Simple and Fast Biased Locks

Nalini Vasudevan

Columbia University

Kedar Namjoshi Stephen Edwards

Bell Laboratories Columbia University

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University — p. 1

Motivation

Packet Analyzer

Shared Memory
H1 H2 H3 H4

LN

Core 1 Core 2 Core 3 Core 4

S S S S

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University — p. 2

Locking

flagli] = 1;
while (flag[jl == 1) {}
/* critical section */

flag[i] = 0;

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University — p. 3

Locking

Problematic

flaglil = 1;

while (flag[jl == 1) {}
/* critical section */
flag[i]l = 0;

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University — p. 3

Peterson’s algorithm

flagli] = 1;

turn = j;

while (flag[j] == 1 && turn ==j) {}
/* critical section */

flag[i] = 0;

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University — p. 4

Peterson’s algorithm

flagli] = 1;

turn = j;

while (flag[j] == 1 && turn ==j) {}
/* critical section */

flag[i] = 0;

Still problematic

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University — p. 4

Peterson’s algorithm

flaglil = 1;

turn = j;

fence(); /* force other threads to see flag and turn */
while (flag[j] && turn ==j) {} /* spin %/

/* critical section */

fence(); /* make visible changes made in critical section */

flagli] = 0;

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University — p. 5

Peterson’s algorithm

flaglil = 1;

turn = j;

fence(); /* force other threads to see flag and turn */
while (flag[j] && turn ==j) {} /* spin %/

/* critical section */

fence(); /* make visible changes made in critical section */

flagli] = 0;

Applies to two processes only

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University — p. 5

N-process locks

bool success;
do {
while (Ick == 1) {} /* wait x/
success = compare_and_swap (&Ick, 0, 1);
} while (!success);

¥

/% critical section */
Ick = O;

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University — p. 6

Motivation

Packet Analyzer

Shared Memory
H1 H2 H3 H4

LN

Core 1 Core 2 Core 3 Core 4

S S S S

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University — p. 7

Peterson’s algorithm

flaglil = 1;

turn = j,

fence(); /* force other threads to see flag and turn */
while (flag[j] && turn ==j) {} /* spin %/

/* critical section */

fence(); /* make visible changes made in critical section */

flagli] = 0;

* Two process algorithm

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University — p. 8

Dominant process lock

* Contends with other processes using Peterson’s
algorithm

peterson_lock();
/* critical section *x/
peterson_unlock();

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University — p. 9

Non-Dominant process lock
T ———

Contends with the dominant processes using
Peterson’s algorithm

Contends with other non-dominant processes using a
normal n-process lock.

lockN();
peterson_lock();
/* critical section *x/

peterson_unlock();
unlockN();

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University — p. 10

Biased Lock = 2-lock + n-lock

W

Locking Unlocking
if (this_thread id == owner) if (this_thread id == owner)
lock2(); unlock2();
else { else {
lockN(); unlock2();
lock2(); unlockNQ);
by by

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University — p. 11

The problem

flaglil = 1;

turn = j,

fence(); /* force other threads to see flag and turn */
while (flag[j] && turn ==j) {} /* spin %/

/* critical section */

fence(); /* make visible changes made in critical section */

flagli] = 0;

* Need fences

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University — p. 12

Asymmetric locks

Eliminate fences in the dominant process

(’x NANANADNAANNANND TN 7N
/ \ / \
T v
\ / \ f
VYRV ARV AR VAR VAR VAR VAR VERVERVARY N N/
Dominant process Non-dominant process
while (grant) {} /* wait *x/ lockN();
/* critical section x/ request = 1;
if (request) { while (grant == 0) {} /* wait *x/
request = 0; /* critical section %/
fence(); fence();
grant = 1; grant = 0;
} unlockNQ);

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University — p. 13

Performance

Increase in speed (%)

Asymmetric NG
Peterson + Pthread B
Unbiased Pthread

| | | | | | | | |
10 20 30 40 50 60 70 80 90

Domination Percentage

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University — p. 14

Performance - Higher domination

Asymmetric INNEEGN
300 Peterson + Pthread s
Unbiased Pthread
250
S 200 |
i®)
[}
(&)
o
(72}
=
o 150 |
0
o
()
3]
k=
100
50
O | mmwe mmws mmeew EEwn o WS ERES .- ,,,,,,,,,,,,,,, Il ,,,,,,,,,,,,

| | | | | | | | | |
90 91 92 93 94 95 96 97 98 99 100

Domination Percentage

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University — p. 15

Performance - Packet analyzer

30
Asymmetric [N
25 | Peterson + Pthread e

Unbiased Pthread --------
20

15 |

10

Increase in speed (%)

——
-_
—
—
—
——
E—
—

5 L | | | | | | | | | |
90 91 92 93 94 95 9% 97 98 99 100

Percentage of local operations

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University — p. 16

Bias Transfer

* Dynamic scheme for transferring bias
* Based on the frequency

* Only one thread can be declared dominant at any time

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University — p. 17

Performance - Bias Transfer

20 F Dominance set statically and correctly [N
With on-the-fly ownership transfer S
Unbiased Pthread
= 15 B
<
e
D
2 10 -
k=
Q
@
] I | |
o I
<
O 1« ,,,,,,,,,, l— ,,,,,,,,,, I- ,,,,,,,,,, I. ,,,,,,,,, Il ,,,,,,,,, I— ,,,,,,,,,, I. ,,,,,,,,,, I ,,,,,,,,,,,,,,,,,,,,,,,,,,,,
5L | | | | | | | | | |
o — N ™ < Lo O N~ o8] o o
(o)} (o)} (o)} (o)} (o] (o)} (o)} (o)} (o)} (o)} 8

Domination Percentage

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University — p. 18

Performance - SPLLASH

120

Unbiased Pthread I
100 - Biased Pthread Hmmm
80 Sequential

60
40

20

Increase in speed (%)

o
| | | |

BARNES -
RAYTRACE -
RADIOSITY -

WATER-SPATIAL -

Application

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University — p. 19

Conclusions

Simple algorithms for constructing biased locks
Verified using the SPIN model checker
Implemented as a library

Extended it to read-write locks

Good performance when high dominance

Future work: different architectures

Simple and Fast Biased Locks, Nalini Vasudevan, Columbia University — p. 20

	Motivation
	Locking
	Locking

	Peterson's algorithm
	Peterson's algorithm

	Peterson's algorithm
	Peterson's algorithm

	N-process locks
	Motivation
	Peterson's algorithm
	Dominant process lock
	Non-Dominant process lock
	Biased Lock = 2-lock + n-lock
	The problem
	Asymmetric locks
	Performance
	Performance - Higher domination
	Performance - Packet analyzer
	Bias Transfer
	Performance - Bias Transfer
	Performance - SPLASH
	Conclusions

