Ensuring Deterministic Concurrency through Compilation

Nalini Vasudevan and Stephen A. Edwards
Columbia University

&

Parallel ~ Library Parallel Performance Races Deadlocks Hard to
Computers Support Languages debug

o e
Non-determinism Deadlocks
A remedy to avoid races is to introduce locks. The problem with locks: incorrect usage may lead to deadlocks.
Data Races lock p; ook b, &
V"ligcffs(‘;;‘fed int &a) { void f(shared int &a) {
void f(shared int &a) { a=3: ’ lock (p);
=% = lock (q);
a=3; unlock (p); a=3:
} } Az
unlock (q);
void g(shared int &b) { void g(shared int b) {) THEEE(
) b=5; lock (p);
b=5; void g(shared int &b) {
i unlock (p); lock (q);
main() {)
shared int x = 1; :’Cks(p);
spawn f(x); main() { un_loc,k ()
spawn g(x); shared int x = 1; lock ’
sync; /% Wait for f and g to finish =/ spawn f(x); unlock (q);
print x; spawn g(x);
} sync; /« Wait for f and g to finish =/ main() {
The above program creates two tasks f and g in parallel using the spawn construct. print x; shared int x = 1:
x is being modified concurrently by the two tasks and therefore the program is not } spawn £(x); !
race-fiee. Even though x is protected by a lock, the value printed by this program is either 3 spawn g(x);
or 5 depending on the schedule. Therefore, it is non-determinisitc. sync; /« Wait for f and g to finish +/
By determinism, we mean the output behavior of the program is independent of print x;
the scheduling choices (e.g., the operating system) and depends only on the input }

behavior.

Our Approach

o Either allow single writes, or allow multiple writes but in a synchronized T}, program on the left creates three tasks in parallel f, g and h. f and g .o
fashion. are modifying x. Even though f and g are modifying x concurrently, f sees Inltlal ReSllltS
o A write in one phase is available to other tasks only in the next phase. the effect of g only when it executes next. Similarly g sees the effect of f only

when it executes next. When a task executes next, it waits for all tasks that share

o Conflicting writes are reduced by an associative, commutative operator. N cute ra .
variables with it to also execute next. The next statement is like a barrier. At

this statement, the shared variables are reduced using the reduction operator. In Cores Tasks Time Speedup
this example, the reduction operator is + because x is declared with a reduction 1 Sequential 25s 1.0
void f(shared int &a) { /x ais 1 +/ operator +. Therefore after the next statement, the value of x is 8 and it is 4 3 16 1.6
a=3;/x abecomes 3, x is still 1 +/ reflected everywhere. Function / also rendezvous with f and g by executing 4 4 9.3 2.7
next; /+ The reduction operator is applied =/ next and thus it obtains the new value 8. 4 5 87 29
/xaisnow 8, xis 8+/ 4 6 82 3.05
} 4 7 86 29
9 g . Example A JPEG decoder run on a 20 MB 21600 x 10800 image that expands to 668 MB.
void g(shared int &b) { / bis 1 +/ (Executed on a Quad-core shared memory machine)

b =5; /% b becomes 5, x is still 1 +/
next; /« The reduction operator is applied /
fxbisnow 8, xis 8 +/ Histogram Calculation > \

}

void h (shared int &c) { /* cis 1, x is still 1 +/ const int N = 100;
next; const int M = 5;

Observed
Tdeal ——

/fxcisnow 8, xis 8 +/

} void hist(int value, shared int b[M]) { e T "
int bucket = value % M; Number of SPE tasks
main() { b[bucket] = 1; FFT run on a 20 MB audio file, 1024-point FFTs
shared int (+) x = 1; next; /« Reduction operator applied here */ (Executed on a Cell Processor)

/% If there are multiple writers, reduce
using the + reduction operator */

spawn f(x); méil:()[{Nl . . 2-
spawn g(x); int a ={.}h e
spawn h(x); shared int (+) b[M]; E :
sync; for (inti=0;i < N;i++) 5
/xxis 8/ spawn hist(a[i], b); &

sync; /% Wait for children to finish =/ o

12

3.4 s 6 1
Number of processors
‘We implemented the constructs as a library, and tested it on a systolic filter.
(Executed on an Oct-core shared memory machine)

