IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITSND SYSTEMS 1

Buffer Sharing in Rendezvous Programs

Nalini VasudevanStudent Member, IEEEBNd Stephen A. EdwardSenior Member, IEEE

Abstract—Most compilers focus on optimizing performance, write  Lonared Memor read
often at the expense of memory, but efficient memory use can be
just as important in constrained environments such as embedded

systems. We present a memory reduction technique for CSP-style

rendezvous communication, which we apply to our deterministic fig. 1. The channel structure
concurrent programming language SHIM. We focus on reducing

memory consumption by sharing communication buffers among

tasks. We determine pairs of buffers that can never be in use . L .
simultaneously and use a shared region of memory for each Our analysis is conservative: if we establish two channels

pair. Our technique produces a static abstraction of a SHIM can share buffers, they can do so safely, but we may miss
program’s dynamic behavior, which we then analyze to find opportunities to share certain buffers because we do noemod
bUffe.l'S that are ne_Ver OCCUpied. simultaneously. E_Xperimentally, data and may treat the program as Separate pieces to avoid an
we find our technique runs quickly on modest-sized programs ¢, ,,nential explosion in analysis cost. Specifically, wédbu
and can sometimes reduce memory requirements by half. ) . . .
sound abstractions to avoid state space explosions, ieéflct
Index Terms—Concurrency, SHIM, Static Analysis, Buffers, enumerating all possible schedules with a product machine.
Optimization One application of our technique is to minimize buffer
memory used by code generated by the SHIM compiler
|. INTRODUCTION for the Cell Broadband engine [5]. The heterogeneous Cell
ocessor [6] consists of a power processor element (PPE)
d eight synergistic processor elements (SPEs). The SHIM
ompiler maps tasks onto each of the SPEs. Each SPE has its

. ; . . gwn local memory and shares data through the PPE. The PPE
this paper, we propose a technique that automatically fin

rtunities t felv overl mmunication buffer m nchronizes communication and holds all the channel tauffe
opportunities to safely overiay communication buller Meyno ., o joc4 memory. An SPE can communicate with the PPE
in a concurrent programming language.

The technique we present here determines what bui‘Fgrrough mailboxes [7].
memory may be shared in SHIM programs [1]. It is closelg We wish to reduce memory used by the PPE by overlapping

lated t f the techni d to staticallv det uffers of different channels. Our static analyzer doesg liv
related to some ot the techniques we used to statically e ?a?nge analysis on the communication channels and detesmine
deadlocks [2], but we address a different problem here.

. pairs of buffers that are never live at the same time. We
SHIM. IS an asynchr.onou_s concurrent Iang_uag_e that d&monstrate in Section VII that the PPE’s memory usage can

scheduling-independent |t.s' mput/output_ behav!or is abt e reduced drastically for practical examples such as a JPEG

fected by any non-deterministic scheduling choices takgn Eecoder and an FFT.

its runtime environment due to processor speed, the opgrati Below, we describe the SHIM language (Section 1), how we

system, scheduling policy, etc. A SHIM program consists % ! '

. ! odel its behavior to analyze buffer usage (Section Ill)yho
sequential tasks that synchronize when they want to commufy, compose models of SHIM tasks to build a product machine

gatte. Th? Iangtl;a?e |S?sut;:;,]et of }éahn netw?:_lis [3],(t%esr|‘f§f the whole program (Section V), how we avoid state
eterminism) that employs the rendezvous of Hoare's plosion (Section V), and how we use these results to reduce

forstl:_|<)|r|:1/lmun|cat|on to keep 'FS bert\swor :lra(;‘table.l Fi buffer memory usage (Section VI). We present experimental
processes communicate through channels (Figure sults in Section VIl and the application of our algorithon t

Every _task mamta_ms its own local _var_|abl_eS, and in Mogall Programs in Section VIIl. We discuss related work in
SHIM implementations, any communication involves COPYING . tion X and conclude in Section XI

to and reading from a shared memory location. The sequence
of symbols transmitted over each channel is deterministtc b
the relative order of symbols on different channels is galher
undefined. However, if we can determine that the relativeiord SHIM [1] is a C-like concurrent programming language
of symbols on a pair of channels is such that they nevehose tasks communicate exclusively through multi-way ren
interfere, we can safely share the buffers for the channetiezvous channels. To the usual collection of C-like expoass
If we cannot find such an ordering, we conclude that the paind statements it adds two construcggr for specifying
cannot share memory. concurrency, angendand recv for communicationp par q
runs statementp and q in parallel and finishes when both
N. Vasudevan and S. A. Edwards are with the Department of Corp— and q terminate.Send cand recv ¢ are communication
puter Science, Columbia University, New York, NY, 10027 USAnail: h h . h SHIM h lobal
(naliniv@cs.columbia.edu, sedwards@cs.columbia.edu). statements that synchronize on charm as no globa
Manuscript received Dec 10, 2009; revised April 1, 2010. or shared variables.

- .pr
Embedded systems have limited memory. Overlays, whi
amount to time-multiplexing the use of memory regions, i
one way to reduce a program’s memory consumption.

