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Abstract—The advent of multicore processors has made
concurrent programming models mandatory. However, most
concurrent programming models come with a repertoire of
problems. The two major ones are non-determinism and
deadlocks. By determinism, we mean the output behavior of
the program is independent of the interleaving caused by
the schedule and depends only on the input behavior. A few
concurrent models provide deterministic behavior by providing
constructs like barriers and locks that impose additional
synchronization, but the incorrect usage of these constructs
leads to problems like deadlocks.

In this paper, we propose D?C, a new programming model
that guarantees the two desirable properties of concurrency
- determinism and deadlock-freedom. Any program in this
model will be deterministic; the output of the program will
solely depend on the input and not on the interleaving of the
tasks in the program. Additionally, the model cannot introduce
deadlocks. We prove the correctness of our model and evaluate
it with a set of examples.

Keywords-Determinism, Deadlock-Freedom

I. INTRODUCTION

Non-deterministic behavior is one of the biggest problems
of concurrent programming. The program in Figure 1 is non-
deterministic. It uses Cilk[1] like syntax. It creates two tasks
f and g in parallel using the spawn construct and both take
x by reference. Clearly, x is getting modified concurrently
by both the tasks, so the value printed by this program is
either 3 or 5 depending on the schedule.

void f(int ref a) {
a=3;

}

void g(int ref b) {
b=35;
}

main() {
sharedint x = 1;
spawn f(x)
8();
sync; /+ Wait for f and g to finish=/
print x;

}

Figure 1. A non-deterministic concurrent program

Such non-determinism makes debugging very hard be-
cause unwanted behavior is rarely reproducible. Re-running
a non-deterministic program on the same input usually does
not produce the same behavior. Debugging then becomes a
nightmare.

By contrast, all sequential programming languages (e.g.,
C) are deterministic: they produce the same output given the
same input. This helps programmers by making it easy to
verify a program because if a program produces the desired
result for an input during testing, it will do so reliably.

Concurrent models based on atomic transactions and
locks are race free but are not deterministic. For instance,
protecting x by a lock in Figure 1 will still produce non-
deterministic output. Concurrent software languages are
generally based on these models and use traditional shared
memory, locks, and condition variables (e.g., pthreads or
Java). They are non-deterministic because the output of
a program may depend on such things as the operating
system’s scheduling policy, the relative execution rates of
parallel processors, and other things outside the application
programmer’s control. Not only does this demand a pro-
grammer consider the effects of these things when designing
the program, it also means testing can only say a program
may behave correctly on certain inputs, not that it will.

We agree with Bocchino et al. [2] that the programming
environment should ensure input-output determinism. By
determinism, we mean that the program’s output should only
depend on the input, and not on the environment (operating
system schedule, processor, cache etc.). There are a number
of models and tools that aid determinism. We discuss them
in Section VIIL.

While determinism and deterministic concurrent models
are interesting, they give rise to a number of problems.
For example, if the tasks do not synchronize in the right
order defined by the synchronization protocol, we obtain a
deadlock. A deadlock is a situation when two or more tasks
are indefinitely A simple classic example of a deadlock is
lock(p); lock(q), by one task and lock(q); lock(p); by another.
waiting for each other to finish. Deadlocks are frustrating
and generally hard to manually detect during run-time.

One way to address these problems is to build a deter-
ministic, deadlock-free concurrent programming model and
D2C is an instance. Any application written in this model



void f(clocked int ref a) {
/xxis 1 =/
a<—73;
/% x is still 1 */
next; /x The reduction operator is applied */
/% X 18 8 */

}

void g(clocked int ref b) {
int local,
[ xis 1 */
b<—5;
/% x is still 1 %/
local = b; [+ local is 1 */
next; /+ The reduction operator is applied */
/x X is 8 */
local = b; [+ local is 8 */

}

void h (clocked int ref ¢) {
/% x is still 1 #/
next;
/% X is 8 */

}

main() {
clocked(+) int x = 1,
/« If there are multiple writers, reduce
using the + reduction operator */

spawn clocked(x) f(x) ;
spawn clocked(x) g(x);
h(x);
next;
/% X 18 8 */
}
Figure 2. Example of a program written in our model

will guarantee to give the same output for a given input and
will never deadlock. It is important to note that we do not
guarantee termination. We do not try to solve the halting
problem here - our model is applicable only for terminating
programs.

