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Abstract—Most compilers focus on optimizing performance,
often at the expense of memory, but efficient memory use can be
just as important in constrained environments such as embedded
systems. We present a memory reduction technique for CSP-style
rendezvous communication, which we apply to our deterministic
concurrent programming language SHIM. We focus on reducing
memory consumption by sharing communication buffers among
tasks. We determine pairs of buffers that can never be in use
simultaneously and use a shared region of memory for each
pair. Our technique produces a static abstraction of a SHIM
program’s dynamic behavior, which we then analyze to find
buffers that are never occupied simultaneously. Experimentally,
we find our technique runs quickly on modest-sized programs
and can sometimes reduce memory requirements by half.

Index Terms—Concurrency, SHIM, Static Analysis, Buffers,
Optimization

I. I NTRODUCTION

Embedded systems have limited memory. Overlays, which
amount to time-multiplexing the use of memory regions, is
one way to reduce a program’s memory consumption. In
this paper, we propose a technique that automatically finds
opportunities to safely overlay communication buffer memory
in a concurrent programming language.

The technique we present here determines what buffer
memory may be shared in SHIM programs [1]. It is closely
related to some of the techniques we used to statically detect
deadlocks [2], but we address a different problem here.

SHIM is an asynchronous concurrent language that is
scheduling-independent: its input/output behavior is notaf-
fected by any non-deterministic scheduling choices taken by
its runtime environment due to processor speed, the operating
system, scheduling policy, etc. A SHIM program consists of
sequential tasks that synchronize when they want to communi-
cate. The language is a subset of Kahn networks [3] (to ensure
determinism) that employs the rendezvous of Hoare’s CSP [4]
for communication to keep its behavior tractable.

SHIM processes communicate through channels (Figure 1).
Every task maintains its own local variables, and in most
SHIM implementations, any communication involves copying
to and reading from a shared memory location. The sequence
of symbols transmitted over each channel is deterministic but
the relative order of symbols on different channels is generally
undefined. However, if we can determine that the relative order
of symbols on a pair of channels is such that they never
interfere, we can safely share the buffers for the channels.
If we cannot find such an ordering, we conclude that the pair
cannot share memory.
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Fig. 1. The channel structure

Our analysis is conservative: if we establish two channels
can share buffers, they can do so safely, but we may miss
opportunities to share certain buffers because we do not model
data and may treat the program as separate pieces to avoid an
exponential explosion in analysis cost. Specifically, we build
sound abstractions to avoid state space explosions, effectively
enumerating all possible schedules with a product machine.

One application of our technique is to minimize buffer
memory used by code generated by the SHIM compiler
for the Cell Broadband engine [5]. The heterogeneous Cell
processor [6] consists of a power processor element (PPE)
and eight synergistic processor elements (SPEs). The SHIM
compiler maps tasks onto each of the SPEs. Each SPE has its
own local memory and shares data through the PPE. The PPE
synchronizes communication and holds all the channel buffers
in its local memory. An SPE can communicate with the PPE
through mailboxes [7].

We wish to reduce memory used by the PPE by overlapping
buffers of different channels. Our static analyzer does live
range analysis on the communication channels and determines
pairs of buffers that are never live at the same time. We
demonstrate in Section VII that the PPE’s memory usage can
be reduced drastically for practical examples such as a JPEG
decoder and an FFT.

Below, we describe the SHIM language (Section II), how we
model its behavior to analyze buffer usage (Section III), how
we compose models of SHIM tasks to build a product machine
for the whole program (Section IV), how we avoid state
explosion (Section V), and how we use these results to reduce
buffer memory usage (Section VI). We present experimental
results in Section VII and the application of our algorithm to
Cell Programs in Section VIII. We discuss related work in
Section X and conclude in Section XI.

II. T HE SHIM PROGRAMMING LANGUAGE

SHIM [1] is a C-like concurrent programming language
whose tasks communicate exclusively through multi-way ren-
dezvous channels. To the usual collection of C-like expressions
and statements it adds two constructs:par for specifying
concurrency, andsendand recv for communication.p par q
runs statementsp and q in parallel and finishes when both
p and q terminate.Send cand recv c are communication
statements that synchronize on channelc. SHIM has no global
or shared variables.
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void main()
{
chan int a, b;
{ // Task 1

send a = 6; // Send 6 on a (synchronize w/ 2)
// a = 6 here

recv b; // Receive b (synchronize w/ 2)
// b = 8 here

} par { // Task 2
recv a; // Receive a (synchronize w/ 1)

// a = 6 here
send b = 8; // Send 8 on b (synchronize w/ 1)

// b = 8 here
}

}

Fig. 2. A SHIM program where two tasks communicate through two channels

In Figure 2, two SHIM tasks run concurrently withinmain
and communicate on channelsa and b. The send ain task 1
assigns 6 toa and waits for task 2 to receive the value.
The tasks therefore rendezvous then continue to their next
statements. Next, the two tasks rendezvous atb. There, task 1
receives the value 8 from task 2.

Small changes to this program can produce different behav-
ior. If both tasks (statically) attempted to send on a channel, the
compiler would reject the program. If statementsrecv a and
send b = 8were interchanged, the program would deadlock.

Back ends of our SHIM compiler can generate C code for a
variety of environments: shared-memory multiprocessors using
the pthreads library [8], the IBM Cell Broadband Engine [5],
and single-threaded processors that do not require thread
support [9]. The SHIM model has also been implemented as
a library for Haskell [10] and even hardware translation has
been proposed [11].

The goal of our work is buffer sharing, which we illustrate
using the program in Figure 3. Here, the main task starts four
tasks in parallel. Tasks 1 and 2 communicate ona. Then,
tasks 2 and 3 communicate onb and finally tasks 3 and 4
on c. Finally, task 4 receives 8 on channelc. Communication
on a cannot occur simultaneously with that ofb because task 2
forces them to occur sequentially. Similarly communications
on b and c are forced to be sequential by task 3. Commu-
nications ona and c cannot occur together because they are
forced to be sequential by the communication onb. Our tool
understands this pattern and reports thata, b, andc can share
buffers because their communications never overlap, thereby
reducing the total buffer requirements for this program by
66%. Although this only represents the savings of a few words
in this example, SHIM communication channels often pass
large objects such as arrays, in which case a 66% reduction
can be substantial. Our experimental results in Section VII
demonstrate this.

