
Programming Shared Memory Multiprocessors with Deterministic
Message-Passing Concurrency: Compiling SHIM to Pthreads

Stephen A. Edwards∗ Nalini Vasudevan Olivier Tardieu
Department of Computer Science INRIA

Columbia University, New York, USA Sophia Antipolis, France
{sedwards, naliniv}@cs.columbia.edu olivier.tardieu@inria.fr

Abstract
Multicore shared-memory architectures are becoming

prevalent and bring many programming challenges. Among
the biggest are data races: accesses to shared resources that
make a program’s behavior depend on scheduling decisions
beyond its control. To eliminate such races, the SHIM con-
current programming language adopts deterministic mes-
sage passing as it sole communication mechanism.

We demonstrate such language restrictions are practical
by presenting a SHIM to C-plus-Pthreads compiler that can
produce efficient code for shared-memory multiprocessors.
We present a parallel JPEG decoder and FFT exhibiting 3.05
and 3.3× speedups on a four-core processor.

1 Introduction

Multicore shared-memory multiprocessors now rule the
desktop and server markets, and are poised to dominate em-
bedded systems [9]. While such architectures provide high
performance per watt, they present many challenges.

Scheduling—instruction ordering—is the biggest issue
in programming shared-memory multiprocessors. While
uniprocessors go to extremes to provide a sequential execu-
tion model despite caches, pipelines, and out-of-order dis-
patch units, multiprocessors typically only provide such a
guarantee for each core in isolation; instructions are at best
partially ordered across core boundaries.

Controlling multiprocessor scheduling is crucial not only
for performance, but because data races enable scheduling
to affect a program’s functional behavior. Worse, the oper-
ating system schedules nondeterministically.

Many tools attempt to detect races in concurrent pro-
grams with shared memory. The SPIN model checker [7]
simulates all execution orders of a concurrent program and
looks for inconsistencies, Eraser [13] looks for consistent
locking behavior, and Atomizer [5] checks atomicity. But
these have limitations: SPIN only works on small models;
Eraser and Atomizer are testing-based and can miss bugs.

As an alternative, the SHIM language [3, 15] only allows
deterministic message-passing communication to guarantee
race freedom. The programming model allows SHIM com-
pilers to use a simple syntactic check to verify that runtime

∗Edwards and Vasudevan are supported by the NSF, Intel, Altera, the
SRC, and NYSTAR.

void h(chan int &A) {
A = 4; send A;
A = 2; send A;

}

void j(chan int A) throws Done {
recv A;
throw Done;

}

void f(chan int &A) throws Done {
h(A); par j(A);

}

void g(chan int A) {
recv A;
recv A;

}

void main() {
try {

chan int A;
f(A); par g(A);

} catch (Done) {}
}

Fig. 1. A concurrent SHIM program with communica-
tion and exceptions

scheduling choices cannot change a program’s I/O behavior.
While this model does restrict how concurrent tasks may in-
teract, the burden for the programmer and the performance
penalty are a small price for correctness.

Here, we demonstrate SHIM facilitates writing interest-
ing, efficient parallel programs for shared-memory mul-
tiprocessors. We implement a parallel JPEG decoder and
an FFT to show how SHIM helps with coding and test-
ing different schedules during design exploration (Sec. 3).
We present a compiler that generates C code that calls the
POSIX thread (“Pthread”) library for shared-memory mul-
tiprocessors (Sec. 4). For the JPEG and FFT examples, our
compiler’s output achieves 3.05 and 3.3× speedups on a
four-core processor (Sec. 5).

2 The SHIM model and language

SHIM [15] is a concurrent programming language designed
to guarantee scheduling independence. The input/output
function of a SHIM program does not depend on schedul-
ing choices, i.e., if two concurrent tasks are ready to run,
choosing one does not affect the program’s function.

It adopts an asynchronous concurrency model, à la Kahn
networks [8] (SHIM tasks can only block on a single chan-
nel), that uses CSP-like rendezvous [6]. Only communica-
tion affects the relative execution rates of concurrent tasks.

