
Buffer Sharing in CSP-like Programs

Nalini Vasudevan
Department of Computer Science

Columbia University
New York, USA

naliniv@cs.columbia.edu

Stephen A. Edwards
Department of Computer Science

Columbia University
New York, USA

sedwards@cs.columbia.edu

Abstract

Most compilers focus on optimizing performance, often
at the expense of memory, but efficient memory use can be
just as important in constrained environments such as em-
bedded systems.

In this paper, we present a memory reduction technique
for the deterministic concurrent programming language
SHIM. We focus on reducing memory consumption by shar-
ing buffers among tasks, which use them to communicate
using CSP-style rendezvous. We determine pairs of buffers
that can never be in use simultaneously and use a shared
region of memory for each pair.

Our technique produces a static abstraction of a SHIM
program’s dynamic behavior, which we then analyze to find
buffers that can share memory. Experimentally, we find our
technique runs quickly on modest-sized programs and can
sometimes reduce memory requirements by half.

Keywords: Concurrency, SHIM, Static Analysis, Buffers,
Optimization

1 Introduction

Embedded systems have limited memory. Overlays,
which amount to time-multiplexing the use of memory re-
gions, is one way to reduce a program’s memory consump-
tion. In this paper, we propose a technique that automat-
ically finds opportunities to safely overlay communication
buffer memory in a concurrent programming language.

The technique we present here determines what buffer
memory may be shared in SHIM programs [3, 24, 25]. This
is closely related to some of the techniques we have used
earlier [28], although we solve a different problem.

SHIM is an asynchronous concurrent language that is
scheduling-independent: its input/output behavior is notaf-
fected by any non-deterministic scheduling choices taken
by its runtime environment due to processor speed, the op-
erating system, scheduling policy, etc. A SHIM program
is composed of sequential tasks that synchronize whenever

they want to communicate. The language is a subset of
Kahn networks [12] (to ensure determinism) that employs
the rendezvous of Hoare’s CSP [10] for communication to
keep its behavior tractable.

SHIM processes communicate through channels. The
sequence of symbols transmitted over each channel is deter-
ministic but the relative order of symbols between channels
is generally undefined. If the sequences of symbols trans-
mitted over two channels do not interfere, we can safely
share buffers. Our technique establishes ordering between
pairs of channels. If we cannot find such an ordering, we
conclude that the pair cannot share memory.

Our analysis is conservative: if we establish two chan-
nels can share buffers, they can do so safely, but we may
miss opportunities to share certain buffers because we do
not model data and may treat the program as separate pieces
to avoid an exponential explosion in analysis cost. Specif-
ically, we build sound abstractions to avoid state space
explosions, effectively enumerating all possible schedules
with a product machine.

One application of our technique is to minimize buffer
memory used by code generated by the SHIM compiler for
the Cell Broadband engine [29]. The heterogeneous Cell
processor [11] consists of a power processor element (PPE)
and eight synergistic processor elements (SPEs). The SHIM
compiler maps tasks onto each of the SPEs. Each SPE has
its own local memory and shares data through the PPE. The
PPE synchronizes communication and holds all the channel
buffers in its local memory. The SPE communicates with
the PPE using mailboxes [13].

We wish to reduce memory used by the PPE by overlap-
ping buffers of different channels. Our static analyzer does
live range analysis on the communication channels and de-
termines pairs of buffers that are never live at the same time.
We demonstrate in Section 7 that the PPE’s memory usage
can be reduced drastically for practical examples such as a
JPEG decoder and an FFT.

Below, we describe the SHIM language (Section 2), how
we model its behavior to analyze buffer usage (Section 3),

void main()
{
chan int a, b;
{

// Task 1
next a = 6; // Send 6 on a (synchronize with task 2)
// a = 6 here
next b; // Receive b (synchronize with task 2)
// b = 8 here

} par {

// Task 2
next a; // Receive a (synchronize with task 1)
// a = 6 here
next b = 8; // Send 8 on b (synchronize with task 1)
// b = 8 here

}
}

Figure 1. A SHIM program in which two tasks
exchange data on channels a and b

how we compose models of SHIM tasks to build a product
machine for the whole program (Section 4), how we avoid
state explosion (Section 5), and how we use these results to
reduce buffer memory usage (Section 6). We present exper-
imental results in Section 7 and related work in Section 8.

2 The SHIM programming language

SHIM [3, 24, 25] is a C-like concurrent programming
language. Tasks in SHIM communicate through multi-way
rendezvous channels. To the usual collection of C-like ex-
pressions and statements it adds two constructs:par for
specifying concurrency andnextfor communication.p par
q runs statementsp andq in parallel and finishes when both
p andq terminate. Next cis the communication construct
that synchronizes on channelc. Next sends data if it ap-
pears on the left side of an assignment and receives data
otherwise. To ensure determinism, SHIM has no global or
shared variables.

In Figure 1, two tasks run concurrently withinmainand
communicate on channelsa andb. Thenext ain task 1 is
a send because it appears on the left side of the assignment.
The next aof task 2 is a receive. Similarly, thenext bof
task 2 is a send andnext bof task 1 is a receive. Thenext ain
task 1 assigns 6 toa and waits for task 2 to receive the value.
The tasks therefore rendezvous at theirnexts, then continue
to the next statement. Next, the two tasks rendezvous at
next b. There, task 1 receives the value 8 from task 2.