III. A BSTRACTING SHIM PROGRAMS

Our technique abstracts a SHIM program down to its
communication patterns to identify situations in which buffers

void main()
{

chan int a, b, c;
{ // Task 1

send a = 6; // Send a (synchronize w/ 2)
} par { // Task 2

recv a; // Receive a (synchronize w/ 1)
send b = a + 1; // Send 7 on b (synchronize w/ 3)

} par { // Task 3
recv b; // Receive b (synchronize w/ 2)
send c = b + 1; // Send 8 on c (synchronize w/ 4)

} par { // Task 4
recv c; // Receive c (synchronize w/ 3)

// c = 8 here
}

}

Fig. 3. A SHIM program that illustrates the need for buffer sharing

can be active simultaneously and thus not shared. We describe
this below.

First, we assume that a SHIM program has no recursion.
While the SHIM language allows it, we can use the techniques
of Edwards and Zeng [12] to remove bounded recursion, which
makes the program finite and renders the buffer minimization
problem decidable. We do not attempt to analyze programs
with unbounded recursion.

Although the recursion-free subset of SHIM is finite-state
and therefore tractable in theory, in practice the full state
space of even a small program is usually too large; a sound
abstraction is necessary. A SHIM task has both computation
and communication, but because buffers are used only when
tasks communicate, we abstract away the computation.

Since we abstract away computation, we must assume that
all branches of any conditional statement can be taken. This
leaves open the possibility that our analysis will concludetwo
channels can be used simultaneously but in fact never are,
but we believe our abstraction is reasonable. In particularit
is safe: we overlap buffers only when we are sure that two
channels can never be used at the same time regardless of
the details of the computation. This choice proved to be wise.
For the programs discussed in Section VII, we never lost any
opportunity for sharing by assuming both sides of a branch are
followed that an exact analysis would have enabled. Besides,
it is impossible to predict at compile-time the exact behavior
of branches that depend on program input.

A. An Example

In Figure 4, themain function consists of two tasks that
communicate through channelsa, b, andc.

The first task communicates on channelsa and b in a
loop; the second task synchronizes on channelsc andb, then
terminates. Once a task terminates, it is no longer compelled
to synchronize on the channels to which it is connected. Thus
after the second task terminates, the first task just talks toitself,
i.e., it is the only process that participates in a rendezvous on
its channels. Thus, terminated processes do not cause other
processes to deadlock.
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void main() {
chan int a, b, c;
{ // Task 1

for ( int i = 0; i < 15; i ++) { // state 1
if ( i % 2 == 0)

send a = 5;
else

send b = 7;
// state 2

send b = 10;
}

// state 3
} par { // Task 2

// state 1
send c = 13;

// state 2
recv b;

// states 3 & 4
}

}

Fig. 4. A (contrived) SHIM program with a loop, conditionals, and a task
that terminates

At compilation time, the compiler dismantles the main
function of Figure 4 into tasksT1 and T2. T1 is connected
to channelsa andb since a and b appear in the code section
of T1. Similarly T2 is connected to channelsb and c. During
the first iteration of the loop inT1, T1 talks to itself ona; since
no other task is connected toa. Meanwhile,T2 talks to itself
on c. Then the two tasks rendezvous onb, communicating the
value 10, thenT2 terminates. During subsequent iterations of
T1, T1 talks to itself on eitherb twice or a andb once each.

In the program in Figure 4, communication onb cannot
occur simultaneously with that on c becauseT2 forces the two
communications to be sequential and thereforeb and c can
share buffers. On the other hand, there is no ordering between
channelsa and c; a and c can rendezvous at the same time
and thereforea andc cannot share buffers. By overlapping the
buffers ofb andc, we can save 33% of the total buffer space.

Our analysis performs the same preprocessing as our static
deadlock detector [2]. It begins by removing bounded recur-
sion and duplicating functions to force every call site to be
unique. This has the potential of producing an exponential
blow-up, but we have not observed this in practice because
bounded recursion in SHIM programs usually generates struc-
ture rather that being algorithmic.

At this point, the call graph of the program is a tree,
enabling us to statically determine all the tasks and the
channels to which each is connected.

Next we disregard all functions that do not affect the
communication behavior of the program. Because we are
ignoring data, their behavior cannot affect whether we consider
a buffer to be sharable. We implicitly assume every such
function can terminate—again, a safe approximation.

Next, we create an automaton that models the control and
communication behavior for each function. Figure 5 shows
automata for the three tasks (main,T1, and T2) of Figure 4.
For each task, we build a deterministic finite state automaton
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Fig. 5. Automata for (a) the main task and (b), (c) its subtasks
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Fig. 6. Composing tasks in Figure 5: (a) MergingT1 and T2. (b) Inlining
T1 ·T2 in M.

whose edges represent choices, typically to communicate. The
states are labeled by program counter values and the transitions
by channel names. Each automaton has a unique final state,
which we draw as a double box. There is a transition from
every terminating state to this final state labeled with a dummy
channel that indicates such a transition. An automaton has
only one final state but can have multiple terminating states.
In Figure 5(b),T1’s state 1 is the terminating state, state 3 is
the final state, and they are connected byτ1, which is like
a classicalε transition. However,ε edges would make the
automaton nondeterministic, so we instead create a dummy
channelτ1 that is unique toT1 and allow T1 to move from
state 1 to state 3 without having to synchronize.

The main function has a dummyπm1 transition from its
start to the entry of state 2(T1‖T2), which represents thepar
statement inmain. In general, we create a dummy channel for
everypar in the program.

