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Chapter 1

Synopsis

Localization is a fundamental task in wireless ad-hoc networks. We consider the prob-
lem of locating and orienting a network of unattended sensor nodes that have been
deployed in a scene at unknown locations. In a location related system, the aqui-
sition of objects’ locations is the critical step for the effective and smooth working
procedures.The basic concept is to deploy a large number of low-cost, self-powered
sensor nodes that acquire and process data. The sensor nodes may include one or more
acoustic microphones as well as seismic, magnetic, or imaging sensors. A typical sensor
network objective is to detect, track, and classify objects or events in the neighborhood
of the network.

We consider location estimation in networks where a small proportion of devices,
called reference devices or beacons, have a priori information about their coordinates.
All devices,regardless of their absolute coordinate knowledge, estimate the range be-
tween themselves and their neighboring devices. Such location estimation is called rel-
ative location because the range estimates collected are predominantly between pairs
of devices of which neither has absolute coordinate knowledge.
We intend to implement a simple method of localization called the in-range method
IR to a two-dimensional network of sensor nodes. The basic premise of IR is that the
transmission at a given power can be decoded only upto a maximum distance called
its transmission range. Therefore, if a node is able to receive a signal from a beacon,
this would imply that the node can be localized to a set of positions represented by a
disc of radius equal to the transmission range. Similarly a localized node would be able
to aid the localization of its other neighbours. In this way, an iterative process could
be used, by which the sensors can collaboratively learn and improve their localization
regions .
Nodes use this simple connectivity metric, to infer proximity to a given subset of these
reference points. Nodes localize themselves to their proximate reference points. The
accuracy of localization is then dependent on the separation distance between two
adjacent reference points and the transmission range of these reference points.
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Chapter 2

Introduction

Sensor networks are dense wireless networks of small, low-cost sensors, which collect
and disseminate environmental data. Wireless sensor networks facilitate monitoring
and controlling of physical environments from remote locations with better accuracy.
They have applications in a variety of fields such as environmental monitoring, military
purposes and gathering sensing information in inhospitable locations.

Figure 2.1: A typical sensor network

Sensor nodes have various energy and computational constraints because of their
inexpensive nature and ad-hoc method of deployment. Considerable research has been
focused at overcoming these deficiencies through more energy efficient routing, local-
ization algorithms and system design. Our survey attempts to provide an overview of
these issues as well as the solutions proposed in recent research literature.

2.1 Background

Previously, sensor networks consisted of small number of sensor nodes that were wired
to a central processing station. However, nowadays, the focus is more on wireless,
distributed, sensing nodes. When the exact location of a particular phenomenon is
unknown, distributed sensing allows for closer placement to the phenomenon than a
single sensor would permit[9]. Also, in many cases, multiple sensor nodes are required
to overcome environmental obstacles like obstructions, line of sight constraints etc. In
most cases, the environment to be monitored does not have an existing infrastructure
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for either energy or communication. It becomes imperative for sensor nodes to survive
on small, finite sources of energy and communicate through a wireless communication
channel. Another requirement for sensor networks would be distributed processing
capability. This is necessary since communication is a major consumer of energy. A
centralized system would mean that some of the sensors would need to communicate
over long distances that lead to even more energy depletion. Hence, it would be a good
idea to process locally as much information as possible in order to minimize the total
number of bits transmitted.

2.1.1 Sensor Sub-systems

A sensor node usually consists of four sub-systems[10]:

2.1.1.1 A computing subsystem

It consists of a microprocessor(micro controller unit, MCU), which is responsible for the
control of the sensors and execution of communication protocols. MCUs usually operate
under various operating modes for power management purposes. But shuttling between
these operating modes involves consumption of power, so the energy consumption levels
of the various modes should be considered while looking at the battery lifetime of each
node.

2.1.1.2 A communication subsystem

It consists of a short-range radio, which is used to communicate with neighboring nodes
and the outside world. Radios can operate under the Transmit, Receive, Idle and Sleep
modes. It is important to completely shut down the radio rather than put it in the idle
mode when it is not transmitting or receiving because of the high power consumed in
this mode.

2.1.1.3 A sensing subsystem

It consists of a group of sensors and actuators and links the node to the outside world.
Using low power components and saving power at the cost of performance, which is
not required, can reduce energy consumption.

2.1.1.4 A power supply subsystem

It consists of a battery, which supplies power to the node. It should be seen that the
amount of power drawn from a battery is checked because if high current is drawn
from a battery for a long time, the battery will die even though it could have gone
on for a longer time. Usually the rated current capacity of a battery being used for
a sensor node is lesser than the minimum energy consumption required leading to the
lower battery lifetimes. Reducing the current drastically or even turning it off often
can increase the lifetime of a battery.

2.1.2 Challenges

In spite of the diverse applications, sensor networks pose a number of unique technical
challenges due to the following factors:
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• Ad hoc deployment: Most sensor nodes are deployed in regions, which have
no infrastructure at all. A typical way of deployment in a forest would be tossing
the sensor nodes from an aeroplane. In such a situation, it is up to the nodes to
identify its connectivity and distribution.

• Unattended operation: In most cases, once deployed, sensor networks have
no human intervention. Hence the nodes themselves are responsible for reconfig-
uration in case of any changes.

• Untethered: The sensor nodes are not connected to any energy source. There
is only a finite source of energy, which must be optimally used for processing
and communication. An interesting fact is that communication dominates pro-
cessing in energy consumption. Thus, in order to make optimal use of energy,
communication should be minimized as much as possible.

• Dynamic changes: It is required that a sensor network system be adaptable to
changing connectivity (for e.g., due to addition of more nodes, failure of nodes
etc.) as well as changing environmental stimuli.

Thus, unlike traditional networks, where the focus is on maximizing channel throughput
or minimizing node deployment, the major consideration in a sensor network is to
extend the system lifetime as well as the system robustness [8].

2.1.3 Important aspects

2.1.3.1 Localization

In most of the cases, sensor nodes are deployed in an ad hoc manner. It is up to
the nodes to identify themselves in some spatial co-ordinate system. This problem is
referred to as localization. This aspect is discussed later.

2.1.3.2 Energy Efficiency

Energy consumption is the most important factor to determine the life of a sensor
network because usually sensor nodes are driven by battery and have very low energy
resources. This makes energy optimization more complicated in sensor networks be-
cause it involved not only reduction of energy consumption but also prolonging the life
of the network as much as possible. Having energy awareness in every aspect of design
and operation can do this. This ensures that energy awareness is also incorporated
into groups of communicating sensor nodes and the entire network and not only in the
individual nodes.
Developing design methodologies and architectures, which help in energy aware design
of sensor networks, can reduce the power consumed by the sensor nodes. The lifetime of
a sensor network can be increased significantly if the operating system, the application
layer and the network protocols are designed to be energy aware. Power management
in radios is very important because radio communication consumes a lot of energy
during operation of the system. Another aspect of sensor nodes is that a sensor node
also acts a router and a majority of the packets, which the sensor receives, are meant
to be forwarded. Intelligent radio hardware that help in identifying and redirecting
packets which need to be forwarded and in the process reduce the computing overhead
because the packets are no longer processed in the intermediate nodes.
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Traffic can also be distributed in such a way as to maximize the life of the network.
A path should not be used continuously to forward packets regardless of how much
energy is saved because this depletes the energy of the nodes on this path and there is
a breach in the connectivity of the network. It is better that the load of the traffic be
distributed more uniformly throughout the network. It is important that the users be
updated on the health of a sensor network because this would serve as a warning of a
failure and aid in the deployment of additional sensors.

2.1.3.3 Routing

Conventional routing protocols have several limitations when being used in sensor
networks due to the energy-constrained nature of these networks. These protocols
essentially follow the flooding technique in which a node stores the data item it receives
and then sends copies of the data item to all its neighbors.

• Implosion: If a node is a common neighbor to nodes holding the same data item,
then it will get multiple copies of the same data item. Therefore, the protocol
wastes resources sending the data item and receiving it.

• Resource management: In conventional flooding, nodes are not resource-
aware. They continue with their activities regardless of the energy available
to them at a given time.

The routing protocols designed for sensor networks should be able to overcome both
these deficiencies or/and look at newer ways of conserving energy increasing the life
of the network in the process. Ad-hoc routing protocols are also unsuitable for sensor
networks because they try to eliminate the high cost of table updates when there is
highly mobility of nodes in the network. But unlike ad-hoc networks, sensor networks
are not highly mobile. Routing protocols can be divided into proactive and reactive
protocols. Proactive protocols attempt at maintaining consistent updated routing in-
formation between all the nodes by maintaining one or more routing tables. In reactive
protocols, the routes are only created when they are needed. The routing can be either
source-initiated or destination-initiated.