The compiler rejects any program with two or more
senders on a channel. If the statementsnext aandnext b = 8
were interchanged, the program would deadlock.

void main()
{
chan int a, b, c;
{

// Task 1
next a = 6; // Send a (synchronize with task 2)

} par {

// Task 2
next a; // Receive a (synchronize with task 1)
next b = a + 1; // Send 7 on b (synchronize with task 3)

} par {

// Task 3
next b; // Receive b (synchronize with task 2)
next c = b + 1; // Send 8 on c (synchronize with task 4)

} par {

// Task 4
next c; // Receive c (synchronize with task 3}
// c = 8 here

}
}

Figure 2. A SHIM program that illustrates the
need for buffer sharing

SHIM can compile to C. Back ends produce code for
a variety of environments: shared-memory multiprocessors
using the pthreads library [6], the IBM Cell Broadband En-
gine [29], and single-threaded processors that do not re-
quire thread support [4]. The SHIM model has also been
implemented as a library for Haskell [30]. Hardware trans-
lation has also been proposed [5] but has not yet been im-
plemented.

In this paper we address an optimizing technique for
SHIM: buffer sharing. In the program in Figure 2, the main
task starts four tasks in parallel. Tasks 1 and 2 communi-
cate ona. Then, tasks 2 and 3 communicate onb and finally
tasks 3 and 4 onc. The value ofc received by task 4 is 8.
Communication ona cannot occur simultaneously with that
of b because task 2 forces them to occur sequentially them.
Similarly communications onb andc are forced to be se-
quential by task 3. Communications ona andc cannot oc-
cur together because they are forced to be sequential by the
communication onb. Our tool understands this pattern and
reports thata, b, andc can share buffers because their com-
munications never overlap, thereby reducing the total buffer
requirements by 66% for this program.

void main() {
chan int a, b, c;
{

// Task 1
for (int i = 0; i < 15; i++) { // state 1

if (i % 2 == 0)
next a = 5;

else
next b = 7;

// state 2
next b = 10;

}
// state 3

} par {

// Task 2
// state 1
next c = 13;
// state 2
next b;
// states 3 & 4

}
}

Figure 3. A (contrived) SHIM program with a
loop, conditionals, and a task that terminates

3 Abstracting SHIM Programs

First, we assume that a SHIM program has no recursion.
We use the techniques of Edwards and Zeng [7] to remove
bounded recursion, which makes the program finite and ren-
ders the buffer minimization problem decidable. We do not
attempt to analyze programs with unbounded recursion.

Although the recursion-free subset of SHIM is finite-
state and therefore tractable in theory, in practice the full
state space of even a small program is usually too large to
analyze exactly; a sound abstraction is necessary. A SHIM
task has both computation and communication, but because
buffers are used only when tasks communicate, we abstract
away the computation.

Since we abstract away computation, we must assume
that all branches of any conditional statement can be taken.
This leaves open the possibility that two channels may ap-
pear to be used simultaneously but in fact never are, but we
believe our abstraction is reasonable. In particular it is safe:
we overlap buffers only when we are sure that two channels
can never be used at the same time regardless of the details
of the computation.

1

2
(T1‖T2)

3

πm1

τm

(a) M (a,b,c,πm1)

1

2

3

a,b

τ1

b

(b) T1 (a,b,τ1)

1

2

3 4

c

b
τ2

(c) T2 (b,c,τ2)

Figure 4. The main task and its subtasks

3.1 An Example

In Figure 3, themain function consists of two tasks that
communicate through channelsa, b, andc.

The first task communicates on channelsa and b in a
loop; the second task synchronizes on channelsc and b,
then terminates. Once a task terminates, it is no longer
compelled to synchronize on the channels to which it is con-
nected. Thus after the second task terminates, the first task
just talks to itself, i.e., it is the only process that participates
in a rendezvous on its channels. Terminated processes do
not cause other processes to deadlock.

At compilation time, the compiler dismantles the main
function of Figure 3 into tasksT1 andT2. T1 is connected
to channelsa andb since a and b appear in the code section
of T1. Similarly T2 is connected to channelsb andc. Dur-
ing the first iteration of the loop inT1, T1 talks to itself ona;
since no other task is connected toa. Meanwhile,T2 talks to
itself onc. Then the two tasks rendezvous onb, communi-
cating the value 10, thenT2 terminates. During subsequent
iterations ofT1, T1 talks to itself on eitherb twice ora and
b once each.

In the program in Figure 3, communication onb cannot
occur simultaneously with that on c becauseT2 forces the
two communications to be sequential and thereforeb andc
can share buffers. On the other hand, there is no ordering
between channelsa andc; a andc can rendezvous at the
same time and thereforea andc cannot share buffers. By
overlapping the buffers ofb andc, we can save 33% of the
total buffer space.

Our analysis performs the same preprocessing as our
static deadlock detector [28]. It begins by removing
bounded recursion using Edwards and Zeng’s technique [7].
Next, we duplicate functions to force every call site to be
unique. This has the potential of producing an exponential
blow-up, but we have not observed it in practice.

At this point, the call graph of the program is a tree, en-
abling us to statically determine all the tasks and the chan-
nels to which each is connected.

Next we disregard all functions that do not affect the
communication behavior of the program. Because we are
ignoring data, their behavior cannot affect whether we con-
sider a buffer to be sharable. We implicitly assume every
such function can terminate—again, a safe approximation.

Next, we create an automaton that models the control
and communication behavior for each function. Figure 4
shows automata for the three tasks (main,T1, andT2) of
Figure 3. For each task, we build a deterministic finite state
automaton whose edges represent choices, typically to com-
municate. The states are labeled by program counter values
and the transitions by channel names. Each automaton has a
unique final state, which we draw as a double box. There is
a transition from every terminating state to this final statela-
beled with a dummy channel that indicates such a transition.
An automaton has only one final state but can have multiple
terminating states. In theT1 of Figure 3, state 1 is the termi-
nating state, state 3 is the final state, and they are connected
by τ1, which is like a classicalε transition. However, a true
ε transition would make the automaton non-deterministic,
so we instead create the dummy channelτ1 that is unique
to T1 and allowT1 to freely move from state 1 to state 3
without having to synchronize with any other another task.

