unlocky();

}

main() {
foo(x) par bar(x);
print(x);

}

foo bar

Deadlock

Dealing with Concurrency Problems, Nalini Vasudevan – p. 6

Motivation

Parallel

Computers

Library

Support
Parallel

Languages

Performance

Non-

Determinism

Deadlocks

Hard-to-Debug

Dealing with Concurrency Problems, Nalini Vasudevan – p. 7

Motivation

Determinism ?

Deadlock Freedom ? Efficiency ?

Dealing with Concurrency Problems, Nalini Vasudevan – p. 8

Determinism: The SHIM Model

• Stands for Software Hardware Integration Medium

• Race free, scheduling independent, concurrent model

• Blocking synchronous rendezvous communication

Task 1

Task 1

Task 2

Task 3

Send

Recv

Recv

Recv

Dealing with Concurrency Problems, Nalini Vasudevan – p. 9

The SHIM Language

An imperative language with familiar C/Java-like syntax

int gcd(int a, int b) {
while (a != b) {

if (a > b)
a −= b;

else
b −= a;

}
return a;

}

Dealing with Concurrency Problems, Nalini Vasudevan – p. 10

Additional Constructs

stmt1 par stmt2 Run stmt1 and stmt2 concurrently

send var Send on channel var

recv var Receive on channel var

Dealing with Concurrency Problems, Nalini Vasudevan – p. 11

Communication

• Blocking: wait for all processes connected to c

void f(chan int a) { // a is a copy of c
a = 3; // change local copy
recv a; // receive (wait for g)
// a now 5

}
void g(chan int &b) { // b is an alias of c

b = 5; // sets c
send b; // send (wait for f)

// b now 5
}
void main() {

chan int c = 0;
f(c); par g(c);

}

f g

c

Dealing with Concurrency Problems, Nalini Vasudevan – p. 12

Compiling to Quad-Core [DATE 2008]

• Intel Quad Core Machine

• Each task mapped to a pthread

• Example: JPEG decoder

Cores Tasks Time Speedup

1 Sequential 25s 1.0

4 3 16 1.6

4 4 9.3 2.7

4 5 8.7 2.9

4 6 8.2 3.05

4 7 8.6 2.9

Run on a 20 MB 21600 × 10800 image that expands to 668 MB.

Dealing with Concurrency Problems, Nalini Vasudevan – p. 13

Compiling to Cell [SAC 2009]

• Generated Code for a Heterogeneous Multicore

• Computationally intensive tasks mapped on the SPUs

• Example: FFT

 0

 1

 2

 3

 4

 5

PPU only 1 2 3 4 5 6

E
xe

cu
tio

n
tim

e
(s

)

Number of SPE tasks

Observed
Ideal

Dealing with Concurrency Problems, Nalini Vasudevan – p. 14

More Examples in SHIM

void main() {
chan int a, b;
{

// Task p
send a = 5; // send a
send b = 10; // send b

} par {
// Task q
int c;
recv a; // recv a
recv b; // recv b
c = a + b;

}
}

p q

a

b

Dealing with Concurrency Problems, Nalini Vasudevan – p. 15

The Problem

void main() {
chan int a, b;
{

// Task p
send a = 5; // send a
send b = 10; // send b

} par {
// Task q
int c;
recv b; // recv b
recv a; // recv a
c = a + b;

}
}

p q

a

b

Dealing with Concurrency Problems, Nalini Vasudevan – p. 16

Static Deadlock Detection

Scheduling

independence

Data sharing

through

rendezvous

communication

Asynchronous parts

are independent

Reduces

state space

Just pick one schedule

Dealing with Concurrency Problems, Nalini Vasudevan – p. 17

Deadlocks in SHIM

• Why SHIM? No data races.

• Deadlocks in SHIM are deterministic (always

reproducible).

• SHIM’s philosophy: It prefers deadlocks to races.

Dealing with Concurrency Problems, Nalini Vasudevan – p. 18

Deterministic, Deadlock-Free Model

void f(shared int &a) {
/∗ a is 1 ∗/
a = 3;

/∗ a is 3 , x is still 1 ∗/
next; /∗ Apply reduction operator ∗/

/∗ a is now 8, x is 8 ∗/
}

void g(shared int &b) {
/∗ b is 1 ∗/
b = 5;

/∗ b is 5, x is still 1 ∗/
next; /∗ Apply reduction operator ∗/

/∗ b is now 8, x is 8 ∗/
}

void h (shared int &c) {
/∗ c is 1 , x is still 1 ∗/
next;

/∗ c is now 8, x is 8 ∗/
}

main() {
shared int (+) x = 1;
/∗ If there are multiple writers, reduce

using the + reduction operator ∗/
f(x) par g(x) par h(x);
/∗ x is 8 ∗/

}

Dealing with Concurrency Problems, Nalini Vasudevan – p. 19

Deterministic, Deadlock-free Model

• Histogram Example

void histogram(int a[], int n) {
int b[10];
for (int i = 0; i < n; i++) par {

int index = a[i];
b[index]++;

}
print (b);

}

Dealing with Concurrency Problems, Nalini Vasudevan – p. 20

Deterministic, Deadlock-free Model

• Histogram Example

void histogram(int a[], int n) {
shared int (+) b[10]
for (int i = 0; i < n; i++) par {

int index = a[i];
b[index] = 1;
next;

}
print (b);

}

Dealing with Concurrency Problems, Nalini Vasudevan – p. 21

Deterministic, Deadlock-free Model

Determinism X

Deadlock Freedom X Efficiency ?