The language does not expose shared memory to the
programmer, but it does provide single-sender multiple-
receiver synchronous communication channels and asyn-
chronous exceptions. Both mechanisms were designed to
prevent scheduling decisions from affecting function.

SHIM’s syntax is a C subset augmented with constructs
for concurrency, communication, and exceptions. It has

Huffman

Huffman

Huffman

Process Macroblock

Process Macroblock

Process Macroblock

Write

Write

Write
Fig. 2. Dependencies in JPEG decoding

1
2
3
4
5
6
7

Huf

Huf

Huf
Huf

Process

Process

Process

Process

W W W W

critical path
Fig. 3. Seven-task schedule for JPEG

functions with by-value and by-reference arguments, but no
global variables, pointers, or recursive types.

The par construct starts concurrent tasks. p par q starts
statements p and q in parallel, waits for both to complete,
then runs the next statement in sequence.

To prevent data races, SHIM forbids a variable to be
passed by reference to two concurrent tasks. For example,

void f(int &x) {} void g(int x) {}

void main() {
int x, y;
f(x); par g(x); par f(y); // OK
f(x); par f(x); // rejected because x is passed by reference twice

}

Internally, our compiler only supports parallel function
calls. If p in p par q is not a function call, p is transformed
into a function whose interface—the formal arguments and
whether they are by-reference or by-value—is inferred [15].

SHIM’s channels enable concurrent tasks to synchronize
and communicate without races. The main function in Fig. 1
declares the integer channel A and passes it to f and g, then
f passes it to h and j. Tasks f and h send data with send A.
Tasks g and j receive it with recv A.

A channel resembles a local variable. Passing a channel
by value copies its value, which can be modified indepen-
dently. A channel must be passed by reference to senders.

Communication is blocking: a task that attempts to com-
municate must wait for all other connected tasks to engage
in the communication. If the synchronization completes, the
sender’s value is broadcast to the receivers. In Fig. 1, 4 is
broadcast from h to g and j. Task g blocks on the second
send A because task j does not run a matching recv A.

Like most formalisms with blocking communication,
SHIM programs may deadlock. But deadlocks are easier to
fix in SHIM because they are deterministic: on the same in-
put, a SHIM program will either always or never deadlock.

SHIM’s exceptions enable a task to gracefully interrupt
its concurrently running siblings. A sibling is “poisoned” by

void unpack(unpacker_state &state, stripe &stripe) { ... }
void process(const stripe &stripe, pixels &pixels) { ... }
void write(writer_state &wstate, const pixels &pixels) { ... }

unpacker_state ustate; writer_state wstate;
stripe stripe1, stripe2, stripe3, stripe4;
pixels pixels1; chan pixels pixels2, pixels3, pixels4;
unpack(ustate, stripe1);
{ process(stripe1, pixels1); write(wstate, pixels1);

recv pixels2; write(wstate, pixels2);
recv pixels3; write(wstate, pixels3);
recv pixels4; write(wstate, pixels4);

} par {
unpack(ustate, stripe2);
{ process(stripe2, pixels2); send pixels2;
} par {

unpack(ustate, stripe3);
{ process(stripe3, pixels3); send pixels3;
} par {

unpack(ustate, stripe4);
process(stripe4, pixels4); send pixels4;

} } }

Fig. 4. SHIM code for the schedule in Fig. 3

an exception when it attempts to communicate with a task
that raised an exception or with a poisoned task. For exam-
ple, when j in Fig. 1 throws Done, it interrupts h’s blocked
send A and g’s blocked recv A. An exception handler runs
after all the tasks in its scope have terminated or been poi-
soned.

3 Design exploration with SHIM

SHIM facilitates the coding and testing of different
schedules—a key aspect of design exploration for parallel
systems. To illustrate, we describe implementing two paral-
lel algorithms in SHIM: a JPEG decoder and an FFT.

3.1 Porting and parallelizing a JPEG decoder

We started by porting into SHIM a sequential JPEG decoder
written in C by Pierre Guerrier. SHIM is not a C subset,
so some issues arose. The C code held Huffman tables
in global variables, which SHIM does not support, so we
passed the tables explicitly. It allocated buffers with mal-
loc; we used fixed-size arrays. We discarded a pointer-based
Huffman decoder, preferring instead one that used arrays.