The main function has a dummyπm1 transition from its
start to the entry of state 2(T1‖T2), which represents thepar
statement inmain. In general, we create a dummy channel
for everypar in the program.

Figure 5(a) shows the product ofT1 andT2—an automa-
ton that represents the combined behavior ofT1 andT2. We
constructed Figure 5(a) as follows. We start with state (pro-
gram counter) values(1,1). At this point,T1 can commu-
nicate ona and move to state 2. Therefore we have an arc
from (1,1) to (2,1) labeleda. Similarly, T2 can communi-
cate onc and move to its state 2. From state(1,1) it is not
possible to communicate onb because onlyT1 is ready to
communicate, notT2 (T2 is also connected tob). Also at
state(1,1), T1 can terminate by taking the transitionτ1 and
moving to(3,1).

From state(3,1), T2 can transition first to state(3,2) by
communicating on channelcand then to state(3,3) by com-
municating onb; these transitions do not change the state of
T1 because it has already terminated.

From (2,1), T2 can communicate onc and change the
state to(2,2). Similarly from (1,2), T1 can communicate
on a and move to(2,2). In state(1,2) it is also possible
to communicate onb since both tasks are ready. Therefore,
we have an arcb from (1,2) to (2,3). SinceT1 may also
choose to terminate in state(1,2), there is an arc from(1,2)
to (3,2) on τ1. Other states follow similar rules.

To determine which channels may share buffers, we con-
sider all states that have two or more outgoing edges. For
example, in Figure 5(a), state(1,1) has outgoing transitions
on a andc. Either of them can fire, so this is a case where

the program may choose to communicate on eithera or c.
This means the contents of both of these buffers are needed
at this point, so we conclude buffers fora andc may not
share memory. We prove this formally later in the paper.

From Figure 3, it is evident thata andb can never oc-
cur together becauseT1 forces them to be sequential. How-
ever, since state(1,2) has outgoing transitions ona andb,
our algorithm concludes thata and b can occur together.
However, they actually can not. We draw this erroneous
conclusion because our algorithm does not differentiate be-
tween scheduling choices and control flow choices (i.e., due
to conditionals such asif andwhile). By doing this we are
only adding extra behavior to the system and disregarding
pairs of channels whose buffers actually could be shared.
This is not a big disadvantage because our analysis remains
safe. For this example, our algorithm only allowsb andc to
share buffers.

Figure 5(b) is obtained by inlining the automaton for
T1 ·T2—Figure 5(a)—withinM. This represents the entire
program in Figure 3. Since thepar call is blocking, inlining
T1 ·T2 within M is safe. We replaced state 2 of Figure 4(a)
with Figure 5(a) to obtain Figure 5(b). The conclusions are
the same as that of Figure 5(a)—onlyb and c can share
buffers.

4 Merging Tasks

In this section, we use notation from automata theory to
formalize the merging of two tasks. We show our algorithm
does not generate any false negatives and is therefore safe.

Definition 1 A deterministic finite automatonT is a 5-tuple
(Q,Σ,δ ,q, f) where Q is the set of states,Σ is the set of
channels, q∈ Q1 is the initial state, f∈ Q is the final state,
andδ ⊆ Q×Σ → Q is the partial transition function.

Definition 2 If T1 and T2 are automata, then thecomposed
automatonT1 ·T2 = (Q1×Q2,Σ1∪Σ2,δ12,〈q1,q2〉,〈 f1, f2〉),
where, for〈p1, p2〉 ∈ Q1×Q2 and a∈ Σ1∪Σ2,

δ12(〈p1, p2〉,a) =















































〈δ1(p1,a), if a ∈ ∑1 and a∈ ∑2;

δ2(p2,a)〉

〈δ1(p1,a), p2〉 if a ∈ ∑1 and

(a 6∈ ∑2 or p2 = f2);

〈p1,δ2(p2,a)〉 if a ∈ ∑2 and

(a 6∈ ∑1 or p1 = f1);

undefined otherwise;

is the transition rule for composition.

In general, ifT1 hasmstates andT2 hasn, then the prod-
uct T1 ·T2 can have at mostmn states. The states are la-
beled by a tuple composed of the program counter values of

1,1

2,1

1,22,2

2,3 2,41,3

3,1

3,2

3,3

1,4

3,4

a

cc

a

b b
a

b

τ1

c
τ1

τ2 b

τ1

τ2

τ1

τ2

a,b

(a) T1 ·T2 (a,b,c,τ1,τ2)

1,[,]

2,[1,1]

2,[2,1]

2,[1,2]2,[2,2]

2,[2,3] 2,[2,4]2,[1,3]

2,[3,1]

2,[3,2]

2,[3,3]

2,[1,4]

2,[3,4]3,[]

πm1

a

cc

a

b b
a

b

τ1

c
τ1

τ2 b

τ1

τ2

τm

τ2

τ1

a,b

(b) M ·T1 ·T2(a,b,c,τ1,τ2,πm1)

Figure 5. Composing tasks in Figure 4: (a) Merging T1 and T2. (b) Inlining T1 ·T2 in M.

the individual tasks. Each state can have at mostk outgo-
ing edges, wherek is the total number of channels. Conse-
quently, the total number of edges in the graph can at most
bemnk(k accounts for the extraτ andπ channels—one ex-
tra channel per task and one perpar).