Figure 6(a) shows the product ofT1 andT2—an automaton
that represents the combined behavior ofT1 andT2. We con-
structed Figure 6(a) as follows. We start with state (program
counter) values(1,1). At this point, T1 can communicate on
a and move to state 2. Therefore we have an arc from(1,1)
to (2,1) labeleda. Similarly, T2 can communicate onc and
move to its state 2. From state(1,1) it is not possible to
communicate onb because onlyT1 is ready to communicate,
not T2 (T2 is also connected tob). Also at state(1,1), T1 can
terminate by taking the transitionτ1 and moving to(3,1).
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From state(3,1), T2 can transition first to state(3,2)
by communicating on channelc and then to state(3,3) by
communicating onb; these transitions do not change the state
of T1 because it has already terminated.

From (2,1), T2 can communicate onc and change the state
to (2,2). Similarly from (1,2), T1 can communicate ona and
move to(2,2). In state(1,2) it is also possible to communicate
on b since both tasks are ready. Therefore, we have an arcb
from (1,2) to (2,3). SinceT1 may also choose to terminate in
state(1,2), there is an arc from(1,2) to (3,2) on τ1. Other
states follow similar rules.

To determine which channels may share buffers, we con-
sider all states that have two or more outgoing edges. For
example, in Figure 6(a), state(1,1) has outgoing transitions
on a and c. Either of them can fire, so this is a case where
the program may choose to communicate on eithera or c.
This means the contents of both of these buffers are needed at
this point, so we conclude buffers fora andc may not share
memory. We prove this formally below.

From Figure 4, it is evident thata and b can never occur
together becauseT1 forces them to be sequential. However,
since state(1,2) has outgoing transitions ona and b, our
algorithm concludes thata andb can occur together. However,
they actually can not. We draw this erroneous conclusion be-
cause our algorithm does not differentiate between scheduling
choices and control flow choices (i.e., due to conditionals such
as if and while). By doing this we are only adding extra
behavior to the system and disregarding pairs of channels
whose buffers actually could be shared. This is not a big
disadvantage because our analysis remains safe. For this
example, our algorithm only allowsb andc to share buffers.

Figure 6(b) is obtained by inlining the automaton forT1 ·
T2—Figure 6(a)—withinM. This represents the entire program
in Figure 4. Since thepar call is blocking, inlining T1 · T2

within M is safe. We replaced state 2 of Figure 5(a) with
Figure 6(a) to obtain Figure 6(b). The conclusions are the
same as that of Figure 6(a)—onlyb andc can share buffers.

IV. M ERGING TASKS

In this section, we use notation from automata theory to
formalize the merging of two tasks. We show our algorithm
does not generate any false negatives and is therefore safe.

Definition 1: A deterministic finite automaton Tis a 5-tuple
(Q,Σ,δ ,q, f ) where Q is the set of states,Σ is the set of
channels,q ∈ Q1 is the initial state,f ∈ Q is the final state,
andδ ⊆ Q×Σ → Q is the partial transition function.

Definition 2: If T1 andT2 are automata, then thecomposed
automaton T1 · T2 = (Q1 × Q2,Σ1 ∪ Σ2,δ12,〈q1,q2〉,〈 f1, f2〉),
where, for〈p1, p2〉 ∈ Q1×Q2 anda∈ Σ1∪Σ2,

δ12(〈p1, p2〉,a) =















































〈δ1(p1,a), if a∈ ∑1 anda∈ ∑2;

δ2(p2,a)〉

〈δ1(p1,a), p2〉 if a∈ ∑1 and

(a 6∈ ∑2 or p2 = f2);

〈p1,δ2(p2,a)〉 if a∈ ∑2 and

(a 6∈ ∑1 or p1 = f1);

undefined otherwise,

is the transition rule for composition.
In general, ifT1 hasm states andT2 hasn, then the product

T1 ·T2 can have at mostmn states. The states are labeled by a
tuple composed of the program counter values of the individual
tasks. Each state can have at mostk outgoing edges, wherek is
the total number of channels. Consequently, the total number
of edges in the graph can at most bemnk (k accounts for the
extra τ and π channels—one extra channel per task and one
per par).

Below, we demonstrate that the order in which automata
are composed does not matter. Although the state labels will
be different, the states are isomorphic. First, we define exactly
what we mean for two automata to be equivalent.

Definition 3: Two automataT1 = (Q1,Σ1,δ1,q1, f1) and
T2 = (Q2,Σ2,δ2,q2, f2) are equivalent (written T1 ≡ T2) if
and only if Σ1 = Σ2 and there exists a bijective function
b : Q1 → Q2 such thatq2 = b(q1), f2 = b( f1), and for every
p ∈ Q1 and a ∈ Σ1, either bothδ1(p,a) and δ2(b(p),a) are
defined andδ2(b(p),a) = b(δ1(p,a)) or both are undefined.

Lemma 1:Composition is commutative:T1 ·T2 ≡ T2 ·T1.
Proof: By definition,

T1 ·T2 = (Q1×Q2,Σ1∪Σ2,δ12,〈q1,q2〉,〈 f1, f2〉) and

T2 ·T1 = (Q2×Q1,Σ2∪Σ1,δ21,〈q2,q1〉,〈 f2, f1〉).

We claim b(〈p1, p2〉) = 〈p2, p1〉 is a suitable bijective func-
tion. First, noteΣ1∪Σ2 = Σ2∪Σ1, 〈q2,q1〉 = b(〈q1,q2〉), and
〈 f2, f1〉= b(〈 f1, f2〉).

