
VeriSHIM

A BDD Verifier for SHIM

Nalini Vasudevan
Department of Computer Science

Columbia University
New York, USA

naliniv@cs.columbia.edu

Abstract

Keywords: Concurrency, SHIM, Deadlock,
BDD, Reachability

Concurrent programming languages have
become more popular with the advent of
multi-core systems. Shared memory is read or
written atomically, by concurrent processes to
prevent races. A typical mechanism is the use
of locks. However, if locks are not acquired
and released in the correct order, the result is
a deadlock.

In this paper, we propose a deadlock de-
tection tool for a deterministic, concurrent
language, SHIM. SHIM is race free but not
deadlock free. A deadlock can easily be de-
tected while the program is running, but here
we use static approaches to find deadlocks in
a program. Enumerating all possible states
is not feasible because there will be explosion
of states. We exploit the deterministic prop-
erty of SHIM and do a BDD based reacha-
bility analysis after abstracting parts of the
program. We run the deadlock detector on
the the JPEG decoder and report the results.

1 Introduction

Concurrent programs are known for errors
that are difficult to diagonize and correct.
One such class of errors is deadlock. A dead-

lock is a state in a program, where two or
more processes wait for each other to finish
a task, and neither ever finish resulting in
indefinite blocking. Deadlock detection and
hence, removal of deadlock states are two im-
portant aspects in concurrent programming.
In this paper, we focus on the deadlock diag-
nosis in a concurrent programming language
called SHIM.

SHIM [5] was designed to provide a com-
mon programming environment for both
hardware and software. It is deterministic i.e
it is guaranteed to behave the same irrespec-
tive of the scheduling of the concurrent blocks
in the program. Data can be read or written
into shared memory in a restricted fashion.
The model combines the functional determin-
ism of Kahn networks [8] with the rendezvous
of Hoare’s CSP [7]. To achieve determinism, a
lock based approach is used. Although, SHIM
guarantees determinism, a program may not
be deadlock free. SHIM’s philosophy is that it
is easier to detect deadlocks than to find data
races in the program. One important aspect
of SHIM is that even the deadlocks are de-
terministic, i.e. the program deadlocks at the
same place given a particular input sequence.

In static analysis, the programs are not exe-
cuted. A naive approach is to find all possible

paths in the program by an exhaustive state
space search. This is almost impractical be-
cause of the large state spaces of programs.
SHIM [12], being deterministic, ensures that
the output of a program is independent of the
scheduling of parallel threads. Therefore, we
can restrict the state space to any one sched-
ule rather than explore all possible schedules.

Another approach, is to restrict the state
space by doing some kind of abstraction. If
the tool reports that there is no deadlock,
there will be no reachable deadlock state in
the program. On the other hand, the tool
may report a possibility of deadlock. There is
some path in the program that is not dead-
lock free and this path may be executed only
for some particular input sequence. Reducing
the state space by some approximations leads
to false positives. In other words, there are
some programs that will never deadlock for
any input sequence, but yet the tool reports
a possibility of deadlock.

2 Related Work

The two main problems in concurrent pro-
gramming are data races and deadlocks. Boy-
apati [1] talks about ownership types for safe
programming to prevent data races and dead-
locks. Corbett [4] evaluates deadlock detec-
tion methods for concurrent software. In this
paper, we address the problem of deadlocks.
Deadlocks can be either detected dynamically
or statically. Generally, dynamic deadlock de-
tection [9] can be done easily at run time,
while static deadlock detection is difficult.

There has been considerable work done
in verifying the C and Java programming
language. Abstraction and counter-example
guided refinement are popular approaches to
model checking. Chaki [3] [2] uses these meth-
ods to verify C programs. RacerX [6] is an-
other tool that detects deadlocks and data
races in C. Jlint is a static deadlock detec-

tor for Java that uses lock-order-graph. Java
Pathfinder [13] finds execution paths and it
also reports if a program is susceptible to
deadlocks.

SHIM is a multi-way rendezvous language,
and it is quite different from C and Java.
SHIM is guaranteed to be race-free but it is
susceptible to deadlocks. The deadlock vul-
nerability arises out of rendezvous. Ada is
one of the programming languages that uses
rendezvous. Masticola [11] describes an al-
gorithm for detecting deadlocks in some con-
structs of the Ada Programming Language.
Ada supports 2-way rendezvous while SHIM
supports multi-way rendezvous and hence it
makes the task difficult.

In this paper, we devise an algorithm for a
multi-way rendezvous language called SHIM.
We use BDDs as a reachability analysis tool
in our algorithm.

3 Background: The SHIM Program-

ming Language

SHIM [12] is a C like language with addi-
tional constructs: p par q runs statements p
and q in parallel, waiting for both to termi-
nate before proceeding; next c is a blocking
communication operator that synchronizes on
channel c and either sends or receives data de-
pending on which side of = the next appears,
SHIM uses multi-way rendezvous to commu-
nicate with peer threads. We use the terms
process and threads interchangeably in this
paper, and they both mean the same in this
context.

In Figure 1, two peer threads communicate
on channels a and b. Threads 1 and 2 are
executed in parallel. SHIM interprets the next
a in Thread 1 as a send because it is on the
left hand side of the assignment. The next a in
Thread 2 is a receive. The next a in Thread 1
waits for Thread 2 to receive the value. The
threads therefore rendezvous at their nexts,

2

void main (int8 & cout)
{

chan int a, b;
{

/∗ Thread 1 ∗/
next a = 5;

/∗ Sets a and send (wait for thread 2) ∗/
/∗ a now 5 ∗/
next b;

/∗ Receive a (wait for thread 2) ∗/
/∗ b now 10 ∗/

}

par
/∗ Thread 2 ∗/
{

next a;
/∗ Receive a (wait for thread 1) ∗/

/∗ a now 5 ∗/
next b = 10;

/∗ Sets b and send (wait for thread 1) ∗/
/∗ b now 10 ∗/

}

}

Figure 1: A SHIM program

then continue to run after the communication
takes place. In the next step, the two threads
rendezvous at next b. In this case, Thread 1
is the receiver while Thread 2 tries to send.

Consider a modification of the above pro-
gram in Figure 2.

void main (int8 &cout)
{

chan int a, b;
{

/∗ Thread 1∗/
next a = 5;
next b = 10;

}

par
/∗ Thread 2 ∗/
{

next b;
next a;

}

}

Figure 2: A SHIM program with deadlock

In Figure 2, two peer threads try to commu-
nicate on channels a and b. Threads 1 and 2

current states := initial state
explored states := nil
while (current states not in explored states)

do
explored states := explored states + current states
next states := get next states (current states)
if (next states has a deadlock state)

then report ("Deadlock state found")
current states := next states

end while

Figure 3: Deadlock Reachability Analysis

are executed in parallel. SHIM interprets the
next a in Thread 1 as a send. The next b
in Thread 2 is a receive. Thread 1 waits for
Thread 2 to receive the value on channel a.
Thread 2 waits for Thread 1 to send a value
on channel b. Both threads wait for each other
on different channels indefinitely, resulting in
a deadlock.

This is a simple illustration of a deadlock
in SHIM. In the further sections, we will be
seeing the different approaches used to detect
deadlocks in SHIM.