Below, we demonstrate that the order in which automata
are composed does not matter. Although the state labels
will be different, the states are isomorphic. First, we define
exactly what we mean for two automata to be equivalent.

Definition 3 Two automata T1 = (Q1,Σ1,δ1,q1, f1) and
T2 = (Q2,Σ2,δ2,q2, f2) are equivalent(written T1 ≡ T2) if
and only if Σ1 = Σ2 and there exists a bijective function
b : Q1 → Q2 such that q2 = b(q1), f2 = b(f1), and for every
p∈ Q1 and a∈ Σ1, either bothδ1(p,a) andδ2(b(p),a) are
defined andδ2(b(p),a) = b(δ1(p,a)) or both are undefined.

Lemma 1 Composition is commutative: T1 ·T2 ≡ T2 ·T1.

PROOFBy definition,

T1 ·T2 = (Q1×Q2,Σ1∪Σ2,δ12,〈q1,q2〉,〈 f1, f2〉) and

T2 ·T1 = (Q2×Q1,Σ2∪Σ1,δ21,〈q2,q1〉,〈 f2, f1〉).

We claimb(〈p1, p2〉) = 〈p2, p1〉 is a suitable bijective func-
tion. First, noteΣ1 ∪Σ2 = Σ2 ∪Σ1, 〈q2,q1〉 = b(〈q1,q2〉),
and〈 f2, f1〉 = b(〈 f1, f2〉).

Next,

δ21(b(〈p1, p2〉),a)

= δ21(〈p2, p1〉,a)

=







































〈δ2(p2,a),δ1(p1,a)〉 if a∈ ∑2 anda∈ ∑1;

〈δ2(p2,a), p1〉 if a∈ ∑2 and

(a 6∈ ∑1 or p1 = f1);

〈p2,δ1(p1,a)〉 if a∈ ∑1 and

(a 6∈ ∑2 or p2 = f2);

undefined otherwise;

= b



























































〈δ1(p1,a),δ2(p2,a)〉 if a∈ ∑1 anda∈ ∑2;

〈p1,δ2(p2,a)〉 if a∈ ∑2 and

(a 6∈ ∑1 or p1 = f1);

〈δ1(p1,a), p2〉 if a∈ ∑1 and

(a 6∈ ∑2 or p2 = f2);

undefined otherwise;





















= b
(

δ12(〈p1, p2〉,a)
)

Thus,T1 ·T2 ≡ T2 ·T1. 2

Lemma 2 Composition is associative:(T1 ·T2) ·T3 ≡ T1 ·
(T2 ·T3).

PROOFBy definition,

(T1 ·T2) ·T3 = ((Q1×Q2)×Q3,(Σ1∪Σ2)∪Σ3,δ(12)3,

〈〈q1,q2〉,q3〉,〈〈 f1, f2,〉, f3〉)

T1 · (T2 ·T3) = (Q1× (Q2×Q3),Σ1∪ (Σ2∪Σ3),δ1(23),

〈q1,〈q2,q3〉〉,〈 f1,〈 f2, f3〉〉).

We claim b(〈〈p1, p2〉, p3〉) = 〈p1,〈p2, p3〉〉 is a suit-
able bijective function. First, note that(Σ1 ∪ Σ2) ∪
Σ3 = Σ1 ∪ (Σ2 ∪Σ3), 〈q1,〈q2,q3〉〉 = b(〈〈q1,q2〉,q3〉), and
〈 f1,〈 f2, f3〉〉 = b(〈〈 f1, f2〉, f3〉).

Next,

δ1(23)(b(〈〈p1, p2〉, p3〉),a)

= δ1(23)(〈p1,〈p2, p3〉〉,a)

=















































































































































〈δ1(p1,a),〈δ2(p2,a), if a∈ ∑1 anda∈ ∑2 and
δ3(p3,a)〉〉 a∈ ∑3;

〈δ1(p1,a),〈δ2(p2,a), p3〉〉 if a∈ ∑1 anda∈ ∑2 and
(a 6∈ ∑3 or p3 = f3);

〈δ1(p1,a),〈p2,δ3(p3,a)〉〉 if a∈ ∑1 anda∈ ∑3 and
(a 6∈ ∑2 or p2 = f2);

〈δ1(p1,a),〈p2, p3〉〉 if a∈ ∑1 and
(a 6∈ ∑2 or p2 = f2) and
(a 6∈ ∑3 or p3 = f3);

〈p1,〈δ2(p2,a),δ3(p3,a)〉〉 if a∈ ∑2 anda∈ ∑3 and
(a 6∈ ∑1 or p1 = f1);

〈p1,〈δ2(p2,a), p3〉〉 if a∈ ∑2 and
(a 6∈ ∑1 or p1 = f1) and
(a 6∈ ∑3 or p3 = f3);

〈p1,〈p2,δ3(p3,a)〉〉 if a∈ ∑3 and
(a 6∈ ∑1 or p1 = f1) and
(a 6∈ ∑2 or p2 = f2);

undefined otherwise;

= b























































































































































































































〈〈δ1(p1,a),δ2(p2,a)〉, if a∈ ∑1 anda∈ ∑2 and
δ3(p3,a)〉 a∈ ∑3;

〈〈δ1(p1,a),δ2(p2,a)〉, p3〉 if a∈ ∑1 anda∈ ∑2 and
(a 6∈ ∑3 or p3 = f3);

〈〈δ1(p1,a), p2〉,δ3(p3,a)〉 if a∈ ∑1 anda∈ ∑3 and
(a 6∈ ∑2 or p2 = f2);