We start by discussing our model in Section II and a few
examples in Section III. We then provide a proof of correct-
ness (determinism and deadlock-freedom) in Section IV. We
provide a basic implementation of the runtime in Section V.
We then evaluate our model by experimenting on a set of
examples in Section VI. We compare our work with related
work in Section VII and finally conclude with future work
in Section VIII.

II. D2C: OUR MODEL

Non-determinism arises when multiple tasks concurrently
modify a shared variable. Our programming model is a
modification to Cilk - we allow multiple tasks to write to a
shared variable concurrently but in a synchronized fashion
and we define a commutative, associative reduction operator
that will operate on these writes.

The program in Figure 2 creates three tasks in parallel

f, g and h. f and g are modifying x. For simplicity, we
have used Cilk[1]-like syntax. Even though f and g are
modifying x concurrently, f sees the effect of g only when
it executes next. Similarly g sees the effect of f only when
it executes next. When a task executes next, it waits for
all tasks that share variables with it, to also execute next.
The next statement is like a barrier. At this statement, the
clocked variables are reduced using the reduction operator.

In the example in Figure 2, the reduction operator is +
because x is clocked with a reduction operator + in Line 27.
0 is the initial value applied to the reduction operator while
reducing. Every task that uses a clocked variable should
explicitly share that variable in the spawn statement. For
instance, in Figure 2, each of f and g , because they
explicitly have clocked(z)) at the spawn statement. The
main task that executes h is clocked on x because main
declares it. At the next statement, every clocked variable in
the task advances its phase and the values offered by clocked
variables in the previous phase are reduced and used in the
current phase.

The statement a <— 3, does a delayed write to variable a,
which is a reference to z, i.e., a value 3 is offered to the
next phase of a. When the task calls next, the task advances
its phase, forcing the value 3 to be seen by other tasks.

Therefore after the next statement, the values offered by
different tasks are reduced and henceforth the value of x is
3 + 5 which is 8 and it is reflected everywhere. Function h
also rendezvous with f and g by executing next and thus
it obtains the new value 8.

A task may share multiple variables. The next statement
is a conjunctive barrier on all clocked variables. A task
holding a clocked variable waits for all other tasks that is
also holding the same clocked variable to either call next or
to terminate.

A single task may offer multiple values to the same
variable in one phase. These values are also reduced using
the commutative associative operator along with the values
offered by other tasks. For instance, in Figure 3, after the
execution of next in task f, the value of x is 4;

The programming model is deterministic because writes
to a particular variable are made visible only in the next
phase. Also, the model is deadlock-free: a task A waiting on
another task B at the next statement will eventually proceed,
because task B at some point will call next or terminate.

A phase is either separated by two nexts or separated
by the creation of the clocked variable and a next. If no
values are offered in a given phase, then the value from the
previous phase is maintained.

If the programmer does not declare a reduction operator,
and there are multiple offers in the same phase, then at the
‘next’ statement following the phase, the offers are rejected
and the value from the previous phase is maintained. If there
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void f(clocked int ref a) {
a<—1;
a<—1;
a<—1;
next;
/% X 18 4 */

}

void g(clocked int ref b) {
int local,
a<—1;
next; /x The reduction operator is applied */
/% X 18 4 */

}

main() {
clocked(+) int x = 0;
/% If there are multiple writers, reduce
using the + reduction operator s/
spawn clocked(x) f(x) ;

8();
/% X 18 4 */

}

Figure 3. Multiple offers in a single phase

void f(int value, clocked int ref b{M]) {
int bucket = value % M,
blbucket] = 1,

}

main() {
constint a[N] = {...};
clocked((+) b[M] ;
Jor i=0;i<N;i++)
spawn clocked(b) f(ali], b);
next; /x Reduction happens here */ ;

Figure 4. Histogram example in D2C

is just one offer, then the following ‘next’ statement makes
this new value visible to other tasks.

III. EXAMPLES IN D2C

We illustrate our model with a few examples: histogram,
pipeline and merge-sort

A. Histogram

The program in Figure 4 calculated the frequencies of val-
ues from array a into array b. Array b is written concurrently.
Therefore it should be clocked. Multiple tasks may write 1
to the same location in b, but these values are reduced using
the 4 operator in Line 11. After the next statement, array
b will contain the correctly computed histogram of array a.