Next,

δ21(b(〈p1, p2〉),a)

= δ21(〈p2, p1〉,a)

=







































〈δ2(p2,a),δ1(p1,a)〉 if a∈ ∑2 anda∈ ∑1;

〈δ2(p2,a), p1〉 if a∈ ∑2 and

(a 6∈ ∑1 or p1 = f1);

〈p2,δ1(p1,a)〉 if a∈ ∑1 and

(a 6∈ ∑2 or p2 = f2);

undefined otherwise;

= b



























































〈δ1(p1,a),δ2(p2,a)〉 if a∈ ∑1 anda∈ ∑2;

〈p1,δ2(p2,a)〉 if a∈ ∑2 and

(a 6∈ ∑1 or p1 = f1);

〈δ1(p1,a), p2〉 if a∈ ∑1 and

(a 6∈ ∑2 or p2 = f2);

undefined otherwise;





















= b
(

δ12(〈p1, p2〉,a)
)

Thus,T1 ·T2 ≡ T2 ·T1.
Lemma 2:Composition is associative:(T1 · T2) · T3 ≡ T1 ·

(T2 ·T3).
Proof: By definition,

(T1 ·T2) ·T3 = ((Q1×Q2)×Q3,(Σ1∪Σ2)∪Σ3,δ(12)3,

〈〈q1,q2〉,q3〉,〈〈 f1, f2,〉, f3〉)

T1 · (T2 ·T3) = (Q1× (Q2×Q3),Σ1∪ (Σ2∪Σ3),δ1(23),

〈q1,〈q2,q3〉〉,〈 f1,〈 f2, f3〉〉).
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We claim b(〈〈p1, p2〉, p3〉) = 〈p1,〈p2, p3〉〉 is a suitable
bijective function. First, note that(Σ1 ∪ Σ2) ∪ Σ3 = Σ1 ∪
(Σ2∪Σ3), 〈q1,〈q2,q3〉〉= b(〈〈q1,q2〉,q3〉), and〈 f1,〈 f2, f3〉〉=
b(〈〈 f1, f2〉, f3〉).

Next,

δ1(23)(b(〈〈p1, p2〉, p3〉),a)

= δ1(23)(〈p1,〈p2, p3〉〉,a)

=















































































































































〈δ1(p1,a),〈δ2(p2,a), if a∈ ∑1 anda∈ ∑2 and
δ3(p3,a)〉〉 a∈ ∑3;

〈δ1(p1,a),〈δ2(p2,a), p3〉〉 if a∈ ∑1 anda∈ ∑2 and
(a 6∈ ∑3 or p3 = f3);

〈δ1(p1,a),〈p2,δ3(p3,a)〉〉 if a∈ ∑1 anda∈ ∑3 and
(a 6∈ ∑2 or p2 = f2);

〈δ1(p1,a),〈p2, p3〉〉 if a∈ ∑1 and
(a 6∈ ∑2 or p2 = f2) and
(a 6∈ ∑3 or p3 = f3);

〈p1,〈δ2(p2,a),δ3(p3,a)〉〉 if a∈ ∑2 anda∈ ∑3 and
(a 6∈ ∑1 or p1 = f1);

〈p1,〈δ2(p2,a), p3〉〉 if a∈ ∑2 and
(a 6∈ ∑1 or p1 = f1) and
(a 6∈ ∑3 or p3 = f3);

〈p1,〈p2,δ3(p3,a)〉〉 if a∈ ∑3 and
(a 6∈ ∑1 or p1 = f1) and
(a 6∈ ∑2 or p2 = f2);

undefined otherwise;

= b























































































































































































































〈〈δ1(p1,a),δ2(p2,a)〉, if a∈ ∑1 anda∈ ∑2 and
δ3(p3,a)〉 a∈ ∑3;

〈〈δ1(p1,a),δ2(p2,a)〉, p3〉 if a∈ ∑1 anda∈ ∑2 and
(a 6∈ ∑3 or p3 = f3);

〈〈δ1(p1,a), p2〉,δ3(p3,a)〉 if a∈ ∑1 anda∈ ∑3 and
(a 6∈ ∑2 or p2 = f2);

〈〈δ1(p1,a), p2〉, p3〉 if a∈ ∑1 and
(a 6∈ ∑2 or p2 = f2) and
(a 6∈ ∑3 or p3 = f3);

〈〈p1,δ2(p2,a)〉,δ3(p3,a)〉 if a∈ ∑2 anda∈ ∑3 and
(a 6∈ ∑1 or p1 = f1);

〈〈p1,δ2(p2,a)〉, p3〉 if a∈ ∑2 and
(a 6∈ ∑1 or p1 = f1) and
(a 6∈ ∑3 or p3 = f3);

〈〈p1, p2〉,δ3(p3,a)〉 if a∈ ∑3 and
(a 6∈ ∑1 or p1 = f1) and
(a 6∈ ∑2 or p2 = f2);

undefined otherwise;









































































= b
(

δ(12)3(〈〈p1, p2〉, p3〉,a)
)

Thus,(T1 ·T2) ·T3 ≡ T1 · (T2 ·T3).
Lemma 3: T1 ·T2 ·T3 · · ·Tn ≡ (((T1 ·T2) ·T3) · · ·) ·Tn

Proof: Since the composition is commutative and as-
sociative, we can build the entire system incrementally by
composing two tasks at a time.

Lemma 4:The outgoing transitions from a given state
represent every possible rendezvous that can occur at that
particular state.

Proof: According to the definition ofδ , we add an
outgoing edge to a state for every rendezvous that can happen
immediately after that state.

Multiple outgoing arcs from a state may represent choices
due to control statements (such asif or while). δ (p1,a) = q2

andδ (p1,b) = q2, then we have two outgoing choices due to
control flow.

On the other hand, a scheduling choice may occur when
composing two tasks. A scheduling choice occurs when the
ordering between two rendezvous is unknown. This happens
when two different pairs of tasks can rendezvous on two
different channels at the same time.

Supposea ∈ Σ1 and a 6∈ Σ2 and δ1(p1,a) = q1, and if
b∈ Σ2 and b 6∈ Σ1 and δ2(p2,b) = q2, thenδ12(〈p1, p2〉,a) =
〈q1, p2〉 and δ12(〈p1, p2〉,b) = 〈p1,q2〉. Thus, for every pos-
sible scheduling choice, we have an outgoing edge from the
given state.

The absence of any choice due to control or scheduling will
leave it with either one or zero outgoing arcs. Consequently,
the outgoing transitions from a given state represent all pos-
sible rendezvous that can occur at that particular state. They
represent both control flow and scheduling choices.

A scheduling choice imposes no ordering among ren-
dezvous, thus allowing the possibility of two or more ren-
dezvous to happen at the same time.

Theorem 1:Two channelsa andb can share buffers if,∀p,
at most one ofδ (p,a) andδ (p,b) is defined, but not both.

