
Efficient, Deterministic, and

Deadlock-free Concurrency

Thesis Proposal

Nalini Vasudevan

Columbia University

– p. 1

Data Races

void f(shared int &a) {

a++;

}

void g(shared int &b) {

b = b ∗ 3;

}

main() {

shared int x = 1;

spawn f(x)

spawn g(x);

sync; /∗ Wait for f and g to finish ∗/

print x;

}
– p. 2

Non-Determinism

lock p;

void f(shared int &a) {

lock (p);

a++;

unlock (p);

}

void g(shared int &b) {

lock (p);

b = b ∗ 3;

unlock (p);

}

main() {

shared int x = 1;

spawn f(x)

spawn g(x);

sync; /∗ Wait for f and g to finish ∗/

print x;

}
– p. 3

Motivation

Parallel

Computers

Library

Support
Parallel

Languages

Performance

Data

Races

Non-

Determinism

Hard-to-Debug

– p. 4

Motivation

Parallel

Computers

Library

Support
Parallel

Languages

Performance

Data

Races

Non-

Determinism

Hard-to-debug

– p. 5

Determinism: The SHIM Model

• Stands for Software Hardware Integration Medium

• Race free, scheduling independent, concurrent model

• Blocking synchronous rendezvous communication

Task 1

Task 1

Task 2

Task 3

Send

Recv

Recv

Recv

– p. 6

The SHIM Language

An imperative language with familiar C/Java-like syntax

int32 gcd(int32 a, int32 b) {

while (a != b) {

if (a > b)

a −= b;

else

b −= a;

}

return a;

}

– p. 7

Additional Constructs

stmt1 par stmt2 Run stmt1 and stmt2 concurrently

send var Send on channel var

recv var Receive on channel var

– p. 8

Communication

• Blocking: wait for all processes connected to c

void f(chan int a) { // a is a copy of c

a = 3; // change local copy

recv a; // receive (wait for g)

// a now 5

}

void g(chan int &b) { // b is an alias of c

b = 5; // sets c

send b; // send (wait for f)

// b now 5

}

void main() {

chan int c = 0;

f(c); par g(c);

}

f g

c

– p. 9

Overview

Timeline Work Progress

Spring 2007 Compiling SHIM to Shared Memory Multicores DATE 2008

Summer 2007 A SHIM-like Library in Haskell IPDPS 2008

Fall 2007 Static Deadlock Detection for SHIM MEMOCODE 2008

Spring 2008 Compiling SHIM to Heterogeneous Multicores SAC 2009

Summer 2008 Analysis and Specialization of Clocks in X10 CC 2009

Fall 2008 Buffer Sharing in SHIM Programs MEMOCODE 2009

Spring 2009 Compositional Deadlock Detection EMSOFT 2009

Fall 2009 Overview and Ideas for Thesis IPDPS Workshop 2010

Spring 2010 Deterministic Concurrency in X10 In progress at IBM

Fall 2010 Run-time deadlock detection in SHIM To do

Spring 2011 Thesis Writing and Defense To do

After graduation A Determinizing Compiler PLDI WACI 2009

– p. 10

Compiling to Quad-Core [DATE 2008]

• Intel Quad Core Machine

• Each task mapped to a pthread

• Example: JPEG decoder

Cores Tasks Time Speedup

1 Sequential 25s 1.0

4 3 16 1.6

4 4 9.3 2.7

4 5 8.7 2.9

4 6 8.2 3.05

4 7 8.6 2.9

Run on a 20 MB 21600 × 10800 image that expands to 668 MB.

– p. 11

Compiling to Cell [SAC 2009]

• Generated Code for a Heterogeneous Multicore

• Computationally intensive tasks mapped on the SPUs

• Example: FFT

0

1

2

3

4

5

PPU only1 2 3 4 5 6

E
x
e
cu

ti
o
n

ti
m

e
(s

)

Number of SPE tasks

Observed
Ideal

– p. 12

More Examples in SHIM

void main() {

chan int a, b;

{

// Task 1

send a = 5; // send a

send b = 10; // send b

} par {

// Task 2

int c;

recv a; // recv a

recv b; // recv b

c = a + b;

}

}

f g

a

b

– p. 13

The Problem

void main() {

chan int a, b;

{

// Task 1

send a = 5; // send a

send b = 10; // send b

} par {

// Task 2

int c;

recv b; // recv b

recv a; // recv a

c = a + b;

}

}

f g

a

b

– p. 14

SHIM design for static analysis

Scheduling

independence

Data sharing

through

rendezvous

communication

Asynchronous parts

are independent

Reduces

state space

– p. 15

Deadlocks in SHIM

• Why SHIM? No data races.