4 Explicit State Space Exploration

Irrespective of the approach, we maintain
only the synchronization skeleton of the pro-
gram. In the explicit state space exploration
method (Figure 3), states are analyzed one
after the other. We start at the initial state,
get all the possible successors of the state. We
see if there is some successor that represents
a deadlock state. If yes, we report it else we
explore the successors state. We iterate this
procedure until all states have been explored.

The SHIM compiler dismantles a program
into statement lists. A SHIM program and
its dismantled version are shown in Figure 4
and Figure 6 respectively. It is evident that if
n > 10, the first thread tries to communicate
on a, while the second thread tries to com-
municate on b resulting in a deadlock. On
the other hand, if n <= 10, the first thread

3

will want to communicate on b and the sec-
ond thread will also want to communicate
on b and therefore they rendezvous and ex-
change values, and proceed to next a. Again
here, the communication is successful because
both threads are willing to communicate on
a, resulting in successful termination of both
threads. The program for a given schedule,
has only two paths, one when the condition is
true and the other when it is false. We do not
care about the details of some number. All
that we care and want is that it returns an
integer.

void main (int &cout)
{

chan int a, b;
int n;

{

/∗ Thread 1 ∗/
n = some number();
if (n > 10)

next a = 5;
else

next b = 5;
next a = 10;

}

par
/∗ Thread 2 ∗/
{

next b;
next a;

}

}

Figure 4: Snippet of a SHIM program with
conditional statements

We are at the moment, not doing any kind
of predicate analysis. Therefore, we assume
equal probability of execution of the if and
else part of the conditional statement. There-
fore Figure 4 can be rewritten as Figure 5.

When we are exploring the state space of a
SHIM program, we do not have to consider all
possible inter-leavings of the SHIM program.
Since SHIM is deterministic, and also that
deadlocks happen deterministically, it is suffi-
cient to explore any one schedule of processes

void main (int &cout)
c chan int a, b;
int n;

{

/∗ Thread 1 ∗/
n = some number();
if (*) /∗ We do not analyze the condition∗/

next a = 5;
else

next b = 5;
next a = 10;

}

par
/∗ Thread 2 ∗/
{

next b;
next a;

}

}

Figure 5: Replacing conditions by wild-card:
Giving equal probability to branch statements

main(int8 &cout)
channel int32 a
channel int32 b
local int32 n

main 1(a, b, n) : main 2(a, b);

main 1(chan int32 &a, chan int32 &b, int32 &n)
local int32 tmp0
local int32 tmp1

some number(tmp0);
n = tmp0
tmp1 = n > 10

ifnot tmp1 goto else3
a = 5
send a
goto endif4
else3:

b = 5
send b
endif4:

a = 10
send a

main 2(chan int32 a, chan int32 b)
recv b
recv a

Figure 6: Dismantled version of Figure 4

4

State 1
R R

State 2
B(a) R

State 3
B(a) B(b)

State 4
B(b) R

State 5
C(b) C(b)

State 6
R R

State 7
B(a) R

State 8
C(a) C(a)

State 9
T T

n > 10 n <= 10

Figure 7: Automaton for Figure 4. R =
Runnable, B(x) = Blocked on Channel x,
C(x) = Communicating on Channel x, T =
Terminated.

and not necessarily explore all possible inter-
leavings. This approach is something similar
to Improviso [10] algorithm that uses partial
order reduction. Figure 7 shows the automa-
ton representing the program in Figure 2. We
use the reachability analysis (Figure 3) to find
if there is any path in the program that will
deadlock. Each state represents the combined
state of two threads. Both are runnable at the
start, and depending on the conditional state-
ment, either both get blocked and end up in a
deadlock state, or both terminate successfully.
While expanding states, we pick any one pos-
sible schedule. In this case we pick the first
runnable process in left-to-right-order. If a
state has more than one outgoing transition,
it is due to a conditional statement at that
point. State3 is the deadlock state in the pro-
gram, because both the threads are blocked on
different channels.

Note that we are ignoring all other state-
ments such as simple assignments etc., that
do not contribute to parallelism or communi-
cation.

5 The BDD Approach

Explicit state space approach guarantees
the right answer but it is only suitable for
small programs. With programs with very
large state spaces, we either run out of mem-
ory or it takes a very long time to execute.
Hence we use a symbolic approach. In this
method, we encode states as bits. If we
represent a state as n bits, the state space
is restricted to 2n bits. Software processes
generally have complicated data structures
and complex functionality such as recursion.
Therefore it is hard to restrict the state space
which makes them difficult to be encoded as
bits. Implicit approach is generally used for
modeling hardware design. The number of
bits represented by a state can be reduced by
doing some kind of abstraction. We discuss it

5

in detail in this section.

5.0.1 Abstracting the program

As a first step of the program, we remove all
irrelevant information such as simple assign-
ment statements etc., and we only project the
part of the program that has parallel and com-
munication constructs in it. We maintain the
conditional statements, because they define
paths in the program. This abstract inter-
pretation of the program enables us to con-
centrate on the communication part of the
program rather than the computation part.
We keep the conditionals, but treat them as
wild cards giving equal probability to the if
and else branches. Note that while, for and
other looping statements can be converted to
a combination of if and goto statements. We
treat every if as a wild-card. We do this for
both implicit and explicit approach.

In the implicit approach, we would like to
minimize the number of states as possible to
maintain n as small as possible. Increasing n

would increase the time and space complexity
exponentially in the worst case. Therefore to
decrease n, we do some kind of abstraction.
In our approach, we use the following approx-
imation.

Consider the code segment of Thread 1 in
Figure 4. Lets rewrite the code with program
counters as shown in Figure 8. The automa-
ton for the thread in isolation is shown in Fig-
ure 9. We see that State 2 and State 4, hold
the same state value, but their program coun-
ters are different i.e. their input or output
transitions are different. However, to reduce
the state space, we merge the two states into
one as shown in Figure 10. We have elimi-
nated the need of pc. By doing this we are in-
ducing a new property into the merged states.
A state can possibly have more output transi-
tions in the abstracted automaton compared
to the original automaton. By this kind of

approximation, we are loosing precision in the
accuracy of output, which leads to false pos-
itives. In other words, our tool may report a
deadlock even when there is no possibility of a
deadlock in the program, but the probability
of a false positive is very low.

{

/∗ Thread 1 ∗/
1 n = some number();
2 if (n > 10)
3 next a = 5;
4 else
5 next b = 5;
6 next a = 10;
}

Figure 8: Thread 1 of Figure 4 with program
counters enumerated

We are at the moment, not doing any kind
of predicate analysis. Therefore, we assume
equal probability of execution of the if and
else part of the conditional statement. There-
fore Figure 4 can be rewritten as Figure 5.

State 1
Start

State 2
next a, pc = 3

State 3
next b, pc = 5

State 4
next a, pc = 6

Figure 9: Automaton for Thread 1 of Figure 4
in isolation. Program counters are enumer-
ated in Figure 8

When is this kind of abstraction actually
useful? Consider the automaton shown inFig-
ure 11 with program counter not abstracted.
The equivalent automaton with pc abstracted
is shown in Figure 12. In this automaton, we

6

State 1
Start

State (2,4)
next a

State 3
next b

Figure 10: Abstraction of Figure 9

State 1
Start

State 2
next a, pc = 3

State 3
next a, pc = 5

State 4
next b, pc = 6

Figure 11: Another simple automaton for ex-
ample

State 1
Start

State (2,3)
next a

State 4
next b

Figure 12: Abstraction of Figure 11

are not inducing any false path and we are
reducing the number of states too.

