
CSEE W4824: Project Report

Nalini Vasudevan
Columbia University, NY
naliniv@cs.columbia.edu

Sambuddho Chakravarty
Columbia University, NY

sc2516@cs.columbia.edu

ABSTRACT
We present the design of our microprocessor for the Wall Street
market which has been optimized for a given optimization function.
The microprocessor has been optimized over two benchmarks,viz.,
blackscholes1 and go2 It may be implemented through a 32nm
technology process with synchronous hardware design running at
clock frequency of 5GHz.

The resulting microprocessor is a multicore processor with
13 cores of typeLargeCorehaving 6way issue units with a to-
tal area of approximately 98mm2. The microprocessor is built
in with on-core private Iinstruction Level-1 and Data Level-1
caches, each of size262144Kbytes, 3. The average miss-rate of
the cores are approximately 0.05% for Data Level-1 caches and
0.00% for Instruction Level-1 caches when tested against blacksc-
holes, as a best performance result. The average Cycles Per In-
struction (CPI) in the best performance is about 0.76.The optimal
value of OF achievable by our microprocessor is46.33.

1. INTRODUCTION
The goal of this project is to design a microprocessor for a Wall

Street company that uses two benchmarks [4],go [1] and
blackscholes [3], each having 3 independent data sets.

Our motivation was to produce a design that gives considerable
speed up, while keeping the total area of the microprocessorsmall.

The objective function to optimize is given by equation 1, where
S={blacksholes,go},

D={simsmall,simmid,simlarge}.
To design our multi-core microprocessor we use thesesc[5] 4

simulator tool using a varied choice of configuration parameters
given to us for obtaining the optimalOF parameter.

The problem doesn’t seem likely to have any polynomial time
solution5, we attempt to interpret the simulation results/logs to de-
termine which parameters to modify. The following parameters of
thesescsimulator indicate the various factors of the program which
indicate useful factors that show improvement in the Simulation

1The blackscholes application calculates the prices of a port-
folio of European options analytically with the Black-Scholes
partial differential equation. For more information, visit
http://en.wikipedia.org/wiki/Black-Scholes.
2This program was picked because the application expert believes
that it can be used as a part of a new artificial intelligence pack-
age for financial applications. For further information on go, visit
http://en.wikipedia.org/wiki/go
31K = 1024
4Detailed description of the sesc simulator is beyond the scope of
this document
5we have actually no way to verify that a polynomial time solution
exits

Time (sim_time) reported by thesesc.

• Cache MissRate: Intuitive from the name, this parameter
indicates the miss rate of the cache being used.

• BJ : Indicates percentage of instructions that correspond to
branches and jumps.

• Load/Store: Indicates percentage of Load/Store (memory
reference) instructions. This parameter is indicative of pos-
sible miss rate to expect and how much the improvement of
cache type/size shall probably improve thesim_time.

• INT/FP: Indicates the percentage of integer and floating point
instructions. The higher these are, the better seem chancesof
performance enhancement (provided the inter-dependence of
instructions is less).

We followed a greedy approach for attaining our optimal config-
uration. Our focus was not towards optimizing die area used;our
goal was to optimizesim_time. TheOF factor is inversely pro-
portional to the squareroot of the area of the die.A total die area
were100mm2, would affect the OF by only a factor of0.5..

Sincego cannot be run on parallel threads of execution , we get
the optimal performance by using the largest core availableand the
best cache size. We also observed that using specializedIL1 and
DL1 thesim_time obtained were lower than that obtained with
shared and/or unified cache. We used the cache size obtained from
go for blackscholes. Our final configuration usesLargeCores
cores for all cores to obtain lowestsim_time values. Since the
L2 cache was required to be atleast twice as large as theL1 cache
sizes, we decided not to useL2, and restricted the area of the die to
be under 100mm2.

We discuss in detail about our choices in the following section
and report our results. The remainder of this report focuseson our
design considerations , how we obtained the results and configura-
tions we present and concludes with a brief note which summarizes
all our findings and observations. our results.