Proof: Supposea andb can rendezvous at the same time
and if p1 represents the state of the program counter just before
the rendezvous, then by Lemma 4 we have two outgoing arcs
from p1: δ (p1,a) = q1 andδ (p1,b) = q2

Consequently, for somep, both δ (p,a) and δ (p,b) exist.
Conversely, if for all p at most one ofδ (p,a) and δ (p,b)
exists, we can safely saya andb can share buffers.

Our algorithm does not differentiate between control flow
choices (e.g., due toif or while) and scheduling choices (due
to partial ordering of rendezvous). Both kinds of choices
produce states having multiple outgoing arcs. We conclude
that arcs going out from the same state cannot share buffers.
The multiplicity can be contributed only by control choices
leading to false positives, but our system is safe; whenever
we are unsure, we do not allow sharing.

V. TACKLING STATE SPACE EXPLOSION

If two tasks communicate infrequently, there is a possibility
that the number of states in the product machine will grow too
large to compute. We address this by introducing a threshold,
which limits the stack depth of our recursive product machine
composition procedure and corresponds to the longest simple
path in the product machine. If we reach the threshold, we
stop and treat the two tasks being composed as being separate
(i.e., unable to share buffers with each other).

This heuristic, which we chose because our implementation
was running out of stack space on certain complex examples,
has the advantage of applying exactly when we are unlikely
to find opportunities to share buffer memory. Tightly coupled
tasks tend to have small state spaces—these are exactly those
that allow buffer memory to be shared. Loosely coupled tasks
by definition run nearly independently and thus the commu-
nication pattern of most pairs of channels are uncontrolled,
eliminating the chance to share buffers between them.
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Algorithm 1 compose(p1, p2,Σ1,Σ2,depth, threshold)

if depth> thresholdthen
return “Threshold exceeded”

else
for all a∈ Σ1∪Σ2 do
〈q1,q2〉= δ (〈p1, p2〉,a)
if 〈q1,q2〉 6∈ hash then

Add 〈q1,q2〉 to hash
compose(q1, q2, Σ1, Σ2, depth+1, threshold)

Example Lines Channels Tasks Bytes Buffer Run States
Saved Reduction Time

Source-Sink 35 2 11 4 50 % 0.1 s 394
Pipeline 35 5 9 16388 25 0.1 68
Bitonic Sort 35 5 13 12 60 0.1 135
Prime Sieve 40 5 16 12 60 0.5 122
Berkeley 40 3 11 4 33.33 0.6 285
FIR Filter 110 28 28 52 46.43 13.8 74646
Framebuffer 185 11 16 28 0.002 1.3 15761
FFT 230 12 10 286720 41.6 0.8 2192
JPEG Dec. 990 12 9 983040 55.55 1.5 2192

TABLE I
EXPERIMENTAL RESULTS WITH THE THRESHOLD SET TO8000

Algorithm 1 is the composition algorithm. It recursively
composes two statesp1 and p2. The depth variable is ini-
tialized to 0 and incremented whenever successor states are
composed. Wheneverdepthexceeds the threshold, we declare
failure.

We draw conclusions about local channels (whose scope
has been completely explored) and we remain silent about the
others. We make safe conclusions even when other channels
have not been completely explored.

Theorem 2:If our algorithm concludes that two channelsa
andb can share buffers after abstracting away channelc, then
a andb can still share buffers in the presence ofc.

Proof: If a and b can share buffers, then there is a
sequential ordering between them. By SHIM semantics [11],
introduction of a new channel can create ordering between two
channels that are not ordered, but can never disrupt an existing
sequential ordering unless it introduces a deadlock. Therefore,
if our algorithm concludes that two buffers can share channels,
introducing a new channel does not affect the conclusion since
we assume deadlock-free programs.

We conclude that two channels can share buffers only if
two conditions hold: the two channels have been explored
completely and every state has at most one of the two channels
in its outgoing edge set.

We take a bottom-up approach while merging groups of
tasks. Tasks in a (preprocessed) SHIM program have a tree
structure that arises from nesting ofpar constructs. We merge
the leaf tasks of this tree before merging their parents. We stop
merging when all tasks have exceeded the threshold or if the
complete program has been merged. This approach allows us
to stop whenever we run out of time or space without violating
safety.

IDCT Lines Channels Total Bytes Buffer Run States
Tasks Tasks Saved Reduction time

1 940 2 4 98304 33.33 % 0.5 s 26
2 950 4 5 196608 33.33 0.6 64
3 960 6 6 393216 44.44 0.7 158
4 970 8 7 589824 50 0.9 386
5 980 10 8 786432 53.33 1.2 928
6 990 12 9 983040 55.55 1.5 2192

TABLE II
BEHAVIOR OF THE JPEGDECODER WITH VARYING NUMBER OFIDCT

TASKS (THRESHOLD SET TO8000)

FFT Lines Channels Total Bytes Buffer Run States
Tasks Tasks Saved Reduction time

1 150 2 4 57344 50 % 0.2 s 25
2 160 4 5 114688 50 0.3 63
3 180 6 6 172032 50 0.4 158
4 200 8 7 172032 37.5 0.6 385
5 210 10 8 229376 40 0.7 927
6 230 12 9 286720 41.6 0.8 2192

TABLE III
BEHAVIOR OF FFT WITH VARYING NUMBER OF PROCESSING TASKS

(THRESHOLD SET TO8000)

VI. BUFFERALLOCATION

Our static analysis algorithm produces a setS that con-
tains pairs of channels that can share buffers. LetS′ be the
complement of this set. We represent it as a graph: channels
represent vertices and for every pair〈ci ,c j〉 ∈ S′, we draw an
edge betweenci and c j . Two adjacent vertices cannot share
buffers. Every node has a weight, which corresponds to the
size of the channel.