2.1.3.4 Media Access Control in Sensor Networks

Media Access Control in sensor networks is very different than in the traditional net-
works because of its constraints on computational ability, storage and energy resources.
Therefore media access control should be energy efficient and should also allocate band-
width fairly to the infrastructure of all nodes in the network. In sensor networks, the
primary objective is to sample the residing environment for information and send it to
a higher processing infrastructure (base station) after processing it. The data traffic
may be low for lengthy periods with intense traffic in between for short periods of time.
Most of the time, the traffic is multihop and heading towards some larger processing
infrastructure. At each of the nodes, there is traffic originating out of the node and
traffic being routed through the node because most nodes are both data sources and
routers. There are several limitations on sensor nodes too. They have little or no ded-
icated carrier sensing or collision detection and they have no specific protocol stacks,
which could specify the design of their media access protocol.

• Fairness

The following are the challenges in multihop sensor networks

RV College Of Engineering 5



Department Of Computer Science February- June 2005

– The originating traffic from a node has to compete with the traffic being
routed through that node.

– An undetected node might exist in the network, which might result in un-
expected contention for bandwidth with route-thru traffic.

– The probability of corruption and contention at every hop is higher for the
nodes, which reside farther away from the higher processing infrastructure.

– Energy is invested in every packet when it is routed through every node.
Therefore, the longer a packet has been routed, the more expensive it is to
drop that packet.

Listening to the network, which is expensive, can do carrier sensing in sensor
networks. Therefore the listening period should be short to conserve energy.
The traffic also tends to be highly synchronized because nearby nodes tend to
send messages to report the same event. Since there is no collision detection,
the nodes will tend to corrupt each other’s messages when they send them at
the same time. This could happen every time they detect a common event. To
reduce contentions, a back off mechanism could be used. A node could restrain
itself from transmitting for a certain period of time and hopefully the channel
becomes clear after the back off period. This will help in desynchronizing the
traffic too. Contention protocols in traditional networks widely use the Request
to Send(RTS), Clear to Send(CTS) and acknowledgements(ACK) to reduce con-
tentions. A RTS-CTS-DATA-ACK handshake is extremely costly though when
used in sensor networks because every message transmitted uses up the low en-
ergy resources of the nodes. Therefore, the number of control packets used should
be kept as low as possible. Thus, only the RTS and CTS messages are used in
the control scheme. If a node does not receive the CTS after sending the RTS
for a long time, the node will back off for a binary exponentially increasing time
period and then transmit again. If it receives a CTS, which is not meant for
it or receives a CTS before its own transmission, it will back off to avoid colli-
sions. Fairness in allocation between the originating traffic and route-thru traffic
should be achieved. The media access controls the originating traffic when the
route-thru traffic is high and when the originating traffic is high, it applies a
backpressure to control the route-thru traffic deep down in the network from
where it originated. A linear increase and multiplicative decrease approach is
used for transmission control. The transmission rate control is probabilistic and
it is linearly increased by a constant and it is decreased by multiplying it with, a,
where a is less than 1 and greater than 0. Since dropping traffic which is being
routed through is wastage of the network’s energy resources, more preference is
given to it by making its dropping penalty 50

The advantage of this scheme is that the amount of computation required for this
is within the sensor nodes’ computational capability and achieves good energy
efficiency when the traffic is low while maintaining the fairness among the nodes.

• S-MAC .The major sources of energy wastage are:

– Collisions

– Overhearing

– Control packet overhead
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– Idle listening

Unlike in traditional networks where all nodes require equal opportunity to trans-
mit, sensor nodes all try to achieve a single common task. S-MAC introduces
uses three techniques to reduce energy consumption. Firstly the nodes go to sleep
periodically so that they do not waste energy by listening to an empty channel or
when a neighboring node is transmitting to another node. This helps in avoiding
the overhearing problem too. Secondly, nearby nodes form virtual clusters to
synchronize their wake-up and sleep periods to keep the control packet overhead
of the network low. Finally, message passing is used to reduce the contention
latency and control overhead. S-MAC consists of three components

– Periodic Listen and Sleep: Neighboring nodes are synchronized to go
to sleep together so as to avoid a heavy control overhead. They listen
together and sleep together. For this the nodes exchange schedules with
their immediate neighbors. The nodes use RTS and CTS to talk to each
other and contend for the medium if they want to communicate with the
same node. Synchronized nodes form a virtual cluster but there is no real
clustering and no inter-cluster communication problem. Synchronization is
maintained by using SYNC packets, which contain the sender’s address and
its next sleep time.

– Collision and Overhearing Avoidance: S-MAC adopts a contention-
based scheme to avoid collisions. A duration field is introduced in each
transmitted packet, which indicates how much longer the transmission will
last. When a node receives a packet, it will not transmit any packets for at
least the time that is specified in the duration field. This is recorded in a
variable in the node called the Network Allocation Vector (NAV), which is
reset every time the node received a packet whose duration field is larger than
the current value. When the NAV is zero, the node can start transmitting
packets. Overhearing is avoided by letting the nodes, which get RTS and
CTS packets, which are not meant for them, go to sleep. All immediate
neighbors also go to sleep till the current transmission is completed after a
sender or receiver receives the RTS or CTS packet.

– Message Passing: Long messages are fragmented into smaller messages
and transmitted in a burst. This is to avoid the high overhead and delay
encountered for retransmitting when a long message is lost. ACK messages
are used to indicate if a fragment is lost at any time so that the sender can
resend the fragment again. The ACK messages also have the duration field
to reduce overhearing and collisions. There is no contention to achieve fair-
ness for each lost fragment. It is allowed to retransmit the current fragment
but there is a limit on the number of retransmissions the node is allowed
without any contention.

2.1.4 Sensor networks applications

Sensor networks may consist of many different types of sensors as discussed in [2] such
as seismic, low sampling rate magnetic, thermal, visual, infrared, acoustic and radar,
which are able to monitor wide variety of ambient conditions that include the following
:
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• temperature

• humidity

• vehicular movement

• lightning condition

• pressure

• soil makeup

• noise levels

• the presence or absence of certain kinds of objects

• mechanical stress levels on attached objects

• the current characteristics such as speed, direction and size of an object.

Sensor nodes can be used for continuous sensing, event detection, event ID, location
sensing, and local control of actuators. The concept of micro-sensing and wireless
connection of these nodes promise many new application areas. We categorize the
applications into military, environment, health, home and other commercial areas. It
is possible to expand this classification with more categories such as space exploration,
chemical processing and disaster relief. In fact, due to the pervasive nature of micro-
sensors, sensor networks have the potential to revolutionize the very way we understand
and construct complex physical system[7].

2.1.5 Simulators for Sensor Networks

For the sake of completeness, this section very briefly looks at some of the more promi-
nent simulators for sensor networks available today:

• GloMoSim [11]: GLobal Mobile Information systems Simulator are a scalable
simulation environment for wireless and wired network systems. It is written both
in C and Parsec. It is capable of parallel discrete-event simulation. GloMoSim
currently supports protocols for a purely wireless network. A basic level of Parsec
knowledge and thorough C knowledge is sufficient to carry out simulations

• NS-2 [15]: The mother of all network simulators has facilities for carrying out
both wireless and wired simulations. It is written in C++ and oTCL. Since it
is object-oriented, it is easier to add new modules. It provides for support for
energy models. Some example applications are included as a part of the package.
It has the advantage of extensive documentation.