OF =
5

√
OptimizedArea

+ ∑
y∈D

∑
x∈S

√

baseSimTime o f x with dataset y

optimizedSimTime o f x with dataset y
(1)

2. DESIGN CONSIDERATIONS

2.1 Cache Selection
Sincego cannot be executed on multiple-threads, we started by

testing the simulation with various cache configurations. We in-
creased the cache size and associativity in so as to keep the ac-
cess time small. With cache size greater than 105 bytes, the miss

rates were less than 1%. Figure 1 reports the configuration for Data
Level 1 (DL1) for which the miss rates were very small. Similarly 2
reports the miss-rates for IL1. Since the miss-rate with 256Kbytes
cache size was small in both cases, and the access time was 4 clock
cycles, we decided to stick with this configuration for bothIL1 and
DL1.

Figure 3 gives the access time and area for the selected cache
configuration. Figure 4 gives the number of cycles required to ac-
cess the cache.

size DL1 config DL1 miss-rate
simsmall size = 131072, assoc 8, blk size = 32 0.56%
simsmall size = 262144, assoc 8, blk size = 32 0.01%

Figure 1: DL1 Cache miss rates forgo

size IL1 config IL1 miss-rate
simsmall size = 131072, assoc 8, blk size = 32 0.47%
simsmall size = 262144, assoc 8, blk size = 32 0.02%

Figure 2: IL1 Cache miss rates forgo

Blackscholescan be executed through simultaneous parallel threads
of execution. Each of these threads can execute on a separatepro-
cessing core. So, for speeding up this program, we decided torun it
on separate cores. This subsection and the next one focuses on how
the cache size and processing core was selected forblackscholes.

Initially, we noticed that with the default configuration UL1S.conf,
when executing thesmallsim input data set using unified shared
cache -32Kbytes/32byte(block size)/2 way-set associative) resulted
in high miss rate (close to 70%). Thus we decide to increase the
cache size a bit and added an Level 2 (L2) cache as well. No im-
provement in simulation time parameter (sim_time) of the sesc
simulator was observed. Thus, we decided to add a specialized
Instruction and Data Level 1 (IL1 andDL1)(IL1DL1P.conf con-
figuration) cache to the processor. This drastically improved the
sim_time to 292.47msec. Improving the cache associativity from
2-way to 4-way further improves thesim_time to 266.49msec.
TheL2 cache misses were still approximately 30.62%. Increasing
theL2 cache size to 64Kbytes resulted in only slight improvement
of the performance (sim_time of 250.55msec). However, theL2
misses drastically decreased to 4.33%.

Further improvement was contingent on the better selectionof
multiple processing cores. There are approximately 30% integer
operations. The more the number instructions fetched per clock
cycles, higher are the chances of fetching the integer and floating
point operations. Moreover the LargeCore CPUs have larger num-
ber of parallel execution units. Thus, further improvementof the
sim_time was observed with more processing cores. The intu-
ition of behind seeking bettersim_time is that it has a greater
impact on theOF parameter (than area, which only affects the OF
by an amount of 0.5).

2.1.1 Core Selection

As we just mentioned in the previous subsection, bettersim_time
was achieve with higher core selection with larger number ofin-
structions fetched per clock cycles. Thus we tried executing the
smallsim data set using multiple core processors with higher
number of instructions fetched.

Figure 5 borrowed from [4], shows the effect of number of cores
on the benchmarks. Therefore at aroundn = 8 ideal speed up is
obtained. This gave us some intuition that the optimal performance

Figure 3: Output of cacti for our cache configuration

Cycles for Cache Access = [Access Time * Clock Frequency]
= [0.7647∗10−9 ∗5∗109]
= [3.8235] = 4

Figure 4: Access time for cache

Figure 5: Effect of cores on the benchmarks (Borrowed from
[4]).

should be around 8 processors. This fact further reflects in the ex-
perimental observations presented in this subsection.

For sake of brevity we do not describe the results from all the
core types that we tested and what results we saw; but insteadonly
present a summary of some of crucial improvements. The follow-
ing table list some of the key improvements we observed for selec-
tion of the core types and quantities and appropriate cache quanti-
ties. Tables 1, 2 and 3 list the CPU core selection with cache config-
uration. Table 1 lists cases with decreasingsim_time. Smaller
the values ofsim_time gives better values of our optimization
functionOF. sim_time has a greater effect on theOF. 6

The tables list core and cache configurations which demonstrate
bettersim_time values. The names of the parameter and the val-
ues in all three of the tables are intuitive. Core type columnindicate
some of the types of cores against whichblackscholeswas tested.
For each of the values of the core types, the name of the core is
followed by the number of issue units in each of the cores. In case
of SmallCoretype of cores, the ones with issue width of 1 are the
one which have in-order execution. The rest all have out-of-order
execution units.