〈〈δ1(p1,a), p2〉, p3〉 if a∈ ∑1 and
(a 6∈ ∑2 or p2 = f2) and
(a 6∈ ∑3 or p3 = f3);

〈〈p1,δ2(p2,a)〉,δ3(p3,a)〉 if a∈ ∑2 anda∈ ∑3 and
(a 6∈ ∑1 or p1 = f1);

〈〈p1,δ2(p2,a)〉, p3〉 if a∈ ∑2 and
(a 6∈ ∑1 or p1 = f1) and
(a 6∈ ∑3 or p3 = f3);

〈〈p1, p2〉,δ3(p3,a)〉 if a∈ ∑3 and
(a 6∈ ∑1 or p1 = f1) and
(a 6∈ ∑2 or p2 = f2);

undefined otherwise;









































































= b
(

δ(12)3(〈〈p1, p2〉, p3〉,a)
)

Thus,(T1 ·T2) ·T3 ≡ T1 · (T2 ·T3). 2

Lemma 3 T1 ·T2 ·T3 · · ·Tn ≡ (((T1 ·T2) ·T3) · · ·) ·Tn

PROOFSince the composition is commutative and associa-
tive, we can build the entire system incrementally by com-
posing two tasks at a time. 2

Lemma 4 The outgoing transitions from a given state rep-
resent every possible rendezvous that can occur at that par-
ticular state.

PROOF According to the definition ofδ , we add an outgo-
ing edge to a state for every rendezvous that can happen
immediately after that state.

Multiple outgoing arcs from a state may represent
choices due to control statements (such asif or while).
δ (p1,a) = q2 andδ (p1,b) = q2, then we have two outgoing
choices due to control flow.

On the other hand, a scheduling choice may occur when
composing two tasks. A scheduling choice occurs when the
ordering between two rendezvous is unknown. This hap-
pens when two different pairs of tasks can rendezvous on
two different channels at the same time.

Supposea ∈ Σ1 and a 6∈ Σ2 and δ1(p1,a) = q1, and if
b∈Σ2 andb 6∈Σ1 andδ2(p2,b) = q2, thenδ12(〈p1, p2〉,a) =
〈q1, p2〉 andδ12(〈p1, p2〉,b) = 〈p1,q2〉. Thus, for every pos-
sible scheduling choice, we have an outgoing edge from the
given state.

The absence of any choice due to control or scheduling
will leave it with either one or zero outgoing arcs. Conse-
quently, the outgoing transitions from a given state repre-
sent all possible rendezvous that can occur at that particu-
lar state. They represent both control flow and scheduling
choices. 2

A scheduling choice imposes no ordering among ren-
dezvous, thus allowing the possibility of two or more ren-
dezvous to happen at the same time.

Theorem 1 Two channels a and b can share buffers if,∀p,
at most one ofδ (p,a) andδ (p,b) is defined, but not both.

PROOF Supposea andb can rendezvous at the same time
and if p1 represents the state of the program counter just
before the rendezvous, then by Lemma 4 we have two out-
going arcs fromp1: δ (p1,a) = q1 andδ (p1,b) = q2

Consequently, for somep, bothδ (p,a) andδ (p,b) ex-
ists. Conversely, if for allp at most one ofδ (p,a) and
δ (p,b) exist, then we can safely say thata andb can share
buffers. 2

Our algorithm does not differentiate between control
flow choices (e.g., due toif or while) and scheduling
choices (due to partial ordering of rendezvous). Both kinds
of choices produce states having multiple outgoing arcs.
We conclude that arcs going out from the same state can-
not share buffers. The multiplicity can be contributed only
by control choices leading to false positives, but our system
is safe; whenever we are unsure, we do not allow sharing.

5 Tackling State Space Explosion

If two tasks communicate infrequently, there is a possi-
bility that the number of states in the product machine will

grow too large to deal with. We address this by introducing
a threshold, which limits the stack depth of our recursive
product machine composition procedure and corresponds
to the longest simple path in the product machine. If we
reach the threshold, we stop and treat the two tasks being
composed as being separate (i.e., unable to share buffers
between them).

This heuristic, which we chose because our implemen-
tation was running out of stack space on certain complex
examples, has the advantage of applying exactly when we
are unlikely to find opportunities to share buffer memory.
Tightly coupled tasks tend to have small state spaces—these
are exactly those that allow buffer memory to be shared.
Loosely coupled tasks by definition run nearly indepen-
dently and thus the communication pattern of most pairs of
channels are uncontrolled, eliminating the chance to share
buffers between them.

Algorithm 1 is the composition algorithm. It recursively
composes two statesp1 and p2. Thedepthvariable is ini-
tialized to 0 and incremented whenever successor states are
composed. Wheneverdepthexceeds the threshold, we de-
clare failure.

Algorithm 1 compose(p1, p2, Σ1, Σ2, depth, threshold)
if depth> thresholdthen

print “Threshold exceeded”
else

for all a∈ Σ1∪Σ2 do
〈q1,q2〉 = δ (〈p1, p2〉,a)
if 〈q1,q2〉 6∈ hash then

Add 〈q1,q2〉 to hash
compose(q1, q2, Σ1, Σ2, depth+1, threshold)

We draw conclusions about local channels (whose scope
has been completely explored) and we remain silent about
the others. We make safe conclusions even when other
channels have not been completely explored.

Theorem 2 If our algorithm concludes that two channels a
and b can share buffers after abstracting away channel c,
then a and b can still share buffers in the presence of c.