• SensorSim [17]: is a simulation framework for sensor networks. It is an exten-
sion to the NS simulator. It provides the following: Sensing channel and sensor
models, Battery models, Lightweight protocol stacks for wireless micro sensors,
Scenario generation and Hybrid simulation. It is geared very specifically towards
sensor networks and is still in the pre-release stage. It does not have proper
documentation.
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2.2 Localization

In sensor networks, nodes are deployed into an unplanned infrastructure where there
is no a priori knowledge of location. The problem of estimating spatial-coordinates
of the node is referred to as localization. An immediate solution, which comes to
mind, is GPS or the Global Positioning System. The different approaches to the
localization problem have been studied in [3, 4, 5]. However, there are some strong
factors against the usage of GPS. For one, GPS can work only outdoors. Secondly,
GPS receivers are expensive and not suitable in the construction of small cheap sensor
nodes. A third factor is that it cannot work in the presence of any obstruction like
dense foliage etc. Thus, sensor nodes would need to have other means of establishing
their positions and organizing themselves into a co-ordinate system without relying
on an existing infrastructure. Most of the proposed localization techniques today,
depend on recursive trilateration/multilateration techniques[8]. One way of considering
sensor networks is taking the network to be organized as a hierarchy with the nodes
in the upper level being more complex and already knowing their location through
some technique (say, through GPS). These nodes then act as beacons by transmitting
their position periodically. The nodes, which have not yet inferred their position,
listen to broadcasts from these beacons and use the information from beacons with low
message loss to calculate its own position. A simple technique would be to calculate
its position as the centroid of all the locations it has obtained. This is called as
proximity based localization. It is quite possible that all nodes do not have access
to the beacons. In this case, the nodes, which have obtained their position through
proximity, based localization themselves act as beacons to the other nodes. This process
is called iterative multilateration. As can be guessed, iterative multilateration leads to
accumulation of localization error. Thus, trilateration is a geometric principle which
allows us to find a location if its distance from three already-known locations. The
same principle is extended to three-dimensional space. In this case, spheres instead
of circles are used and four spheres would be needed. When a localization technique
using beacons is used, an important question would be ’how many initial beacons to
deploy. Too many beacons would result in self-interference among the beacons while
too less number of beacons would mean that many of the nodes would have to depend
on iterative multilateration.

2.2.1 Localization Techniques

Localization can be classified as fine-grained, which refers to the methods based on
timing/signal strength and coarse-grained, which refers to the techniques based on
proximity to a reference point. [6] gives an over-view of the various localization tech-
niques. Examples of fine-grained localization are:

• Timing: The distance between the receiver node and a reference point is deter-
mined by the time of flight of the communication signal.

• Signal strength: As a signal propagates, attenuation takes place proportional
to the distance traveled. This fact is made use of to calculate the distance.

• Signal pattern matching: In this method, the coverage area is pre-scanned
with transmitting signals. A central system assigns a unique signature for each
square in the location grid. The system matches a transmitting signal from a
mobile transmitter with the pre-constructed database and arrives at the correct
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location. But pre-generating the database goes against the idea of ad hoc de-
ployment.

• Directionality: Here, the angle of each reference point with respect to the
mobile node in some reference frame is used to determine the location.

Examples of coarse-grained localization is proximity based localization as described
earlier. [6] proposes a localization system which is RF-based, receiver-based, ad hoc,
responsive, low-energy consuming and adaptive. RF-based transceivers would be more
inexpensive and smaller compared to GPS-receivers. Also in an infrastructure less
environment, the deployment would be ad hoc and the nodes should be able to adapt
themselves to available reference points.

Locating objects in two (e.g., surface of the earth) or three dimensions (e.g., space)
from the knowledge of locations of some distinguished nodes, called beacons, has been
the central problem in navigation. Beacons can know location of a node from its dis-
tances and/or angles. What distinguishes the localization problem in sensor networks
from the navigation problem is the following. Due to spatial expanse of a sensor net-
work not every sensor will have the required number of beacons for ranging; to be cost
effective, fewer beacons are desired.

Figure 2.2: Beacon Mote and Localization

In addition, the traditional ranging methods based on received signal strength
(RSSI), time of arrival (TOA), angle of arrival (AOA), time difference of arrival (TDOA),
etc. have several shortcomings from the point of view of the sensor networks. RSSI
is usually very unpredictable since the received signal power is a complex function of
the propagation environment. Hence, radios in sensors will need to be well calibrated
otherwise sensors may exhibit significant variation in power to distance mapping. TOA
using acoustic ranging will require an additional ultrasound source. TOA and RSSI
are affected by measurement as well as non-line of sight errors. TDOA is not very
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practical for a distributed implementation. AOA sensing will require either an antenna
array or several ultra-sound receivers. This motivates us to consider a particularly sim-
ple method of localization as in [1], which we call the in-range method (IR). Here we
implement a simple method of localization in sensor networks in which a sensor with
unknown location is localized to a disk of radius equal to the transmission range cen-
tered at a beacon if the sensor under consideration can receive a transmission from the
beacon. This is a reliable and extremely easy-to-implement technique since it assumes
only a basic communication capability. The real advantage, however, is that once local-
ized, a sensor aids the other sensors in localization. This way by collaboration sensors
can learn and improve their localization regions iteratively. We analyze this iterative
scheme and construct a distributed algorithm for utilizing it in real sensor networks.
The basic premise of IR is that a transmission at a given power can be decoded only up
to a maximum distance, called its transmission range. IR then simply localizes a node
with unknown location to a disk of radius equal to the range centered at a beacon if
the node under consideration can successfully decode a transmission from the beacon.
.

RV College Of Engineering 11



Department Of Computer Science February- June 2005

Chapter 3

System Requirement Specification

3.1 Hardware specifications

The hardware required is as follows:

• Motes (having a processor with small memory)

• Sensors (to be attached to the motes, to detect temperature, light etc).

• Antennas (for wireless communication between the motes)

• Base Station (attached to the serial port of the PC/Laptop)

• PC/Laptop (to collect the readings from the motes and display the readings
and positions)

3.1.1 Crossbow Mica mote and sensors

Crossbows [16] wireless sensor platform gives the flexibility to create powerful, tether-
less, and automated data collection and monitoring systems. Crossbows supports a
wide range of hardware and sensors for various customer requirements. Most of the
hardware can plug-and-play and it all runs TinyOS / nesC from UC Berkeley. The
platform consists of Processor Radio boards (MPR) commonly referred to as MOTES.
These battery powered devices run TinyOS and support two-way mesh radio networks.
Sensor and data acquisition cards (MTS and MDA) plug into the Mote Processor Radio
boards. Sensor support includes both direct sensing as well interfaces for external
sensors. Finally, gateway and interface products (MIB), allow customers to interface
Motes to PCs, PDAs, the WWW, and existing wired networks and protocols. The
TinyOS operating system is open-source, extendable, and scalable. Code modules
are wired together allowing fluent-C programmers to custom design systems quickly.
Accessory products include antennae, cables, and packaging.

Specifications of Mica mote are as follows:

• Processor: Atmel ATmega 128L

• Frequency Range: 902 to 928 MHz - 433.1 to 434.8 MHz

• Nonvolatile Memory: 512 KB Since these motes have a small memory, running
complex calculations on them is not possible.

• Attached AA Battery Pack
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Figure 3.1: Crossbow’s mica2 mote and sensor

There is a trade of between the range and power consumption of these motes. The
limitation on range of these motes results in fewer neighbors for a mote and slower
dissemination of data. These motes require 3rd Generation, Tiny, Wireless Smart Sen-
sors, Plug-in Sensor boards: Light, Temperature, Acceleration/Seismic, Acoustic, and
magnetic sensors These sensors cannot sense more than one of the given opportunities
Crossbow ships three Mote Processor/Radio module families - MICAz (MPR2400),
MICA2 (MPR400), and MICA2DOT (MPR500). The MICAz radio works on the
global 2.4GHz ISM band and supports IEEE802.15.4 and ZigBee. The MICA2 and
MICA2DOT family is available in 315,433,868/900MHz configurations and support
frequency agile operation. These modules are designed for both end-user and OEM
applications. All modules provide a processor that runs TinyOS-based code, two-way
ISM band radio transceiver, and a logger memory capable of storing up to 100,000
measurements. In addition, these boards offer enhanced processor capabilities, in-
cluding a boot-loader that allows for over-air reprogramming of Mote code. Wireless
Measurement System, MICA2 :

• Has 3rd Generation, Tiny, Wireless Smart Sensors

• TinyOS - Unprecedented Communications and Processing

• 1yr Battery Life on AA Batteries (Using Sleep Modes)

• Wireless Communications with Every Node as Router Capability

• 433, 868/916, or 310 MHz Multi-Channel Radio Transceiver

• Light, Temperature, RH, Barometric Pressure, Acceleration/Seismic, Acoustic,
Magnetic, GPS, and other Sensors available

Applications

• Wireless Sensor Networks

• Security, Surveillance, and Force Protection

• Environmental Monitoring
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• Large Scale Wireless Networks

• Distributed Computing Platform

3.2 Software Specifications

• TinyOS and NesC: TinyOSis an open source operating system designed for
wireless sensor networks that supports Crossbow Mica motes, Mica2 motes and
Mica2Dot motes and a few other wireless sensor devices. TinyOS is embedded
in Crossbow motes and therefore we will use TinyOS structures for developing
the system. Programming language used to develop software on TinyOS is nesC.
nesC is an extension to C that involves the necessary structures and concepts to
support event-driven execution of TinyOS and this project will be implemented
using nesC programming language.