Cache Configcolumn describes the names/types of cache con-
figurations used from [2]. Rest of the fields are intuitive andhave
been directly selected from thesesc simulator configuration pa-
rameters.

LargeCoredefinitely gives higher performance over other other
core types and this is demonstrated in Figure 6. Since we did not
care about area, we chose large cores for all. We also tried several
hybrid combinations ofLargeCoreswith MidCores, but the perfor-
mance was suboptimal compared to that using onlyLargeCores

Figure 7 shows the variation ofsim_time with the number of
cores. We usedLargeCorecore types for all cores; the total die
area was restricted to 100mm2. We knew the size of theIL1/DL1
caches. This allowed us to use atmost 13 cores; with 14 cores the
area exceeded 100mm2.

6Using up the entire die area of 100mm2 would only affect on the
value ofOF by a factor of 0.5.

Figure 6: Variation of time with the type of core for
blackscholes.

Figure 7: Variation of sim_time with the number of cores
with our experiments for blackscholes.

of Core Area/ Cache Cache Area Used Total Sim BaseSim
Cores Type Core Type Config by Cache Area Time Time

(mm2) (mm2) (mm2) msec. msec.
1 SmallCore/1 0.05 UL1S 32K/8B/2way 0.117 0.17 424.77 424.77
1 SmallCore/1 0.05 IL1DL1S_L2 32K/32B/2way(IL1/DL1) 0.44 0.49 255.57 424.77

64K/32B/4way(L2)
2 SmallCore/1 0.05 IL1DL1P_L2 32K/32B/2way(IL1/DL1) 0.674 0.87 125.45 424.77

64K/32B/4way(L2)
4 SmallCore/2 0.1 IL1DL1P_L2 32K/32B/2way(IL1/DL1) 1.14 1.54 61.63 424.77

64K/32B/4way(L2)
8 SmallCore/2 0.1 IL1DL1P_L2 32K/32B/2way(IL1/DL1) 2.08 2.88 31.63 424.77

64K/32B/4way(L2)
12 SmallCore/2 0.1 IL1DL1P_L2 32K/32B/2way(IL1/DL1) 3.01 4.21 21.78 424.77

64K/32B/4way(L2)
16 SmallCore/2 0.1 IL1DL1P_L2 32K/32B/2way(IL1/DL1) 3.94 5.54 16.86 424.77

64K/32B/4way(L2)
4 MidCore/4 2.11 IL1DL1S 128K/32B/8way(IL1/DL1) 1.02 9.46 14.72 424.77
8 MidCore/4 2.11 IL1DL1S 256K/32B/8way(IL1/DL1) 1.57 18.45 12.54 424.77
12 MidCore/4 2.11 IL1DL1S 512K/32B/8way(IL1/DL1) 2.65 27.97 11.82 424.77
4 LargeCore/6 5.92 IL1DL1S 128K/32B/8way(IL1/DL1) 1.02 24.70 11.21 424.77
8 LargeCore/6 5.92 IL1DL1S 256K/32B/8way(IL1/DL1) 1.57 48.93 11.15 424.77
13 LargeCore/6 5.92 IL1DL1P 256K/32B/8way(IL1/DL1) 2.04 97.35 2.96 424.77

Table 1: Some Key Results of Core Selection and Cache Configuration for BlackScholes usingSmallSimdata-set

of Core Area/ Cache Cache Area Used Total Sim BaseSim
Cores Type Core Type Config by Cache Area Time Time

(mm2) (mm2) (mm2) msec. msec.
4 SmallCore/2 0.1 IL1DL1S 128K/32B/8way(IL1/DL1) 1.02 1.42 44.34 865.56
8 SmallCore/2 0.1 IL1DL1S 256K/32B/8way(IL1/DL1) 1.57 2.37 30.47 865.56
12 SmallCore/2 0.1 IL1DL1S 512K/32B/8way(IL1/DL1) 2.65 3.85 25.1 865.56
16 SmallCore/2 0.1 IL1DL1S 512K/32B/8way(IL1/DL1) 2.65 4.25 25.63 865.56
4 MidCore/4 2.11 IL1DL1S 128K/32B/8way(IL1/DL1) 1.02 9.46 30.24 865.56
8 MidCore/4 2.11 IL1DL1S 256K/32B/8way(IL1/DL1) 1.57 18.45 25.00 865.56
12 MidCore/4 2.11 IL1DL1S 512K/32B/8way(IL1/DL1) 2.65 27.97 23.56 865.56
16 MidCore/4 2.11 IL1DL1S 512K/32B/8way(IL1/DL1) 2.65 36.41 23.84 865.56
4 LargeCore/6 5.92 IL1DL1S 128K/32B/8way(IL1/DL1) 1.02 24.70 30.24 865.56
8 LargeCore/6 5.92 IL1DL1S 256K/32B/8way(IL1/DL1) 1.57 48.93 22.31 865.56
13 LargeCore/6 5.92 IL1DL1P 256K/32B/8way(IL1/DL1) 2.04 97.35 5.92 865.56