• Deadlocks in SHIM are deterministic (always

reproducible).

• SHIM’s philosophy: It prefers deadlocks to races.

Just pick one schedule

– p. 16

Deadlock Detection [MEMOCODE 2008]

• Using NuSMV

Example Lines Channels Tasks Result Runtime Memory

Source-Sink 35 2 11 No Deadlock 0.2 s 3.9 MB

Pipeline 30 7 13 No Deadlock 0.1 2.0

Prime Sieve 35 51 45 No Deadlock 1.7 25.4

Berkeley 40 3 11 No Deadlock 0.2 7.2

FIR Filter 100 28 28 No Deadlock 0.4 13.4

Bitonic Sort 130 65 167 No Deadlock 8.5 63.8

Framebuffer 220 11 12 No Deadlock 1.7 11.6

JPEG Decoder 1025 7 15 No Deadlock 0.9 85.6

– p. 17

Compositional Deadlock Detection

 0.01

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30

V
er

if
ic

at
io

n
T

im
e

(s
ec

on
ds

)

Number of IDCT processes

NuSMV
Compositional analysis

– p. 18

Buffer Sharing

Task 1 Task 2 Task 3 Task 4

a = 6;
send a;

recv a;
b = a + 1;
send b;

recv b;
c = b ∗ 2;
send c;

recv c;

– p. 19

Buffer Sharing

Task 1 Task 2 Task 3 Task 4

a = 6;
send a;

recv a;
b = a + 1;
send b;

recv b;
c = b ∗ 2;
send c;

recv c;

• Use rendezvous model of communication

– p. 19

Buffer Sharing

Task 1 Task 2 Task 3 Task 4

a = 6;
send a; recv a;

b = a + 1;
send b; recv b;

c = b ∗ 2;
send c; recv c;

– p. 20

Buffer Sharing

Task 1 Task 2 Task 3 Task 4

a = 6;
send a; recv a;

b = a + 1;
send b; recv b;

c = b ∗ 2;
send c; recv c;

Sender Receiver

Shared Memory

write read

– p. 20

Buffer Sharing

Task 1 Task 2 Task 3 Task 4

a = 6;
send a; recv a;

b = a + 1;
send b; recv b;

c = b ∗ 2;
send c; recv c;

Sender Receiver

Shared Memory

write read
• a, b, and c can share

buffers

– p. 20

Buffer Reduction: Results [MEMOCODE 2009]

Example Lines Channels Tasks Bytes Saved Buffer Reduction Runtime

Source-Sink 35 2 11 4 50 % 0.1 s

Pipeline 35 5 9 16388 25 0.1

Bitonic Sort 35 5 13 12 60 0.1

Prime Sieve 40 5 16 12 60 0.5

Berkeley 40 3 11 4 33.33 0.6

FIR Filter 110 28 28 52 46.43 13.8

Framebuffer 185 11 16 28 0.002 1.3

FFT 230 14 15 344068 50 0.6

JPEG Decoder 1020 7 15 772 50.13 1.8

– p. 21

SHIM as a Library [IPDPS 2009]

• Implemented in Haskell

• APIs that mimic par, send and recv

• Programmer’s job to use the library correctly

• Example: Systolic Filter

0

1

2

1 2 3 4 5 6 7 8

E
x
e
cu

ti
o
n

ti
m

e
(s

)

Number of processors

Sequential

SHIM Concurrent Library

ideal

– p. 22

The X10 Programming Language

The X10 Programming Language

• Concurrent programming model

• Activities are light weight threads

• Places are distributed memory locations

A1 A2

Place p1

A3 A4 A5

Place p2

– p. 23

X10: asyncs and clocks

• Activities created using async

async {

/∗ executed locally ∗/

}

async (p2) {

/∗ executed at p2 ∗/

}

• Clocks are used for synchronization
clock c = new clock();

async clocked (c) {

a = 1;

c.next();

