
Design and Implementation of a Process Migration System for the
Linux Environment

Nalini Vasudevan ∗ Prasanna Venkatesh †

Abstract

This paper reviews the field of process migration by
summarizing the key concepts and giving an overview
of a high level process migration algorithm and also
provides a unique alternative implementation of our
own for the linux environment. Design and imple-
mentation issues of process migration are analyzed in
general, and these are used as pointers in describing
our implementation. The primary aim of this paper
is to build a user space process migration tool which
would obviate the need for kernel support. This pa-
per aims to provide an insight into the difficult task
of actual migration for performance gain.

Keywords: process migration, fault resilience, load
distribution, distributed systems

1 Introduction

Process migration is the act of transferring an ac-
tive process between two machines and restoring the
process from the point it left off on the selected des-
tination node.The purpose of this is to provide for an
enhanced degree of dynamic load distribution, fault
resilience, eased system administration, and data ac-
cess locality. The potential of process migration is
great especially in a large network of personal work-
stations.In a typical working environment,there gen-
erally exists a large pool of idle workstations whose
power is unharnessed if the potential of process mi-
gration is not tapped.Providing for a reliable and ef-
ficient migration module that helps handle inconsis-
tencies in load distribution and allows for an effective
usage of the system resource potential is highly war-
ranted. As high-performance facilities shift from su-
percomputers to networks of workstations, and with
the ever-increasing role of the World Wide Web, we

∗Yahoo! Software Development India Pvt. Ltd. 4th floor,
”Esquire Center”, 9, M.G. Road, Bangalore, India - 560 001.
Tel: +91 94481 07482 Email: nalinivasudevan@yahoo.com

†Yahoo! Software Development India Pvt. Ltd. 4th floor,
”Esquire Center” , 9, M.G. Road, Bangalore, India - 560 001.
Tel: +91 98458 55097 Email: prasanna.venkatesh@yahoo.com

expect migration to play a more important role and
eventually to be widely adopted. This paper reviews
the field of process migration by summarizing the key
concepts and giving an overview of the most impor-
tant implementations and by providing a unique al-
ternative implementation of our own. Design and im-
plementation issues of process migration are analyzed
in general, and these are used as pointers in describing
our implementation.

Figure 1: Process Migration and Mobility

Process migration, which is the main theme of this pa-
per primarily involves transferring both code and data
across nodes. It also involves transfer of authorisation
information, for instance access to a shared resource,
but the scope is limited to being under the control of
a single administration. Finally mobile agents involve
transferring code, data and complete authorisation in-
formation, to act on the behalf of the owner on a wide
scale, such as the World wide internet.

2 Related Work

The future of process migration is extremely encour-
aging. Significant research and development has been
conducted in process migration and closely related ar-
eas. Different streams of development may well lead
to a wider deployment of process migration. [2] does a
survey on process migration and highlights the impor-
tance of process migration. A process is suspended on
a machine and resumed on another machine. Remote
Procedure Calls, Copy by reference are the important



mechanisms used in process migration as explained
in [4] and [21]. The transfer of executing software
between machines has been investigated by various
distributed operating systems research and is termed
process migration ([11],[12],[13],[25]). Process migra-
tion has been the subject of a consider able amount of
research, and there have been a number of experimen-
tal implementations as highlighted in ([1],[8],[9],[11]).
There are various approcaches to process migration
and the mechanisms that can be used as the basis
for implementing process migration in a distributed
setting have been discussed in [3],[6],[7],[8],[14] and
[18]. One path is in the direction of LSF, a user-
level facility that provides much of the functionality of
full-fledged process migration systems, but with fewer
headaches and complications. The checkpoint/restart
model of process migration has already been relatively
widely deployed. Packages such as Condor, LSF and
Loadleveler are used for scientific and batch appli-
cations in production environments. Those environ-
ments have high demands on their computer resources
and can take advantage of load sharing in a simple
manner. A second path concerns clusters of worksta-
tions as discussed in [12] and [24]. Recent advances
in high speed networking have reduced the cost of mi-
grating processes, allowing even costly migration im-
plementations to be deployed. A third path, one closer
to the consumers of the vast majority of today’s com-
puters (Windows systems on Intelbased platforms),
would put process migration right in the home or of-
fice. One can imagine a process starting on a personal
computer, and migrating its flow of control into an-
other device in the same domain. Such activity would
be similar to the migratory agents approach currently
being developed for the Web .
Process migration is basically designed to share the
load among various systems without yielding on other
performances. A lot of research related activities can
be found in [23], [24] and [23]. An operating system
that provides process migration and transparent re-
mote execution [9], [17], [19] and [20] facilitates with
the aim of taking advantage of idle processors within a
cluster. The virtualization([5]) and process migration
provided can provide a plethora of advantages from
fault tolerance to remote resource sharing. But, it
has always faced significant technical challenges and
are highlighted in [16]. In this paper we try to over-
come the challenges and design an optimal system for
the linux environment..