B. Pipeline

The Pipeline example in Figure 5 creates 3 stages in
parallel. Stagel gets the input, stage2 increments it by 1
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and passes it to stage3. Stage3, again increments it by one
and prints the value. Every task reads the value from the
current phase and offers the value to the next phase. For
instance stage2 reads a from the current phase and offers a
new value to b. But this new value of b is seen by stage3
only in the next phase. The pipeline example does not need
a reduction operator because only one task is writing to a
clocked variable at any phase. The pipeline application is a
classic example of a program that has multiple phases but
with single write at each phase.

void stagel(clocked int ref a) {
inti=0;
Sor (5; i++) {
a<—1,
next;

}

void stage2 (clocked int ref a, clocked int ref b) {
next; /* Skip first clock */
Sor ;) {
b<—a+1;/xbis1,2,3... %/
next;

void stage3 (clocked int ref b) {

int c;

next; /x Skip first clock */

next; /+ Skip second clock */

Jor () {
c<—b+1;
print(c); /* Prints 2, 3,4, 5 ...
next;

*/

}

main() {
clockedint a, b, c;
spawn clocked(a) stagel (a);
spawn clocked(b) stage?2 (a, b);
stage3 (b);

Figure 5. Pipeline example in D2C'

C. Merge Sort

The merge-sort (Figure 6) is a classic example of red-
black computation but in place. At every stage, the merging
task reads from the current phase and offers the new
(merged) values to the next phase, does eliminating the need
of two explicit arrays.

The sort function spawns two sort functions on the sub-
arrays and waits for them to finish at the next statement.
The merge function takes the two sub-arrays and merges
them. The merged values are offered to the next phase.
After executing the merge function, the executing task
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returns to its parent function (sort) and terminates itself.
The parent sort that spawned this task waits until all its
children terminate at the next statement in Line 14. After
this statement the values offered at the previous phase are
shifted to the current phase.

void sort (clocked int a[], const int start, const int end) {
/% first half =/
const int fStart = start;
const int fEnd = start + (end — start)/2;
/% second half %/
const int sStart = fEnd + 1;
const int sEnd = end,

if (start == end)
return;

spawn clocked(a) sort (a, fStart, fEnd); /* Sort first half */
sort (a, sStart, sEnd); /+ Sort second half */
next; /+ Wait for the sub—arrays to be sorted */ ;
merge(a, fStart, fEnd, sStart, sEnd);
}

void merge (clocked int ref a[], const int fStart,
const int fEnd, const int sStart, const int sEnd) {

int x = fStart;
int y = sStart,
int 7 = fStart;
const int size = (sEnd — fStart) + 1;

/% Read from a and offer to the next phase of a */

while(x <= fEnd && y <= sEnd) {
ifla(x) < a(y))
a(z++) = a(x++);
else
a(z++) = a(y++);
}
while(x <= fEnd) {
a(z++) = a(x++);

}
while(y <= sEnd) {
a(z++) = a(y++);
}
}

main {
const int N = 100;
clocked int a[ N1,
/« Initialize a below =/

next; /x Move the initialized values to the next phase */
sort(a, 0, N — 1);
next; /x> Move the offered sorted array to the next phase */
print (a) ;
}
}

Figure 6. Merge Sort in D2C

IV. PROOF OF CORRECTNESS

In this section, we prove that our model guarantees the
two desirable properties of concurrency: determinism and

AW -

deadlock-freedom.

A. Determinism

A task always reads from the current phase and writes to
the next phase. Therefore, there are no read-write conflicts.
At the next statement, all concurrent writes are reduced
using an associative, commutative reduction operator. If
there is no declared operator but multiple writes, the writes
are ignored. This ensures write-write conflict freedom.

Whenever a clocked variable is created, the creating task
owns that variable. Whenever the clocked variable is used
by a spawn, the spawned task also owns the variable. At
the next statement, the task waits for all threads that share
clocked variables with it to either call next or terminate.

A task will always synchronize with every task that has al-
ready spawned and shares variables with it. Synchronization
is deterministic. We prove this by contradiction. Consider
two tasks ¢; and t; that share variable x. Suppose a task
t; synchronizes with all tasks that share variable = but
an already spawned t;. This implies that ¢; is not aware
that ¢; has been spawned. Since t; uses variable x, t;’s
parent ¢, should also use variable x. ¢, is aware that ¢,
has already spawned because it is ¢;’s immediate parent.
Therefore ¢, will synchronize with ¢; thereafter. When ¢;
synchronizes with t,’s next, t, will synchronize with ¢;,
forcing ¢; to synchronize with ¢;, and therefore contradicting
the statement that ¢; will miss ¢;. This follows from the fact
that a spawn can happen in serial with a next statement and
not concurrently with it. Secondly, parent should also clock
x if it spawns a child that clocks z, unless z is declared in
the child.