I[l. THE SHIM PROGRAMMING LANGUAGE



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITSND SYSTEMS 2

void main() void main()
chan int a, b; chan int a, b, c;
{ /I Task 1 { /I Task 1
send a = 6; // Send 6 on a (synchronize w/ 2) send a = 6; /I Send a (synchronize w/ 2)
I/l a =6 here } par { // Task 2
recv b; /I Receive b  (synchronize w/ 2) recv a; /I Receive a  (synchronize w/ 1)
/I b =8 here sendb=a+ 1; // Send 7 on b (synchronize w/ 3)
} par { /| Task 2 } par { // Task 3
recv a; I/l Receive a  (synchronize w/ 1) recv b; /I Receive b (synchronize w/ 2)
/I a =6 here sendc =b + 1; // Send 8 on ¢ (synchronize w/ 4)
send b = 8; // Send 8 on b (synchronize w/ 1) } par { // Task 4
/I b =8 here recv c; /I Receive ¢ (synchronize w/ 3)
} /I ¢ =8 here
} }
}

Fig. 2. A SHIM program where two tasks communicate through thamoels
Fig. 3. A SHIM program that illustrates the need for buffeashg

In Figure 2, two SHIM tasks run concurrently withinain ) i )
and communicate on channalsandb. The send ain task 1 ¢an be active simultaneously and thus not shared. We describ
assigns 6 toa and waits for task 2 to receive the valuethis below.

The tasks therefore rendezvous then continue to their nexfirst: we assume that a SHIM program has no recursion.
statements. Next. the two tasks rendezvous dihere. task 1 VWhile the SHIM language allows it, we can use the techniques
receives the value 8 from task 2. of Edwards and Zeng [12] to remove bounded recursion, which

Small changes to this program can produce different behdpakes the program finite and renders the buffer minimization
ior. If both tasks (statically) attempted to send on a chartne  Problem decidable. We do not attempt to analyze programs

compiler would reject the program. If statementsv aand With unbounded recursion. o

send b = 8were interchanged, the program would deadlock. Although the recursmn_—free subs_et of SI—!IM is finite-state
Back ends of our SHIM compiler can generate C code foraapd therefore tractable in theor_y, in practice the full estat

variety of environments: shared-memory multiprocesssitsgu space O_f even a small program is usually too large; a sognd

the pthreads library [8], the IBM Cell Broadband Engine [Slgbstractlon is necessary. A SHIM task has both computation

and single-threaded processors that do not require thr@éﬂj communlc_anon, but because buffers are used (_)nly when

support [9]. The SHIM model has also been implemented k.S communicate, we abstract away the computation.

a library for Haskell [10] and even hardware translation haﬁ Since we abstract awa)'/'computatlon, we must assume th.at

been proposed [11]. all branches of any conditional statement can be taken. This

The goal of our work is buffer sharing, which we iIIustratéea‘Ves open the possibility that our analysis will conclode

using the program in Figure 3. Here, the main task starts fot{nannels can be used simultaneously but in fact never are,

tasks in parallel. Tasks 1 and 2 communicate aonThen, but we believe our abstraction is reasonable. In particilar

tasks 2 and 3 communicate dnand finally tasks 3 and 4 is safe: we overlap buffers only when we are sure that two
on ¢. Finally, task 4 receives 8 on chanrelCommunication channels can never be used at the same time regardless of

ona cannot occur simultaneously with thatlmbecause task 2 '::he (;Ir?talls of the cg_mputatlgr_]. Tsh'stf:ho'\(;ﬁ proved to kl)e .\t/wse
forces them to occur sequentially. Similarly communicagio or the programs dISCUssed in Section VIi, we never 1ost any

on b and ¢ are forced to be sequential by task 3. Comm pportunity for sharing by assuming both sides of a braneh ar

nications ona and ¢ cannot occur together because they a gllowed that an exact analysis would have enabled. Besides

forced to be sequential by the communicationtorour tool it is impossible to predict at compile-ti_me the exact bebavi

understands this pattern and reports thet, andc can share of branches that depend on program input.

buffers because their communications never overlap, blyere

reducing the total buffer requirements for this program b An Example

66%. Although this only represents the savings of a few wordsIn Figure 4, themain function consists of two tasks that

in this example, SHIM communication channels often passmmunicate through channeisb, andc.

large objects such as arrays, in which case a 66% reductiorThe first task communicates on channelsand b in a

can be substantial. Our experimental results in Section Mtlop; the second task synchronizes on chanoeladb, then

demonstrate this. terminates. Once a task terminates, it is no longer contpelle

to synchronize on the channels to which it is connected. Thus

after the second task terminates, the first task just talksed,

i.e., it is the only process that participates in a rendegwau
Our technique abstracts a SHIM program down to ii¢s channels. Thus, terminated processes do not cause other

communication patterns to identify situations in whichfbtd processes to deadlock.

I11. ABSTRACTING SHIM PROGRAMS
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void main() {
chan int a, b, c;
{ /I Task 1
for (int i =0; i <15; i++){ // state 1 ’
if (i % 2==0) Tnt
send a = 5; 2 Tm
else (Ta[IT2)
send b = 7;
Il state 2 M(@,b,c, )
send b = 10; (@
} /| state 3 Fig. 5. Automata for (a) the main task and (b), (c) its subtasks
} par { // Task 2
/I state 1
send ¢ = 13; Tha
/l state 2 a [21] n
recv b; 221]
/l states 3 & 4 c c ¢ c
) EB) |z,[f,z1| - IZTH ~—[257]
b b

)] i Py 4 Y|

Fig. 4. A (contrived) SHIM program with a loop, conditionaknd a task
that terminates