After some preprocessing, the main loop of the orig-
inal program unpacked a macroblock—six Huffman-
encoded 8×8 data blocks (standard 4:2:0 downsampling)—
performed an IDCT on each data block, converted from YUV

to RGB, and blitted the resulting 16×16 pixel block to a
framebuffer. It then wrote the framebuffer to a file. Al-
though macroblocks can be processed independently, un-
packing and writing are sequential (Fig. 2).

We first ran four IDCT transformers in parallel. Unfortu-
nately, this ran slowly because of synchronization overhead.

To reduce overhead, our next version divided the image
into four stripes and processed each independently. Fear-
ing the cost of communication, we devised the seven-task
schedule in Fig. 3, which greatly reduced the number of
synchronizations at the cost of buffer memory.

Huf Huf Huf Huf Huf Huf Huf Huf Huf Huf H

Process Process Pr

Process Process Process

Process Process Process

W W W W W W W

Fig. 5. A pipelined schedule for JPEG

void unpack(unpacker_state &state, row &row) { ... }
void process(in row row, out pixels &pixels)
{ for (;;) { recv row; /∗ IDCT etc. ∗/ send pixels; } }
void write(writer_state wstate, const pixels &pixels) { ... }

unpacker_state ustate; writer_state wstate; int rows;
chan row row1, row2, row3;
chan pixels pixels1, pixels2, pixels3;
try {
{ for (;;) {

unpack(ustate, row1); send row1; if (--rows == 0) break;
unpack(ustate, row2); send row2; if (--rows == 0) break;
unpack(ustate, row3); send row3; if (--rows == 0) break;

} throw Done; } par
process(row1, pixels1); par
process(row2, pixels2); par
process(row3, pixels3); par
{ for (;;) {

recv pixels1; write(wstate, pixels1);
recv pixels2; write(wstate, pixels2);
recv pixels3; write(wstate, pixels3); } }

} catch (Done) {}

Fig. 6. SHIM code for the JPEG schedule in Fig. 5

The Fig. 3 schedule only gave a 1.8× speedup because
the seventh task waits for all the other stripes to be unpacked
and then everything waits for the seventh task. The arrow in
Fig. 3 shows the critical path, which includes the total cost
of Huffman decoding and 1/4 of the IDCTs.

To strike a balance between the two approaches, we fi-
nally settled on the more fined-grained schedule in Fig. 5.
Each task processes a row of macroblocks at a time (e.g., 64
macroblocks for a 1024-pixel-wide image). This schedule
spends less time waiting than the stripe-based approach and
synchronizes less often than the block-based approach.

3.2 Parallelizing an FFT

We also coded in SHIM a pipelined FFT to test the effects
of numerical roundoff. Its core is the FFT from Numerical
Recipes [11], which we rewrote to use signed 4.28 fixed-
point arithmetic. We added code that parses a .wav file, runs
blocks of 1024 16-bit samples through the FFT, through an
inverse FFT, then writes the samples to another .wav file.

Our FFT uses a schedule similar to that of the more com-
plex JPEG decoder: one task reads 1024-sample blocks and
feeds them to four FFT tasks in a round-robin manner. Each
reads its sample block, performs the FFT/inverse FFT oper-
ation, and sends its block to a writer task, which receives
sample blocks in order and writes them sequentially.

Synchronization costs limited this to a 2.3× speedup
on four processors, so we made it process 16 1024-sample
blocks, improving performance to 3.3×.

3.3 Race freedom

Both the JPEG and FFT examples illustrate that dividing and
scheduling computation tasks is critical in achieving perfor-
mance on parallel hardware. Although data dependencies in
JPEG were straightforward, finding the right schedule took
some effort. With traditional concurrent formalisms, it is
easy to introduce data races during design exploration.

SHIM’s channels and exceptions cannot introduce races.
E.g., in Fig. 6, the first task throws an exception after read-
ing all the rows. SHIM semantics ensure that the three row-
processing tasks and the writing task terminate just after
they have completed processing all the rows.