Dealing with Concurrency Problems, Nalini Vasudevan – p. 22

Deterministic, Deadlock-free Model

 0

 1

 2

 3

A
llR

ed
uc

eP
ar

al
le

l

P
ip

el
in

e

C
on

vo
lv

e

N
Q

ue
en

sP
ar

M
on

ty
P

iP
ar

al
le

l

K
M

ea
ns

S
ca

la
r

H
is

to
gr

am

M
er

ge
S

or
t

S
tr

ea
m

P
re

fix

U
T

S

ID
E

A

S
te

nc
il

S
O

R

S
er

ie
s

R
ay

T
ra

ce

LU
F

ac
t

S
pa

rs
eM

at
M

ul

R
el

at
iv

e
S

pe
ed

Application

Determinized
Original

Dealing with Concurrency Problems, Nalini Vasudevan – p. 23

Future Work [PLDI’09 Fun Ideas and Thoughts]

Parallel

Computers

Library

Support
Parallel

Languages

Performance
A

Determinizing
Compiler!

Dealing with Concurrency Problems, Nalini Vasudevan – p. 24

The Example

int x;
foo(){

int m;
m = qux();
x = x + m;

}
bar(){

int n;
n = baz();
x = x ∗ n;

}
main() {

x = 2;
foo() par bar();
print(x);

}

main

foo bar

main

x = 2

m = qux()

x = x + m

n = baz()

x = x * n

print x

Dealing with Concurrency Problems, Nalini Vasudevan – p. 25

The Determinizing Compiler’s Role

int x;
foo(){

int m;
m = qux();
x = x + m;
sync(x);

}
bar(){

int n;
n = baz();
sync(x);
x = x ∗ n;

}
main() {

x = 2;
foo() par bar();
print(x);

}

main

foo bar

main

x = 2

m = qux()

x = x + m

n = baz()

x = x * n

print x

Dealing with Concurrency Problems, Nalini Vasudevan – p. 26

The Determinizing Compiler’s Role

int x;
foo(){

int m;
m = qux();
x = x + m;
sync(x);

}
bar(){

int n;
n = baz();
sync(x);
x = x ∗ n;

}
main() {

x = 2;
foo() par bar();
print(x);

}

main

foo bar

main

x = 2

m = qux()

x = x + m

n = baz()

x = x * n

print x

if m = n = 2

x = (2 + 2) * 2 = 8

Always!
Dealing with Concurrency Problems, Nalini Vasudevan – p. 26

Scalability

• Synchronization is expensive

• Synchronization = Sequentializing

Dealing with Concurrency Problems, Nalini Vasudevan – p. 27

Scalability

• Synchronization is expensive

• Synchronization = Sequentializing

Suppose a program runs for 100s on a single processor.

80% of the program can be parallelized. What is the speed

up on running the program with

1. 2 processors

2. 4 processors

3. 8 processors

Dealing with Concurrency Problems, Nalini Vasudevan – p. 27

Scalability

• Synchronization is expensive

• Synchronization = Sequentializing

Suppose a program runs for 100s on a single processor.

80% of the program can be parallelized. What is the speed

up on running the program with

1. 2 processors

2. 4 processors

3. 8 processors

Ans: 1.66, 2.5, 3.33 [Using Amdahl’s law]

Dealing with Concurrency Problems, Nalini Vasudevan – p. 27

The Ultimate Goal

Determinism X

Deadlock Freedom X Efficiency X

Dealing with Concurrency Problems, Nalini Vasudevan – p. 28

	What is the output?
	What is the output?

	Eliminating Data Races
	Eliminating Data Races

	Another Example
	Eliminating Data Races
	Eliminating Data Races
	Eliminating Data Races

	Problem with Locks
	Problem with Locks

	Motivation
	Motivation
	Determinism: The SHIM Model
	The SHIM Language
	Additional Constructs
	Communication
	Compiling to Quad-Core 	iny {[DATE 2008]}
	Compiling to Cell 	iny {[SAC 2009]}
	More Examples in SHIM
	The Problem
	Static Deadlock Detection
	Deadlocks in SHIM
	Deterministic, Deadlock-Free Model
	Deterministic, Deadlock-free Model
	Deterministic, Deadlock-free Model
	Deterministic, Deadlock-free Model
	Deterministic, Deadlock-free Model
	Future Work {	iny [PLDI'09 Fun Ideas and Thoughts]}
	The Example
	The Determinizing Compiler's Role
	The Determinizing Compiler's Role

	Scalability
	Scalability
	Scalability

	The Ultimate Goal