In any case, the number of states can only
reduce after pc abstraction, but the false
paths may be induced or not, depending on
the structure of the program.

In addition to the abstraction, we have
made the following assumptions. We assume
that the program does not have recursion.
Also, we assume that all functions are unique,
that is a function is never called from two dif-
ferent places. To do this, we preprocess the
input, by simply copying the functions and
renaming them.

5.0.2 The BDD Algorithm

Let us remember that we are assuming the
program has no recursion or the depth of re-
cursion is restricted to some level that we can
unroll it. This enables us to statically look
at the program, and give a count of the num-
ber of channels and threads used. We can also
statically look at the program and see in what
functions does a channel occur.

In general, a state is represented by a tuple
(p1, p2, p3, p4,.........., pn) where each com-
ponent represents the state of process pi. We
can statically determine the number of pro-
cesses in the program. Note that we are using
the terms threads and processes interchange-
ably. Both mean the same in this context. A
state can be in any one of the following states:

• Not Running: The process has not yet
started running.

• Par called: The process has reached its
par-statement. It has not yet instanti-
ated its children.

• Children running: A process is waiting
for its running children to terminate.

• Blocked on channel ch: The process is
waiting to communicate on channel ch

7

• Terminated: The process has terminated.

We use the following bit convention to encode
the states as bits

• Not Running: 000

• Par Called: 100

• Children running: 110

• Blocked on a channel: 111

• Terminated: 001

If there are m channels in the program, then
the number of bits needed to encode a channel
is equal to

channel bits = log(m − 1) + 1

We require 3 bits to represent the state
and channel bits to represent the channel if
state = blocked. Therefore the state of a
particular thread can be represented in 3 +
channel bits. If there are n threads in the pro-
gram, then the entire state of a program can
be represented in n ∗ (3 + channel bits). For
example, consider a program with two chan-
nels, c and d and 4 threads. If the state of the
program is

(blocked c, blocked d, not running, not running)

it implies that process 1 is blocked on channel
c, process 2 on channel d and the other two
processes have not yet started running. So the
state of the program in terms of bits is

(1110, 1111, 000X, 000X)

We need one bit to represent the channel and
3 bits to represent the process state. So we
can represent the state of a thread with 4 bits.
The last bit of the 4 bits represents the chan-
nel if the state of the channel is blocked. It
is dont-care-X when the 4th bit is not used.

Now if we want to build a BDD out of this,
we need 16 variables for 4 threads, where each
thread is represented by 4 variables.

As a next step, we construct the transi-
tion function for the SHIM program as a
BDD. Given a pair (curr state, next state),
the transition function returns true if the
transition is possible and false if it is not.
Both the curr state as well as the next state

in isolation represent the state of the entire
program, with all possible threads in it. We
construct this transition function as a BDD
and use this in reachability analysis.

Before we see the procedure to build the
transition function, first let us see how to per-
form reachability analysis using BDDs. BDDs
are typically used for set manipulation. If P
and Q are two sets, and if we can represent
them as P1 and Q1 that are BDDs, then we
can use the equivalent operations in Table 1
to manipulate sets using BDDS.

Set operation BDD operation
P ∪ Q BDD OR (P1, Q1)
P ∩ Q BDD AND (P1, Q1)
P’ BDD NOT (P1)
P ⊂ Q BDD CONTAINS (Q1, P1)

Table 1: Using BDDs to manipulate Sets

Figure 13 shows the state space ex-
ploration using BDDs. We precompute
par transitions, termination transitions and
communication transitions that are specific
to SHIM. We then find successors of
new states using these transitions. The
BDD allowed transitions represents repre-
sents the transition function of the pro-
gram. Given the current states, we use
BDD EXISTS, to get the next possible
states from allowed transitions.

Let us now precompute all deadlock states
(deadlock states). If there are two processes
p and q and both are owning i and j, then

8

current states := initial state
explored states := nil
allowed transitions := BDD OR (par transitions,

termination transitions,
communication transitions);

while (not BDD CONTAINS (explored states,
current states))

do
explored states := BDD OR (explored states,

current states);
next states := BDD EXISTS (current states,

allowed transitions);
if (BDD AND (next states, deadlock states))

then report ("Deadlock state found")
current states := next states

end while

Figure 13: Deadlock Reachability using BDDs

for every channel pair (i,j)
for every process pair (p, q) where both

p and q own i and j, do
if ((p blocked on i) and (q blocked on j))

or ((p blocked on j) and (q blocked on i))
then "Deadlock state"

end if
end for

end for

Figure 14: Calculating Deadlock States

the processes are in a deadlock state if p is
trying to communicate on i and q is trying
to communicate on j simultaneously or vice
verse. In both cases both the processes wait
for each other indefinitely causing a deadlock.
To make the definition of own clear, we say
that a process p owns a channel c, if c is used
in the code section of p.

For the program shown in Figure 2, we have
two channels, a and b. So we require 1 bit for
representing a channel. There are two threads
T1 and T2 and the main thread T . A dead-
lock happens when T1 is blocked on channel
a and T2 is blocked on channel b at the same
time, or when T1 is blocked on channel b and
T2 is blocked on channel a simultaneously. If
we represent the states of T1, T2 and T as a
tuple (T1, T2, T), then a deadlock state in
terms of bits would be (1110, 1111, XXXX)

or the other way round (1111, 1110, XXXX).
Now we construct a BDD that represents all
possible deadlock states in the program. The
BDD will have 12 variables, 4 representing
each thread. The BDD will return true when
either of the following conditions hold:

• 11101111XXXX → True

• 11111110XXXX → True

• False otherwise

Now let us get the BDD for
par transitions. Whenever a process p

calls par, we instantiate all its children, i.e.
the children advance themselves from the
not-running state and move to some other
state. Finally the state of process p is set
to children-running. Using the algorithm in

if p has just called par
for every child q of process p

instantiate q by advancing
state of q from not-running

set state of p to children-running
end if

Figure 15: Instantiating child processes

Figure 16, we can build a transition BDD,
that contains the current state and next
state, where the current state has a process
that has called par.

Let us now write algorithms for state ad-
vancement i.e. when a communication can
proceed. We encode these transitions as
communication transitions. Suppose a pro-
cess p, is blocked on channel i, then it can
move ahead only if all the processes that hold
channel i are trying to communicate on chan-
nel i However, there are a few exceptions. We
do not have to wait for a process that has
already terminated. We also do not have to
wait for a process that has its children execut-
ing. The algorithm for communication syn-
chronization is shown in Figure 16.

9

if (p blocked on i) then
if (for every process q, holding i

and q != p)
(q is (blocked on i) or (terminated)
or (has children-running))

then unblock and advance p;
end if

Figure 16: Advancing from a blocked state

Finally when every child of a process p ter-
minates, we advance the state of p i.e we allow
p to execute the statement after the par state-
ment. We also set the states of the children
processes to not running (Figure 17). The
termination transitions refer to these tran-
sitions.

for every child q of process p
if q has terminated

change state of q to not-running
advance state of p
end if

Figure 17: Children terminate, parent ad-
vances

We now have BDDs for par transitions,
communication transitions and
termination transitions. We can com-
bine all transitions into one BDD named
allowed transitions. This sole BDD rep-
resents the entire SHIM program. All we
require is to manipulate this BDD using
reachability analysis algorithm in Figure 13.

6 Results

6.1 Experimental Analysis

We ran the deadlock detector on a parallel
jpeg decoder written in SHIM and we report
the statistics here.