Table 2: Some Key Results of Core Selection and Cache Configuration for BlackScholes UsingMidSimdata-set

of Core Area/ Cache Cache Area Used Total Sim BaseSim
Cores Type Core Type Config by Cache Area Time Time

(mm2) (mm2) (mm2) msec. msec.
4 SmallCore/2 0.1 IL1DL1S 128K/32B/8way(IL1/DL1) 1.02 1.42 537.00 3472.47
8 SmallCore/2 0.1 IL1DL1S 256K/32B/8way(IL1/DL1) 1.57 2.37 319.89 3472.47
12 SmallCore/2 0.1 IL1DL1S 512K/32B/8way(IL1/DL1) 2.65 3.85 188.77 3472.47
16 SmallCore/2 0.1 IL1DL1S 512K/32B/8way(IL1/DL1) 2.65 4.25 170.60 3472.47
4 MidCore/4 2.11 IL1DL1S 128K/32B/8way(IL1/DL1) 1.02 9.46 127.15 3472.47
8 MidCore/4 2.11 IL1DL1S 256K/32B/8way(IL1/DL1) 1.57 18.45 100.48 3472.47
12 MidCore/4 2.11 IL1DL1S 512K/32B/8way(IL1/DL1) 2.65 27.97 96.12 3472.47
16 MidCore/4 2.11 IL1DL1S 512K/32B/8way(IL1/DL1) 2.65 36.97 96.71 3472.47
4 LargeCore/6 5.92 IL1DL1S 128K/32B/8way(IL1/DL1) 1.02 24.70 127.15 3472.47
8 LargeCore/6 5.92 IL1DL1S 256K/32B/8way(IL1/DL1) 1.57 48.93 89.19 3472.47
13 LargeCore/6 5.92 IL1DL1P 256K/32B/8way(IL1/DL1) 2.04 97.35 23.65 3472.47

Table 3: Some Key Results of Core Selection and Cache Configuration for BlackScholes UsingLargeSimdata-set

2.2 TLB Selection
Increasing the TLB for bothgo and blackscholesbenchmarks

resulted in no improvement of thesim_time, and therefore we
decided not have a TLB. This is summarized in the table in Fig-
ure 8.

Benchmark data-set Core Type TLB sim_
time
(ms.)

blackscholes simsmall 4 SmallCores No 63.4
blackscholes simsmall 4 SmallCores Yes 63.4
go simsmall 1 LargeCore No 45.981
go simsmall 1 LargeCore Yes 45.981

Figure 8: Experiments to test the usage of TLB (TLB configu-
ration: 2048 bytes, 2 way associativity, 32 byte line size)

Evident from Figure 8, we see no improvement with addition of
TLB to the simulator, for neitherblackscholesnor go benchmarks.
Hence we decided not to use the TLB7.

From these results we concluded that using 13LargeCorecores
with 6 issue units per core and using on-core specialized caches,
each of size 256Kbytes (262144 Bytes), would have the optimum
effect onOF due toblackscholes. The Same configuration may be
used forgo which is cannot be run with separate threads of execu-
tion. We selectedgo and ran it on one of the cores and obtained
the results presented in figure 10. Evident from the result (and also
based on our previous knowledge ofgo), it mostly requires higher
number of execution units (due to high percentage of integerand
floating point units).

3. FINAL RESULTS AND DESIGN
This section summarizes our optimal results. The table in figure

9 and 10 presents the values of the basesim_time.

BaseSimTime(ms) simsmall simmid simlarge
blackscholes 424.766 867.560 3472.466

go 458.139 1172.827 2986.398

Figure 9: Base SimTime

Optimized simsmall simmid simlarge
SimTime(ms)
blackscholes 2.958 5.912 23.657

go 45.888 113.247 283.871

Figure 10: Optimized SimTime

Using theLargeCorecores selected and the cache configuration,
the total die area is calculated to be 97.3518mm2. The equations in
figure 3 summarize the details of this calculation.