• TinyDB: TinyDB which is query processing system for extracting information
from a network of TinyOS sensors In addition to the mote software, TinyDB
provides a PC interface written in Java. JDK 1.3 or later is required. The
TinyDB software is to be modified to encoorporate the localization algorithm.

• Java: The packet information retrieval, localization algorithm and frontend dis-
play along with the topology and the locations is coded in java.

3.2.1 TinyOS

It [14] is an open-source operating system designed for wireless embedded sensor net-
works. It features a component-based architecture which enables rapid innovation and
implementation while minimizing code size as required by the severe memory con-
straints inherent in sensor networks. TinyOS’s component library includes network
protocols, distributed services, sensor drivers, and data acquisition tools - all of which
can be used as-is or be further refined for a custom application. TinyOS’s event-driven
execution model enables fine-grained power management yet allows the scheduling
flexibility made necessary by the unpredictable nature of wireless communication and
physical world interfaces. TinyOS has been ported to over a dozen platforms and nu-
merous sensor boards. A wide community uses it in simulation to develop and test
various algorithms and protocols. New releases see over 10,000 downloads. Over 500
research groups and companies are using TinyOS on the Berkeley/Crossbow Motes.
Numerous groups are actively contributing code to the sourceforge site and working
together to establish standard, interoperable network services built from a base of direct
experience and honed through competitive analysis in an open environment.

3.2.1.1 TinyOS Application

Some final comments about a TinyOS application are due and their implications. Since
everything in a TinyOS application is static:

• No Dynamic Memory (no malloc)

• No Function Pointers

• No Heap
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This means that just about everything is known at compile time by the nesC compiler.
This allows the compiler to perform global compile time analysis to detect data race
conditions, and where function inlining will improve performance. This relieves the
developer of these burdens and hence development is made easier and the systems
robustness is improved. The memory map of a TinyOS application is similar to the
structure of an executable image on the Unix OS. The Harvard architecture of a COTS
Mote (i.e. the Atmel MCU) partitions the memory into two segments: the static
program flash memory and the dynamic data SRAM. Each segment has it’s own bus.
The advantage of this architecture is it allows data and executable code to be fetched
in parallel and allows many instructions to executed in one CPU cycle. The Mica2
generation of COTS Motes ( our case ) consists of 128k of program flash and 4k of
SRAM. The memory image is as follows: In the 128K Program Flash

• ”text” section - Executable Code

• ”data” section - Program Constants

In the 4K SRAM

• ”bss” section - Variables

• The rest of the bss is free space - fixed (no dynamic memory)

• stack - grows down in the free space

3.2.2 nesC

nesC [13](pronounced “NES-see”) is an extension to the C programming language
designed to embody the structuring concepts and execution model of TinyOS .TinyOS
is an event-driven operating system designed for sensor network nodes that have very
limited resources (e.g., 8K bytes of program memory, 512 bytes of RAM). The basic
concepts behind nesC are:

• Separation of construction and composition: programs are built out of compo-
nents, which are assembled (”wired”) to form whole programs. Components have
internal concurrency in the form of tasks. Threads of control may pass into a
component through its interfaces. These threads are rooted either in a task or a
hardware interrupt.

• Specification of component behaviour in terms of set of interfaces: Interfaces may
be provided or used by components. The provided interfaces are intended to
represent the functionality that the component provides to its user, the used
interfaces represent the functionality the component needs to perform its job.

• Interfaces are bidirectional: they specify a set of functions to be implemented
by the interface’s provider (commands) and a set to be implemented by the in-
terface’s user (events). This allows a single interface to represent a complex
interaction between components (e.g., registration of interest in some event, fol-
lowed by a callback when that event happens). This is critical because all lengthy
commands in TinyOS (e.g. send packet) are non-blocking; their completion is
signaled through an event (send done). By specifying interfaces, a component
cannot call the send command unless it provides an implementation of the send-
Done event.
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• Typically commands call downwards, i.e., from application components to those
closer to the hardware, while events call upwards. Certain primitive events are
bound to hardware interrupts.

• Components are statically linked to each other via their interfaces. This increases
runtime efficiency, encourages rubust design, and allows for better static analysis
of programs.

• nesC is designed under the expectation that code will be generated by whole-
program compilers. This should also allow for better code generation and analy-
sis.

3.2.3 TinyDB

TinyDB [12] is a query processing system for extracting information from a network
of TinyOS http://webs.cs.berkeley.edu/tos sensors. Unlike existing solutions for data
processing in TinyOS, TinyDB does not require to write embedded C code for sensors.
Instead, TinyDB provides a simple, SQL-like interface to specify the data, along with
additional parameters, like the rate at which data should be refreshed - much as posing
queries against a traditional database. Given a query specifying data interests, TinyDB
collects that data from motes in the environment, filters it, aggregates it together, and
routes it out to a PC. TinyDB does this via power-efficient in-network processing
algorithms. To use TinyDB, its TinyOS components are installed onto each mote in
the sensor network. TinyDB provides a simple Java API for writing PC applications
that query and extract data from the network; it also comes with a simple graphical
query-builder and result display that uses the API. The primary goal of TinyDB is to
make work as a programmer significantly easier, and allow data-driven applications to
be developed and deployed much more quickly than what is currently possible. TinyDB
frees from the burden of writing low-level code for sensor devices, including the (very
tricky) sensor network interfaces. Some of the features of TinyDB include:

• Metadata Management: TinyDB provides a metadata catalog to describe the
kinds of sensor readings that are available in the sensor network.

• High Level Queries: TinyDB uses a declarative query language that describe
the data wanted, without requiring to say how to get it. This makes it easier
to write applications, and helps guarantee that the applications continue to run
efficiently as the sensor network changes.

• Network Topology: TinyDB manages the underlying radio network by track-
ing neighbors, maintaining routing tables, and ensuring that every mote in the
network can efficiently and (relatively) reliably deliver its data to the user.

• Multiple Queries: TinyDB allows multiple queries to be run on the same set
of motes at the same time. Queries can have different sample rates and access
different sensor types, and TinyDB efficiently shares work between queries when
possible.

• Incremental Deployment via Query Sharing: To expand the TinyDB sensor
network, it is only required to simply download the standard TinyDB code to new
motes, and TinyDB does the rest. TinyDB motes share queries with each other;
when a mote hears a network message for a query that it is not yet running, it
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automatically asks the sender of that data for a copy of the query, and begins
running it. No programming or configuration of the new motes is required beyond
installing TinyDB.

3.2.3.1 System Overview

This section provides a high level overview of the architecture of the TinyDB software.
It is designed to be accessible to users of the TinyDB system who are not interested in
the technical details of the system’s implementation. We begin with a short description
of a typical use-case for TinyDB. Imagine that Mary wishes to locate an unused con-
ference room in her sensor-equipped building, and that an application to perform this
task has not already been built. The motes in Mary’s building have a sensor board with
light sensors and microphones and have been programmed with a room number. Mary
decides that her application should declare a room in-use when the average light read-
ing of all the sensors in a room are above . Mary wants her application to refresh this
occupancy information every 5 minutes. Without TinyDB, Mary would have to write
several hundred lines of custom embedded C code to collect information from all the
motes in a room, coordinate the communication of readings across sensors, aggregate
these readings together to compute the average light and volume, and then forward
that information from within the sensor network to the PC where the application is
running. She would then have to download her compiled program to each of the motes
in the room. Instead, if the motes in Mary’s building are running TinyDB, she can
simply pose the following SQL query to identify the rooms that are currently in-use:

SELECT roomno, AVG(light), AVG(volume)

FROM sensors

GROUP BY roomno

HAVING AVG(light) >

EPOCH DURATION 5min

TinyDB translates this query into an efficient execution plan which delivers the set of
occupied rooms every 5 minutes. Mary simply inputs this query into a GUI - she writes
no C code and is freed from concerns about how to install her code, how to propagate
results across multiple network hops to the root of the network, how to power down
sensors during the time when they are not collecting and reporting data, and many
other difficulties associated with sensor-network programming. . The system can be
broadly classified into two subsystems: Sensor Network Software: This is the heart of
TinyDB, although most users of the system should never have to modify this code. It
runs on each mote in the network, and consists of several major pieces:

• Sensor Catalog and Schema Manager: The catalog is responsible for track-
ing the set of attributes, or types of readings (e.g. light, sound, voltage) and
properties (e.g. network parent, node ID) available on each sensor. In general,
this list is not identical for each sensor: networks may consist of heterogeneous
collections of devices, and may be able to report different properties.