The jpeg decoder is one of SHIM’s biggest
applications, in terms of number of lines of
code. With the jpeg decoder, the explicit de-
tector runs out of memory. The BDD ap-
proach with pc abstracted verifies that the

program is deadlock free in less than 2 min-
utes. As it can be seen in Table 2, the BDD
version with program counter abstracted runs
faster when compared to the explicit ver-
sion. Our tool also used a reasonable amount
of memory on the jpeg decoder. As future
work, we would like to write a BDD version
without abstracting the program counter, and
see if program counter abstraction really con-
tributes to the speed up.

6.2 Program Termination

The solution to the deadlock problem par-
tially solves the termination problem. Let us
not abstract the program. If there is a path
in the program that deadlocks, then it means
there is also a path in a program that will
never terminate. If there are no loops or re-
cursive calls in the program, and there is no
deadlock path, then we can certainly say that
the program will terminate irrespective of the
dynamic parameters of the program. If there
are loops in the program, we cannot guaran-
tee the termination of the program, because
we do no kind of conditional statement anal-
ysis.

7 Conclusion

In this paper, we have addressed the veri-
fication issues in SHIM. We have provided a
BDD deadlock detecting tool for the SHIM
language. We have compared the approach
with the explicit method and provided the re-
sults. We have also touched upon program
termination.

From the results section, we see that the
biggest application of SHIM is verified in less
than a minute. Since the verifier is in its early
stages of development, with further more op-
timization, we believe that we can bring down
the running time of the verifier by a great ex-
tent. We also wish to integrate the deadlock
detector with the compiler. In other words,

10

Attribute Explicit Approach BDD (without pc)
Output - No Deadlock
Time > 2 hours 1 min 58 secs
Memory(RSS) Ran out of stack 17MB

Table 2: JPEG Decoder - 1020 lines of code, 7 channels, 59 processes

we want to always check for deadlocks, while
compiling a SHIM program.

References

[1] C. Boyapati, R. Lee, and M. Ri-
nard. Ownership types for safe pro-
gramming: Preventing data races and
deadlocks. In Object-Oriented Program-
ming, Systems, Languages, and Applica-
tions (OOPSLA), November 2002.

[2] Sagar Chaki, Edmund Clarke, Alex
Groce, Somesh Jha, and Helmut Veith.
Modular verification of software compo-
nents in C. IEEE Transactions on Soft-
ware Engineering (TSE), 30(6):388–402,
June 2004.

[3] Sagar Chaki, Edmund Clarke, Joel
Ouaknine, and Natasha Sharygina. Au-
tomated, compositional and iterative
deadlock detection. In Proceedings of
Second ACM-IEEE International Con-
ference on Formal Methods and Mod-
els for Codesign (MEMOCODE’2004),
2004.

[4] James C. Corbett. Evaluating deadlock
detection methods for concurrent soft-
ware. IEEE Transactions on Software
Engineering, 22(3):161–180, March 1996.

[5] Stephen A. Edwards. SHIM: A lan-
guage for hardware/software integra-
tion. In Proceedings of Synchronous Lan-
guages, Applications, and Programming
(SLAP), Electronic Notes in Theoretical

Computer Science, Edinburgh, Scotland,
April 2005.

[6] Dawson Engler and Ken Ashcraft. Rac-
erx: Effective, static detection of race
conditions and deadlocks, 2003.

[7] C. A. R. Hoare. Communicating Sequen-
tial Processes. Prentice Hall, Upper Sad-
dle River, New Jersey, 1985.

[8] Gilles Kahn. The semantics of a sim-
ple language for parallel programming.
In Information Processing 74: Proceed-
ings of IFIP Congress 74, pages 471–475,
Stockholm, Sweden, August 1974. North-
Holland.

[9] Dongmyun Lee and Myunghwan Kim. A
distributed scheme for dynamic deadlock
detection and resolution. Inf. Sci., 64(1-
2):149–164, 1992.

[10] Flavio Lerda, Nishant Sinha, and
Michael Theobald. Symbolic model
checking of software. In Byron Cook,
Scott Stoller, and Willem Visser, editors,
Electronic Notes in Theoretical Com-
puter Science, volume 89. Elsevier, 2003.

[11] Stephen P. Masticola and Barbara G.
Ryder. A model of Ada programs for
static deadlock detection in polynomial
times. In Proceedings of the Workshop
on Parallel and Distributed Debugging
(PADD), pages 97–107, New York, NY,
USA, May 1991. ACM.

11

[12] Olivier Tardieu and Stephen A. Edwards.
Scheduling-independent threads and ex-
ceptions in SHIM. In Proceedings of the
International Conference on Embedded
Software (Emsoft), pages 142–151, Seoul,
Korea, October 2006.

[13] Willem Visser, Klaus Havelund, Guil-
laume Brat, and Seungjoon Park. Model
checking programs. In Proceedings of
Automated Software Engineering (ASE),
pages 3–11, Grenoble, France, September
2000.

12

Code Listing

/*******************
*
* BDD Deadlock Detector
* Nalini Vasudevan
*
*******************/

#define DD_DEBUG
#include "headers/util.h"
#include "headers/cudd.h"
#include <math.h>
#define BUF_SIZE 1024

char** channel_details ;
char** children_details ;
char*** individual_process_transitions = NULL;
int* individual_num_transitions ;
int num_processes ;
int num_channels ;
int channel_bits ;
int process_bits ;
int domain_bits ;
int total_bits ;

DdNode** process_bdds;
DdNode* init_state;

/*Converts ’number’ to a string of 0s and 1s (the equivalent binary representation)*/
char to_bit_string(int number, int length, char* str)
{

int i;
for (i = length - 1; i >= 0; i--)
{

if(number % 2 == 1)
str[i] = ’1’;

else str[i] = ’0’;
number /= 2;

}
str[length] = ’\0’;

}

/*Parses the file spit out of the compiler*/
int read_file (char *filename)
{

int i, j, ch;
char c;
FILE *fp, *fp1;
char str [BUF_SIZE], tmp[BUF_SIZE];
fp = fopen(filename, "r");

fscanf (fp, "%d", &num_processes);
fscanf (fp, "%d", &num_channels);
//printf("%d\n", num_processes);
//printf("%d\n", num_channels);
channel_bits = num_channels > 1? log (num_channels - 1) / log (2) + 1 : 1;
process_bits = 3 + channel_bits;
domain_bits = num_processes * process_bits;
total_bits = 2 * domain_bits;

///*Read children details*/
children_details = (char **) malloc (num_processes * sizeof (char*));
for (i = 0; i < num_processes; i++)
{

children_details[i] = (char*)malloc((num_processes + 1) * sizeof(char));
fscanf (fp, "%s", children_details[i]);
//printf ("%s\n", children_details[i]);

}

13

///*Read channel details*/
channel_details = (char **) malloc (num_channels * sizeof (char*));
for (i = 0; i < num_channels; i++)
{

channel_details[i] = (char*)malloc((num_processes + 1) * sizeof(char));
fscanf (fp, "%s", channel_details[i]);
//printf ("%s\n", channel_details[i]);