The base times and the optimized times are shown in Figure 9
and 10 respectively. The calculation of area is shown in Figure 3.
We solve Equation 1 with optimized values from Figure 10 in Fig-
ure 3.

Thus, by solving the equation above in Figure 3 we get a final
OF of 46.33. Thus using 13 LargeCore cores, specialized IL1/DL1

7though the area expended due to addition of TLB has negligible
effect on the total die area

Core Area = 13 * Area(Each Core) = 13 * 5.92 = 76.96)
IL1 Area = 13 * Area(Each IL1Cache) = 13 * 0.7843 = 10.1959
DL1 Area = 13 * Area(Each DL1Cache) = 13 * 0.7843 = 10.1959
L2 Area = 0 (No L2) = 0

Total Area (mm2) = 97.3518

Figure 11: Area Calculation

OF= 5√
OptimizedArea

+∑y∈D ∑x∈S

√

baseSimTime o f x with dataset y
optimizedSimTime o f x with dataset y

= 5√
97.3518

+(
√

424.766
2.958 +

√

867.560
5.912 +

√

3472.466
23.657 +

√

458.139
45.888 +

√

1172.827
113.247 +

√

2986.398
283.871)

=0.51+(11.98+12.11+12.11+3.16+3.22+3.24)

=46.33

Figure 12: Solving for OF

cache of256Kbytes per core (having32Byte blocks and8−way
associativity), we attain an optimal OF of46.33.

3.1 Final Design

Figure 14: Approximate floor plan of our microprocessor
(Buses not shown).

The block diagram of our processor is as shown in figure 3.1. It
shows 13 cores (each ofLargeCorewith issue width of 6 instruc-
tions). Each core has separate specializedIL1 andDL1 cache. We
used no L2 cache. TheIL1 andDL1 are each of size 256Kbytes
(262144bytes). The caches have 32byteblock size with 8−wayset
associativity. We have derived this through a series of experimen-
tation and inferences based on how thesim_time, cache misses
and CPI is improved when various simulation configuration param-

Core 1
(Large,

Issue = 6)

Core 2
(Large,

Issue = 6)

Core 3
(Large,

Issue = 6)
...

Core 13
(Large,

Issue = 6)

IL11 DL11 IL12 DL12 IL13 DL13 ... IL113 DL113

Memory

Figure 13: Our final design of the microprocessor. Each IL1 and DL1 has the following configuration: 262144B cache, 32B line size,
8 way associativity.

eters are varied. Figure 14 shows the approximate floor plan of the
processor. It shows the approximate physical layout of the cores
and their caches on a 100mm2 die. The communication buses be-
tween the cores is not being shown here as they have already been
taken care of by the simulator.

4. CONCLUSIONS AND REMARKS
From the results section, it can be seen that the speed-up we

achieved forblackscholesis far greater than that ofgo. This is
becauseblackscholescan be parallel threads of simultaneous exe-
cution, but the speed up obtained forgo is accounted only from the
increased cache size and the processor type.

The area factor in the formula for calculatingOF is deceiving:
Assume,f1 = 5√

OptimizedArea
.

Suppose the Optimized Area is 25mm2, then this factor would
evaluate to 5/

√
25 (= 1). On the other hand if the optimized area

were 100mm2 (the maximum possible value), the factor would eval-
uated to 5/

√
100 (= 0.5). So with this calculation, we see that in-

creasing the are from 25mm2 to 100mm2 only reduces the OF by
0.5. Therefore the first factor (f1), containing area really does a
relatively large impact on theOF factor. Consequently it does sub-
stantially help including the area in the formula forOF. Hence we
did not try to optimize area.

For this reason, we suggest two possibly new optimization func-
tions: Since we are restricted to using 100mm2, we remove the area
factor from the formula ofOF altogether.

OF = ∑
y∈D

∑
x∈S

√

baseSimTime o f x with data−set y
optimizedSimTime o f x with dataset y

(2)

With this metric, the OF evaluates to 45.82 for our configuration.
The second metric we suggest is to cause the area to contribute

to a greater extent to theOF.