PROOF If a andb can share buffers, then there is a sequen-
tial ordering between them. By SHIM semantics [5], intro-
duction of a new channel can create ordering between two
channels that are not ordered, but can never disrupt an ex-
isting sequential ordering. Therefore, if our algorithm con-
cludes that two buffers can share channels, introducing a
new channel does not affect the conclusion. 2

We conclude that two channels can share buffers only if
two conditions hold: the two channels have been explored
completely and every state has at most one of the two chan-
nels in its outgoing edge set.

We take a bottom-up approach while merging groups of
tasks. Tasks in a (preprocessed) SHIM program have a tree
structure that arises from nesting ofpar constructs. We
merge the leaf tasks of this tree before merging their par-
ents. We stop merging when all tasks have exceeded the
threshold or if the complete program has been merged. This
approach allows us to stop whenever we run out of time or
space without violating safety.

6 Buffer Allocation

Our static analysis algorithm produces a setS that con-
tains pairs of channels that can share buffers. LetS′ be the
complement of this set. We represent it as a graph: channels
represent vertices and for every pair〈ci ,c j〉 ∈ S′, we draw
an edge betweenci andc j . Two adjacent vertices cannot
share buffers. Every node has a weight, which corresponds
to the size of the channel.

Minimizing buffer memory consumption, therefore, re-
duces to the weighted vertex covering problem [17,?]: a
graphG is colored withp colors such that no two adjacent
vertices are of the same color. We denote the maximum
weight of a vertex colored with colori as max(i), and we
need to find a coloring such that∑p

i=1max(i) is minimum.
The problem is NP-hard.

We use a greedy first-fit algorithm to get an approximate
solution. LetG be a list of groups. InitiallyG is empty. We
order the channels in non-increasing order of buffer sizes,
then add the channels one by one to the first non-conflicting
group inG. If there is no such group, we create a new group
in G and add the channel to this newly created group. A
group is defined to be non-conflicting if the channel to be
added can share its buffer with every channel already in the
group. Channels in the same group can share buffers. This
algorithm runs in polynomial time but does not guarantee
an optimal solution.

7 Experimental Results

We implemented our algorithm and ran it on various
SHIM programs. Table 1 lists the results of running the ex-
periments on a 3 GHz Pentium 4 Linux machine with 1 GB
RAM. For each example, the columns list the number of
lines of code in the program, the total number of channels
it uses, the number of tasks that take part in communication
(i.e., excluding any functions that perform no communica-
tion), the number of bytes of buffer memory saved by apply-
ing our algorithm, what percentage this is of overall buffer
memory, the time taken for analysis (including compila-
tion, abstraction, verification, and grouping buffers), and the
number of states our algorithm explored. For these experi-
ments, we set the threshold to 8000.

Source-Sink is a simple example of a FIFO with two pro-
cesses: one that passes data and the other that prints the re-
sults through an output channel. Pipeline is a modification

Example Lines Channels Tasks Bytes Saved Buffer Reduction Runtime States

Source-Sink 35 2 11 4 50 % 0.1 s 394
Pipeline 35 5 9 16388 25 0.1 68
Bitonic Sort 35 5 13 12 60 0.1 135
Prime Number Sieve 40 5 16 12 60 0.5 122
Berkeley 40 3 11 4 33.33 0.6 285
FIR Filter 110 28 28 52 46.43 13.8 74646
Framebuffer 185 11 16 28 0.002 1.3 15761
FFT 230 14 15 344068 50 0.6 3750
JPEG Decoder 1020 7 15 772 50.13 1.8 517

Table 1. Experimental results with the threshold set to 8000

Threshold Bytes Saved Buffer Reduction Runtime States

2000 0 0 % 0.6 s 10024
3000 0 0 1.5 23530
4000 0 0 3.4 51086
5000 52 46.43 12.4 70929
6000 52 46.43 12.8 72101
7000 52 46.43 13.5 73433
8000 52 46.43 13.8 74646

Table 2. Effect of threshold on the FIR filter example

of source-sink that uses two buffer processes in between the
input and output process.

Bitonic Sort uses multiple tasks for that compare and
shuffle pairs of data values. They interact through thirteen
channels.

The Prime Number Sieve example has bounded recur-
sion and uses the technique of [7] to remove it.

The Berkeley example has communication patterns that
are data dependent. We abstract away the data, making it
simpler to analyze.

Framebuffer contains a line drawing task that drives a
640× 480 video framebuffer. The communication pattern
is complicated.

FFT takes an audio file as input, divides it into 1024-
sample blocks performs fixed-point FFT on each block, then
does an inverse FFT. It uses the largest buffers of all the
example programs.

The JPEG decoder is one of the largest applications
currently written in SHIM. It has multiple IDCT proces-
sors that run concurrently on groups of macroblocks passed
around through buffers.

The FIR filter is a parallel filter with twenty-eight chan-
nels. It takes about thirteen seconds to analyze this program
and the number of states explored is about eighty thousand.
Since this was one of the more challenging examples for our
algorithm, we tried varying the threshold. Table 2 summa-
rizes our results. As expected, the number of visited states

increases as we increase the threshold. With a threshold of
1000, we hardly explore the program, but higher thresholds
let us explore more. When the threshold reaches 5000, we
have explored enough of the system to begin to find oppor-
tunities for sharing buffer memory, even though we have not
explored the system completely.

Experimentally, we find that the analysis takes less than a
minute for modestly large programs and that we can reduce
buffer space by 60% and therefore considerable amount of
PPE memory on the Cell processor for examples like the
bitonic sort and the prime number sieve.

8 Related Work

Many memory reduction techniques exist for embedded
systems. Greef et al. [2] reduce array storage in a sequen-
tial program by reusing memory. Their approach has two
phases: they internally reduce storage for each array, then
globally try to share arrays. By contrast, our approach
looks for sharing opportunities globally on communication
buffers in a concurrent setting.