B. Deadlock-freedom

The only statement that a task can wait on is the next
statement. Suppose a task ¢; waits on the next statement for
task ¢;. ¢; waits until ¢; either executes next or terminates.
Every task will either call next or terminate and therefore
t; can never deadlock. The next statement behaves like a
conjunctive join on all clocked variables.

Suppose ¢; waits on t;, t; waits on ty, and so on and
finally ¢, calls next to wait for ¢;, then there is a cycle in
the graph. But ¢, realizes that ¢; has already called next,
and therefore it does not wait on t;, breaking the cycle.

We do not allow Cilk’s sync statements in our model
because it can cause deadlocks with next statements. But a
sync statement can be implemented using a next statement
as follows:
clocked void s;
spawn clocked(s) f(s);
spawn clocked(s) g(s);
next;

The next statement forces all tasks that hold s to either
call next or terminate. If the body of f and g does not use
next, then the role of the next statement is the same as a
sync statement.



V. IMPLEMENTATION

We implemented our model in the X10 programming
language [3]. X10 is a parallel, distributed object-oriented
language. To a Java-like sequential core it adds constructs
for concurrency and distribution through the concepts of
activities and places. An activity is a unit of work, like a
task in Cilk; a place is a logical entity that contains both
activities and data objects. X10 uses the Cilk model of task
parallelism and a task scheduler similar to that of Cilk.

In our implementation, we do not support activities at
multiple places; we assume all activities run in a single place
- something similar to a shared memory system. We force
all shared variables to be clocked. This forces race-freedom.
If a shared variable is not clocked, the compiler throws an
error.

During runtime, we maintain two states for each variable,
write state and read state. If the clocked variable is read,
it is simple read from the read state. If the clock variable
is written, it is written but atomically to the write state.
The value in the write state and the value to be written
are reduced using the reduction operator, and this newly
obtained value is written back to the write state. This access
and modification to the write state is done atomically to
ensure determinism during concurrent writes by different
activities. Whenever, a next is called, we swap the references
to the read state and write state. The write state of the
previous phase is now the read state and vice-versa. We
also clear the write state of the current phase. We ensure
determinism by duplicating states. The amount of memory
is independent on the number of tasks or the interleavings,
but is only twice of the original program.

Every time a value is written to a shared variable, a lock
is obtained. This was a major bottleneck in many of our
benchmarks. To overcome this problem, we maintained a
copy of the shared variable for every thread created in the
program. Since every thread has its own copy, a lock is
not necessary. At the next statement, we reduce the values
offered by the different threads. With this technique, we
achieved about 3 — 4% improvement in performance. Now,
the memory does not depend on the interleavings but is
directly proportional to the number of tasks.

VI. EXPERIMENTAL RESULTS

To test the performance of our model, we ran a number
of examples on a 1.6 GHz Quad-Core Intel Xeon (E5310)
server running Linux kernel 2.6.20 with SMP (Fedora Core
6). The processor “chip” actually consists of two dice, each
containing a pair of processor cores. Each core has a 32 KB
L1 instruction and a 32 KB L1 data cache, and each die has
a 4 MB of shared L2 cache shared between the two cores.

We tested our model with real applications. Figure 7
shows the results. We measured the deterministic implemen-
tation of the applications with the original implementation.

A bar with value below 1 indicates that the deterministic
version ran slower than the original version.

Each of the applications created 4 threads. The All-
Reduce Example is a parallel tree based implementation
of reduction. The Pipeline example passes data through a
number of intermediate stages; at each stage the data is
processed and passed on to the next stage. Convolve is an
application of the Pipeline program.

The N-Queens Problem finds the number of ways in which
N queens can be placed on an N*N chessboard such that
none of them attack each other. The MontiPi application
finds the value of 7 using Monte-Carlo simulation. The
K-Means program partitions n data points into k clusters
concurrently.

The Histogram program sorts an array into buckets based
on the elements of the array. The Merge Sort program sorts
an array of integers. The Prefix example operates on an
array and the resulting array is obtained from the sum of
the elements in the original array up to its index.