• Query Processor: The main component of TinyDB consists of a small query
processor. The query processor uses the catalog the fetch the values of local
attributes, receives sensor readings from neighboring nodes over the radio, com-
bines and aggregates these values together, filters out undesired data, and outputs
values to parents.
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• Memory Manager: TinyDB extends TinyOS with a small, handle-based dy-
namic memory manager

• Network Topology Manager: TinyDB manages the connectivity of motes in
the network, to efficiently route data and query sub-results through the network.

• Java-based Client Interface: A network of TinyDB motes is accessed from
a connected PC through the TinyDB client interface, which consists of a set
of Java classes and applications. These classes are all stored in the tinyos-
1.x/tools/java/tinyos/tinydb package in the source tree.

Major classes include:

• A network interface class that allows applications to inject queries and listen for
results

• Classes to build and transmit queries

• A class to receive and parse query results

• A class to extract information about the attributes and capabilities of devices

• A GUI to construct queries

• A graph and table GUI to display individual sensor results

• A GUI to visualize dynamic network topologies

• An application that uses queries as an interface on top of a network of sensors

3.2.3.2 Installation and Requirements

TinyDB requires a basic TinyOS installation, with a working Java installation (and
javax.comm library). It is currently designed to work with the nesC compiler (next
generation C-like language for TinyOS) and avr-gcc 3.3.The most recent version of
TinyDB is always available from the TinyOS SourceForge repository.

3.2.3.3 Running the TinyDBMain GUI

The TinyDBMain Java application provides a graphical interface for distributing queries
over motes and collecting data from them. To run this application,

• cd tinyos-1.x/tools/java/net/tinyos/tinydb

• make

• cd tinyos-1.x/tools/java

• java net.tinyos.tinydb.TinyDBMain

Two windows should appear; one, the command window allows to send a variety of
control commands to the motes. The other, the query window allows to build and send
queries into the network. We will be focusing on the operation of the query window in
the next section; the command window is fairly self-explanatory. The query window
contains a Display Topology button to show the network topology. This button actually
generates a particular query that is executed by the motes, with results displayed in a
special visualization. It is a good idea to display network topology and make sure that
all motes are alive and communicating.
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3.2.3.4 Using TinyDB

TinyDB provides a high-level, declarative language for specifying queries. Declarative
languages are advantageous for two reasons. First, they are relatively easy to learn,
with queries that are easy to read and understand. Second, they allow the underlying
system to change how it runs a query, without requiring the query itself to be changed.
This is important in a volatile context like sensor networks, where the best underlying
implementation may need to change frequently - e.g. when motes move, join or leave the
network, or experience shifting radio interference. In TinyDB, the execution strategy
for a user query can change each time the query is run, or even while the query runs,
without any need for re-typing the query or recompiling an application that embeds
the query. Before describing TinyDB’s query facilities, a few words on TinyDB’s data
model are in order. TinyDB implicitly queries one single, infinitely-long logical table
called sensors. This table has one column for each attribute in the catalog, including
sensor attributes, nodeIDs, and some additional “introspective” attributes (properties)
that describe a mote’s state. This table conceptually contains one row for each reading
generated by any mote, and hence the table can be thought of streaming infinitely over
time. A given mote may not be able to generate all the attributes, e.g., if it does not
have the sensor that generates the attribute. In that case, the mote will always generate
a NULL value for that attribute. TinyDB’s query language is based on SQL, and it will
be referred as TinySQL. As in SQL, queries in TinySQL consist of a set of attributes to
select (e.g. light, temperature), a set of aggregation expressions for forming aggregate
result columns, a set of selection predicates for filtering rows, and optionally a grouping
expression for partitioning the data before aggregation. Aggregation is commonly used
in the sensor environment. Currently, TinySQL results are very similar to SQL, in that
they are based on snapshots in time - that is, they are posed over rows generated by
multiple sensors at one point in time. Temporal queries that combine readings over
several time periods are not supported in the current release. Instead, TinySQL runs
each query repeatedly, once per time-period or “epoch”. The duration of an epoch can
be specified as part of a TinySQL query; the longer the duration, the less frequent the
results, and the less drain on the mote batteries.

When using TinyDB, it is also possible to write queries by hand, either by using
the “Text Interface” pane of the the GUI (which can be brought up by default by
using the command-line argument “-text”), or via the SensorQueryer.translateQuery
API call. We assume here that the reader has a familiarity with the basics of SQL.
A number of books and websites provide simple SQL tutorials. No deep knowledge of
SQL is required to use TinyDB; the basics will do. The simplest way to learn TinySQL
is to use the graphical query builder. However, we also provide a simple, informal
description of the syntax here. TinyDB provides an SQL-like query language, which
is simplified in a number of ways, but which also provides some new sensor-specific
syntax. TinySQL queries all have the form:

SELECT select-list

[FROM sensors]

WHERE where-clause

[GROUP BY gb-list

[HAVING having-list]]

[TRIGGER ACTION command-name[(param)]]

[EPOCH DURATION integer]

The SELECT, WHERE, GROUP BY and HAVING clauses are very similar to the
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functionality of SQL. Arithmetic expressions are supported in each of these clauses.
As in standard SQL, the GROUP BY clause is optional, and if GROUP BY is included
the HAVING clause may also be used optionally.

3.2.3.5 The TinyDB Java API

The API contains a number of objects encapsulating the TinyDB network, the TinyDB
catalog, the construction of TinyDB queries, and the manner in which the application
listens for and interprets query results. These objects appear in the corresponding .java
files in tinyos-1.x/tools/java/tinyos/tinydb.

1. TinyDBNetwork: This object is the main interface to a network of motes.
It is responsible for injecting new queries into the network (sendQuery()), for
cancelling queries ( abortQuery()), and for providing results from the network to
multiple query “listeners”. Only one instance of the TinyDBNetwork object needs
to be allocated for a network; that instance can manage multiple ongoing queries,
and multiple listeners. Each query’s output can be sent to multiple listeners, and
each listener can listen either to a single query, or to all queries. Internally, the
object maintains a list of live queries, and three sets of listeners: processedListen-
ers are signed up for a specific query ID, and get a stream of final (“processed”)
answer tuples for that query. qidListeners are signed up for a specific query ID,
and get copies of all messages that arrive for that query. These messages may
not be final query answers. They may be individual attributes from an answer
tuple, or unaggregated sub-result tuples. listeners are signed up to receive a
copy of all unprocessed messages for all queries. The various listeners can be
added or deleted to the object on the fly via addResultListener() and removeRe-
sultListener() - note that different arguments to the addResultListener method
result in one of the 3 different kinds of listeners above. The TinyDBNetwork ob-
ject handles all incoming AMAM messages from the serial port, and dispatches
copies of them to the listeners and qidListeners accordingly. It also processes the
messages to generate result tuples (via QueryResult.MergeQueryResult()) and
sends them to processedListeners accordingly. As part of processing results, it
maintains info on epochs to make sure that the epoch semantics of the results
are correct. Internally, the TinyDBNetwork object also has a background thread
that participates in the sensor network’s routing algorithms. It periodically sends
information down the routing tree, so that children know to choose the root as a
parent, and so that children can decide how to share the timeslots in an epoch.

2. SensorQueryer: This class appears in the parser subdirectory. It represents a
simple parser for TinySQL. The main method of interest is translateQuery, which
takes an SQL string and returns a corresponding TinyDBQuery object, which we
proceed to describe next.

3. TinyDBQuery: This is a Java data structure representing a query running (or
to be run) on a set of motes. Queries consist of:

– a list of attributes to select

– a list of expressions over those attributes, where an expression is

∗ a filter that discards values that do not match a boolean expression

∗ an aggregate that combines local values with values from neighbors, and
optionally includes a GROUP BY column.
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– an SQL string that should correspond to the expressions listed above.

In addition to allowing a query to be built, this class includes handy methods to
generate specific radio messages for the query, which TinyDBNetwork can use to
distribute the query over the network, or to abort the query. It also includes a
support routine for printing the query result schema.

4. QueryResult: This object accepts a query result in the form of an array of
bytes read off the network, parses the results based on a query specification, and
provides a number of utility routines to read the values back. It also provides
the mergeQueryResult functionality for processedListeners. This does concate-
nation of multiple aggs as separate attributes of a single result tuple, and finalizes
aggregates, by combining data from multiple sensors.

5. AggOp: This provides the code for the aggregation operators SUM, MIN, MAX,
and AVG. It includes representation issues (internal network codes for the various
ops, and code for pretty-printing), and also the logic for performing final merges
for each aggregate as part of QueryResult:MergeQueryResult().

6. SelOp: This provides the logic for selection predicates. Currently this includes
representations for simple arithmetic comparisons (internal network codes for the
arithmetic comparators, and pretty-printing.)