SHIM also guarantees data dependencies are respected.
For instance, the SHIM compiler reject attempts to run un-
packers in parallel because of the shared pass-by-reference
state (mostly, position in the file):
void unpack(unpacker_state &state, stripe &stripe) { ... }

unpack(ustate, stripe1); par unpack(ustate, stripe2); // rejected

4 Generating Pthreads code for SHIM

In this section, we describe our main technical contribution:
a SHIM compiler that generates parallel C code that uses
the Pthread library’s threads (independent program coun-
ters and stacks that share program and data memory), mu-
texes (mutual exclusion objects for synchronizing access to
shared memory), and condition variables (can block and re-
sume execution of other threads).

4.1 Mutexes and condition variables

Any Pthreads program must decide how many threads it
will use, the number of mutexes, the partition of shared
state, and the number and meaning of condition variables.
These are partly engineering questions: coarse-grain lock-
ing leads to fewer locking operations but more potential
for contention; finer locking has more overhead. Locking
is fairly cheap, typically consisting of a (user-space) func-
tion call containing an atomic test-and-set instruction, but is
not free. On one machine, locking and unlocking a mutex
took 74× as long as a floating point multiply-accumulate.

We generate code that uses one mutex/condition variable
pair for each task and for each channel. Fig. 7 shows the
data structures we use. These are “base classes:” the type of
each task and channel includes additional fields that hold the
formal arguments passed to the task and, for each function
to which a channel is passed by value, a pointer to the local
copy of the channel’s value. To reduce locking, we track
exception “poisoning” in both tasks and channels.

4.2 The static approach

For efficiency, our compiler assumes the communication
and call graph of the program is static. We reject programs
with recursive calls, allowing us to transform the call graph
into a call tree. This duplicates code to improve perfor-
mance: fewer channel aspects are managed at run time.

#define lock(m) pthread_mutex_lock(&m)
#define unlock(m) pthread_mutex_unlock(&m)
#define wait(c, m) pthread_cond_wait(&c, &m)
#define broadcast(c) pthread_cond_broadcast(&c)
enum state { STOP, RUN, POISON };
struct task {

pthread_t thread;
pthread_mutex_t mutex;
pthread_cond_t cond;
enum state state;
unsigned int attached_children;
/∗ Formal arguments... ∗/

};

struct channel {
pthread_mutex_t mutex;
pthread_cond_t cond;
unsigned int connected;
unsigned int blocked;
unsigned int poisoned;
/∗ Local copy pointers... ∗/

};

Fig. 7. Shared data structures for tasks and channels

lock(A.mutex); /∗ acquire lock for channel A ∗/
A.blocked |= (A_h|A_f|A_main); /∗ block h and ancestors on A ∗/
event_A(); /∗ alert channel of the change ∗/
while (A.blocked & A_h) { /∗ while h remains blocked ∗/

if (A.poisoned & A_h) { /∗ were we poisoned? ∗/
unlock(A.mutex); goto _poisoned;

}
wait(A.cond, A.mutex); /∗ wait on channel A ∗/

}
unlock(A.mutex); /∗ release lock for channel A ∗/

Fig. 8. C code for send A in function h()

We encode in a bit vector the subtree of functions con-
nected to a channel. Since we know at compile time which
functions can connect to each channel, we assign a unique
bit to each function on a channel. We check these bits at run
time with logical mask operations. In the code, something
like A_f is a constant that holds the bit our compiler assigns
to function f connected to channel A, such as 0x4.

4.3 Implementing rendezvous communication

Implementing SHIM’s multiway rendezvous communica-
tion with exceptions is the main code generation challenge.

The code at a send or receive is straightforward: it locks
the channel, marks the function and its ancestors as blocked,
calls the event function for the channel to attempt the com-
munication, and blocks until communication has occurred.
If it was poisoned, it branches to a handler. Fig. 8 is the code
for send A in h in Fig. 1.

For each channel, our compiler generates an event func-
tion that manages communication. Our code calls an event
function when the state of a channel changes, such as when
a task blocks or connects to a channel.