Minimizing buffer memory consumption, therefore, reduces
to the NP-hard weighted vertex coloring problem [13], [14]:
a graphG is colored withp colors such that no two adjacent
vertices are of the same color. We denote the maximum weight
of a vertex colored with colori as max(i), and we need to find
a coloring such that∑p

i=1max(i) is minimum.
We use a greedy first-fit algorithm as a heuristic. LetG be

a list of groups, initially empty. We order the channels in non-
increasing order of buffer sizes, then add the channels one by
one to the first non-conflicting group inG. If there is no such
group, we create a new group inG and add the channel to this
newly created group. A group is defined to be non-conflicting
if the channel to be added can share its buffer with every
channel already in the group. Channels in the same group can
share buffers. This algorithm runs in polynomial time but does
not guarantee an optimal solution.

VII. E XPERIMENTAL RESULTS

We implemented our algorithm and ran it on various SHIM
programs. Table I lists the results of running the experiments
on a 3 GHz Pentium 4 Linux machine with 1 GB RAM. For
each example, the columns list the number of lines of code in
the program, the total number of channels it uses, the number
of tasks that take part in communication (i.e., excluding any
functions that perform no communication), the number of
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Threshold Bytes Saved Buffer Reduction Runtime States

2000 0 0 % 0.6 s 10024
3000 0 0 1.5 23530
4000 0 0 3.4 51086
5000 52 46.43 12.4 70929
6000 52 46.43 12.8 72101
7000 52 46.43 13.5 73433
8000 52 46.43 13.8 74646

TABLE IV
EFFECT OF THRESHOLD ON THEFIR FILTER EXAMPLE

bytes of buffer memory saved by applying our algorithm, what
percentage this is of overall buffer memory, the time taken
for analysis (including compilation, abstraction, verification,
and grouping buffers), and the number of states our algorithm
explored. For these experiments, we set the threshold to 8000.

Source-Sink is a simple example of a FIFO with two
processes: one that passes data and the other that prints the
results through an output channel, along with a number of
intermediate stages. Pipeline is a modification of source-sink
that uses two buffer processes in between the input and output
process. The Pipeline example has larger buffers because it
passes large amounts of data between stages.

Bitonic Sort uses multiple tasks for that compare and shuffle
pairs of data values. They interact through thirteen channels.

The Prime Sieve example has bounded recursion that is
removed as part of the compilation process [12].

The Berkeley example has data-dependent communication
patterns. We abstract away the data, simplifying the analysis.

Framebuffer contains a line drawing task that drives a
640×480 video framebuffer. The framebuffer hardly gets any
savings because no concrete data is passed among tasks. The
tasks communicate with each other just through synchroniza-
tion signals.

FFT takes an audio file as input, divides it into 1024-sample
blocks performs fixed-point FFT on each block, then does
an inverse FFT. It uses the largest buffers of all the example
programs.

The JPEG decoder is one of the largest applications cur-
rently written in SHIM. It has multiple IDCT processors that
run concurrently on groups of macroblocks passed around
through buffers.

For the JPEG and the FFT Examples, we created varying
number of threads and measured the reduction in buffer
memory; see Table II and Table III. For the JPEG decoder
and FFT, we save upto 55% and 45% respectively of buffer
memory.

The FIR filter is a parallel filter with twenty-eight channels.
It takes about thirteen seconds to analyze this program and the
number of states explored is about eighty thousand. Since this
was one of the more challenging examples for our algorithm,
we tried varying the threshold. Table IV summarizes our
results. As expected, the number of visited states increases as
we increase the threshold. With a threshold of 1000, we hardly
explore the program, but higher thresholds let us explore
more. When the threshold reaches 5000, we have explored
enough of the system to begin to find opportunities for sharing

buffer memory, even though we have not explored the system
completely.

Experimentally, we find that the analysis takes less than a
minute for modestly large programs and that we can reduce
buffer space by 60% and therefore considerable amount of PPE
memory on the Cell processor for examples like the bitonic
sort and the prime number sieve. We have also reported a
subset of our findings in [15].

VIII. A PPLICATIONS

One concrete application of our technique is to reduce
memory consumption in a distributed architecture like the Cell
broadband engine [16], [6], [7]. Secondly, the output of our
algorithm can be used as a strategy to distribute buffers.

A. Optimizing Cell Programs

The Cell processor, one target of our SHIM compiler [5],
uses a heterogeneous architecture consisting of a traditional
64-bit power processor element (PPE) with its own 32K L1
and 512K L2 caches coupled to eight synergistic processor
elements (SPEs).

Each SPE is an 128-bit processor whose ALU can perform
up to 16 byte operations in parallel. Each has 128 128-bit
general-purpose (vector) registers, a 256K local store, but no
cache. Each SPE provides high, predictable performance on
vectors.

Cell programs use direct-memory access (DMA) operations
to transfer data among the PPE and SPEs’ memories. While
addresses are global (i.e., addresses for the PPE’s and each
SPE’s memories are distinct), this is not a shared memory
model. Although direct SPE-to-SPE communication is possi-
ble, it is easier to implement a communication between an SPE
and the PPE since handshaking is easy to implement using the
Cell’s hardware mailboxes.

Our Cell compiler [5] for SHIM uses multiple cores to
provide task-level parallelism. Tasks communicate through
dedicated buffers in the PPE. Since the communication buffers
reside in the PPE, there is a possibility of sharing.

Figure 7 shows the block diagram of a JPEG decoding ap-
plication with 4 IDCT processors and a possible mapping onto
the Cell processor. The JPEG application is easily pipelined, at
least partially: data is read (R) from the input stream, Huffman
decoded (Huf), processed, an IDCT is applied, and finally
written (W) to the output stream.

Both the read (R) and write (W) blocks must be executed
sequentially. The I/O operations are performed by the PPE,
therefore we dedicate PPE threads to read and write opera-
tions. The Huffman decoding blocks are executed in sequence
but by an SPE. The IDCT blocks can run independently and
therefore executed concurrently by different SPEs.