7. Catalog: This object provides a very simple parser for a catalog file - it reads
in the file, and after parsing it provides a list of attributes.

8. CommandMsgs: This is a class with static functions to generate message arrays
that can be used to invoke commands on TinyDB motes.

3.2.3.6 The TinyDB Demo Application

The TinyDB application allows users to interactively specify queries and see results.
It also serves as an example of an application that uses the TinyDB API. As with
traditional database systems, it is expected that many programmers will want to embed
queries within more specialized application code. Such programmers can look at the
TinyDB application for an example of how this is done. The TinyDB application
consists of only a few objects:

1. TinyDBMain: This is the main loop for the application. It opens an Ac-
tive Message (AM) connection to the Serial Port (“COM1”), and uses it to ini-
tialize a TinyDBNetwork object. It allocates the GUI objects CmdFrame and
QueryFrame for the application, which issue queries and in turn generate vi-
sualizations of results. There are also some simple wrapper routines for the
TinyDBNetwork methods to add and remove queries from listeners.

2. CmdFrame : This is a simple GUI for sending TinyDB commands (from the
CommandMsgs API object) into the network.

3. MainFrame : This is the main GUI for building queries with TinyDB. It pro-
vides a simple API for generating new query ID’s and processing keyboard input.
The buttons along the right send either send the current query being built (“Send
Query”) into the network for execution, or execute a predefined query, as follow:
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– Display Topology: A visualization of the network topology, which is ex-
tracted from the network via a standard TinyDB query.

– Mag. Demo: A visualization of magnetometers laid out in a fixed grid.
This is an example of simple demo application that can run on TinyDB: in
this case, TinyDB is used to identify sensors with magnetometer readings
greather than some threshold to detect metallic objects moving through a
grid of motes. The major portion of the GUI contains a tabbed pane that
provides two different interfaces for inputting queries:

– GuiPanel: A graphical query builder to construct a valid TinyDBQuery
object and send it into the network via TinyDBNetwork.sendQuery() , In
addition to allowing users to specify ad hoc queries, it provides a button to
send off two pre-prepared queries that have special visualizations:

– TextPanel:A textual query editor that allows queries to be input in TinySQL
language.

4. QueryField: Simple support routines for handling attributes in the query builder.

5. ResultFrame: ResultFrame displays a scrolling list with results from queries
in it, side-by-side with a graph of query results when such results are available.
For each query, it adds a processedListener to the TinyDBNetwork in order to
receive the results, which it plots via ResultGraph.

6. ResultGraph: A simple wrapper for the plot package, to interactively graph
query results.

7. Plot: A graph-plotting package from the Ptolemy project.

8. Topology: A set of classes for constructing the TinyDB network-topology-
extraction query, and for displaying the results as a (dynamic) topology graph.

3.2.3.7 TinyDB Source Files

The following files in the TinyOS CVS tree are a part of the TinyDB distribution:
tinyos-1.x/tos/lib/TinyDB

• /AggOperator.rd

• /DBBufferC.nc

• /DBBuffer.nc

• /DBBuffer.h

• /ExprEvalC.nc

• /ExprEval.nc

• /NetworkC.nc

• /Network.nc

• /Operator.nc

• /ParsedQueryIntf.nc
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• /ParsedQuery.nc

• /QueryIntf.nc

• /Query.nc

• /RadioQueue.nc

• /SelOperator.nc

• /TinyDBAttr.nc

• /TinyDBCommand.nc

• /TinyDB.h

• /TupleIntf.nc

• /TupleRouter.nc

• /TupleRouterM.nc

• /Tuple.nc

tinyos-1.x/tos/interfaces

• /Attr.h

• /AttrRegisterConst.nc

• /AttrRegister.nc

• /AttrUse.nc

• /Command.h

• /CommandRegister.nc

• /CommnadUse.nc

• /MemAlloc.nc

• /SchemaType.h

tinyos-1.x/tos/lib

• /Command.nc

• /Attr.nc

• /TinyAlloc.nc

tinyos-1.x/tools/java/net/tinyos/tinydb

• AggExpr.java

• AggOp.java

• Catalog.java
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• CmdFrame.java

• CommandMsgs.java

• MagnetFrame.java

• QueryExpr.java

• QueryField.java

• QueryListener.java

• QueryResult.java

• ResultFrame.java

• ResultGraph.java

• ResultListener.java

• SelExpr.java

• SelOp.java

• TinyDBCmd.java

• TinyDBMain.java

• TinyDBNetwork.java

• TinyDBQuery.java

Makefile

• parser/

– Makefile

– senseParser.cup,lex

• tinyos-1.x/apps/TinyDBApp

– Makefile

– TinyDBApp.nc

3.3 Functional Requirements

The system should be able to

• Fix the positions of the desired beacon motes

• Obtain the neighbours of each sensor in the network

• Based on the knowledge of the positions of beacons and identification of neigh-
bours, calculate all possible positions of each sensor in the network i.e localize
their positions to a fixed set.

• In case of a dynamic system where positions vary constantly, the new locations
of each sensor should also be calculated within a fixed period of time.
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3.3.1 Non Functional Requirements

3.3.2 Scalability

Wireless sensor networks generally contain hundreds or even thousands of individual
nodes. It is a challenge to show the required performance in functioning of the system
under such dense networks.

3.3.3 Efficient Data Propagation

Wireless sensor network applications are generally monitoring applications. Most of
these applications require delivery of data in real-time. Therefore, our system should
be efficient while ensuring that it is without extended delays and overheads.

3.3.4 Memory Efficiency

Memory available to the sensors is in the order of KBs, some of which is already filled
up by OS and other applications. Therefore, applications and application middlewares
should be very carefully designed to avoid extensive use of available memory

RV College Of Engineering 25



Department Of Computer Science February- June 2005

Chapter 4

Design

4.1 Data Flow Diagram

The Data Flow Diagram gives an overall view of the process:

Figure 4.1: 0-Level DFD

4.2 Basic Design

In many applications of wireless sensor networks sensors are deployed un-tethered in
hostile environments. For location aware in these applications, it is essential to ensure
that sensors can determine their location, even in the presence of malicious adversaries.
Many sensor network applications require location awareness, but it is often too expen-
sive to include a GPS receiver in a sensor network node. Hence, localization schemes
for sensor networks typically use a small number of seed nodes that know their loca-
tion and protocols whereby other nodes estimate their location from the messages they
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Figure 4.2: 1-Level DFD

receive.In this section we address the problem of enabling sensors of wireless sensor
networks to determine their location in a 2-dimensional environment.

Figure 4.3: Localization with IR

Let R denote the range, and D(x,r) a disk of radius r centred at x. The figure shows
S1 and S2 which are two sensors with unknown locations. S1 is in the range of beacons
B1 and B2; Bi located at vi. Therefore it gets localized to the region of intersection
of D(vi, R), i = 1, 2 shown by dotted circles which centres v1 and v2. S2, though not
in the range of either B1 or B2, is in the range of S1; the dotted circle centred at S1

is D(vS1, R) where vS1 denotes the location of S1. Therefore S2 gets localized to the
region bounded by the solid curve in figure. In this way, sensors can learn and improve
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localization sets iteratively as discussed in [1].

4.3 Algorithm

The algorithm to localize sensors in an ad-hoc network using the in-range method:

1. The positions of beacon motes (the motes whose positions are known) are initial-
ized by setting the locX and locY attributes. The entire test bed area is taken
as the initial set of positions for the other motes, while the beacon motes have
only one point in their location set.

2. The neighbors of each sensor are computed as follows:

– Each sensor broadcasts a signal at regular intervals

– The immediate neighbors respond back. The neighbor buffer of the sender
sensor is updated each time it receives a response.

– The neighbor information is routed to the main PC via the multi-hop net-
work

– The neighbor buffer of each sensor is refreshed periodically (to facilitate
dynamic changes)

3. For each sensor, possible locations represented by a set are reckoned by the in-
tersection of points in the transmission range of each of its neighbor.

4. If a node is not a neighbor of a sensor, the set of points representing the range of
the non-neighbor is subtracted from possible locations obtained in step 3. This
is done because, if a node is a non-neighbor of a sensor, the latter cannot lie in
the range of the former.

5. The intersection of the previous set (calculated in the previous iteration) with
that of possible locations computed from the locations of the neighbors and non-
neighbors (from step 4) give the final set of possible locations of the sensor. The
number of possible locations of each sensor is non- increasing over iterations.

