
Clock Analysis of X10

Programs

Nalini Vasudevan

Mentor: Olivier Tardieu

Manager: Vijay Saraswat

Background

� X10 programming language

� Parallel and Distributed

� Tasks/activities created using async

� Other constructs: finish, atomic

� Focus: Synchronization between activities

through clocks

async {

/* body of async */

}

Clocks in X10

� Barriers

� Declare clocks

� Share clocks

� Synchronize

� next() function

� All tasks clocked on c have to

synchronize

final clock c = clock.factory.clock();

async clocked (c) {

..

c.next();

..

c.next();

}

async clocked (c) {

..

c.next();

..

c.next();

}

More about Clocks

� resume()
� Indicates the end of

current phase

final clock c = clock.factory.clock();

async clocked (c) {

..

c.next();

..

c.next();

}

async clocked (c) {

..

c.resume()

..

c.next();

..

c.next();

}

More about Clocks

� resume()
� Indicates the end of

current phase

final clock c = clock.factory.clock();

async clocked (c) {

..

c.next();

..

c.next();

}

async clocked (c) {

..

c.resume()

..

c.next();

..

c.next();

}

next

nextnext

next

More about Clocks

� resume()
� Indicates the end of

current phase

final clock c = clock.factory.clock();

async clocked (c) {

..

c.next();

..

c.next();

}

async clocked (c) {

..

c.resume()

..

c.next();

..

c.next();

}

next

nextnext

next

More about Clocks

� resume()
� Indicates the end of

current phase

final clock c = clock.factory.clock();

async clocked (c) {

..

c.next();

..

c.next();

}

async clocked (c) {

..

c.resume()

..

c.next();

..

c.next();

}

next

nextnext

next

More about Clocks

� resume()
� Indicates the end of

current phase

final clock c = clock.factory.clock();

async clocked (c) {

..

c.next();

..

c.next();

}

async clocked (c) {

..

c.resume()

..

c.next();

..

c.next();

}

next

nextnext

next

resume

More about Clocks

� drop()
� Explicitly drop the clock.

� Task does not have to synchronize anymore

The Protocol

Active Resumed

XInactive

clock.factory.clock() /

async clocked (c)

c.resume()

c.drop()c.next() /

async clocked (c) c.drop()

c.next() /

c.drop() /

c.resume() /

async clocked (c)

c.resume() /

async clocked (c)

c.next()

Motivation

� Default implementation handles all cases

� Handles protocol violation dynamically by throwing
exceptions
� example: call next() after drop()

� We can generate more efficient code if we know that

� Activity does not violate the protocol?

� Activity never calls resume() on clock c?

� We can also provide feedback to the user

� Activity may violate the protocol…

Implementation Overview

� Static Analysis

� Use wala for intermediate representation and
pointer analysis

� Extract model from IR

� One automaton per clock

� Use NuSMV for model checking

� Code Specialization
� X10 compiler plugin to choose clock
implementation based on analysis result

Building the Automaton

c = clock.factory.clock()

c.next()

if (n > 1)

c.resume()

else

c. next();

c. next();

c.drop();

Building the Automaton

c = clock.factory.clock()

c.next()

if (n > 1)

c.resume()

else

c. next();

c. next();

c.drop();

1

2

3

4

5

6

c.register

c.next

c.nextc.resume

c.drop

c.next

1

2

3 4

5

6

Building the Automaton

init (clock) = register;

next(clock) :=

case

(clock = register) : next_2;

(clock = next_2) : {resume_3, next_4};

(clock = resume_3) : next_5;

(clock = next_4) : next_5;

(clock = next_5) : drop_6;

1: clock;

esac;

DEFINE clock_next = clock in {next_2, next_4, next_5}

DEFINE clock_drop = clock in {drop_6}

c.register

c.next

c.nextc.resume

c.drop

c.next

1

2

3 4

5

6

State Automaton
init (status) = inactive;

next(status) :=

case

(status = inactive) & (clock_register) : active;

(status = active) & (clock_drop) : inactive;

(status = active) & (clock_resume): resumed;

(status = resumed) & (clock_next): active;

..

-- Exception cases

(status = resumed) & (clock_resume):

resume_exception;

(status = inactive) & (clock_next) : drop_exception;

..

Checking for properties

� Check if a clock is protocol violation free?

� Check if a clock never calls resume()?
SPEC AG(~(clock_resume))

DEFINE status_exception = status in {drop_exception,

async_exception, …}

SPEC AG(~(status_exception)

Dealing with asyncs

� Viewing async as a separate path

c = clock.factory.clock()

c.next();

async clocked (c) {

c.resume();

}

c. next();

c.drop();

1

2

3

4

5

6

c.register

c.next

async_clocked

c.drop

c.next

1

2

4

3

5

6

c.resume

terminate

next(clock) :=

case

..

(clock = next_2): {async_clocked_3,

next_4};

Combining with Aliasing

Analysis

clock c = clock.factory.clock ();

clock d = clock.factory.clock ();

clock x = (n>1)? c: d;

x.next();

x.resume();

Combining with Aliasing

Analysis

clock c = clock.factory.clock ();

clock d = clock.factory.clock ();

clock x = (n>1)? c: d;

x.next();

x.resume();

clock c = clock.factory.clock ();

clock d = clock.factory.clock ();

if(*) {

c.next();

c.resume();

}

else {

d.next();

d.resume();

}

Combining with Aliasing

Analysis

clock c = clock.factory.clock ();

clock d = clock.factory.clock ();

clock x = (n>1)? c: d;

x.next();

x.resume();

clock c = clock.factory.clock ();

clock d = clock.factory.clock ();

if(*)

c.next();

else

d.next();

if(*)

c.resume();

else

d.resume();

Results

(25.4/26) -> 2.3%EF, NR8.80.28.61215LU Decomposition

(58.7/58.8) -> 0.2%EF, NR, ON20.30.320.01155N-Queens

NR

Clock 1: NR

Clock 2: NR

NR

EF, NR

EF, NR

Result

24.7

18.4

25.9

21.7

5.3

IR and

Automata

construction

TotalNuSMV

Analysis Time (sec)

0.3

0.2

0.1

0.1

0.1

(231.3/233.8) -> 1.1%26.0195Sieve (Stream of

Eratosthenes)

(13.1/13.3) -> 1.5%21.8165All Reduction

Barrier

(19.4/20.0) -> 3%18.62205Sequence

Alignment

(Edmiston)

(30.4/30.8) -> 1.3%25.01930Java Grande

Forum Benchmark

Suite

(38.4/40.4) -> 5.0%5.4155Kernel Algorithm

Speed UpNo. of

Clocks

Lines

of

Code

Example

EF: Exception Free, NR: No Resume, ON: Only Clock Creator calls Next

Conclusion and Future Work

� Working tool!

� Sequential analysis for concurrency

optimization

� Future Work

� Inter-activity analysis

� Deadlocks

� Using clock information for refining aliasing

analysis

Questions Guaranteed
Answers are not!