The SOR, IDEA, Ray-Trace, Lu-Fact, SparseMatMul
and Series programs are JGF benchmarks. The Ray-tracer
benchmarks renders an image of sixty spheres. It has data
dependent array access.

The SOR example performs Jacobi successive relaxation
on a grid; it continuously updates a location of the grid based
on the location’s neighbors. The Stencil program is the 1-D
version of the SOR.

The Lu-Fact application transforms an N*N matrix into
upper triangular form. The Series benchmark computes the
first N coefficients of the function f(z) = (z 4+ 1)®. The
IDEA benchmark performs International Data Encryption
algorithm (IDEA) encryption and decryption on an array of
bytes. The SparseMatMul program performs multiplication
of two sparse matrices.

The UTS benchmark [4] performing an exhaustive search
on an unbalanced tree. It counts the number of nodes in the
implicitly constructed tree that is parameterized in shape,
depth, size, and imbalance.

For most of the examples, the deterministic version had
performance degradation as expected. However, for some
examples like SOR and Stencil, the deterministic version
performed better. The original version of these examples
had explicit 2-phased barriers to differentiate between reads
and writes, while the deterministic version requires just
a single phase, because the implementation maintains a
duplicate copy to eliminate read-write conflicts. Hence, the
deterministic version performed better. The Java and C++
versions did about the same.

To measure the performance of the synchronizing next
statement, which is the real bottleneck of our model, we
created a shared variable. Each task updates calls nezt 500
times, and between every two nexts, it updates the shared
variable. This forces each task to synchronize with every
other task 500 times. All tasks do exactly the same job.
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Relative performance of the determinized applications on a quad core machine

Figure 7.

Figure 8 shows the output. The x-axis represents the number

of tasks and the y-axis is the time.

Java

In a perfect scalable system, if we add a new task to
the system, then we expect the speed to remain the same

(assuming the number of tasks is equal to the number of

Gt —————

cores). Our system is not perfectly scalable, as expected,
therefore we see a curve rather than a horizontal line for

both the C++ and Java versions in Figure 8.

VII. RELATED WORK
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A number of groups are working on a similar problem.
In this section, we review some of the related work and

compare them with ours.
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Performance of next statement with varying number of tasks

Figure 8.
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Figure 9. Experimental results with 64 cores

A. Determinizing Tools

A number of tools provide determinism. For example,
Kendo is a purely software system that deterministically
multi-threads concurrent applications. Kendo [5] ensures
a deterministic order of all lock acquisitions for a given
program input.

Kendo comes with three shortcomings. It operates com-
pletely at runtime, and there is considerable performance
penalty. Secondly, if we have the sequence lock(A); lock
(B) in one thread and lock(B); lock(A) in another thread, a
deterministic ordering of locks may still deadlock. Thirdly,
the tool operates only when shared data is protected by locks.

Software Transactional Memory (STM) [6] is an alterna-
tive to locks: a thread completes modifications to shared
memory without regard for what other threads might be
doing. At the end of the transaction, it validates and commits
if the validation was successful, otherwise it rolls back and
re-executes the transaction. STM mechanisms avoid races
but do not solve the non-determinism problem.

Berger’s Grace[7] is a run-time tool that is based on
STM. If there is a conflict during commit, the threads are

committed in a particular sequential order (determined by
the order The problem with Grace is that it incurs a lot
of run-time overhead. This dissertation partially solves this
overhead problem by addressing the issue at compile-time
and thereby reducing a considerable amount of run-time
overhead.

Like Grace, Determinator[8] is another tool that allows
parallel processes to execute as long as they do not share
resources. If they do share resources and the accesses are
unsafe, then the operating throws an exception (a page fault).

Cored-Det [9], based on DMP [10] uses a deterministic
token that is passed among all threads. A thread to modify
a shared variable must first wait for the token and for all
threads to block on that token. DMP is hardware based.
Although, deadlocks may be avoided, we believe this setting
is non-distributed because it forces all threads to synchronize
and therefore leads to a considerable performance penalty. In
the D2C setting, only threads that share a particular channel
must synchronize on that channel; other threads can run
independently.

