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Locking

flagli] = 1;
while (flag[jl == 1) {}
/* critical section */

flag[i] = 0;
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Locking

Problematic

flaglil = 1;

while (flag[jl == 1) {}
/* critical section */
flag[i]l = 0;
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Peterson’s algorithm

flagli] = 1;

turn = j;

while (flag[j] == 1 && turn ==j) {}
/* critical section */

flag[i] = 0;
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Peterson’s algorithm

flagli] = 1;

turn = j;

while (flag[j] == 1 && turn ==j) {}
/* critical section */

flag[i] = 0;

Still problematic
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Peterson’s algorithm

flaglil = 1;

turn = j;

fence(); /* force other threads to see flag and turn */
while (flag[j] && turn ==j) {} /* spin %/

/* critical section */

fence(); /* make visible changes made in critical section */

flagli] = 0;
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Peterson’s algorithm

flaglil = 1;

turn = j;

fence(); /* force other threads to see flag and turn */
while (flag[j] && turn ==j) {} /* spin %/

/* critical section */

fence(); /* make visible changes made in critical section */

flagli] = 0;

Applies to two processes only
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N-process locks

bool success;
do {
while (Ick == 1) {} /* wait x/
success = compare_and_swap (&Ick, 0, 1);
} while (!success);

¥

/% critical section */
Ick = O;
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Peterson’s algorithm

flaglil = 1;

turn = j,

fence(); /* force other threads to see flag and turn */
while (flag[j] && turn ==j) {} /* spin %/

/* critical section */

fence(); /* make visible changes made in critical section */

flagli] = 0;

* Two process algorithm
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Dominant process lock

* Contends with other processes using Peterson’s
algorithm

peterson_lock();
/* critical section *x/
peterson_unlock();
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Non-Dominant process lock
T ———

Contends with the dominant processes using
Peterson’s algorithm

Contends with other non-dominant processes using a
normal n-process lock.

lockN();
peterson_lock();
/* critical section *x/

peterson_unlock();
unlockN();
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Biased Lock = 2-lock + n-lock

W

Locking Unlocking
if (this_thread id == owner) if (this_thread id == owner)
lock2(); unlock2();
else { else {
lockN(); unlock2();
lock2(); unlockNQ);
by by
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The problem

flaglil = 1;

turn = j,

fence(); /* force other threads to see flag and turn */
while (flag[j] && turn ==j) {} /* spin %/

/* critical section */

fence(); /* make visible changes made in critical section */

flagli] = 0;

* Need fences
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Asymmetric locks

Eliminate fences in the dominant process

(’x NANANADNAANNANND TN 7N
/ \ / \
T v
\ / \ f
VYRV ARV AR VAR VAR VAR VAR VERVERVARY N N/
Dominant process Non-dominant process
while (grant) {} /* wait *x/ lockN();
/* critical section x/ request = 1;
if (request) { while (grant == 0) {} /* wait *x/
request = 0; /* critical section %/
fence(); fence();
grant = 1; grant = 0;
} unlockNQ);
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Performance

Increase in speed (%)
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Performance - Higher domination
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Performance - Packet analyzer
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Bias Transfer

* Dynamic scheme for transferring bias
* Based on the frequency

* Only one thread can be declared dominant at any time
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Performance - Bias Transfer
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Performance - SPLLASH
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Conclusions

Simple algorithms for constructing biased locks
Verified using the SPIN model checker
Implemented as a library

Extended it to read-write locks

Good performance when high dominance

Future work: different architectures
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