}

individual_process_transitions = (char***) malloc (num_processes * sizeof(char**));
individual_num_transitions = (int*) malloc (num_processes * sizeof(int*));
fscanf (fp, "%s", str); /*Discard first $*/
for (i = 0 ; i < num_processes ; i++)
{

j = 0;
while (1)
{

fscanf (fp, "%s", str); /*Discard first $*/
if (str[0] == ’$’) break;
switch (str[0])
{

case ’N’ : strcpy(tmp,"000"); break;
case ’C’ : strcpy(tmp,"111"); break;
case ’P’ : strcpy(tmp,"100"); break;
case ’T’ : strcpy(tmp,"001"); break;

}
fscanf (fp, "%d", &ch); /*Read the channel*/
to_bit_string (ch, channel_bits, str);
strcat (tmp, str);

fscanf (fp, "%s", str); /*Discard ->*/
fscanf (fp, "%s", str);
switch (str[0])
{

case ’N’ : strcat(tmp,"000"); break;
case ’C’ : strcat(tmp,"111"); break;
case ’P’ : strcat(tmp,"100"); break;
case ’T’ : strcat(tmp,"001"); break;
default : break; // printf("%s", str);

}

fscanf (fp, "%d", &ch); /*Read the channel*/
to_bit_string (ch, channel_bits, str);
strcat (tmp, str);

individual_process_transitions[i] = (char**) realloc (individual_process_transitions[i],
(j+1) * sizeof(char*));

individual_process_transitions[i][j] = (char*) malloc ((process_bits * 2 + 1) * sizeof(char));
strcpy (individual_process_transitions[i][j], tmp);
//printf("%s \n", individual_process_transitions[i][j]);

j++;

}
individual_num_transitions[i] = j;
//printf ("\n");

}

}

/*Converts a bit string to number*/
int to_number (char *str)
{

int i, num = 0;
for (i = 0 ; i < strlen(str); i++)

if (str[i] == ’0’)
num = num * 2;

else
num = num * 2 + 1;

return num;
}

/*Encodes a specific number of bits starting from the offset*/
DdNode* encode (DdManager *manager, int num_of_bits, int transition_state, int offset)

14

{
int i;
DdNode *f, *pos, *temp, *g;
f = Cudd_ReadOne(manager);
Cudd_Ref (f);
for(i = offset + num_of_bits - 1; i >= offset ; i--)
{

pos = Cudd_bddIthVar(manager, i);

if (transition_state%2 == 1)
temp = pos;

else
temp = Cudd_Not(pos);

Cudd_Ref (temp);

g = f;

f = Cudd_bddAnd (manager, g, temp);
Cudd_Ref (f);

Cudd_RecursiveDeref (manager, temp);
Cudd_RecursiveDeref (manager, g);

transition_state /= 2;
}
return f;

}

/*All set to 1*/
DdNode* get_domain_bdd (DdManager *manager, int n)
{

DdNode *f, *pos, *g;
int i;
f = Cudd_ReadOne(manager);
Cudd_Ref (f);
for(i = 0; i <= n - 1 ; i++)
{

pos = Cudd_bddIthVar(manager, i);
Cudd_Ref (pos);

g = f;

f = Cudd_bddAnd (manager, g, pos);
Cudd_Ref (f);

Cudd_RecursiveDeref (manager, pos);
Cudd_RecursiveDeref (manager, g);

}
return f;

}

/* Flag = 0, first half */
/* Flag = 1, next half */
int permute_list (int p [], int p_count, int flag)
{

int p_start, i, index;
p_start = (process_bits * num_processes) * flag + p_count * process_bits;
for (i = 0; i <= total_bits -1; i++)

{
p[i] = (i + p_start - (process_bits)* flag) % (2 * domain_bits);

}
}

/*Get the current state as*/
DdNode* get_curr_state (DdManager *manager, int p_count, char *status_str, int c_count)
{

int p_start;
DdNode* status_bdd, *channel_bdd, *temp, *curr_state;
int *p = (int *) malloc (total_bits * sizeof (int));
p_start = p_count * num_processes;
status_bdd = encode (manager, 3, to_number(status_str), 0);
channel_bdd = encode (manager, channel_bits, c_count, 3);
Cudd_Ref (status_bdd);
Cudd_Ref (channel_bdd);
temp = Cudd_bddAnd (manager, status_bdd, channel_bdd);
Cudd_Ref (temp);
Cudd_RecursiveDeref (manager, channel_bdd);
Cudd_RecursiveDeref (manager, status_bdd);

15

permute_list (p, p_count, 0);
curr_state = (Cudd_bddPermute (manager, temp, p));
Cudd_Ref (curr_state);
Cudd_RecursiveDeref (manager, temp);
free (p);
return (curr_state);

}

/* Get next state */
DdNode* get_next_state (DdManager *manager, int p_count, char *status_str, int c_count)
{

int p_start;
DdNode* status_bdd, *channel_bdd, *temp1, *temp2, *domain, *curr_state, *q1, *q2;
int *p = (int *) malloc (total_bits * sizeof (int));
p_start = p_count * num_processes;
status_bdd = encode (manager, 3, to_number(status_str), 0);
channel_bdd = encode (manager, channel_bits, c_count, 3);
temp1 = Cudd_bddAnd (manager, status_bdd, channel_bdd);
Cudd_Ref (temp1);
Cudd_RecursiveDeref (manager, channel_bdd);
Cudd_RecursiveDeref (manager, status_bdd);
domain = get_domain_bdd (manager, process_bits);
q1 = Cudd_bddAnd (manager, process_bdds[p_count], temp1);
Cudd_Ref(q1);
Cudd_RecursiveDeref (manager, temp1);
q2 = Cudd_Support (manager, domain);
Cudd_Ref(q2);
Cudd_RecursiveDeref (manager, domain);
temp2 = Cudd_bddExistAbstract (manager, q1, q2);
Cudd_Ref (temp2);
Cudd_RecursiveDeref (manager, q1);
Cudd_RecursiveDeref (manager, q2);
permute_list (p, p_count, 1);
curr_state = (Cudd_bddPermute (manager, temp2, p));
Cudd_Ref (curr_state);
Cudd_RecursiveDeref (manager, temp2);
free (p);
return (curr_state);

}

/* We know what the next state is */
DdNode* get_next_state_as (DdManager *manager, int p_count, char *status_str, int c_count)
{

int p_start;
DdNode* status_bdd, *channel_bdd, *temp, *curr_state;
int *p = (int *) malloc (total_bits * sizeof (int));
p_start = p_count * num_processes;
status_bdd = encode (manager, 3, to_number(status_str), process_bits);
channel_bdd = encode (manager, channel_bits, c_count, process_bits + 3);
Cudd_Ref (status_bdd);
Cudd_Ref (channel_bdd);
temp = Cudd_bddAnd (manager, status_bdd, channel_bdd);
Cudd_Ref (temp);
Cudd_RecursiveDeref (manager, channel_bdd);
Cudd_RecursiveDeref (manager, status_bdd);
permute_list (p, p_count, 1);
curr_state = (Cudd_bddPermute (manager, temp, p));
Cudd_Ref (curr_state);
Cudd_RecursiveDeref (manager, temp);
free (p);
return (curr_state);

}

/* The processes remain in the same state */
DdNode* replicate_domain_as_range (DdManager *manager, int p_count)
{

int p_start, i, j;
char str [BUF_SIZE] ;
DdNode *f, *g, *var, *temp, *p, *p_domain, *p_range;
p_start = p_count * process_bits;
f = Cudd_ReadLogicZero(manager);
Cudd_Ref(f);