}

async clocked (c) {

c.next();

a = 2;

}

– p. 24

Special Case Optimization [CC 2009]

• Common patterns of clocks

• Example: A clock is used locally (in one place)

• Used specialized implementation for that pattern

Example Clocks Lines Speed Analysis Time

Up Base NuSMV

Linear Search 1 35 35.2% 33.5s 0.4s

Relaxation 1 55 87.6 6.7 0.3

All Reduction Barrier 1 65 1.5 27.2 0.1

Pascal’s Triangle 1 60 20.5 25.8 0.4

Prime Number Sieve 1 95 213.9 34.7 0.4

N-Queens 1 155 1.3 24.3 0.5

LU Factorization 1 210 5.7 20.6 0.9

MolDyn JGF Bench. 1 930 2.3 35.1 0.5

Pipeline 2 55 31.4 7.5 0.5

Edmiston 2 205 14.2 29.9 0.5

– p. 25

Future Work

• Resolving deadlocks in SHIM at runtime

• Deterministic, Deadlock-free Constructs

– p. 26

Runtime Deadlock Resolver for SHIM

void main() {
chan int a = 1, b = 1;
{

// Task p
send a = 5; // send a
recv b; // send b

} par {
// Task q
int c;
send b = 10; // recv b
recv a; // recv a
c = a + b;

}
}

p q p q

– p. 27

Runtime Deadlock Resolver for SHIM

• Generally, cycle detection algorithm is exponential

• SHIM’s semantics makes it simpler

A possible SHIM network

p q

rs

An impossible SHIM network

p q

rs

– p. 28

Deterministic, Deadlock-Free Constructs

void f(shared int &a) {

/∗ a is 1 ∗/

a = 3;

/∗ a is 3 , x is still 1 ∗/

next; /∗ Apply reduction operator ∗/

/∗ a is now 8, x is 8 ∗/

}

void g(shared int &b) {

/∗ b is 1 ∗/

b = 5;

/∗ b is 5, x is still 1 ∗/

next; /∗ Apply reduction operator ∗/

/∗ b is now 8, x is 8 ∗/

}

void h (shared int &c) {

/∗ c is 1 , x is still 1 ∗/

next;

/∗ c is now 8, x is 8 ∗/

}

main() {

shared int (+) x = 1;

/∗ If there are multiple writers, reduce

using the + reduction operator ∗/

spawn f(x);

spawn g(x);

spawn h(x);

sync;

/∗ x is 8 ∗/

} – p. 29

Related Work

• Programming Models

• Esterel

• StreamIt

• Cilk

• X10

• Tools

• Deterministic Replay Systems

• Kendo

• DMP

– p. 30

Long Term Goal [PLDI’09 Fun Ideas and Thoughts]

Parallel

Computers

Library

Support
Parallel

Languages

Performance
A

Determinizing
Compiler!

– p. 31

	Data Races
	Non-Determinism
	Motivation
	Motivation
	Determinism: The SHIM Model
	The SHIM Language
	Additional Constructs
	Communication
	Overview
	Compiling to Quad-Core 	iny {[DATE 2008]}
	Compiling to Cell 	iny {[SAC 2009]}
	More Examples in SHIM
	The Problem
	SHIM design for static analysis
	Deadlocks in SHIM
	Deadlock Detection {	iny [MEMOCODE 2008]}
	Compositional Deadlock Detection
	Buffer Sharing
	Buffer Sharing

	Buffer Sharing
	Buffer Sharing
	Buffer Sharing

	Buffer Reduction: Results {	iny [MEMOCODE 2009]}
	SHIM as a Library {	iny [IPDPS 2009]}
	The X10 Programming Language
	X10: asyncs and clocks
	Special Case Optimization 	iny {[CC 2009]}
	Future Work
	Runtime Deadlock Resolver for SHIM
	Runtime Deadlock Resolver for SHIM
	Deterministic, Deadlock-Free Constructs
	Related Work
	Long Term Goal {	iny [PLDI'09 Fun Ideas and Thoughts]}