Fig. 9 shows the event function our compiler generates
for channel A in Fig. 1. While complex, the common case is
quick: when the channel is not ready (one connected task
is not blocked on the channel) and no task is poisoned,
A.connected != A.blocked and A.poisoned == 0 so the bod-
ies of the two if statements are skipped.

If the channel is ready to communicate, A.blocked ==
A.connected so the body of the first if runs. This clears the
channel (blocked = 0) and main’s value for A (passed by ref-
erence to f and h) is copied to g or j if connected.

If at least one task connected to the channel has been poi-
soned, A.poisoned != 0 so the body of the second if runs.

void event_A() {
unsigned int can_die = 0, kill = 0;
if (A.connected == A.blocked) { /∗ communicate ∗/

A.blocked = 0;
if (A.connected & A_g) *A.g = *A.main;
if (A.connected & A_j) *A.j = *A.main;
broadcast(A.cond);

} else if (A.poisoned) { /∗ propagate exceptions ∗/
can_die = blocked & (A_g|A_h|A_j); /∗ compute can_die set ∗/
if (can_die & (A_h|A_j) == A.connected & (A_h|A_j))

can_die |= blocked & A_f;
if (A.poisoned & (A_f|A_g)) { /∗ compute kill set ∗/

kill |= A_g; if (can_die & A_f) kill |= (A_f|A_h|A_j);
}
if (A.poisoned & (A_h|A_j)) { kill |= A_h; kill |= A_j; }
if (kill &= can_die & ~A.poisoned) { /∗ poison some tasks? ∗/

unlock(A.mutex);
if (kill & A_g) { /∗ poison g if in kill set ∗/

lock(g.mutex);
g.state = POISON;

unlock(g.mutex); }
/∗ also poison f, h, and j if in kill set... ∗/
lock(A.mutex);

A.poisoned |= kill; broadcast(A.cond);
} } }

Fig. 9. C code for the event function for channel A

lock(main.mutex); main.state = POISON; unlock(main.mutex);
lock(f.mutex); f.state = POISON; unlock(f.mutex);
lock(j.mutex); j.state = POISON; unlock(j.mutex);
goto _poisoned;

Fig. 10. C code for throw Done in function j()

This code comes from unrolling a recursive procedure at
compile time, which is possible because we know the struc-
ture of the channel (i.e., which tasks connect to it). The
speed of such code is a key advantage over a library.

This exception-propagation code attempts to determine
which tasks, if any, connected to the channel should be poi-
soned. It does this by manipulating two bit vectors. A task
can_die iff it is blocked on the channel and all its children
connected to the channel (if any) also can_die. A poisoned
task may kill its sibling tasks and their descendants. Finally,
the code kills each task in the kill set that can_die and was
not poisoned before by setting its state to POISON and up-
dating the channel accordingly (A.poisoned |= kill).

Code for throwing an exception (Fig. 10) marks as POI-
SON all its ancestors up to where it will be handled. Be-
cause the compiler knows the call tree, it knows how far to
“unroll the stack,” i.e., how many ancestors to poison.

4.4 Starting and terminating tasks

It is costly to create and destroy a POSIX thread because it
usually requires a system call, each has a separate stack, and
doing so interacts with the operating system’s scheduler. To
minimize this overhead, because we know the call graph of
the program at compile time, our compiler generates code
that creates at the beginning as many threads as the SHIM

program will ever need. These threads are only destroyed
when the SHIM program terminates; if a SHIM task termi-
nates, its POSIX thread blocks until it is re-awakened.

lock(A.mutex); /∗ connect ∗/
A.connected |= (A_f|A_g);
event_A();

unlock(A.mutex);
lock(main.mutex);

main.attached_children = 2;
unlock(main.mutex);
lock(f.mutex); /∗ pass args ∗/

f.A = &A;
unlock(f.mutex);