3 Overview of Process Migration

3.1 Goals

The goals of process migration are very closely tied to
the applications that use migration, as described in
the next section. The primary goals include:

• Harnessing resource locality: Processes
which are running on a node which is distant from
the node which houses the data that the processes
are using tend to spend most of their time in
performing communication between the nodes for
the sake of accessing the data. Process migration
can be used to migrate a distant process closer to
the data that it is processing, thereby ensuring it
spends most of its time doing useful work.

• Resource sharing: Nodes which have large
amount of resources can act as receiver nodes in
a process migration environment.

• Effective Load Balancing: Migration is par-
ticularly important in receiver-initiated distrib-
uted systems, where a lightly loaded node an-
nounces its availability thereby enabling the arbi-
trator to provide its processing power to another
node which is relatively heavily loaded.

• Fault tolerance: This aspect of a system is im-
proved by migration of a process from a par-
tially failed node, or in the case of long run-
ning processes when different kinds of failures are
probable. In conjunction with checkpointing, this
goal can be achieved.

• Eased system administration: When a node
is about to be shutdown, the system can mi-
grate processes which are running on it to an-
other node, thereby enabling the process to go to
completion, either on the destination node or on
the source node by migrating it back.

• Mobile computing: Users may decide to mi-
grate a running process from their workstations
to their mobile computers or vice versa to exploit
the large amount of resources that a workstation
can provide.

3.2 Applications

The type of applications that can benefit from process
migration include:

2



• Distributed applications can be started on
certain nodes and can be migrated at the appli-
cation level or by using a system wide migration
facility in response to things like load balancing
considerations.

• Multiuser Applications, can benefit greatly
from process migration. As users come and
go, the load on individual nodes varies widely.
Dynamic process migration can automatically
spread processes across all nodes, including those
applications that are not enhanced to exploit the
migration mechanism.

• Standalone Applications, which is preempt-
able, can be used with various goals in mind.
Such an application can either migrate itself, or
it can be migrated by another authority. It is
difficult to select such applications without de-
tailed knowledge of past behavior, since many
applications are short-lived and do not execute
long enough to justify the overhead of migration

• Long running applications, which can run for
days or weeks on end can suffer various interrup-
tions, for example partial node failures or admin-
istrative shutdowns. Process migration can relo-
cate these processes in the event of the occurences
of any of the events mentioned above.

• Migration-oriented Applications are appli-
cations that have been coded to explicitly take
advantage of process migration. Dynamic process
migration can automatically redistribute these
related processes if the load becomes uneven on
different nodes, e.g. if processes are dynamically
created, or there are many more processes than
nodes.

• Mobile applications are the most recent exam-
ple of the potential use of migration; for instance,
mobile agents and mobile objects. These appli-
cations are designed with mobility in mind. Al-
though this mobility differs significantly from the
kinds of process migration considered elsewhere
in this paper, it uses some of the same tech-
niques: location policies, checkpointing, trans-
parency, and locating and communicating with
a mobile entity.

3.3 System Requirements

To support process migration effectively, a system
should be able to provide the following functionality:

• Exporting/importing the process state: The sys-
tem must provide some type of export/import
interfaces that allow the process migration mech-
anism to extract a process’s state from the source
node and import this state on the destination
node. These interfaces may be provided by
the underlying operating system, the program-
ming language, or other elements of the program-
ming environment that the process has access
to. State includes processor registers, process
address space and communication state, such as
open message channels in the case of message-
based systems, or open files and signal masks in
the case of UNIX-like systems.

Figure 2: State transfer

• Naming/accessing the process and its resources:
After migration, the migrated process must be
accessible by the same name and mechanisms
as it was before migration as though migration
never occurred. The same applies to its resources,
namely open files, threads etc.

3.4 Load Measurement Metrics

The load information is typically represented by
means of the following metrics: the CPU usage, the
memory availability, the average turnaround time etc.
A process load is typically characterised by its CPU
usage, memory usage, communication, file usage etc.
Load information management deals with using these
to select the process to be migrated and to choose the
destination node.