At compilation time, the compiler dismantles the main

function of Figure 4 into task§; and T,. T; is connected 133
to channelsa andb since a and b appear in the code section (To-T2)(a,b,c, 71, T2) (M-T1-To)(a,b,c, 71, 2, Thra)
of T;. Similarly T, is connected to channelsand c. During (a) (b)

the first iteration of the loop ifiy, T talks to itself ona; since _ . — ) ) .
no other task is connected o Meanwhile, T, talks to itself -Eg_"Tf}n ,\(,iomposmg tasks in Figure 5: (=) Mergifig and 2. (b) Inlining
on c. Then the two tasks rendezvous lmncommunicating the
value 10, therl, terminates. During subsequent iterations of
Ty, Ty talks to itself on eitheb twice ora andb once each. whose edges represent choices, typically to communichte. T
In the program in Figure 4, communication @ncannot states are labeled by program counter values and the tomssit
occur simultaneously with that on ¢ becausdorces the two by channel names. Each automaton has a unique final state,
communications to be sequential and thereforand c can which we draw as a double box. There is a transition from
share buffers. On the other hand, there is no ordering betwesvery terminating state to this final state labeled with a igiym
channelsa and c¢; a and c can rendezvous at the same timehannel that indicates such a transition. An automaton has
and therefore andc cannot share buffers. By overlapping thenly one final state but can have multiple terminating states
buffers ofb andc, we can save 33% of the total buffer spacdn Figure 5(b),T;’s state 1 is the terminating state, state 3 is
Our analysis performs the same preprocessing as our stétie final state, and they are connected 1y which is like
deadlock detector [2]. It begins by removing bounded recua- classicale transition. Howeverge edges would make the
sion and duplicating functions to force every call site to bautomaton nondeterministic, so we instead create a dummy
unique. This has the potential of producing an exponentighannelr; that is unique toT; and allow T; to move from
blow-up, but we have not observed this in practice becausite 1 to state 3 without having to synchronize.
bounded recursion in SHIM programs usually generates-struc The main function has a dummsgy transition from its
ture rather that being algorithmic. start to the entry of state €T1||T2), which represents thpar
At this point, the call graph of the program is a treestatement iimain In general, we create a dummy channel for
enabling us to statically determine all the tasks and thlwerypar in the program.
channels to which each is connected. Figure 6(a) shows the product ® and T,—an automaton
Next we disregard all functions that do not affect théhat represents the combined behaviofTpfand T,. We con-
communication behavior of the program. Because we astructed Figure 6(a) as follows. We start with state (progra
ignoring data, their behavior cannot affect whether we s counter) valueg1,1). At this point, T; can communicate on
a buffer to be sharable. We implicitly assume every sughand move to state 2. Therefore we have an arc ftam)
function can terminate—again, a safe approximation. to (2,1) labeleda. Similarly, T, can communicate oo and
Next, we create an automaton that models the control ammbve to its state 2. From statd,1) it is not possible to
communication behavior for each function. Figure 5 showmmunicate orb because onlyl; is ready to communicate,
automata for the three tasks (mam, and T,) of Figure 4. notT, (T, is also connected tb). Also at state(1,1), T; can
For each task, we build a deterministic finite state automatterminate by taking the transition and moving to(3,1).



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITSND SYSTEMS 4

From state(3,1), T, can transition first to staté3,2) is the transition rule for composition.
by communicating on channel and then to stat€3,3) by In general, ifT; hasm states and, hasn, then the product
communicating orb; these transitions do not change the statg - T, can have at mogsnn states. The states are labeled by a
of T; because it has already terminated. tuple composed of the program counter values of the indalidu
From (2,1), T, can communicate oo and change the statetasks. Each state can have at mostitgoing edges, wheleis
to (2,2). Similarly from (1,2), T, can communicate oa and the total number of channels. Consequently, the total numbe
move to(2,2). In state(1,2) it is also possible to communicateof edges in the graph can at most ek (k accounts for the
on b since both tasks are ready. Therefore, we have amb arextrat and i channels—one extra channel per task and one
from (1,2) to (2,3). SinceT; may also choose to terminate inper par).
state(1,2), there is an arc fronfl,2) to (3,2) on 11. Other  Below, we demonstrate that the order in which automata
states follow similar rules. are composed does not matter. Although the state labels will
To determine which channels may share buffers, we cope different, the states are isomorphic. First, we definetixa
sider all states that have two or more outgoing edges. Rohat we mean for two automata to be equivalent.
example, in Figure 6(a), stad,1) has outgoing transitions Definition 3: Two automataT; = (Q1,%1,61,q1, f1) and
on a andc. Either of them can fire, so this is a case wherg, = (Q,,2,,&,qp, f2) are equivalent (written Ty = T,) if
the program may choose to communicate on either c. and only if ; = 5, and there exists a bijective function
This means the contents of both of these buffers are neede@ a), — Q, such thatg, = b(aqy), f2 = b(f1), and for every
this point, so we conclude buffers farandc may not share p c Q; anda € 33, either bothd;(p,a) and &(b(p),a) are
memory. We prove this formally below. defined and’,(b(p),a) = b(81(p,a)) or both are undefined.
From Figure 4, it is evident tha and b can never occur  _emma 1:Composition is commutativel; - To = To - T.
together becaus@; forces them to be sequential. However,  proof; By definition,
since state(1,2) has outgoing transitions oa and b, our
algorithm concludes that andb can occur together. However, Ti-To = (Q1x Q2,Z1UZXZp,012,(01,02), (f1, f2)) and
they actually can not. We draw this erroneous conclusion be-1,.1, = (Q2x Q1,22UZ1, 81, (G2, qu), (F2, F1)).
cause our algorithm does not differentiate between schegul
choices and control flow choices (i.e., due to conditionaths We claim b((p1,pz2)) = (p2, p1) is a suitable bijective func-
as if and while). By doing this we are only adding extration. First, noteX; Uy = Z,UZX4, (Q2,01) = b({01,0)), and
behavior to the system and disregarding pairs of channéls, f1) =b((f1, f2)).
whose buffers actually could be shared. This is not a big Next,
disadvantage because our analysis remains safe. For this
example, our algorithm only allowls andc to share buffers.  921(b({P1, P2)),a)