/*Get all the transitions and replicate as next state*/
for (i = 0; i <= individual_num_transitions[p_count]+1; i++)
{

if (i == individual_num_transitions[p_count])

16

{
strcpy (str, "001"); /* Terminated case */
for (j= 0; j < channel_bits; j++)

strcat (str, "0");
}

else if (i == individual_num_transitions[p_count] + 1)
{

strcpy (str, "110"); /* Par with children case */
for (j= 0; j < channel_bits; j++)

strcat (str, "0");
}

else
strncpy (str, individual_process_transitions [p_count][i], process_bits);
str[process_bits] = ’\0’;
p_domain = encode (manager, process_bits, to_number(str), p_start);
p_range = encode (manager, process_bits, to_number(str), domain_bits + p_start);
temp = Cudd_bddAnd (manager, p_domain, p_range);
Cudd_Ref (temp);
Cudd_RecursiveDeref (manager, p_domain);
Cudd_RecursiveDeref (manager, p_range);
p = f;

f = Cudd_bddOr (manager, temp, p);
Cudd_Ref (f);
Cudd_RecursiveDeref (manager, p);
Cudd_RecursiveDeref (manager, temp);

}
/*

for (j = p_start; j < p_start + process_bits; j++)
{

‘temp = Cudd_bddXnor (manager, Cudd_bddIthVar (manager, j), Cudd_bddIthVar (manager, j + domain_bits));
Cudd_Ref (temp);
g = f;
f = Cudd_bddAnd(manager, temp, g);
Cudd_Ref (f);
Cudd_RecursiveDeref(manager, temp);
Cudd_RecursiveDeref(manager, g);

}
*/

return f;

}

/* Check if the state of atleast one process has changed*/
DdNode* get_non_replica (DdManager *manager)
{

int i;
DdNode *temp, *tmp2, *f, *g;
f = Cudd_ReadOne(manager);
Cudd_Ref (f);
for (i = 0; i < domain_bits; i++)
{

temp = Cudd_bddXor (manager, Cudd_bddIthVar (manager, i), Cudd_bddIthVar (manager, i + domain_bits));
Cudd_Ref (temp);
g = f;
f = Cudd_bddAnd(manager, temp, g);
Cudd_Ref (f);
Cudd_RecursiveDeref(manager, temp);
Cudd_RecursiveDeref(manager, g);

}
return f;

}

/* Precompute Deadlock states */
DdNode* get_deadlock_states (DdManager *manager)
{

int i, j, p, q;
DdNode *f, *g, *tmp1, *tmp2, *tmp3, *tmp4, *p_domain1, *p_domain2, *p_range1, *p_range2;

f = Cudd_ReadLogicZero(manager);
Cudd_Ref(f);
for (i = 0; i < num_processes; i++)

for (j = i + 1; j < num_processes; j++)
for (p = 0 ; p < num_channels; p++)

for (q = p + 1 ; q < num_channels; q++)
if (channel_details[p][i] == ’1’

17

&& channel_details[p][j] == ’1’
&& channel_details[q][i] == ’1’
&& channel_details[q][j] == ’1’)
{

p_domain1 = get_curr_state (manager, i, "111", p);
p_range1 = get_curr_state (manager, j, "111", q);
tmp1 = Cudd_bddAnd(manager, p_domain1, p_range1);
Cudd_Ref(tmp1);
Cudd_RecursiveDeref (manager, p_domain1);
Cudd_RecursiveDeref (manager, p_range1);
p_domain1 = get_curr_state (manager, j, "111", p);
p_range1 = get_curr_state (manager, i, "111", q);
tmp2 = Cudd_bddAnd(manager, p_domain1, p_range1);
Cudd_Ref(tmp1);
Cudd_RecursiveDeref (manager, p_domain1);
Cudd_RecursiveDeref (manager, p_range1);
tmp3 = Cudd_bddOr(manager, tmp1, tmp2);
Cudd_Ref(tmp3);
Cudd_RecursiveDeref (manager, tmp1);
Cudd_RecursiveDeref (manager, tmp2);
g = f;
f = Cudd_bddOr(manager, g, tmp3);
Cudd_Ref(f);
Cudd_RecursiveDeref (manager, g);
Cudd_RecursiveDeref (manager, tmp3);

}

return f;
}

/*Adding communication constraints*/
DdNode* communication_constraints (DdManager *manager)
{

int c_count = 0, i , j;
DdNode * p_domain1, *p_domain2, *p_domain3, *p_domain4, *p_range1, *p_range2, *p_range3, *p_range4,

*tmp1, *tmp2, *tmp3, *tmp4, *tmp5, *tmp6, *f, *g, *h, *p, *q;
h = Cudd_ReadLogicZero(manager);
Cudd_Ref(h);
for (i = 0; i < num_channels; i++)
{

g = Cudd_ReadOne(manager);
Cudd_Ref(g);
for (j = 0; j < num_processes; j++)
{

if (channel_details[i][j] == ’1’)
{

//printf("\n If true \n");
p_domain1 = get_curr_state (manager, j, "111", i);
p_range1 = get_next_state (manager, j, "111", i);
p_domain2 = get_curr_state (manager, j, "110", 0);
p_range2 = get_next_state_as (manager, j, "110", 0);
p_domain3 = get_curr_state (manager, j, "001", 0);
p_range3 = get_next_state_as (manager, j, "001", 0);
p_domain4 = get_curr_state (manager, j, "000", 0);
p_range4 = get_next_state_as (manager, j, "000", 0);
tmp1 = Cudd_bddAnd(manager, p_domain1, p_range1);
tmp2 = Cudd_bddAnd(manager, p_domain2, p_range2);
tmp3 = Cudd_bddAnd(manager, p_domain3, p_range3);
tmp4 = Cudd_bddAnd(manager, p_domain4, p_range4);
Cudd_Ref(tmp1);
Cudd_Ref(tmp2);
Cudd_Ref(tmp3);
Cudd_Ref(tmp4);
Cudd_RecursiveDeref (manager, p_domain1);
Cudd_RecursiveDeref (manager, p_range1);
Cudd_RecursiveDeref (manager, p_domain2);
Cudd_RecursiveDeref (manager, p_range2);
Cudd_RecursiveDeref (manager, p_domain3);
Cudd_RecursiveDeref (manager, p_range3);
Cudd_RecursiveDeref (manager, p_domain4);
Cudd_RecursiveDeref (manager, p_range4);
tmp5 = Cudd_bddOr(manager, tmp1, tmp2);
Cudd_Ref(tmp5);
Cudd_RecursiveDeref (manager, tmp1);

18

Cudd_RecursiveDeref (manager, tmp2);
tmp6 = Cudd_bddOr(manager, tmp3, tmp4);
Cudd_Ref(tmp6);
Cudd_RecursiveDeref (manager, tmp3);
Cudd_RecursiveDeref (manager, tmp4);
f = Cudd_bddOr (manager, tmp5, tmp6);
Cudd_Ref(f);
Cudd_RecursiveDeref (manager, tmp5);
Cudd_RecursiveDeref (manager, tmp6);

}
else
{

f = replicate_domain_as_range (manager, j);
}
p = g;
//printf("\nSize = %ld", Cudd_ReadSize (manager));
//printf("i = %d, j = %d\n", i , j);
fflush (stdout);
g = Cudd_bddAnd (manager, f, p);
Cudd_Ref(g);
Cudd_RecursiveDeref (manager, f);
Cudd_RecursiveDeref (manager, p);