6. Steps 3 , 4 and 5 are repeated, a chosen number of times till the possible positions
of a sensor is narrowed down to a set of n possibilities, which does not change
over further iterations, or by fixing the number of iterations to a number “n”.
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Chapter 5

Testing and Results

When working with embedded devices, it is very difficult to debug applications. Be-
cause of this, we have to make sure that the tools that we are using are working
properly and that the hardware is functioning correctly. This will save countless hours
of searching for bugs in the application when the real problem is in the tools.

5.1 White Box Testing

5.1.1 Unit Testing

Hardware testing involves checking working of the system and the hardware.

5.1.1.1 TinyOS Installation Verification

A TinyOS development environment requires the use of avr gcc compiler, perl, flex,
cygwin if you use windows operation system, and JDK 1.3.x or above. TinyOS provides
a tool named toscheck to check if the tools have been installed correctly and that the
environment variables are set.
First, we run toscheck (it should be in the current path - a copy is also in tinyos-
1.x/tools/scripts). The expected output is as follows:

toscheck

Path:

/usr/local/bin

/usr/bin

/bin

/cygdrive/c/jdk1.3.1_01/bin

/cygdrive/c/WINDOWS/system32

/cygdrive/c/WINDOWS

/cygdrive/c/avrgcc/bin

.

Classpath:

/c/alpha/tools/java:.:/c/jdk1.3.1_01/lib/comm.jar

avrgcc:

/cygdrive/c/avrgcc/bin/avr-gcc

Version: 3.0.2
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perl:

/usr/bin/perl

Version: v5.6.1 built for cygwin-multi

flex:

/usr/bin/flex

bison:

/usr/bin/bison

java:

/cygdrive/c/jdk1.3.1_01/bin/java

java version "1.3.1_01"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.3.1_01)

Java HotSpot(TM) Client VM (build 1.3.1_01, mixed mode)

Cygwin:

cygwin1.dll major: 1003

cygwin1.dll minor: 3

cygwin1.dll malloc env: 28

uisp:

/usr/local/bin/uisp

uisp version 20010909

toscheck completed without error.

5.1.1.2 Hardware verification

To test the hardware, we use an application: MicaHWVerify. It is designed for the
purpose of verifying mica/mica2/mica2dot mote hardware only.
In the apps/MicaHWVerify directory , type

(mica platform) make mica

(mica2/mica2dot) PFLAGS=-DCC1K_DEF_FREQ=<freq>

make [mica2|mica2dot]

The compilation process must complete without any errors (Compilation for the
mica2dot will generate a warning about the SerialID component). If it is compiled
correctly, it will print out a profile of the memory used by the application. While the
exact build directory and memory footprints will vary depending on the platform, it
should look like:

compiled MicaHWVerify to build/mica2/main.exe

10386 bytes in ROM

390 bytes in RAM

avr-objcopy --output-target=srec build/mica2/main.exe build/mica2/main.srec
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Next step is to install the application onto a mote. A powered-on node is placed
into a programming board. The red LED on the programming board should light.
The programming board is connected to the parallel port of the computer. To load the
program on to the device, using a parallel port programmer, we type :

make reinstall [mica|mica2|mica2dot]

The output :

installing mica2 binary

uisp -dprog=<yourprogrammer> -dhost=c62b270 -dpart=ATmega128

--wr_fuse_e=ff --erase --upload if=build/mica2/main.srec

Atmel AVR ATmega128 is found.

Uploading: flash

Fuse Extended Byte set to 0xff

This output shows that the programming tools and the computer’s parallel port are
working.
The next step is to verify the mote hardware. First, confirm that the LEDs are blinking
like a binary counter. Next, the programming board is connected to the serial port
of the computer. The hardware verify program will send data over the UART that
contains it status. To read from the serial port, TinyOS provides a java tool called
hardware check.java. It is located in the same directory. This tool must be built
and run. The commands are shown below assuming COM1 at 57.6 KBaud is used to
connect to the programming board.

make -f jmakefile

MOTECOM=serial@COM1:57600 java hardware_check

The output on the PC is:

hardware_check started

Hardware verification successful.

Node Serial ID: 1 60 48 fb 6 0 0 1d

This program checks the serial ID of the mote (except on the mica2dot), the flash
connectivity, the UART functionality and the external clock. If all status checks are
positive, the hardware verification successful message is printed on the PC screen.
If any failure report on the monitor is seen, another mote might be needed.

5.1.1.3 Radio Verification

To verify radio, two nodes are needed . The second node (that has passed the hardware
check up to this point) is taken and installed with TOSBase. This node acts as a radio
gateway to the first node. Once installed, this node is left in the programming board
and the original node is placed next to it. The hardware check java application is re-
run. The output should be the same as shown in the previous section (but will display
the serial ID of the remote mote). The indication of a working radio system is, again,
something like:

hardware_check started

Hardware verification successful.

Node Serial ID: 1 60 48 fb 6 0 0 1d
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If the remote mote is turned off or not functioning, it will return a message ”Node
transmission failure”.
If the system and hardware pass all the above tests, TinyOS is ready to be used for
building applications.

5.1.1.4 TinyDB Verification

Three motes are required to test the tinydb package. All three are programmed with
the TinyDBApp application, setting their id’s to 0, 1, and 2. The motes are turned
on and are the mote programmed with id 0 is connected to the PC serial port. (To
program a mote with a specific id, run make mica install.nodeid, where nodeid is the
id with which the mote is associated.)
The TinyDBMain class in tools/java/net/tinyos/tinydb is used to interact with the
motes The java classes are first built; to do this, we need to ensure that several packages
are in the CLASSPATH. The packages needed are JLex.jar, cup.jar, and plot.jar; all
three are available in tools/java/jars.There is a small program to set your classpath ,
called ”javapath” in the tools/java/ directory. To use it, value of the CLASSPATH is
set to the output of this command (it will prepend the new directories and jars to your
current CLASSPATH.) To use it under bash (in Cygwin or Linux), we type:

export CLASSPATH=‘path/to/tinyos/tools/java/javapath‘

Under sh or csh ”setenv CLASSPATH ...” is written instead of ”export CLASS-
PATH=...”. Now, the java classes are built by typing the following:

cd path/to/tinyos/tools/java/net/tinyos/tinydb

make

This may take several minutes and will output lots of text as the TinyDB query parser is
compiled. Now, the TinyDB GUI is tested by running it from the tools/java directory;

cd ../../..

java net.tinyos.tinydb.TinyDBMain

The TinyDB GUI should appear.

The test is complete.

5.1.1.5 GetNeighbours module

The module was loaded in each of the sensors, and the code was tested to ensure that
every node collects its immediate neigbors accurately. Secondly, the time required to
receive the neighbor information from all the motes was noted. Thirdly, to make sure
that the module functions accurately in situations, where nodes change their position
over time, the code was enhanced to encorporate periodic refreshing of the neighbor
buffer table. The module was then tested in a dynamic environment.
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Figure 5.1: TinyDB GUI

5.1.1.6 Localization module

The localization algorithm was initially simulated before integrating it with the hard-
ware. The positions of beacon nodes were fixed and the information about the neigh-
bours of each sensor node was fed to the program. The following cases were tested:

1. Localization of a node when it is in the vicinity of beacon nodes.

2. Localization of a node when it is in the vicinity of beacon nodes and other local-
ized nodes.

3. Localization of a node when it is in the vicinity of only other localized nodes.

5.1.2 Integrated Testing

The localization algorithm was integrated with the TinyDB application.The integrated
application could perform localization and display the localized positions of the sensors
in a two-dimensional environment along with the network topology and sensor readings
such as temperature, light, sound etc.

The ”Mote commands” panel of the modified frontend has a few new buttons such
as Get Neighbours, Set Locations and Localize. The frontend also has new attributes
such as locX, locY and nbrs

New functions such as setlocation (for beacons), getneighbors and localization had
to be added to the existing TinyDBpackage, integrated and tested.

The TinyDB package is responsible for querying sensor readings from the different
motes. It periodically broadcasts queries to the motes, and the motes in turn respond
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Figure 5.2: Modified frontend to encorporate localization.

to the query requests. When two or more motes respond at the same time, it leads to
contention. On integrating the localization algorithm, the contention further increases
because the nodes constantly query for their neighbours. The interval between succes-
sive neighbour queries was difficult to determine. Repeated testing with different time
intervals was performed to determine the ideal interval where contention is minimal
and efficiency is maximized.
The same problem was faced when the decision had to be made regarding how often
the localization algorithm has to be run. The localization algorithm does not function
until it gets the neighbour information from all the nodes. Secondly, due to dynamic
changes in the positions of the nodes i.e the positions of the motes might change over
time, the localization algorithm should immediately detect a change in location and
display the new localized positions of the motes.
In pratical applications, the transmission range is usually around 5 metres. It is not
possible to test all cases taking indoors, due to limited space constraints. Hence, the
transmission range had to be scaled down to an appropriate value, so that we could
cover different possible arrangements and deployment of sensors in the network.
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Figure 5.3: Sensor Readings

5.1.3 Results : Black Box Testing

In all the test cases, the transmission range is set to 5 units.