Figure 6(b) is obtained by inlining the automaton fhr- = %»1({p2, p1),d)
T,—Figure 6(a)—withinM. This represents the entire program (3(p2,a),81(pr,a)) if acy, andac yy;
in Figure 4. Since thepar call is blocking, inlining Ty - T (52(p2,3), P1) if ac s, and
within M is safe. We replaced state 2 of Figure 5(a) with P2,8), P1 22
Figure 6(a) to obtain Figure 6(b). The conclusions are the _ @g ¥ or pr=f1);
same as that of Figure 6(a)—orltyandc can share buffers. (P2, 1(p1,a)) if ae y, and
(@gyoorp2=f2);
IV. MERGING TASKS undefined otherwise;
In this section, we use notation from automata theory to (01(p1,a),%(p2,a)) if acy; andac yy;
formalize the merging of two tasks. We show our algorithm (p1,52(P2, ) if ac s, and
does not generate any false negatives and is therefore safe. ’ ’ 2
Definition 1: A deterministic finite automaton i& a 5-tuple —b (@g 3 or p1=fi);
(Q,%,8,q,f) where Q is the set of statesY is the set of (01(p1, @), P2) if a€ey; and
channels,g € Q; is the initial state,f € Q is the final state, (@agy,or pp=f);
andd C Qx Z — Q is the partial transition function. undefined otherwise:
Definition 2: If T; and T, are automata, then ttamposed _ b(51 ( ) a))
automaton T+ T, = (Q1 x Q2,31 U X2, 812, (01, O2), (1, 2)), — Plazib b/,
where, for(pi,p2) € Q1 x Qz andae 21 UZ,, Thus, T} o =T, T;. ™
(31(p1,) if ac 5, andae yy; (TLeTm)ma 2:Composition is associative(Ty - T) - Ta = Ty -
2 13).
%(P2,2)) ) Proof: By definition,
(d1(p1,@),p2) if aey; and
A12((p1, P2), @) = (@agy,or pp=fy); (Ti-T2) T = ((Q1xQ2) x Qs, (21U Z2) UZ3, G123,
(P1,02(p2,@)) if a€ 3, and ({01, 02), 03), ((f1, f2,), f3))
(@ag yyor pr=fi); Ti-(T2-Ts) = (Qux(Q2xQ3),Z1U(Z2UZ3),0123),
undefined otherwise, (01, (a2,03)), ( f1, (f2, f3))).
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We claim b(((p1, p2), P3)) = (P1,(P2,P3)) is a suitable
bijective function. First, note tha{X; UX;) UZ3 = 23 U

(Z2UZ3), (1, (G2, 03)) = b({{d1,02),03)), and (f1,(f2, f3)) =

b(((f1, f2), f3))-

Next,

B1(23) (b({(P1, P2), P3)),d)
= 0123 ({P1, (P2, P3))>

%(ps;
(61(p1, ), (% (p2,

)

a)
<61(p15a)7 <62(p27 a)a

a)

a)7 p3>>

(61(p1,@), (P2, 83(p3, )))

(61(p1,@), (P2, P3))

<pl7 <52(p27a)>53(p37a)>>
(P1,(%(p2,8), p3))

(p1, (P2, %3(p3.@)))

undefined

((31(p1,@),02(p2,8)),
&(p3,a))

((01(p1,@), B2(p2,@)), P3)

((d1(p1,a), p2),03(ps,a))

((51([)1,6\), p2>7 p3>

((p1,%(p2,a)), d3(P3, @)

<<p17 52(p2’a)>a p3>
((p1, P2), %3(ps,))

undefined

=b(8123(((p1, P2), P3), @)

Thus, (Tl ‘T2) - Ta=Thi- (T2 Ta).
Lemma 3: T-To-Tz3---Th = (((T;L'Tz) 'T3)~~~)~Tn
Proof: Since the composition is commutative and as- This heuristic, which we chose because our implementation
sociative, we can build the entire system incrementally lwas running out of stack space on certain complex examples,

composing two tasks at a time.

if acy, andae 3, and
acys

if acy; andae 3, and
(agy3or pz=f3);

if acy, andae y3 and
(agysorpp=f);

if acy, and

(ag 3, or pp=fy) and
(ag yzorpz=fy);

if acy, andae y3 and
(@agyiorp="f);

if acy, and

(agyq or pp=f) and
(ag ysor ps=f3);

if acy3and

(a¢gyq or pp=f1) and
(@g 3z orpp="fy);
otherwise;

if ac 3, andae 3, and
ac s
if ac 3, andae 3, and
(ag 3zorps=f3);
ifacy,andac y3and
(@g 32 0rp2= fo);
ifacy, and
(@g 32 o0rp2 = fz) and
(@ag ysorps= fa);
ifacy,andac y3and
(@gyaiorp=f);
ifac y,and
(ag y10rpL=f1)and
(a¢ yzorps=f3);
ifac ysand
(agyjorpy=fy)and
(agyo0rpz=fa);
otherwise;

Multiple outgoing arcs from a state may represent choices
due to control statements (suchifsor while). d(p1,a) = gz
and d(p1,b) = g, then we have two outgoing choices due to
control flow.

On the other hand, a scheduling choice may occur when
composing two tasks. A scheduling choice occurs when the
ordering between two rendezvous is unknown. This happens
when two different pairs of tasks can rendezvous on two
different channels at the same time.