The tasks communicate with each other through channels. In
Figure 7,in, stripe1, stripe2, stripe3, stripe4, out1, out2, out3
and out4 are communication channels. SPE 0 communicates
with other SPEs through channelsstripe1, stripe2, stripe3
andstripe4. The communication buffers of these channels are
located in the PPE. For example, SPE 1 writes tostripe1 in
PPE’s memory and then SPE 2 reads the value from it. The
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Fig. 7. JPEG block diagram with four IDCT processors

Huffman decoder first communicatesstripe1 to SPE 2, then
stripe2 to SPE 3 followed bystripe3 to SPE 4 and finally
stripe4 to SPE 5. Since the communication is ordered, the
four channels can use the same buffer space in the PPE. Each
stripe occupies about 200KB of PPE memory, therefore our
technique saves a total of about 600KB of space.

B. Distributed Buffer Allocation

For many distributed applications, buffers do not reside in
the same memory. This is advantageous in two ways. Firstly,
a single node cannot capacitate all the buffers. Secondly, a
distributed memory allocation is more fault-tolerant thana
centralized memory allocation. Our memory reduction algo-
rithm can be used to find ways of distributing buffers over
different nodes. Secondly, we can specify ways of distributing
tasks among nodes by determining what buffers they access.

Consider a program that has four channelsa, b, c andd that
require buffers of equal sizes. Suppose our algorithm finds that
a andb can share channels, then we puta andb on the same
node. We can also tie to this node, the tasks that accessa and
b frequently. This provides a strategy for distributed memory
allocation that optimizes memory and locality.

IX. L IMITATIONS AND APPLICABILITY TO OTHER

LANGUAGES

Our technique makes some key assumptions about the
structure and behavior of programs that limits its applicability.
While the SHIM language has most of these limitations, our
technique could be adapted to work in other settings.

One major assumption is that the call graph of any program
is a tree, enabling us to statically determine all the tasks and
the channels to which each is connected. Thus, our approach
cannot be directly applied to a program that dynamically
creates tasks or changes its connectivity. While plenty of
programs do have such a dynamic nature, many are static in
the sense we assume.

Secondly, SHIM does not support pointers, implying chan-
nels and tasks are determined at compile time. For languages
that support references to channels and tasks, a good alias

analysis step would have to be added to our technique to make
it work.

We implemented the SHIM communication model as a
library [10] in Haskell, and we believe such a library could be
written for many concurrent languages. For a program that use
our library, it would be necessary to first verify the program
is using the API correctly before applying our technique, but
this should be possible.

chan int x, a, b, c;
{

x = 1;
send x;

} par {
recv x;
if (x > 5) {

recv a;
recv c;

} else {
recv a;
recv b;
recv c;

}
}

Fig. 8. A code fragment that is affected by branch predicate abstraction

For efficiency, our analysis completely ignores data and
assumes that both paths of a branch can be taken, but this
sometimes leads to over-conservative results. Consider Fig-
ure 8. Here, only theelsebranch is taken since the received
x is 1 and therefore less than 5. This code sequentializes
channelsa, b and c. However, our analysis assumes that the
if part of the branch can also be taken, which sequentializes
only a and c. Therefore, our analysis erroneously concludes
that b cannot share buffers witha and c. In practice, such
patterns do not appear very often. In particular, ignoring data
did not negatively influence the results for any of the examples
in Section VII, but our technique could be improved by
performing a global analysis to obtain relations among branch
predicates.
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X. RELATED WORK

Many memory reduction techniques exist for embedded
systems. Greef et al. [17] reduce array storage in a sequential
program by reusing memory. Their approach has two phases:
they internally reduce storage for each array, then globally
try to share arrays. By contrast, our approach looks for
sharing opportunities globally on communication buffers in
a concurrent setting.

StreamIt [18] is a deterministic language like SHIM. Ser-
mulins et al. [19] present cache aware optimizations that
exploit communication pattern in StreamIt programs. They aim
to improve instruction and data locality at the cost of data
buffer size. Instead, we try to reduce buffer sizes.

Chrobak et al. [20] schedule tasks in a multiprocessor
environment to minimize maximum buffer size. Our algorithm
does not add scheduling constraints to the problem: it reduces
the total buffer size without affecting the schedule, and thereby
not affecting the overall speed.

The techniques of Murthy et al. [21], [22], [23], [24],
Teich et al. [25], and Geilen et al. [26] are closest to ours.
They describe several algorithms for merging buffers in signal
processing systems that use synchronous data flow models
[27]. Govindarajan et al. [28] minimize buffer space while ex-
ecuting at the optimal computation rate in dataflow networks.
They cast this as a linear programming problem. Sofronis et
al. [29] propose an optimal buffer scheme with a synchronous
task model as basis. These papers revolve around minimizing
buffers in a synchronous setting; our work solves similar
problems in an asynchronous setting. Our approach finds if
there is an ordering between rendezvous of different channels
based on the product machine. We believe that our algorithm
works on a richer set of programs.

Lin [30], [31] talks about an efficient compilation process
of programs that have communication constructs similar to
SHIM. He uses Petri nets to model the program and uses loop
unrolling techniques. We did not attempt this approach because
loop unrolling would cause the state space to explode even for
small SHIM programs.

Static verification methods already exist for SHIM. In our
previous work [2], we build a synchronous system to find
deadlocks in a SHIM program. We make use of the fact that
for a particular input sequence, if a SHIM program deadlocks
under one schedule it will deadlock under any other. By
contrast, the property we check in this paper is not schedule-
independent: two channels may rendezvous at the same time
under one schedule but may not under another schedule. This
makes our problem more challenging.

There is a partial evaluation method [9] for SHIM that
combines multiple concurrent processes to produce sequential
code. Again, the work makes use of the scheduling inde-
pendence property by expanding one task at a time until it
terminates or blocks on a channel. On the other hand, in this
paper, we expand all possible communications from a given
state and therefore forcing us to consider all tasks that can
communicate from that state, rather than a single task.

XI. CONCLUSIONS

We presented a static buffer memory minimization tech-
nique for the SHIM concurrent language. We obtain the partial
order between communication events on channels by forming
the product machine of potentially all tasks in a program.
To avoid state space explosion, we can treat the program as
consisting of separate pieces.

We remove bounded recursion and expand each SHIM
program into a tree of tasks and use sound abstractions to
construct for each task an automaton that performs communi-
cation. Then we use the merging rules to combine tasks.