/∗ A is dead on entry for g,
so do not pass A to g ∗/

lock(f.mutex); /∗ run f() ∗/
f.state = RUN; broadcast(f.cond);

unlock(f.mutex);
lock(g.mutex); /∗ run g() ∗/

g.state = RUN; broadcast(g.cond);
unlock(g.mutex);
lock(main.mutex); /∗ wait for children ∗/

while (main.attached_children)
wait(main.cond, main.mutex);

if (main.state == POISON) {
unlock(main.mutex);
goto _poisoned; }

unlock(main.mutex);

Fig. 11. C code for calling f() and g() in main()

int *A; /∗ value of channel A ∗/

_restart:
lock(f.mutex);

while (f.state != RUN)
wait(f.cond, f.mutex);

A = f.A; /∗ copy arg. ∗/
unlock(f.mutex);

/∗ body of the f task ∗/

_terminated:
lock(A.mutex); /∗ disconnect f ∗/

A.connected &= ~A_f;
event_A();

unlock(A.mutex);
lock(f.mutex); /∗ stop ∗/

f.state = STOP;
unlock(f.mutex);
goto _detach;

_poisoned:
lock(A.mutex); /∗ poison A ∗/

A.poisoned |= A_f;
A.blocked &= ~A_f;

event_A();
unlock(A.mutex);
lock(f.mutex); /∗ wait for children ∗/

while (f.attached_children)
wait(f.cond, f.mutex);

unlock(f.mutex);
lock(A.mutex); /∗ disconnect j, h ∗/

A.connected &= ~(A_h|A_j);
A.poisoned &= ~(A_h|A_j);
event_A();

unlock(A.mutex);
_detach: /∗ detach from parent ∗/
lock(main.mutex);
--main.attached_children;
broadcast(main.cond);

unlock(main.mutex);
goto _restart;

Fig. 12. C code in function f() controlling its execution

Fig. 11 shows the code in main that runs f and g in par-
allel. It connects f and g to channel A, sets its number of
live children to 2, passes function parameters, then starts f
and g. The address for the pass-by-reference argument A is
passed to f. Normally, a value for A would be passed to g,
but our compiler found this value is not used so the copy
is avoided (discussed below). After starting f and g, main
waits for both children to return. Then main checks whether
it was poisoned, and if so, branches to a handler.

Reciprocally, Fig. 12 shows the code in f that controls
its execution: an infinite loop that waits for main, its parent,
to set its state field to running, at which point it copies its
formal arguments into local variables and runs its body.

If a task terminates normally, it cleans up after itself. In
Fig. 12, task f disconnects from channel A, sets its state to
STOP, and informs main it has one less running child.

By contrast, if a task is poisoned, it may still have chil-
dren running and it may also have to poison sibling tasks
so it cannot entirely disappear yet. In Fig. 12, task f, if poi-
soned, does not disconnect from A but updates its poisoned
field. Then, task f waits for its children to return. At this
time, f can disconnect its (potentially poisoned) children
from channels, since they can no longer poison siblings. Fi-
nally, f informs main it has one less running child.

4.5 Optimizations

SHIM draws no distinction between sequential C-like func-
tions and concurrent tasks; our compiler treats them differ-
ently for efficiency. Our compiler distinguishes tasks from
functions, which must not take any channel arguments, con-
tain local channels, throw or handle exceptions, have paral-
lel calls, call any tasks, or be called in parallel. Tasks are
implemented as described above—each is assigned its own
thread. Functions follow C’s calling conventions.

Unlike Java, SHIM passes scalars, structures, and arrays
by value unless marked as by-reference. This is convenient
at parallel call sites to avoid interference among concur-
rent tasks. However, if tasks only read some data, the data
can be shared among them for efficiency. Similarly, a chan-
nel can be shared among tasks that never update the chan-
nel’s value between recv instructions. We introduced a C++-
like const specifier that prohibits assignments to a variable,
channel, or function parameter. The compiler allows multi-
ple concurrent const by-reference parameters and allocates
a shared copy for const parameters passed by value.

We implemented another optimization to reduce super-
fluous copies of large data structures. Normally, the current
value of a channel is copied when the channel is passed by
value, but copying is unnecessary if the value is never used
before the next value is recv’d. The overhead can be sub-
stantial for arrays. We perform live variable analysis to de-
termine which arguments are dead on entry. E.g., in
void myfunc(chan int input[65536]) { recv input; ... }

the input channel value is dead on entry and will not be
copied at any callsite for myfunc, eliminating a 256K copy.

