
Ensuring Deterministic Concurrency through Compilation
Nalini Vasudevan and Stephen A. Edwards

Columbia University

Parallel Library Parallel Performance Races Deadlocks Hard to
Computers Support Languages debug

Data Races

void f(shared int &a) �
a = 3;

}

void g(shared int &b) �
b = 5;

}

main() �
shared int x = 1;
spawn f(x);
spawn g(x);
sync; /∗ Wait for f and g to finish ∗/
print x;

}

The above program creates two tasks f and g in parallel using the spawn construct.
x is being modified concurrently by the two tasks and therefore the program is not
race-free.

Non-determinism

A remedy to avoid races is to introduce locks.

lock p;

void f(shared int &a) �
lock (p);
a = 3;
unlock (p);

}

void g(shared int b) �
lock (p);
b = 5;
unlock (p);

}

main() �
shared int x = 1;
spawn f(x);
spawn g(x);
sync; /∗ Wait for f and g to finish ∗/
print x;

}

Even though x is protected by a lock, the value printed by this program is either 3
or 5 depending on the schedule. Therefore, it is non-determinisitc.
By determinism, we mean the output behavior of the program is independent of

the scheduling choices (e.g., the operating system) and depends only on the input
behavior.

Deadlocks

The problem with locks: incorrect usage may lead to deadlocks.

lock p, q;

void f(shared int &a) �
lock (p);
lock (q);
a = 3;
unlock (q);
unlock (p);

}

void g(shared int &b) �
lock (q);
lock (p);
b = 5;
unlock (p);
unlock (q);

}

main() �
shared int x = 1;
spawn f(x);
spawn g(x);
sync; /∗ Wait for f and g to finish ∗/
print x;

}

Our Approach

• Either allow single writes, or allow multiple writes but in a synchronized
fashion.

•A write in one phase is available to other tasks only in the next phase.

•Conflicting writes are reduced by an associative, commutative operator.

void f(shared int &a) � /∗ a is 1 ∗/
a = 3; /∗ a becomes 3 , x is still 1 ∗/
next; /∗ The reduction operator is applied ∗/
/∗ a is now 8, x is 8 ∗/

}

void g(shared int &b) � /∗ b is 1 ∗/
b = 5; /∗ b becomes 5, x is still 1 ∗/
next; /∗ The reduction operator is applied ∗/
/∗ b is now 8, x is 8 ∗/
}

void h (shared int &c) � /∗ c is 1 , x is still 1 ∗/
next;
/∗ c is now 8, x is 8 ∗/
}

main() �
shared int (+) x = 1;
/∗ If there are multiple writers, reduce
using the + reduction operator ∗/

spawn f(x);
spawn g(x);
spawn h(x);
sync;
/∗ x is 8 ∗/

}

The program on the left creates three tasks in parallel f , g and h. f and g
are modifying x. Even though f and g are modifying x concurrently, f sees
the effect of g only when it executes next. Similarly g sees the effect of f only
when it executes next. When a task executes next, it waits for all tasks that share
variables with it to also execute next. The next statement is like a barrier. At
this statement, the shared variables are reduced using the reduction operator. In
this example, the reduction operator is � because x is declared with a reduction
operator �. Therefore after the next statement, the value of x is 8 and it is
reflected everywhere. Function h also rendezvous with f and g by executing
next and thus it obtains the new value 8.

Example

Histogram Calculation

const int N = 100;
const intM = 5;

void hist(int value, shared int b[M]) �
int bucket = value % M;
b[bucket] = 1;
next; /∗ Reduction operator applied here ∗/

}

main() �
int a[N] = �...};
shared int (+) b[M];
for (int i = 0; i � N; i++)

spawn hist(a[i], b);
sync; /∗ Wait for children to finish ∗/

}

Initial Results

Cores Tasks Time Speedup
1 Sequential 25s 1.0
4 3 16 1.6
4 4 9.3 2.7
4 5 8.7 2.9
4 6 8.2 3.05
4 7 8.6 2.9

A JPEG decoder run on a 20 MB 21600×10800 image that expands to 668 MB.
(Executed on a Quad-core shared memory machine)

0

1

2

3

4

5

PPU only 1 2 3 4 5 6

E
xe
cu
ti
on

ti
m
e
(s
)

Number of SPE tasks

Observed
Ideal

FFT run on a 20 MB audio file, 1024-point FFTs
(Executed on a Cell Processor)

0

1

2

1 2 3 4 5 6 7 8

E
xe
cu
ti
on

ti
m
e
(s
)

Number of processors

Sequential
SHIM Concurrent Library

ideal

We implemented the constructs as a library, and tested it on a systolic filter.
(Executed on an Oct-core shared memory machine)