}
q = h;
h = Cudd_bddOr(manager, g, q);
Cudd_Ref(h);
Cudd_RecursiveDeref (manager, g);
Cudd_RecursiveDeref (manager, q);
}
/*printf("Communication Constraints\n");
Cudd_PrintMinterm (manager, h);*/
return h;

}

/*Adding par constraints*/
DdNode* par_constraints (DdManager *manager)
{

int i, j;
DdNode *p_domain, *p_domain2, *p_domain3, *p_domain4, *p_range, *p_range2, *p_range3, *p_range4,

*tmp1, *tmp2, *tmp3, *tmp4, *f, *g, *h, *p, *q;
h = Cudd_ReadLogicZero(manager);
Cudd_Ref(h);
for (i = 0; i < num_processes ; i++)
{

int flag = 0; /*Does it have atleast one child?*/

p_domain = get_curr_state (manager, i, "100", 0);
p_range = get_next_state_as (manager, i, "110", 0);
g = Cudd_bddAnd (manager, p_domain, p_range);
Cudd_Ref (g);
Cudd_RecursiveDeref (manager, p_domain);
Cudd_RecursiveDeref (manager, p_range);
for (j = 0; j < num_processes; j++)

if (children_details[i][j] == ’1’)
{

flag = 1;
break;

}
if (flag == 1)
{

for (j = 0; j < num_processes; j++)
{

if (i != j)
{

if (children_details[i][j] == ’1’)
{

p_domain = get_curr_state (manager, j, "000", 0);
p_range = get_next_state (manager, j, "000", 0);
f = Cudd_bddAnd (manager, p_domain, p_range);
Cudd_Ref (f);
Cudd_RecursiveDeref (manager, p_domain);
Cudd_RecursiveDeref (manager, p_range);
flag = 1;

}
else

19

{
f = replicate_domain_as_range (manager, j);

}
/*printf("f\n");
Cudd_PrintMinterm (manager, f);*/

p = g;
/* printf("\nSize = %d", Cudd_ReadSize (manager));

printf("i = %d, j = %d", i , j);
fflush (stdout); */
g = Cudd_bddAnd (manager, f, p);
Cudd_Ref (g);
Cudd_RecursiveDeref (manager, f);
Cudd_RecursiveDeref (manager, p);

}
}

q = h;
h = Cudd_bddOr(manager, g, q);
Cudd_Ref(h);
Cudd_RecursiveDeref (manager, g);
Cudd_RecursiveDeref (manager, q);

}
}
/*printf("Par Constraints\n");
Cudd_PrintMinterm (manager, h);*/
return h;

}

/*Adding termination constraints*/
DdNode* termination_constraints (DdManager *manager)
{

int i, j;
DdNode *p_domain, *p_domain2, *p_domain3, *p_domain4, *p_range, *p_range2, *p_range3, *p_range4,

*tmp1, *tmp2, *tmp3, *tmp4, *f, *g, *h, *p, *q;
h = Cudd_ReadLogicZero(manager);
Cudd_Ref(h);
for (i = 0; i < num_processes; i++)
{

int flag = 0; /*Does it have atleast one child?*/

p_domain = get_curr_state (manager, i, "110", 0);
p_range = get_next_state (manager, i, "100", 0);
g = Cudd_bddAnd (manager, p_domain, p_range);
Cudd_Ref(g);
Cudd_RecursiveDeref (manager, p_domain);
Cudd_RecursiveDeref (manager, p_range);
for (j = 0; j < num_processes; j++)
{

if (i != j)
{

if (children_details[i][j] == ’1’)
{

p_domain = get_curr_state (manager, j, "001", 0);
p_range = get_next_state_as (manager, j, "000", 0);
f = Cudd_bddAnd (manager, p_domain, p_range);
Cudd_Ref(f);
Cudd_RecursiveDeref (manager, p_domain);
Cudd_RecursiveDeref (manager, p_range);
flag = 1;

}
else f = replicate_domain_as_range (manager, j);
p = g;
g = Cudd_bddAnd (manager, f, p);
Cudd_Ref(g);
Cudd_RecursiveDeref (manager, f);
Cudd_RecursiveDeref (manager, p);

}
}
if (flag == 1)
{

q = h;
h = Cudd_bddOr(manager, g, q);
Cudd_Ref(h);
Cudd_RecursiveDeref (manager, g);
Cudd_RecursiveDeref (manager, q);

20

}
}
/*printf("Termination Constraints\n");
Cudd_PrintMinterm (manager, h);*/
return h;

}

/*Get a BDD that represents terminal state */
DdNode* get_terminal_states (DdManager *manager)
{

int i;
DdNode * var, *f, *p;
f = Cudd_ReadOne(manager);
Cudd_Ref (f);
for(i= 0; i <domain_bits; i++)
{

var = Cudd_bddIthVar (manager, i);
if (i != 2) /* Terminal state of process 1*/

var = Cudd_Not (var);
Cudd_Ref(var);
p = f;

f = Cudd_bddAnd (manager, var, p);
Cudd_Ref(f);

Cudd_RecursiveDeref (manager, var);
Cudd_RecursiveDeref (manager, p);

}

return f;
}

/* Dummy test function */
int test_function (DdManager *manager)
{

DdNode *f, *g, *var, *temp;
DdNode * var_50;
int i;
f = Cudd_ReadOne(manager);
Cudd_Ref (f);
for (i = 0; i < 100 ; i++)
{

var = Cudd_bddIthVar (manager,i);
var_50 = Cudd_bddIthVar (manager, i + 100);
temp = Cudd_bddXnor (manager, var, var_50);

// Cudd_PrintMinterm (manager, temp);
Cudd_Ref (temp);
g = Cudd_bddAnd (manager, temp, f);
Cudd_Ref (g);
Cudd_RecursiveDeref (manager,f);
f = g;

}
//printf("%d", Cudd_DagSize (f));

}

/* BDD reachability analysis */
int explore_states (DdManager *manager)
{

int deadlock = 0;
DdNode *deltac, *deltap, *deltat, *deltacp, *curr_states, *next_states, *tmp_next_states,

*explored_states, *domain_bdd, *terminal_state, *q, *r, *tmp1, *tmp2, *deadlock_states;
int* p = (int*) malloc(total_bits * sizeof(int));
int i;

/*Get the permute array*/
for (i = 0 ; i < total_bits; i++)

p[i] = (i + domain_bits) % total_bits;

/*Get the different constraint bdds*/
deltac = communication_constraints (manager);
deltap = par_constraints (manager);
deltat = termination_constraints (manager);
terminal_state = get_terminal_states(manager);
deadlock_states = get_deadlock_states(manager);
//printf("deadlock states $$$- \n");
//Cudd_PrintMinterm (manager, deadlock_states);

21

/*Initialize current and explored states*/
curr_states = init_state;
explored_states = init_state;
Cudd_Ref(explored_states);

//printf("curr states $$$- \n");
//Cudd_PrintMinterm (manager, curr_states);
int step = 0;
domain_bdd = get_domain_bdd (manager, domain_bits);
do
{

//printf("*******************Step number = %d\n", step++);
fflush(stdout);
/* Add the curr_states to expored states*/
q = explored_states;
explored_states = Cudd_bddOr(manager, q, curr_states);
Cudd_Ref(explored_states);

Cudd_RecursiveDeref (manager, q);

tmp_next_states = curr_states;