5 Experimental results

We implemented our SHIM compiler in OCAML. Code spe-
cific to the Pthreads backend is only about 2000 lines.

To test the performance of our generated code, we ran it
on a 1.6 GHz Quad-Core Intel Xeon (E5310) server running
Linux kernel 2.6.20 with SMP (Fedora Core 6). The proces-
sor “chip” actually consists of two dice, each containing a
pair of processor cores. Each core has a 32 KB L1 instruc-
tion and a 32 KB L1 data cache, and each die has a 4 MB
of shared L2 cache shared between the two cores.

We compiled the generated C with gcc 4.1.1 with -O7
and -pthread options. We timed it using the time command
and ran sync to flush the disk cache. We used Dag Wieers’s
run command1 to limit the number of available cores. The
JPEG program uses much more stack space than typical C
programs because it stores all data on the stack instead of
the heap. We raised the stack size to 16 MB with ulimit -s.

Table 1 shows results for the JPEG decoder. We ran it on a
20 MB earth image from NASA2 and varied both the number
of available processors and the number of row-processing

1www.ccur.com/oss
2world.200409.3x21600x10800.jpg from earthobservatory.nasa.gov

Table 1. Experimental Results for the JPEG decoder
Cores Tasks Time Total Total/Time Speedup

1 † 25s 20s 0.8 1.0× (def)

1 1+3+1 24 24 1.0 1.04
2 1+3+1 13 24 1.8 1.9
3 1+3+1 11 24 2.2 2.3
4 1+3+1 8.7 25 2.9 2.9

4 1+1+1 16 24 1.5 1.6
4 1+2+1 9.3 25 2.7 2.7
4 1+3+1 8.7 25 2.9 2.9
4 1+4+1 8.2 25 3.05 3.05
4 1+5+1 8.6 25 2.9 2.9

† Reference single-threaded C implementation.
Run on a 20 MB 21600× 10800 image that expands to 668 MB. Tasks is
the number of parallel threads (read and unpack + process row + write),
Time is wallclock, Total is user + system time, Total/Time is the paral-
lelization factor, speedup is with respect to the reference implementation.

tasks in our program. The speedup due to parallelization
plateaued at 3.05, which we attribute to the sequential na-
ture of the Huffman decoding process.

Table 2 shows statistics for our FFT. We compared hand-
written C with sequential SHIM and two parallel SHIM ver-
sions, one with six tasks that work on single 1024-sample
blocks and one that works on sixteen such blocks. The first
parallel implementation has overhead from synchroniza-
tion and communication. The “Parallel 16” version com-
municates less to reduce this overhead and achieve a 3.3×
speedup: 82% of an ideal 4× speedup on four cores.

6 Related work

Like SHIM, the StreamIt language [16] is deterministic, but
its dataflow model is a strict subset of SHIM’s and there is
no StreamIt compiler for shared memory machines.

Other concurrent languages use different models. The
most common is “loops-over-arrays,” embodied, e.g., in
compilers for OpenMP [17]. This would be awkward for a
schedule such as Fig. 5. The Cilk language [2] speculates to
parallelize sequential code. The Guava [1] Java dialect pre-
vents unsynchronized access to shared objects by enforcing
monitor use with a type system. Like SHIM, it aims for race
freedom, but uses a very different model.

7 Conclusions

A good parallel algorithm reliably computes the result
quickly. Unlike most parallel languages, SHIM guarantees
reliability by preventing data races. Correctness remains a
challenge, but at least running a SHIM program on a test
case gives consistent results for any scheduling policy.

SHIM is helpful during design exploration when testing
different schedules; its determinacy makes it easy to obey
data dependencies. Its C-like syntax facilitates porting ex-
isting code. We demonstrated this on a JPEG decoder.

Our SHIM compiler generated code for parallel programs
that runs on a four-core processor over three times faster
than sequential C. Sequential SHIM code runs no slower.