Deterministic replay systems [11], [12] facilitate debug-



ging of concurrent programs to produce repeatable behav-
ior. They are based on record/replay systems. The system
replays a specific behavior (such as thread interleaving) of a
concurrent program based on records. The primary purpose
of replay systems is debugging; they do not guarantee
determinism. They incur a high runtime overhead and are
input dependent. For every new input, a new set of records
is generally maintained.

Like replay systems, Burmin and Sen [13] provide a
framework for checking determinism for multi-threaded
programs. Their tool does not introduce deadlocks, but their
tool does not guarantee determinism because it is merely a
testing tool that checks the execution trace with previously
executed traces to see if the values match. Our goal is to
guarantee determinism at compile time — given a program,
it will generate the same output for a given input.

B. Programming Models

synchronous programming languages like Esterel are
completely deterministic. An Esterel program executes in
clock steps and the outputs are conceptually synchronous
with its inputs. It is a finite state language that is easy to
verify formally. An Esterel program is susceptible to causal-
ities. Causalities are similar to deadlocks, but can be easily
detected at compile-time. The problem with synchronous
models is that they do not perform well. To out knowledge,
most Esterel compilers generate sequential code and there
are hardly any compilers that generate concurrent code off
Esterel.

SHIM [14], [15] is also a deterministic concurrent pro-
gramming language, but the improper use of its constructs
leads to problems such as deadlocks i.e., a SHIM program
may be susceptible to deadlocks. Any program written in
our model is always deadlock-free. Secondly, SHIM allows
only a single task to write at any phase; we allow multiply
writes.

Apart from SHIM, there are a few programming
models and languages that provide explicit determinism.
Streamlt [16], for example is a synchronous dataflow lan-
guage that provides determinism. It has simple static verifi-
cation techniques for deadlock and buffer-overflow. How-
ever, Streamlt is a strict subset of SHIM and Streamlt’s
design limits it to a small class of streaming applications.

In contrast, Cilk [1] is a non-deterministic language that
it covers a larger class of applications. It is C based and
the programmer must explicitly ask for parallelism using
the spawn and the sync constructs. Cilk is definitely more
expressive than D2C. However, Cilk allows data races.
Figure 1, for example, is a non-deterministic concurrent
program in Cilk. Explicit techniques [17] are required for
checking data races in Cilk programs.

X10 [3], [18] is another language that adopts the Cilk
model. X10 is non-deterministic - but we were able to

modify the compiler and runtime with a very few changes
to incorporate our model in it.

The reduction operator in D?C' model is very similar to
map-reduce. However, are a few differences. We can have
multiple phases of map-reduce in D2C'. We have used map-
reduce as one of the means to obtain determinism. Secondly,
not always do we require an operator in D?C. The D?C
model is also applicable for applications with single writes.

C. Type Systems and Verifiers

Finally, type and effect systems like DPJ [19] have been
designed for deterministic parallel programming to see if
memory locations overlap. Our technique is more explicit.
In general, type systems require the programmer to manually
annotate the program. Our model can also be implemented
using annotations in existing programming languages - we
in fact annotated the X10 programming language.

Martin Vechev’s tool [20] finds determinacy bugs in loops
that run parallel bodies. It analyzes array references and
indices to ensure that there are no read-write and

VIII. CONCLUSIONS

We have presented a concurrent model of computing that
addresses the two major problems of concurrency: non-
determinism and deadlocks. We have proved the correctness
of our model. We have evaluated our model and shown that
our model works reasonably well on many examples. Our
model is merely a simple construct that gives determinism,
flexible enough to write a range of codes, and is imple-
mentable with little overhead.

Our current runtime implementation is very basic; We
wish to optimize the implementation especially for array
data structures.

All clocked variables are created on the stack. We do
not deal with heap data structures because it introduces
aliasing problems. We wish to improve our implementation
by allowing variables to be created on the heap. However,
we did not find the lack of heap as a huge bottleneck. We
could build all the applications in Section VI without using
the heap.

Currently, we force all shared variables to be clocked. We
would like to improve our model by incorporating intelligent
static analysis to reduce runtime overhead.

We have implemented our model as annotations in an
existing programming language, X10. We also wish to
explore the possibilities of implementing such a model as
a library.

Lastly, the challenge still remains to verify if the reduction
operator is commutative and associative especially with user
defined operators. However, this problem is simplified be-
cause operators cannot have concurrent activities in it. Nate
Clarke’s work [21] on commutative analysis for instance
uses randomized testing, but does not completely verify the
commutative property.
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