OF =
1

k√OptimizedArea
× ∑

y∈D
∑
x∈S

√

baseSimTime o f x with dataset y
optimizedSimTime o f x with dataset y

(3)

In the above equation, the area factor is multiplied by the time fac-
tor, therefore the area having a greater influence on the calculation
of OF. k can be adjusted depending on the amount of impact of

area wanted onOF. Less the value ofk, greater is the impact. Sug-
gested value of k is 2 or 3.

Overall, we enjoyed doing the project. It was a great learning
experience. Initially, we thought that the project would take a large
number of simulations to come to conclusions, but in realityit does
not.

5. REFERENCES
[1] Blackscholes.http:

//en.wikipedia.org/wiki/Go_(board_game).
[2] Csee w484: Course project description.

http://www1.cs.columbia.edu/ cs4824/handouts/project.pdf.
[3] Go (game).http:

//en.wikipedia.org/wiki/Black-Scholes.
[4] B IENIA , C., KUMAR , S., SINGH, J. P.,AND L I , K. The

parsec benchmark suite: characterization and architectural
implications. InPACT ’08: Proceedings of the 17th
international conference on Parallel architectures and
compilation techniques(New York, NY, USA, 2008), ACM,
pp. 72–81.

[5] SESC: SuperESCalar Simulator.http:
//iacoma.cs.uiuc.edu/~paulsack/sescdoc/.

Acknowledgment
We would like to thank Prof. Luca Carloni and the TAs (Young
Jin Yoon, Bharadwaj Vellore and Rebecca Collins) for their valu-
able suggestions and feedback throughout the course of thisproject.
Thanks to Young Jin for designing an interesting project.

APPENDIX

A. CONFIG FILE (ILDL1P.CONF)

\texttt{
You can start modifying from the line below.
##

#1. multicore configuration.
procsPerNode = 13 # total number of cores.
cpucore[0:12] = ’LargeCore’

#2. Issue width for each core types (i.e. small, mid, and large.)
issueLarge = 6 # large−processor issue width (6 or 4)
issueMid = 4 # mid−processor issue width (4 or 2)
issueSmall = 1 # small−processor issue width (2 or 1)

#3. IL1 & DL1 configuration for large cores
LargeIL1CacheSize = 262144
LargeIL1BlockSize = 32
LargeIL1Assoc = 8
LargeIL1AccessTime = 4 # Need to be calculated by CACTI

LargeDL1CacheSize = 262144
LargeDL1BlockSize = 32
LargeDL1Assoc = 8
LargeDL1AccessTime = 4 # Need to be calculated by CACTI

#4. IL1 & DL1 configuration for mid cores
MidIL1CacheSize = 32768
MidIL1BlockSize = 32
MidIL1Assoc = 2
MidIL1AccessTime = 3 # Need to be calculated by CACTI

MidDL1CacheSize = 32768
MidDL1BlockSize = 32
MidDL1Assoc = 2
MidDL1AccessTime = 3 # Need to be calculated by CACTI

#5. IL1 & DL1 configuration for small cores
SmallIL1CacheSize = 32768
SmallIL1BlockSize = 32
SmallIL1Assoc = 2
SmallIL1AccessTime = 3 # Need to be calculated by CACTI

SmallDL1CacheSize = 32768
SmallDL1BlockSize = 32
SmallDL1Assoc = 2
SmallDL1AccessTime = 3 # Need to be calculated by CACTI

#6. SmallCore inorder/out−of−order configuration
[SmallCore]
inorder = true # does the core execute in order?

#7. Translation Lookaside Buffer(TLB) for data & inst. addresses in LargeCore.
[FXDTLBLarge]
size = 64∗8
assoc = 4
bsize = 8
deviceType = ’none’

[FXITLBLarge]
size = 64∗8
assoc = 4
bsize = 8
deviceType = ’none’

#8. Translation Lookaside Buffer(TLB) for data & inst. addresses in MidCore.
[FXDTLBMid]
size = 64∗8
assoc = 4
bsize = 8
deviceType = ’none’

[FXITLBMid]
size = 64∗8
assoc = 4
bsize = 8
deviceType = ’none’

#9. Translation Lookaside Buffer(TLB) for data & inst. addresses in SmallCore.
[FXDTLBSmall]
size = 64∗8
assoc = 4
bsize = 8
deviceType = ’none’

[FXITLBSmall]
size = 64∗8
assoc = 4
bsize = 8
deviceType = ’none’

Please do not modify below this line
##
}