We abstract away data and computation from the program
and only maintain parallel, communication and branch struc-
tures. We abstract away the data-dependent decisions formed
by conditionals and loops and do not differentiate between
scheduling choices and conditional branches. This may lead
to false positives: our technique can discard pairs even though
they can share buffers. However, our experimental results
suggest this is not a big disadvantage and in any case our
technique remains safe.

Our algorithm can be practically applied to the SHIM
compiler that generates code for the Cell Broadband Engine.
We found we could save 286KB of the PPE’s memory for an
FFT example and 983KB for a JPEG example.

We reduce memory without affecting the run-time schedule
or performance. By sharing, two or more buffer pointers point
to the same memory location. This can be done at compile-
time during the code-generation phase.

To avoid state space explosion, we introduced a threshold
for limiting the recursion depth our algorithm must handle.We
plan to look into more modular techniques that allow a set of
tasks to be analyzed independently of the remaining sets.

We are now ignoring SHIM’s exceptions [32]. Exceptions
in SHIM provide a convenient way to terminate peer tasks
and they are deterministic in behavior. We plan to consider
exceptions in the future.

Currently, local variables and buffers do not interact with
each other. This is because we make the assumption that the
two need not necessarily reside in the same memory. However,
for shared memory systems, we plan to explore the possibility
of interaction by doing live variable analysis on local variables.
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RESPONSE TOREVIEWERS’ COMMENTS

Reviewer 1

The main weakness of the paper is the restriction to
SHIM, which limits the applicability of the approach.
Most real applications are defined outside of the SHIM
language (and probably would require serious efforts to
be ported).

While our work focuses on SHIM, we believe that the algo-
rithm can be extended to other languages. We discuss how in
the newly added Section IX.

Another weakness is that buffer sharing obviously only
helps if the shared buffers are located on the same
processing element.

Yes, but our algorithm can also be used for distributing buffers
on different processing elements. See Section VIII-B.

It would improve the article, if you could compare it
with the base Memocode paper and outline any additions
(Table II, III; Section VIII).

We conducted more experiments (Table II and Table III) and
reported them in Section VII. Also, we discuss how our
algorithm can be applied in a distributed setting like the Cell
Broadband Engine in Section VIII-A. In Section VIII-B, we
provide a strategy for distributed buffer allocation. We discuss
the limitations of our approach in Section IX. We also made
small additions to Section I, Section III and Section XI.

page 1, end of Section I: mention also the (newly added)
section VIII page 2, left column, first paragraph: "next"
is used many times, with different meaning; consider
rephrasing Listings Fig. 2,3,4 should be reformatted; the
number of self-citations seems large

We have made the changes. We replaced “next” by “send”
and “recv.” Hopefully, it is clearer now. We have also removed
some of the self-citations.
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Reviewer 2

What are exactly the lifetimes of the received channel
values after a “next a” statement? And are these values
kept in the buffer of the channel or is a copy operation
performed?

The sender writes (copies) data to the buffer. The receivers
copy it from the buffer, after which data in the buffer is no
longer used.

It looks like that every "next a" statement has to copy the
value into a local variable. However, sharing buffer space
with the local variable thus eliminating the need for the
copy operation and the duplicate memory requirements
of the local variable and channel buffer would interfere
with the buffer sharing algorithm as presented. I would
like a short discussion how channel buffers and memory
for local variables interact.

The buffer and the local variables need not necessarily re-
side in the same processing element. For instance, in Sec-
tion VIII-A, we show how buffers can reside in the PPE while
the local variables reside in the SPE. In our model, the local
variables and the channel buffers do not interact. But if they do
reside in the same memory, then we need additional analysis
like liveness to see how they can share memory.

Nitpicks: Section VI its a "weighted vertex coloring" not
"weighted vertex cover" problem. The references [15, 16]
are OK again.

Our mistake—we fixed this.

Reviewer 3

For a paper of this nature, the author should more clearly
establish up-front what is general vs. SHIM-specific.
Which aspects of the optimizations are generally bene-
ficial to the compiler optimization community vs. what
is limited to SHIM or CSP programs? Which aspects of
the analysis are generally feasible to other languages vs.
limited to specific properties of SHIM or CSP programs?

We added Section IX to discuss this.

The paper is sprinkled with disclaimers about various
simplifications to the analysis (for example, following
both branches, replicating functions, limiting the stack
depth during composition). They are important practical
concerns when implementing the ideas in this paper, but
as they are currently presented, they will be easy to
miss. The authors only mention in passing that these
simplifications do not impact the quality of the analy-
sis/optimization. It would be useful for the authors to
actually evaluate and report their impact quantitatively.
For example, how many opportunities are you losing by
assuming both sides of a branch are followed vs. an ideal
analysis?

There are a few programs like the one discussed in Sec-
tion IX that do suffer from this. But, for practical the programs
discussed in Section VII, we never lost any opportunity for
sharing by assuming both sides of a branch are followed vs.
an ideal analysis. Also, doing branch prediction at compile

time is not feasible because the branch condition may well
depend on program input.

The paper spends a lot of real-estate stating and proofing
lemmas about the associativity and commutativity of
automata composition. Is this necessary?

The results of our lemmas are not surprising, but what we’re
doing isn’t exactly classical automata composition because
SHIM’s rendezvous semantics are a little different. In any case,
we wanted to include the complete proofs.

The discussion of Table IV in Section VII should do a
much better job explaining the interesting data points. For
example, why do Source-Sync and its modified pipelined
version behave so differently? What does Framebuffer not
get any savings?

We fixed this. In summary, the pipeline uses larger buffers. The
tasks in Framebuffer communicate through synchronization
signals that hardly need any buffers.

Section VIII spends a full column describing a JPEG
implementation in SHIM for the Cell processor. Besides
staking a high-level claim, it doesn’t add much in tech-
nical insights into the analysis or the optimization.

Yes, but we felt that the paper would be incomplete without
a discussion of a specific application for our algorithm.

The author could help the reviewers by identifying the
difference between the current journal draft and the
original conference draft

The first reviewer also asked about this; see our response
above.
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