3.5 Distributed Scheduling

This aspect mainly deals with allocation of nodes to
processes. There are a plethora of strategies that are
proposed, of which few are mentioned here:

• A sender-initiated policy is activated on the node

3



that is overloaded and that wishes to off-load to
other nodes. A sender-initiated policy is prefer-
able for low and medium loaded systems, which
have a few overloaded nodes. This strategy is
convenient for remote invocation strategies.

• A receiver-initiated policy is activated on under-
loaded nodes willing to accept the load from over-
loaded ones. A receiver-initiated policy is prefer-
able for high load systems, with many overloaded
nodes and few underloaded ones. Process migra-
tion is particularly well-suited for this strategy,
since only with migration can one initiate process
transfer at an arbitrary point in time

• A symmetric policy is the combination of the pre-
vious two policies, in an attempt to take advan-
tage of the good characteristics of both of them.
It is suitable for a broader range of conditions
than either receiver-initiated or sender-initiated
strategies alone.

• A random policy chooses the destination node
randomly from all nodes in a distributed system.
This simple strategy can result in a significant
performance improvement

3.6 The Virtualisation concept

To provide for user space process migration while
guaranteeing transparency, it is imperative that the
processes do not realise that they are working in a
migration enabled environment. Primarily, this in-
volves building a uniform interface that the processes
interact to which empowers the system to achieve the
objective of transparency. This interface is sometimes
termed the virtual interface and the very idea is called
virtualisation.

4 User Space Implementation for the
Linux Environment

4.1 The Generic Migration Algorithm

Although the implementations can vary, the primary
steps in process migration can be summarised in the
following steps:

1. A migration request is issued to a remote node.
After negotiation, migration has been accepted.

2. A process is detached from its source node by sus-
pending its execution, declaring it to be in a mi-

Figure 3: The Migration Process

grating state, and temporarily redirecting com-
munication as described in the following step.

3. Communication is temporarily redirected by
queuing up arriving messages directed to the mi-
grated process, and by delivering them to the
process after migration. This step continues in
parallel with steps 4, 5, and 6, as long as there
are additional incoming messages. Once the com-
munication channels are enabled after migration
(as a result of step 7), the migrated process is
known to the external world.

4. The process state is extracted, including mem-
ory contents, processor state (register contents),
communication state (e.g., opened files and mes-
sage channels) and relevant kernel context. The
communication state and kernel context are OS
dependent.

5. A destination process instance is created into
which the transferred state will be imported. A
destination instance is not activated until a suffi-
cient amount of state has been transferred from
the source process instance. After that, the des-
tination instance will be promoted into a regular
process.

6. State is transferred and imported into a new in-
stance on the remote node. Not all of the state
needs to be transferred; some of the state could be
lazily brought over after migration is completed

7. Some means of forwarding references to the mi-
grated process must be maintained. This is re-
quired in order to communicate with the process
or to control it. This concludes step 3 enabling
all communication to the original process to be
permanently redirected to the new process.

4



8. The new instance is resumed when sufficient state
has been transferred and imported. With this
step, process migration completes. Once all of
the state has been transferred from the original
instance, it may be deleted on the source node.

4.2 Components

4.2.1 Central Server

The centralized server locates the appropriate ma-
chine when an overload signal is received. Every ma-
chine on the network communicates with this module
to first establish its identity and then to communicate
regarding the load status.

4.2.2 Load Balancer

The Load Balancer keeps track of the relative loads of
the machine on the network and chooses the appro-
priate machine when an overload signal is received.

4.2.3 Checkpointer

This Checkpointer sends a signal to the process chosen
by the Load Balancer for pre-emption and making it
dump a core file. Thereafter, this module traverses the
/proc directory to locate the attributes of the process
selected for preemption. It then creates a file named
filedescriptors which stores details about all the open
files used by the process. These are used as check-
pointing information

4.2.4 Restarter

The restarter uses the Linux machine’s ptrace system
call to get and set the values of the following attributes
of the process

4.2.5 File Transferrer

The FileTransferrer establishes a UDP connection
with the main server and transfers the aforementioned
files to that server when the overload message is sent.
The following files are sent by this module The core
dump The filedescriptors file

4.2.6 Load Calculator

The Load Calculator is a daemon that runs on every
process on the network to calculate the load at regu-
lar intervals. The calculation formula is a parametric
equation based on various parameters. The total load
on the system is calcualed as the sum of the loads
of individual process. The memory and the cpu us-
age are the most significant parameters in the calcu-
lation of load. The /proc file system has one direc-
tory per process. The directories contain the relevant
information regarding memory and cpu usage for all
processes in the system. When the load exceeds a cer-
tain threshold value, this module sends an overload
signal to the main server. This in turns begins the
process of preemption, checkpointing and scheduling.