Supposea € ¥; and a ¢ 2, and d:(p1,a) = qi, and if
be X andb ¢ Z; and &(p2,b) = 02, then d12((p1, P2),a) =
(a1, p2) and d12((p1, P2),b) = (p1,a2). Thus, for every pos-
sible scheduling choice, we have an outgoing edge from the
given state.

The absence of any choice due to control or scheduling will
leave it with either one or zero outgoing arcs. Consequgntly
the outgoing transitions from a given state represent al po
sible rendezvous that can occur at that particular statey Th
represent both control flow and scheduling choices. =

A scheduling choice imposes no ordering among ren-
dezvous, thus allowing the possibility of two or more ren-
dezvous to happen at the same time.

Theorem 1:Two channelsa andb can share buffers ifyp,
at most one oB(p,a) and d(p,b) is defined, but not both.

Proof: Supposea andb can rendezvous at the same time
and if p; represents the state of the program counter just before
the rendezvous, then by Lemma 4 we have two outgoing arcs
from p;: 8(py,a) = g1 and 3(pa,b) = gz

Consequently, for some, both &(p,a) and d(p,b) exist.
Conversely, if for allp at most one ofd(p,a) and &(p,b)
exists, we can safely ssyandb can share buffers. [ ]

Our algorithm does not differentiate between control flow
choices (e.g., due tid or while) and scheduling choices (due
to partial ordering of rendezvous). Both kinds of choices
produce states having multiple outgoing arcs. We conclude
that arcs going out from the same state cannot share buffers.
The multiplicity can be contributed only by control choices
leading to false positives, but our system is safe; whenever
we are unsure, we do not allow sharing.

V. TACKLING STATE SPACE EXPLOSION

If two tasks communicate infrequently, there is a posdibili
that the number of states in the product machine will grow too
large to compute. We address this by introducing a threshold
which limits the stack depth of our recursive product maehin
composition procedure and corresponds to the longest simpl
path in the product machine. If we reach the threshold, we
stop and treat the two tasks being composed as being separate
(i.e., unable to share buffers with each other).

B has the advantage of applying exactly when we are unlikely

Lemma 4:The outgoing transitions from a given stateo find opportunities to share buffer memory. Tightly couble
represent every possible rendezvous that can occur at tzesks tend to have small state spaces—these are exactly those
particular state.

Proof: According to the definition ofd, we add an by definition run nearly independently and thus the commu-
outgoing edge to a state for every rendezvous that can happémation pattern of most pairs of channels are uncontrplled
immediately after that state.

that allow buffer memory to be shared. Loosely coupled tasks

eliminating the chance to share buffers between them.
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Algorithm 1 composép, p2, 21,22, depththreshold IDCT Lines Channels Total  Bytes Buffer Run States
if depth> thresholdthen Tasks Tasks Saved Reduction time
return “Threshold exceeded” 1 940 2 4 98304 333% 05s 26
| 2 950 4 5 196608 333 06 64
else 3 960 6 6 393216 444 07 158
forall ae Z,UZ, do 4 970 8 7 589824 50 .0 386
=90 a 5 980 10 8 786432 533 12 928
(0, G2) = O((p, P2). ) 6 990 12 9 983040 555 15 2192
if {(qi,qp) & hash then
Add (q1,0q) to hash TABLE I
BEHAVIOR OF THE JPEGDECODER WITH VARYING NUMBER OFIDCT
composef, gz, 21, 22, depth+ 1, thresholg TASKS (THRESHOLD SET T08000)
Example Lines Channels Tasks Bytes Buffer Run States -
Saved Reduction Time FFT Lines Channels Total Bytes Buffer  Run States
Tasks Tasks Saved Reduction time
Source-Sink 35 2 11 4 50 % .Ds 394
Pipeline 35 5 9 16388 25 D 68 1 150 2 4 57344 50% .2s 25
Bitonic Sort 35 5 13 12 60 Q 135 2 160 4 5 114688 50 8 63
Prime Sieve 40 5 16 12 60 » 122 3 180 6 6 172032 50 4 158
Berkeley 40 3 11 4 333 06 285 4 200 8 7 172032 338 06 385
FIR Filter 110 28 28 52 4@3 138 74646 5 210 10 8 229376 40 0 927
Framebuffer 185 11 16 28 .02 13 15761 6 230 12 9 286720 Al 08 2192
FFT 230 12 10 286720 48 08 2192
JPEG Dec. 990 12 9 083040 55 15 2192 TABLE Il
BEHAVIOR OF FFT WITH VARYING NUMBER OF PROCESSING TASKS
TABLE | (THRESHOLD SET T08000)

EXPERIMENTAL RESULTS WITH THE THRESHOLD SET T@000

VI. BUFFERALLOCATION

Algorithm 1 is the composition algorithm. It recursively Qur static analysis algorithm produces a Sethat con-
composes two statep; and pz. The depth variable is ini- tains pairs of channels that can share buffers. Eebe the
tialized to O and incremented whenever successor states @fplement of this set. We represent it as a graph: channels
composed. Whenevelepthexceeds the threshold, we dEC|areepresent vertices and for every p@i;r)c” € S, we draw an
failure. edge betweem; andc;j. Two adjacent vertices cannot share

We draw conclusions about local channels (whose scopeffers. Every node has a weight, which corresponds to the
has been completely explored) and we remain silent about gize of the channel.
others. We make safe conclusions even when other channel$linimizing buffer memory consumption, therefore, reduces
have not been completely explored. to the NP-hard weighted vertex coloring problem [13], [14]:

Theorem 2:1f our algorithm concludes that two channels @ graphG is colored withp colors such that no two adjacent
andb can share buffers after abstracting away chagntden vertices are of the same color. We denote the maximum Welght
a andb can still share buffers in the presencewf of a vertex colored with coloras maXi), and we need to find