StreamIt [27] is a deterministic language like SHIM. Ser-
mulins et al. [22] present cache aware optimizations that
exploit communication pattern in StreamIt programs. They
aim to improve instruction and data locality at the cost of
data buffer size. Instead, we try to reduce buffer sizes.

Chrobak et al. [1] schedule tasks in a multiprocessor en-
vironment to minimize maximum buffer size. Our algo-

rithm does not add scheduling constraints to the problem:
it reduces the total buffer size without affecting the sched-
ule, and thereby not affecting the overall speed.

The techniques of Murthy et al. [18, 19, 20, 21], Teich
et al. [26], and Geilen et al. [8] are closest to ours. They
describe several algorithms for merging buffers in signal
processing systems that use synchronous data flow mod-
els [14]. Govindarajan et al. [9] minimize buffer space
while executing at the optimal computation rate in dataflow
networks. They cast this as a linear programming prob-
lem. Sofronis et al. [23] propose an optimal buffer scheme
with a synchronous task model as basis. These papers re-
volve around minimizing buffers in a synchronous setting;
our work solves similar problems in an asynchronous set-
ting. Our approach finds if there is an ordering between
rendezvous of different channels based on the product ma-
chine. We believe that our algorithm works on a richer set
of programs.

Lin [15, 16] talks about an efficient compilation process
of programs that have communication constructs similar to
SHIM. He uses Petri nets to model the program and uses
loop unrolling techniques. We did not attempt this approach
because loop unrolling would cause the state space to ex-
plode even for small SHIM programs.

Static verification methods already exist for SHIM. In
our previous work [28], we build a synchronous system to
find deadlocks in a SHIM program. We make use of the
fact that for a particular input sequence, if a SHIM program
deadlocks under one schedule it will deadlock under any
other. By contrast, the property we check in this paper is
not schedule-independent: two channels may rendezvous at
the same time under one schedule but may not under another
schedule. This makes our problem more challenging.

There is a partial evaluation method [4] for SHIM that
combines multiple concurrent processes to produce sequen-
tial code. Again, the work makes use of the scheduling in-
dependence property by expanding one task at a time until
it terminates or blocks on a channel. On the other hand, in
this paper, we expand all possible communications from a
given state and therefore forcing us to consider all tasks that
can communicate from that state, rather than a single task.

9 Conclusions

We presented a static buffer memory minimization tech-
nique for the SHIM concurrent language. We obtain the
partial order between communication events on channels
by forming the product machine of potentially all tasks in
a program. To avoid state space explosion, we can treat the
program as consisting of separate pieces.

We remove bounded recursion and expand each SHIM
program into a tree of tasks and use sound abstractions to
construct for each task an automaton that performs commu-
nication. Then we use the merging rules to combine tasks.

We abstract away data and computation from the pro-
gram and only maintain parallel, communication and
branch structures. We abstract away the data-dependent
decisions formed by conditionals and loops and do not
differentiate between scheduling choices and conditional
branches. This may lead to false positives: our technique
can discard pairs even though they can share buffers. How-
ever, our experimental results suggest this is not a big dis-
advantage and in any case our technique remains safe.

Our algorithm can be practically applied to the SHIM
compiler that generates code for the Cell Broadband En-
gine. We found we could save 344KB of the PPE’s memory
for an FFT example.

We reduce memory without affecting the run-time sched-
ule or performance. By sharing, two or more buffer point-
ers point to the same memory location. This can be done at
compile-time during the code-generation phase.

To avoid state space explosion, we introduced a thresh-
old for limiting the recursion depth our algorithm must han-
dle. We plan to look into more modular techniques that
allow a set of tasks to be analyzed independently of the re-
maining sets.

We currently ignore SHIM’s exceptions [25]. Exceptions
in SHIM provide a convenient way to terminate peer tasks
and they are deterministic in behavior. We also plan to con-
sider exceptions in the future.

Acknowledgements

This work was supported by NSF grant CNS–0720292.

References

[1] M. Chrobak, J. Csirik, C. Imreh, J. Noga, J. Sgall, and G. J.
Woeginger. The buffer minimization problem for multipro-
cessor scheduling with conflicts. InICALP ’01: Proceedings
of the 28th International Colloquium on Automata, Lan-
guages and Programming,, pages 862–874, London, UK,
2001. Springer-Verlag.

[2] E. de Greef, F. Catthoor, and H. de Man. Array placement
for storage size reduction in embedded multimedia systems.
In ASAP ’97: Proceedings of the IEEE International Con-
ference on Application-Specific Systems, Architectures and
Processors, page 66, Washington, DC, USA, 1997. IEEE
Computer Society.

[3] S. A. Edwards and O. Tardieu. SHIM: A deterministic model
for heterogeneous embedded systems. InProceedings of the
International Conference on Embedded Software (Emsoft),
pages 37–44, Jersey City, New Jersey, Sept. 2005.

[4] S. A. Edwards and O. Tardieu. Efficient code generation
from SHIM models. InProceedings of Languages, Compil-
ers, and Tools for Embedded Systems (LCTES), pages 125–
134, Ottawa, Canada, June 2006.

[5] S. A. Edwards and O. Tardieu. SHIM: A deterministic model
for heterogeneous embedded systems.IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 14(8):854–
867, Aug. 2006.

[6] S. A. Edwards, N. Vasudevan, and O. Tardieu. Pro-
gramming shared memory multiprocessors with determin-
istic message-passing concurrency: Compiling SHIM to
Pthreads. InProceedings of Design, Automation, and Test in
Europe (DATE), pages 1498–1503, Munich, Germany, Mar.
2008.