Figure 4: Process Migration and its modules

4.3 The Implementation

Every node on the network is registered with the cen-
tral network. Additional nodes can be added by edit-
ing a configuration file. Every node has the load com-
putation module running on it. This module periodi-
cally computes the current load on the node by pars-
ing the /proc files and compares it against a prede-
fined load factor (which depends on the application).
When the load exceeds the preset threshold, the load
computation module immediately sends a signal to
the central system. The central server sends all the
nodes on the network. On finding a suitable node us-
ing the random selection process, the server responds
back with the appropriate IP address to the request-

5



ing node(RN). The RN, sets up a connection with that
node, referred to as the destination node(DN). This is
accomplished by having another server run on all the
machines. After this, the RN sends a SIGQUIT to the
overloading process and makes it dump the core file.
This file is used to extract process state like register
contents, currently executing address etc. The open
file descriptors are saved which is written to a file.
The file descriptors file and the extracted information
are sent across to the destination node.

On the destination node, a new process is forked. The
ptrace system call is used to provide the parent with
the power to modify its contents. The relevant files
are again opened and the file pointers are set to the
appropriate location. Also, the register contents are
modified and the parent relinquishes control. The new
process is allowed to continue, while the old one is
killed.

4.4 Results

The existing process migration tools largely work in
the kernel / system space thereby creating a need for
operating system support for migration. They cannot
handle many conditions like opening of files and un-
caught signals etc.
The following diagrams give a self explanation of the
states of the nodes before and after the transfer for a
threshold load of 0.4.
The following features are available with this imple-

Figure 5: Before Migration (Threshold=0.4)

mentation of process migration:

1. It can migrate processes which have open files
without any problem.

2. It takes care of processes spawning other
processes

Figure 6: After Migration (Threshold=0.4)

3. It is a scalable architecture. This means that the
no of nodes can be dynamically increased.

4. It has a transparent architecture, thereby obvi-
ating the need to recompile the user program for
migration support.

5. It runs completely in the user space.

In addition to the above features, the implementation
supports :

• Dynamic load distribution, by migrating
processes from overloaded nodes to less loaded
ones,

• Fault resilience, by migrating processes from
nodes that may have experienced a partial fail-
ure,

• Improved system administration, by migrating
processes from the nodes that are about to be
shut down or otherwise made unavailable, and

• Data access locality, by migrating processes
closer to the source of some data.

5 Conclusion

Despite these goals and ongoing research efforts, mi-
gration has not achieved widespread use. One reason
for this is the complexity of adding transparent migra-
tion to systems originally designed to run stand-alone,
since designing new systems with migration in mind
from the beginning is not a realistic option anymore.
Another reason is that there has not been a compelling
commercial argument for operating system vendors
to support process migration. Checkpoint-restart ap-
proach offers a compromise here, since they can run
on more loosely coupled systems by restricting the

6



types of processes that can migrate. In spite of these
barriers, process migration continues to be an object
of widespread research and as mentioned above many
successful attempts have been there in the past. The
current attempt is one more approach towards chiev-
ing the ultimate goal of computational speedup.

References

[1] Paul Barham, Boris Dragovic, Keir Fraser,
Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Ian Pratt, and Andrew Warfield. Xen and
the art of virtualization. In Proceedings of the
nineteenth ACM symposium on Operating Sys-
tems Principles (SOSP19), pages 164-177. ACM
Press, 2003.

[2] D. Milojicic, F. Douglis, Y. Paindaveine, R.
Wheeler, and S. Zhou. Process migration. ACM
Computing Surveys, 32(3):241-299, 2000.

[3] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow,
M. S. Lam, and M.Rosenblum. Optimizing the
migration of virtual computers. In Proc. of the
5th Symposium on Operating Systems Design
and Implementation (OSDI-02), December 2002.

[4] M. Kozuch and M. Satyanarayanan. Internet sus-
pend/resume. In Proceedings of the IEEE Work-
shop on Mobile Computing Systems and Appli-
cations, 2002.

[5] Andrew Whitaker, Richard S. Cox, Marianne
Shaw, and Steven D. Gribble. Constructing ser-
vices with interposable virtual hardware. In Pro-
ceedings of the First Symposium on Networked
Systems Design and Implementation (NSDI ’04),
2004.