Proof: If a and b can share buffers, then there is & coloring such tha{le max(i) is minimum.
sequential ordering between them. By SHIM semantics [11], W& Use a greedy first-fit algorithm as a heuristic. Gebe
introduction of a new channel can create ordering between tf /ISt Of groups, initially empty. We order the channels imno
channels that are not ordered, but can never disrupt arirexistcréasing order of buffer sizes, then add the channels gne b
sequential ordering unless it introduces a deadlock. Torre ©ONe tO the first non-conflicting group @. If there is no such
if our algorithm concludes that two buffers can share chispned™0UP, We create a new group@and add the channel to this

introducing a new channel does not affect the conclusiocesin?€Wly created group. A group is defined to be non-conflicting
we assume deadlock-free programs. g 'f the channel to be added can share its buffer with every

clgannel already in the group. Channels in the same group can

We conclude that two channels can share buffers only . . . U
. ] share buffers. This algorithm runs in polynomial time buésio
two conditions hold: the two channels have been exploré - .
?é guarantee an optimal solution.

completely and every state has at most one of the two channé
in its outgoing edge set.

We take a bottom-up approach while merging groups of
tasks. Tasks in a (preprocessed) SHIM program have a tre&Ve implemented our algorithm and ran it on various SHIM
structure that arises from nestingmdr constructs. We merge programs. Table | lists the results of running the experimen
the leaf tasks of this tree before merging their parents. tdfe son a 3 GHz Pentium 4 Linux machine with 1 GB RAM. For
merging when all tasks have exceeded the threshold or if thech example, the columns list the number of lines of code in
complete program has been merged. This approach allowsthes program, the total number of channels it uses, the number
to stop whenever we run out of time or space without violatingf tasks that take part in communication (i.e., excluding an
safety. functions that perform no communication), the number of

VIl. EXPERIMENTAL RESULTS
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Threshold Bytes Saved Buffer Reduction Runtime  States buffer memory, even though we have not exp|0red the system

2000 0 0 % Bs 10024 completely.
3000 0 0 15 23530 Experimentally, we find that the analysis takes less than a
4000 0 0 % 51086 . f destly | d th d
5000 52 4643 124 70929 minute for modestly large programs and that we can reduce
6000 52 4643 128 72101 buffer space by 60% and therefore considerable amount of PPE
7000 52 4643 135 73433 memory on the Cell processor for examples like the bitonic
8000 52 4643 138 74646 . .

sort and the prime number sieve. We have also reported a

TABLE IV subset of our findings in [15].

EFFECT OF THRESHOLD ON THEFIR FILTER EXAMPLE

VIIl. A PPLICATIONS

One concrete application of our technique is to reduce
bytes of buffer memory saved by applying our algorithm, wh&aaemory consumption in a distributed architecture like tied C
percentage this is of overall buffer memory, the time takditoadband engine [16], [6], [7]. Secondly, the output of our
for analysis (including compilation, abstraction, vesafion, algorithm can be used as a strategy to distribute buffers.
and grouping buffers), and the number of states our algarith
explored. For these experiments, we set the threshold t0.80R  Optimizing Cell Programs
Source-Sink is a simple example of a FIFO with two T

) that dat d the other that print he Cell processor, one target of our SHIM compiler [5],
processes. one that passes data and the other that prin Sugé% a heterogeneous architecture consisting of a tnaalitio

results through an output channel, along with a number 8h_bit power processor element (PPE) with its own 32K L1

intermediate stages. Pipeline is_ a modification_ of souncle-s and 512K L2 caches coupled to eight synergistic processor
that uses two buffer processes in between the input and DUth'éments (SPEs)

process. The Pipeline example has larger buffers because Each SPE is an 128-bit processor whose ALU can perform
pas'_ses_large amounts O_f data between stages. up to 16 byte operations in parallel. Each has 128 128-hit

Bitonic Sort uses multiple tasks for that compare and shuff neral-purpose (vector) registers, a 256K local storenbu
pairs of data values. They interact through thirteen chlannecache_ Each SPE provides high, predictable performance on

The Prime Sieve example has bounded recursion that,Stors.
removed as part of the compilation process [12]. Cell programs use direct-memory access (DMA) operations

The Berkeley example has data-dependent communicatighyansfer data among the PPE and SPEs’ memories. While
patterns. We abstract away the data, simplifying the aralys;qqresses are global (i.e., addresses for the PPE’s and each

Framebuffer contains a line drawing task that drives §pg's memories are distinct), this is not a shared memory
640x 480 video framebuffer. The framebuffer hardly gets anyodel. Although direct SPE-to-SPE communication is possi-
savings because no concrete data is passed among tasks.pjdi6t is easier to implement a communication between an SPE
tasks communicate with each other just through synchrenizgd the PPE since handshaking is easy to implement using the
tion signals. Cell's hardware mailboxes.

FFT takes an audio file as input, divides it into 1024-sample Qur Cell compiler [5] for SHIM uses multiple cores to
blocks performs fixed-point FFT on each block, then dogfovide task-level parallelism. Tasks communicate thhoug
an inverse FFT. It uses the largest buffers of all the exampledicated buffers in the PPE. Since the communication isuffe
programs. reside in the PPE, there is a possibility of sharing.