/* Go as far as possible in terms of termination states */
while (!Cudd_IsConstant(tmp_next_states)) /*Is zero?*/

{

//printf("Step number = %d $$$$$$$$$$$", step++);
fflush(stdout);
curr_states = tmp_next_states;

/*Get the next states by adding termination constraints*/
tmp1 = Cudd_bddAnd (manager, curr_states, deltat);
Cudd_Ref(tmp1);
tmp2 = Cudd_Support(manager, domain_bdd);
Cudd_Ref(tmp2);
tmp_next_states = Cudd_bddExistAbstract (manager, tmp1, tmp2);

Cudd_Ref(tmp_next_states);
Cudd_RecursiveDeref (manager, tmp1);

Cudd_RecursiveDeref (manager, tmp2);

//printf("curr state \n");
//Cudd_PrintMinterm (manager, curr_states);
//printf("next state \n");
//Cudd_PrintMinterm (manager, tmp_next_states);

q = tmp_next_states;
tmp_next_states = Cudd_bddPermute (manager, q, p);
Cudd_Ref(tmp_next_states);

Cudd_RecursiveDeref (manager, q);

}

/*Now try to apply communication constraints on it*/
//printf("curr state \n");
//Cudd_PrintMinterm (manager, curr_states);
tmp1 = Cudd_bddAnd (manager, curr_states, deltac);
Cudd_Ref(tmp1);
tmp2 = Cudd_Support(manager, domain_bdd);
Cudd_Ref(tmp2);
next_states = Cudd_bddExistAbstract (manager, tmp1, tmp2);

Cudd_Ref(next_states);
Cudd_RecursiveDeref (manager, tmp1);

Cudd_RecursiveDeref (manager, tmp2);

q = next_states;
next_states = Cudd_bddPermute (manager, q, p);
Cudd_Ref(next_states);

Cudd_RecursiveDeref (manager, q);

// This is wrong
/*q = next_states;
r = Cudd_Not(curr_states);
Cudd_Ref(r);

next_states = Cudd_bddAnd(manager, q, r);

22

Cudd_Ref(next_states);
Cudd_RecursiveDeref (manager, q);
Cudd_RecursiveDeref (manager, r);*/

//printf("next state $$$- \n");
//Cudd_PrintMinterm (manager, next_states);

/*If there is no communication transition*/
if(Cudd_IsConstant (next_states))

{
//printf("yes, it is a constant");

/*Go back one step*/
Cudd_RecursiveDeref(manager, next_states);
tmp1 = Cudd_bddAnd (manager, curr_states, deltap);
Cudd_Ref(tmp1);
tmp2 = Cudd_Support(manager, domain_bdd);
Cudd_Ref(tmp2);
next_states = Cudd_bddExistAbstract (manager, tmp1, tmp2);

Cudd_Ref(next_states);
Cudd_RecursiveDeref (manager, tmp1);

Cudd_RecursiveDeref (manager, tmp2);

q = next_states;
next_states = Cudd_bddPermute (manager, q, p);
Cudd_Ref(next_states);

Cudd_RecursiveDeref (manager, q);
//next_states = Cudd_bddAnd(manager, next_states, Cudd_Not(curr_states));

}
else

{

tmp1 = Cudd_bddAnd (manager, next_states, deltap);
Cudd_Ref(tmp1);
tmp2 = Cudd_Support(manager, domain_bdd);
Cudd_Ref(tmp2);
tmp_next_states = Cudd_bddExistAbstract (manager, tmp1, tmp2);

Cudd_Ref(tmp_next_states);
Cudd_RecursiveDeref (manager, tmp1);

Cudd_RecursiveDeref (manager, tmp2);

q = tmp_next_states;
tmp_next_states = Cudd_bddPermute (manager, q, p);
Cudd_Ref(tmp_next_states);

Cudd_RecursiveDeref (manager, q);

if(!Cudd_IsConstant (tmp_next_states)) // If we dint get false

{
Cudd_RecursiveDeref(manager, next_states);
next_states = tmp_next_states;

}
else

Cudd_RecursiveDeref(manager, tmp_next_states);

}
/*printf("curr state - \n");
Cudd_PrintMinterm (manager, curr_states);
printf("next state - \n");
Cudd_PrintMinterm (manager, next_states);*/

q = Cudd_bddAnd (manager, next_states, deadlock_states);
Cudd_Ref(q);
if (!Cudd_IsConstant(q)) /*Is zero? No state possible*/

{
printf("-----The program has a path that will deadlock-----\n");
deadlock = 1;
break;

}
Cudd_RecursiveDeref (manager, q);

23

q = Cudd_Not (explored_states);
Cudd_Ref(q);
curr_states = Cudd_bddAnd (manager, next_states, q);
Cudd_Ref(curr_states);

Cudd_RecursiveDeref (manager, next_states);
Cudd_RecursiveDeref (manager, q);

}
while (!Cudd_bddLeq(manager, curr_states, explored_states));

if (deadlock == 0)
printf("-----The program has no path that will deadlock-----\n");

free(p);

}

/* Individual transitions */
void get_process_bdds (DdManager *manager)
{

int i, j;
DdNode * temp, *p;
process_bdds = (DdNode**) malloc (num_processes*sizeof(DdNode*));

for (i = 0; i < num_processes; i++)
{

process_bdds[i] = Cudd_ReadLogicZero (manager);
Cudd_Ref (process_bdds[i]);
for (j = 0; j < individual_num_transitions[i]; j++)

{
temp = encode (manager, 2 * process_bits, to_number (individual_process_transitions[i][j]), 0);
Cudd_Ref (temp);
p = process_bdds[i];
process_bdds[i] = Cudd_bddOr (manager, temp, p);
Cudd_Ref (process_bdds[i]);

Cudd_RecursiveDeref (manager, temp);
Cudd_RecursiveDeref (manager, p);

}
}

}

/* Get the initial state of the processes */
int get_init_states (DdManager *manager)
{

int i;
DdNode *temp, *p;
char *tmp_str = (char*) malloc (process_bits * sizeof(char));
tmp_str[process_bits] = ’\0’;
init_state = Cudd_ReadOne (manager);
Cudd_Ref(init_state);
for (i = 0; i < num_processes; i++)
{

if(i == 0)
strncpy(tmp_str, individual_process_transitions[i][1],process_bits);
else
strncpy(tmp_str, individual_process_transitions[i][0],process_bits);
tmp_str[process_bits]= ’\0’;
temp = encode (manager, process_bits, to_number (tmp_str), i * process_bits);
p = init_state;
init_state = Cudd_bddAnd (manager, temp, p);
Cudd_Ref (init_state);

Cudd_RecursiveDeref (manager, temp);
Cudd_RecursiveDeref (manager, p);

}

}

/* Detect deadlocks */
int detect_deadlocks (DdManager *manager)
{

get_init_states (manager);
get_process_bdds (manager);

24

explore_states (manager);

}

/*Main program*/
int main (int argc, char**argv)
{

if (argc <= 1)
{

printf("Usage: bdd-deadlock <filename.dat>\n");
exit(1);

}

DdManager *manager;
DdNode * temp;
read_file (argv[1]);
manager = Cudd_Init(total_bits,0,CUDD_UNIQUE_SLOTS,CUDD_CACHE_SLOTS,0);
Cudd_AutodynEnable(manager, CUDD_REORDER_SIFT_CONVERGE);
detect_deadlocks (manager);
cuddGarbageCollect (manager, 1);

}

25