[7] S. A. Edwards and J. Zeng. Static elaboration of recursion
for concurrent software. InProceedings of the Workshop on
Partial Evaluation and Program Manipulation (PEPM), San
Francisco, California, Jan. 2008.

[8] M. Geilen, T. Basten, and S. Stuijk. Minimising buffer
requirements of synchronous dataflow graphs with model
checking. InDAC ’05: Proceedings of the 42nd annual con-
ference on Design automation, pages 819–824, New York,
NY, USA, 2005. ACM.

[9] R. Govindarajan, G. R. Gao, and P. D. Y. Minimizing
buffer requirements under rate-optimal schedule in regular
dataflow networks.Journal of VLSI Signal Processing Sys-
tems, 31(3):207–209, July 2002.

[10] C. A. R. Hoare.Communicating Sequential Processes. Pren-
tice Hall, Upper Saddle River, New Jersey, 1985.

[11] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.
Maeurer, and D. Shippy. Introduction to the Cell mul-
tiprocessor. IBM Journal of Research and Development,
49(4/5):589–604, July/September 2005.

[12] G. Kahn. The semantics of a simple language for parallel
programming. InInformation Processing 74: Proceedings
of IFIP Congress 74, pages 471–475, Stockholm, Sweden,
Aug. 1974. North-Holland.

[13] M. Kistler, M. Perrone, and F. Petrini. Cell multiproces-
sor communication network: Built for speed.IEEE Micro,
26(3):10–23, May-June 2006.

[14] E. A. Lee and D. G. Messerschmitt. Synchronous data flow.
Proceedings of the IEEE, 75(9):1235–1245, Sept. 1987.

[15] B. Lin. Efficient compilation of process-based concurrent
programs without run-time scheduling. InProceedings of
Design, Automation, and Test in Europe (DATE), pages 211–
217, Paris, France, Feb. 1998.

[16] B. Lin. Software synthesis of process-based concurrent pro-
grams. InProceedings of the 35th Design Automation Con-
ference, pages 502–505, San Francisco, California, June
1998.

[17] E. Malaguti, M. Monaci, and P. Toth. Models and heuristic
algorithms for a weighted vertex coloring problem.Journal
of Heuristics, 2008.

[18] P. K. Murthy and S. S. Bhattacharyya. Systematic consoli-
dation of input and output buffers in synchronous dataflow
specifications. IEEE Workshop on Signal Processing Sys-
tems (SiPS), pages 673–682, 2000.

[19] P. K. Murthy and S. S. Bhattacharyya. Shared buffer im-
plementations of signal processing systems using lifetime
analysis techniques.IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 20(2):177–198,
Feb. 2001.

[20] P. K. Murthy and S. S. Bhattacharyya. Buffer merging—
a powerful technique for reducing memory requirements
of synchronous dataflow specifications.ACM Transactions
on Design Automation of Electronic Systems, 9(2):212–237,
Apr. 2004.

[21] P. K. Murthy and S. S. Bhattacharyya.Memory Management
for Synthesis of DSP Software. CRC Press, Inc., Boca Raton,
FL, USA, 2006.

[22] J. Sermulins, W. Thies, R. Rabbah, and S. Amarasinghe.
Cache aware optimization of stream programs. InProceed-
ings of Languages, Compilers, and Tools for Embedded Sys-
tems (LCTES), pages 115–126, New York, NY, USA, 2005.
ACM.

[23] C. Sofronis, S. Tripakis, and P. Caspi. A memory-optimal
buffering protocol for preservation of synchronous seman-
tics under preemptive scheduling. InProceedings of the
International Conference on Embedded Software (Emsoft),
pages 21–33, New York, NY, USA, 2006. ACM.

[24] O. Tardieu and S. A. Edwards. R-SHIM: Deterministic con-
currency with recursion and shared variables. InProceed-
ings of the International Conference on Formal Methods and
Models for Codesign (MEMOCODE), page 202, Napa, Cal-
ifornia, July 2006.

[25] O. Tardieu and S. A. Edwards. Scheduling-independent
threads and exceptions in SHIM. InProceedings of the Inter-
national Conference on Embedded Software (Emsoft), pages
142–151, Seoul, Korea, Oct. 2006.

[26] J. Teich, E. Zitzler, and S. S. Bhattacharyya. Buffer mem-
ory optimization in dsp applications — an evolutionary
approach. InProceedings of Parallel Problem Solving
from Nature (PPSN), pages 885–896, London, UK, 1998.
Springer-Verlag.

[27] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A
language for streaming applications. InProceedings of the
International Conference on Compiler Construction (CC),
volume 2304 ofLecture Notes in Computer Science, pages
179–196, Grenoble, France, Apr. 2002.

[28] N. Vasudevan and S. A. Edwards. Static deadlock detection
for the SHIM concurrent language. InProceedings of the In-
ternational Conference on Formal Methods and Models for
Codesign (MEMOCODE), Anaheim, California, June 2008.

[29] N. Vasudevan and S. A. Edwards. Celling SHIM: Com-
piling deterministic concurrency to a heterogeneous multi-
core. InProceedings of the Symposium on Applied Comput-
ing (SAC), volume III, pages 1626–1631, Honolulu, Hawaii,
Mar. 2009.

[30] N. Vasudevan, S. Singh, and S. A. Edwards. A deterministic
multi-way rendezvous library for Haskell. InProceedings of
the International Parallel and Distributed Processing Sym-
posium (IPDPS), Miami, Florida, Apr. 2008.