The JPEG decoder is one of the largest applications cur-Figure 7 shows the block diagram of a JPEG decoding ap-
rently written in SHIM. It has multiple IDCT processors thaplication with 4 IDCT processors and a possible mapping onto
run concurrently on groups of macroblocks passed aroutié Cell processor. The JPEG application is easily pipd|iae
through buffers. least partially: data is read (R) from the input stream, Hhaif

For the JPEG and the FFT Examples, we created varyidgcoded (Huf), processed, an IDCT is applied, and finally
number of threads and measured the reduction in buffgritten (W) to the output stream.
memory; see Table Il and Table Ill. For the JPEG decoderBoth the read (R) and write (W) blocks must be executed
and FFT, we save upto 55% and 45% respectively of buffesequentially. The 1/O operations are performed by the PPE,
memory. therefore we dedicate PPE threads to read and write opera-

The FIR filter is a parallel filter with twenty-eight channelstions. The Huffman decoding blocks are executed in sequence
It takes about thirteen seconds to analyze this programtend but by an SPE. The IDCT blocks can run independently and
number of states explored is about eighty thousand. Sinse ttherefore executed concurrently by different SPEs.
was one of the more challenging examples for our algorithm, The tasks communicate with each other through channels. In
we tried varying the threshold. Table IV summarizes ouigure 7,in, stripel, stripe2 stripe3 stripe4 outl, out2, out3
results. As expected, the number of visited states incsease and out4 are communication channels. SPE 0 communicates
we increase the threshold. With a threshold of 1000, we fardbith other SPEs through channeddripel, stripe2 stripe3
explore the program, but higher thresholds let us exploamdstripe4 The communication buffers of these channels are
more. When the threshold reaches 5000, we have explotedated in the PPE. For example, SPE 1 writestigpel in
enough of the system to begin to find opportunities for slgariiPPE's memory and then SPE 2 reads the value from it. The



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITSND SYSTEMS 8

PPE Thread 2

[t
B[} |
BL -
LR
in .
= out4
L=l . .
. in . stripe3
— SPE 5
R — Hufll IDCT4
% in ; stripe4
PPE Thread 1 SPE 1

Fig. 7. JPEG block diagram with four IDCT processors

Huffman decoder first communicatesripelto SPE 2, then analysis step would have to be added to our technique to make

stripe2to SPE 3 followed bystripe3to SPE 4 and finally it work.

stripe4 to SPE 5. Since the communication is ordered, the We implemented the SHIM communication model as a

four channels can use the same buffer space in the PPE. Bistary [10] in Haskell, and we believe such a library coul b

stripe occupies about 200KB of PPE memory, therefore owritten for many concurrent languages. For a program that us

technique saves a total of about 600KB of space. our library, it would be necessary to first verify the program
is using the API correctly before applying our technique, bu

B. Distributed Buffer Allocation this should be possible.

For many distributed applications, buffers do not reside in
the same memory. This is advantageous in two ways. Firstpan int x, a, b, c;
a single node cannot capacitate all the buffers. Secondly,{ a
distributed memory allocation is more fault-tolerant than X 'dl'_
centralized memory allocation. Our memory reduction alg ';Sg; {X'
rithm can be used to find ways of distributing buffers over .., X:
different nodes. Secondly, we can specify ways of distiigut (x > 5) {
tasks among nodes by determining what buffers they access. recy a;

Consider a program that has four chanrelb, ¢ andd that recv c;
require buffers of equal sizes. Suppose our algorithm findst } else {
a andb can share channels, then we puandb on the same recv a;
node. We can also tie to this node, the tasks that accessl recv b;

b frequently. This provides a strategy for distributed meynor _ €V C;
allocation that optimizes memory and locality. } }

IX. LIMITATIONS AND APPLICABILITY TO OTHER
LANGUAGES

Fig. 8. A code fragment that is affected by branch predicatgrattion

Our technique makes some key assumptions about thd=or efficiency, our analysis completely ignores data and
structure and behavior of programs that limits its applidgb assumes that both paths of a branch can be taken, but this
While the SHIM language has most of these limitations, osometimes leads to over-conservative results. Considgr Fi
technique could be adapted to work in other settings. ure 8. Here, only theelsebranch is taken since the received

One major assumption is that the call graph of any prograwmis 1 and therefore less than 5. This code sequentializes
is a tree, enabling us to statically determine all the tasid achannelsa, b and c. However, our analysis assumes that the
the channels to which each is connected. Thus, our appro#cipart of the branch can also be taken, which sequentializes
cannot be directly applied to a program that dynamicallgnly a and c. Therefore, our analysis erroneously concludes
creates tasks or changes its connectivity. While plenty tifat b cannot share buffers wita and c. In practice, such
programs do have such a dynamic nature, many are statiqpatterns do not appear very often. In particular, ignoriatad
the sense we assume. did not negatively influence the results for any of the exaspl

Secondly, SHIM does not support pointers, implying chaimr Section VII, but our technique could be improved by
nels and tasks are determined at compile time. For languagesforming a global analysis to obtain relations among dnan
that support references to channels and tasks, a good afieexicates.
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X. RELATED WORK XI. CONCLUSIONS

We presented a static buffer memory minimization tech-

Many memory reduction techniques exist for embedddtique for the SHIM concurrent language. We obtain the partia
systems. Greef et al. [17] reduce array storage in a sequier@fder between communication events on channels by forming
program by reusing memory. Their approach has two phasi¥ Product machine of potentially all tasks in a program.
they internally reduce storage for each array, then glgball© avoid state space explosion, we can treat the program as
try to share arrays. By contrast, our approach looks f6Pnsisting of separate pieces.

sharing opportunities globally on communication buffens i We remove bounded recursion and expand each SHIM
a concurrent setting. program into a tree of tasks and use sound abstractions to