[6] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The
design and implementation of zap: A system for
migrating computing environments. In Proc. 5th
USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI-02), pages 361-
376, December 2002.

[7] Jacob G. Hansen and Asger K. Henriksen. No-
madic operating systems. Master’s thesis, Dept.
of Computer Science, University of Copen-
hagen, Denmark, 2002. Hermann Hrtig, Michael
Hohmuth, Jochen Liedtke, and Sebastian Schn-
berg. The performance of micro-kernel-based sys-
tems. In Proceedings of the sixteenth ACM Sym-
posium on Operating System Principles, pages
66-77. ACM Press, 1997.

[8] Michael L. Powell and Barton P. Miller. Process
migration in DEMOS/MP. In Proceedings of the
ninth ACM Symposium on Operating System
Principles, pages 110-119. ACM Press, 1983.

[9] Marvin M. Theimer, Keith A. Lantz, and David
R. Cheriton. Preemptable remote execution facil-
ities for the V-system. In Proceedings of the tenth
ACM Symposium on Operating System Princi-
ples, pages 2-12. ACM Press, 1985.

[10] Eric Jul, Henry Levy, Norman Hutchinson, and
Andrew Black. Fine-grained mobility in the
emerald system. ACM Trans. Comput. Syst.,
6(1):109-133, 1988.

[11] Fred Douglis and John K. Ousterhout. Transpar-
ent process migration: Design alternatives and
the Sprite implementation. Software - Practice
and Experience, 21(8):757-785, 1991.

[12] A. Barak and O. La’adan. The MOSIX multi-
computer operating system for high performance
cluster computing. Journal of Future Genera-
tion Computer Systems, 13(4-5):361-372, March
1998.

[13] J. K. Ousterhout, A. R. Cherenson, F. Douglis,
M. N. Nelson, and B. B. Welch. The Sprite net-
work operating system. Computer Magazine of
the Computer Group News of the IEEE Com-
puter Group Society, ; ACM CR 8905-0314,
21(2), 1988.

[14] Jacob G. Hansen and Eric Jul. Self-migration of
operating systems. In Proceedings of the 11th
ACM SIGOPS European Workshop (EW 2004),
pages 126-130, 2004.

[15] D. Nichols, Using idle workstations in a shared
computing environment, Proceedings of the
Eleventh ACM Symposium on Operating Sys-
tems Principles, ACM, Austin, TX, November
1987, pp. 512.

[16] E. Zayas, Attacking the process migration bot-
tleneck, Proceedings of the Eleventh ACM Sym-
posium.on Operating Systems Principles, Austin,
TX, November 1987, pp. 1322.

[17] M. Theimer, Preemptable remote execution fa-
cilities for loosely-coupled distributed systems,
Ph.D. Thesis, Stanford University, 1986.

[18] Y. Artsy and R. Finkel, Designing a process mi-
gration facility: the Charlotte experience, IEEE
Computer, 22, (9), 4756 (1989).

7



[19] A. D. Birrell and B. J. Nelson, Implementing
remote procedure calls, ACM Transactions on
Computer Systems, 2, (l), 3959 (1984).13. Com-
puter Science Division, University of Califor-
nia, Berkeley, UNIX Users Reference Manual,4.3
Berkeley Software Distribution, Virtual VAX-11
Version, April 1986.

[20] M. Litzkow, Remote UNIX, Proceedings of the
USENIX 1987 Summer Conference, June 1987.

[21] E. Zayas, The use of copy-on-reference in
a process migration system, Ph.D. Thesis,
Carnegie Mellon University, Pittsburgh, PA,
April 1987. Report No. CMU-CS-87-121.

[22] D. L. Eager, E. D. Lazowska and J. Zahorjan,
The limited performance benefits of migrating
active processes for load sharing, ACM SIGMET-
RICS 1988, May 1988.

[23] D. L. Eager, E. D. Lazowska and J. Zahorjan,
Adaptive load sharing in homogeneous distrib-
uted systems, IEEE Trans. Software Engineering,
SE-12, (5), 662675 (1986).

[24] E. H. Baalbergen, Parallel and distributed com-
pilations in loosely-coupled systems: a case
study,Proceedings of Workshop on Large Grain
Parallelism, Providence, RI, October 1986.

[25] F. Douglis and J. Ousterhout, Process migration
in the Sprite operating system, Proceedings of
the 7th International Conference on Distributed
Computing Systems, IEEE, Berlin, West Ger-
many, September 1987, pp. 1825.

8