Table 2. Experimental Results for the FFT
Code Cores Time Total Total/Time Speedup

Handwritten C 1 2.0s 2.0s 1.0 1.0× (def)
Sequential SHIM 1 2.1 2.1 1.0 0.95
Parallel SHIM 1 2.1 2.1 1.0 0.95
Parallel SHIM 2 1.3 2.0 1.5 1.5
Parallel SHIM 3 0.92 2.1 2.2 2.2
Parallel SHIM 4 0.86 2.1 2.4 2.3
Parallel 16 1 1.9 1.9 1.0 1.1
Parallel 16 2 1.0 1.9 1.9 2.0
Parallel 16 3 0.88 1.9 2.1 2.2
Parallel 16 4 0.6 1.9 3.2 3.3

Run on a 40 MB audio file—20 000 1024-point FFTs.

Our plans for SHIM include formal verification, code
generation fusing parallelism with static scheduling [4], ex-
tracting parallelism [10], data distribution [14], communi-
cation optimization [12], and the synthesis of hardware.

[1] D. F. Bacon et al. Guava: A dialect of Java without data races. In
Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), pp. 382–400, Minneapolis, Minnesota, Oct. 2000.

[2] R. D. Blumofe et al. Cilk: An efficient multithreaded runtime system.
In Principles and Practice of Parallel Programming (PPoPP), pp.
207–216, Santa Barbara, CA, July 1995.

[3] S. A. Edwards and O. Tardieu. SHIM: A deterministic model for
heterogeneous embedded systems. In Embedded Software (Emsoft),
pp. 37–44, Jersey City, NJ, Sept. 2005.

[4] S. A. Edwards and O. Tardieu. Efficient code generation from SHIM
models. In Languages, Compilers, and Tools for Embedded Systems
(LCTES), pp. 125–134, Ottawa, Canada, June 2006.

[5] C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity
checker for multithreaded programs. In Proc. Principles of Program-
ming Languages (POPL), pp. 256–267, Venice, Italy, Jan. 2004.

[6] C. A. R. Hoare. Communicating sequential processes. Communica-
tions of the ACM, 21(8):666–677, Aug. 1978.

[7] G. J. Holzmann. The model checker SPIN. IEEE Transactions on
Software Engineering, 23(5):279–294, May 1997.

[8] G. Kahn. The semantics of a simple language for parallel program-
ming. In Information Processing 74: IFIP Congress 74, pp. 471–475,
Stockholm, Sweden, Aug. 1974. North-Holland.

[9] D. McGrath. Intel rolls quad-core CPUs for embedded computing.
EE Times, April 3 2007.

[10] S. Meijer, B. Kienhuis, A. Turjan, and E. de Kock. A process splitting
transformation for Kahn process networks. In Design, Automation,
and Test in Europe (DATE), pp. 1355–1360, Nice, France, Apr. 2007.

[11] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.
Numerical Recipes in C. Cambridge University Press, 1988.

[12] J. Reppy and Y. Xiao. Specialization of CML message-passing prim-
itives. SIGPLAN Notices, 42(1):315–326, 2007.

[13] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: a dynamic data race detector for multi-threaded programs.
ACM Transactions on Computer Systems, 15(4):391–411, Nov. 1997.

[14] P. Stanley-Marbell et al. Adaptive data placement in an embedded
multiprocessor thread library. In Design, Automation, and Test in
Europe (DATE), pp. 698–699, Munich, Germany, Mar. 2006.

[15] O. Tardieu and S. A. Edwards. Scheduling-independent threads and
exceptions in SHIM. In Embedded Software (Emsoft), pp. 142–151,
Seoul, Korea, Oct. 2006.

[16] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A lan-
guage for streaming applications. In Compiler Construction (CC),
volume 2304 of LNCS, pp. 179–196, Grenoble, France, Apr. 2002.

[17] X. Tian, M. Girkar, A. Bik, and H. Saito. Practical compiler tech-
niques on efficient multithreaded code generation for OpenMP pro-
grams. The Computer Journal, 48(5):588–601, 2005.