Streamlt [18] is a deterministic language like SHIM geconstruct for each task an automaton that performs communi-

mulins et al. [19] present cache aware optimizations thg\?\t/'\clm' 1t;hten \;VE use éh? mercgj]mg rulets tt'o C?mbmti tasks.
exploit communication pattern in Streamlt programs. Thiay a ¢ abstract away data and computation from the program
f}nd only maintain parallel, communication and branch struc

to improve instruction and data locality at the cost of dat We abstract the data-d dent decisi d
buffer size. Instead, we try to reduce buffer sizes. ures. Vve abstract away the data-dependent decisions dorme
. . by conditionals and loops and do not differentiate between
Chrobak et al. [20] schedule tasks in a multiprocesspneqyling choices and conditional branches. This may lead

environment to minimize maximum buffer size. Our algorithrrgo false positives: our technique can discard pairs evengtho
does not add scheduling constraints to the problem: it resiu hey can share buffers. However, our experimental results

the total buffer size without affecting the schedule, aratdby suggest this is not a big disadvantage and in any case our
not affecting the overall speed. technique remains safe.

The techniques of Murthy et al. [21], [22], [23], [24], Our algorithm can be practically applied to the SHIM
Teich et al. [25], and Geilen et al. [26] are closest to ourgompiler that generates code for the Cell Broadband Engine.
They describe several algorithms for merging buffers imalg we found we could save 286KB of the PPE’s memory for an
processing systems that use synchronous data flow modetsy example and 983KB for a JPEG example.

[27]. Govindarajan et al. [28] minimize buffer space while € We reduce memory without affecting the run-time schedule
ecuting at the Optlmal Computation rate in dataflow netVV.Ofk§r performance_ By Sharing’ two or more buffer pointers poin
They cast this as a linear programming problem. Sofronis f the same memory location. This can be done at compile-
al. [29] propose an optimal buffer scheme with a synchronode during the code-generation phase.

task model as basis. These papers revolve around minimiZing'o avoid state space exp|osion’ we introduced a threshold
buffers in a synchronous setting; our work solves similapr limiting the recursion depth our algorithm must handiée
problems in an asynchronous setting. Our approach findspjfn to look into more modular techniques that allow a set of
there is an ordering between rendezvous of different cHanngysks to be analyzed independently of the remaining sets.
based on the product machine. We believe that our algorithmype are now ignoring SHIM’s exceptions [32]. Exceptions
works on a richer set of programs. in SHIM provide a convenient way to terminate peer tasks

Lin [30], [31] talks about an efficient compilation processnd they are deterministic in behavior. We plan to consider
of programs that have communication constructs similar exceptions in the future.

SHIM. He uses Petri nets to model the program and uses loopCurrently, local variables and buffers do not interact with
unrolling technigues. We did not attempt this approach beea each other. This is because we make the assumption that the
loop unrolling would cause the state space to explode ewen fwo need not necessarily reside in the same memory. However,
small SHIM programs. for shared memory systems, we plan to explore the posgibilit

Static verification methods already exist for SHIM. In ouPf interaction by doing live variable analysis on local wdes.
previous work [2], we build a synchronous system to find
deadlocks in a SHIM program. We make use of the fact that ACKNOWLEDGMENT
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Reviewer 2 time is not feasible because the branch condition may well

What are exactly the lifetimes of the received channdfP€nd on program input. _ .
values after a “next a” statement? And are these values The paper spends a lot of real-estate stating and proofing

kept in the buffer of the channel or is a copy operation lemmas about the associativity and commutativity of
performed? automata composition. Is this necessary?

The sender writes (copies) data to the buffer. The receivérde results of our lemmas are not surprising, but what we're

copy it from the buffer, after which data in the buffer is néloing isn't exactly classical automata composition beeaus
longer used. SHIM’s rendezvous semantics are a little different. In anye;

It looks like that every "next a" statement has to copy the® wanted to include the complete proofs.

value into a local variable. However, sharing buffer space 1 n€ discussion of Table IV in Section VII should do a

with the local variable thus eliminating the need for the ~ Much better job explaining the interesting data points. For

copy operation and the duplicate memory requirements €Xample, why do Source-Sync and its modified pipelined
of the local variable and channel buffer would interfere ~ Version behave so differently? What does Framebuffer not
with the buffer sharing algorithm as presented. | would ~ 9€t any savings?

like a short discussion how channel buffers and memoWye fixed this. In summary, the pipeline uses larger buffene T
for local variables interact. tasks in Framebuffer communicate through synchronization

The buffer and the local variables need not necessarily Rignals that hardly need any buffers.

side in the same processing element. For instance, in Sec- Section VIII spends a full column describing a JPEG
tion VIII-A, we show how buffers can reside in the PPE while ~ implementation in SHIM for the Cell processor. Besides
the local variables reside in the SPE. In our model, the local staking a high-level claim, it doesn't add much in tech-
variables and the channel buffers do not interact. But if the nical insights into the analysis or the optimization.
reside in the same memory, then we need additional analy¥es, but we felt that the paper would be incomplete without
like liveness to see how they can share memory. a discussion of a specific application for our algorithm.

Nitpicks: Section VI its a "weighted vertex coloring” not ~ The author could help the reviewers by identifying the
"weighted vertex cover" problem. The references [15, 16] difference between the current journal draft and the

are OK again. original conference draft
Our mistake—we fixed this. The first reviewer also asked about this; see our response
above.
Reviewer 3

For a paper of this nature, the author should more clearly
establish up-front what is general vs. SHIM-specific.
Which aspects of the optimizations are generally bene-
ficial to the compiler optimization community vs. wha*
is limited to SHIM or CSP programs? Which aspects ¢
the analysis are generally feasible to other languages \
limited to specific properties of SHIM or CSP programs’

We added Section IX to discuss this.
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