5.1.3.1 Example 1: A mote in the neighborhood of one beacon

Beacon 1: Beacon at (5,5)
Node 2: Node at (7,7) which has to be localized

Node 2 is in the neighborhood of Beacon 1 therefore; Node 2 should be localized to
a circle of radius 5 (transmission range) around (5,5).

The output is as shown in the figure 5.6. The red circle corresponds to beacon 1
and ’2’ in blue indicates the possible positions of node 2. It is noted that location (7,7)
is also included in the set. The green lines signify the network topology.

5.1.3.2 Example 2: A mote in the neighborhood of two beacons

Beacon 1: Beacon at (10,5)
Beacon 2: Beacon at (7,7)
Node 3: Node at (7,4) which has to be localized

Node 3 is in the neighborhood of Beacon 1 and Beacon 2. Therefore, Node 3 should
be localized to a region in the intersection of circles of radius 5 (transmission range)
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Figure 5.4: Localization: A multihop scenario

around (10,5) and (7,7).
The output is as shown in the figure 5.8. The red circles corresponds to beacon 1

and beacon 2. ’3’ in pink indicates the possible positions of node 3. It is noted that
location (7,4) is also included in the set. The green lines signify the network topology.
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Figure 5.5: Example 1: The actual testbed

Figure 5.6: Example 1: Output
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Figure 5.7: Example 2: The actual testbed

Figure 5.8: Example 2: Output
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5.1.3.3 Example 3: A mote in the neighbourhood of one beacon but not
the other

Beacon 1: Beacon at (10,5)
Beacon 2: Beacon at (7,7)
Node 3: Node at (13,5) which has to be localized

Node 3 is in the neighborhood of Beacon 1 but not in the neighborhood of Beacon
2. Therefore, Node 3 should be localized to a circle of radius 5 (transmission range)
around (10,5) eliminating the points in the circle around (7,7).

The output is as shown in the figure 5.10. The red circles corresponds to beacon 1
and beacon 2. ’3’ in pink indicates the possible positions of node 3. It is noted that
location (13,5) is also included in the set. The green lines signify the network topology.

RV College Of Engineering 39



Department Of Computer Science February- June 2005

Figure 5.9: Example 3: The actual testbed

Figure 5.10: Example 3: Output
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5.1.3.4 Example 4: A mote in the neighbourhood of no beacons

Beacon 1: Beacon at (10,5)
Beacon 2: Beacon at (7,7)
Node 3: Node at (10,9) which has to be localized
Node 4: Node at (12,11) which has to be localized

Node 3 is in the neighborhood of Beacon 1 and in the neighborhood of Beacon 2.
Therefore, Node 3 should be localized to the intersections of circles of radius 5 (trans-
mission range) with (10,5) and (7,7) as centres
Node 4 is only in the neighborhood of Node 3. Therefore Node 4 should be localized
to a set of positions in the neighborhood of the localized positions of Node 3, but after
eliminating the set of points within a circle of radius 5 around (10,5) and (7,7).

The output is as shown in the figure 5.12. The red circles corresponds to beacon 1
and beacon 2. ’3’ in pink indicates the possible positions of node 3. It is noted that
location (10,9) is also included in the set. ’4’ in yellow indicates the possible positions
of node 4. It is noted that location (12,11) is also included in the set. The green lines
signify the network topology.
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Figure 5.11: Example 4: The actual testbed

Figure 5.12: Example 4: Output
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Chapter 6

Conclusion

Many wireless sensor network applications depend on nodes being able to accurately
determine their locations. This is an attempt to study and implement in-range method
of localization in a dynamic environment. This method relies only on the sensors
knowledge of their neighbors and the transmission range. Our main result is that
the in-range technique can provide accurate localization even when memory limits are
severe, the seed density is low, and network transmissions are highly irregular. The
strengths of this method lie in its simplicity and efficiency where each sensor localizes
itself based on the positions of the beacons and also collaborates with other sensors
aiding their localization. Many issues remain to be explored in future work including
how well our assumptions hold in different mobile sensor network applications, how
different types of motion affect localization, and how our technique can be extended to
the case where RSSI can be used to determine distances between the nodes.
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Chapter 7

Limitations and Future
Enhancement

While the in-range method is a simple, non-complex method of finding the positions of
the sensors, it does not give the accurate position of the sensor. The maximum error in
the position is constrained by the transmission range. The worst-case scenario occurs,
when a node is in the vicinity of only a single other node (or beacon), then the possible
location of the former node becomes the entire transmission range of the latter.
Secondly, it is not possible to fix the transmission range exactly to a certain number
of units. The range oscillates from the fixed value by a small value that can be taken
to be negligible but it coarsens the results.
The range changes from environment to environment, from indoor to outdoor. Thus,
fixing the range value for the localization algorithm becomes difficult.
The neighbor information from each of the motes is routed to the PC. The localization
algorithm can function only it obtains all the neighbor information. This latency is
totally dependent on the number of nodes. As the number of nodes is increased, the
contention and routing time increases.
As the number of nodes increases, the number of iterations in the localization in-range
method will also increase. Hence, the IR range method has a complexity proportional
to the number of nodes.

Thus, the next task is to find a more optimized solution to the localization aspect
in sensor networks. Finding the approximate distance between the nodes by using
other methods could reduce the error in locations. One example is acoustic ranging
method, where the distances are reckoned by sending a sound signal and the time of
the signal. Thus, the possible locations confines to a hollow band (taking tolerance
into consideration) rather than an entire circular area of transmission.
Once the positions of the nodes have been discovered, the next task is to place a buzzer
in the room. The sensors are to be placed on moving vehicles (toy cars for e.g.), which
periodically sense the buzzer. Based on the intensity of the buzzer signal and the
momentary positions of the sensor, the approximate location of the buzzer has to be
determined. In this way the localization algorithm could used to track other objects
in the environment
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Appendix A

nesC Files : Detection of Neighbors

A.1 Query for Neighbors

A.1.1 SendQueryC.nc

c on f i gu r a t i on CmdReg
{

}

implementation {

components Main , GetNeighbhorsC , SingleTimer , CmdRegM, Command;

Main . StdControl −> GetNeighbhorsC . StdControl ;
Main . StdControl −> CmdRegM. StdControl ;
Main . StdControl −> SingleTimer . StdControl ;
CmdRegM.Commands −> Command;
CmdRegM. Timer −> SingleTimer . Timer ;

}

A.1.1.1 SendQueryM.nc

#define MAX NODE ID 50
module CmdRegM {

prov ide s i n t e r f a c e StdControl ;

uses {

i n t e r f a c e CommandUse as Commands ;
i n t e r f a c e Timer ;

}

}

implementation {

command r e s u l t t StdControl . i n i t ( ) {
return SUCCESS;

}
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command r e s u l t t StdControl . s t a r t ( ) {

return c a l l Timer . s t a r t (TIMER ONE SHOT, 1000 ) ;
}

command r e s u l t t StdControl . stop ( ) {

return SUCCESS;

}

event r e s u l t t Timer . f i r e d ( ) {

ParamVals paramVals ;
char r e su l tBu f [ 1 0 ] ;
SchemaErrorNo errorNo ;
stat ic u in t 16 t daddr=1;

/∗ Set Des t ina t ion Address ∗/

paramVals . numParams = 1 ;
daddr = TOS BCAST ADDR;
paramVals . paramDataPtr [ 0 ] = (char ∗)&daddr ;

i f ( c a l l Commands . invoke ( ”SENDMSG” , re su l tBuf ,
&errorNo , &paramVals ) == FAIL)

return FAIL ;

return SUCCESS;

}

event r e s u l t t Commands . commandDone(char ∗commandName ,
char ∗ re su l tBuf , SchemaErrorNo errorNo ) {

return SUCCESS;
}

}

A.2 Respond to Request/Neighbor Information

A.2.1 Receiver.h

#ifndef GLOBAL
#define GLOBAL
enum {

AM GETNEIGHBHORS = 120
} ;
enum {

DATA LEN = 2
} ;
enum {

REQUEST = 1
} ;
enum {

RESPONSE = 2
} ;
enum {
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MAX NUM OF NEIGHBHORS = 25
} ;
enum {

REFRESH = 255
} ;

typedef struct NeighbhorData {
u i n t 8 t saddr ;
u i n t 8 t msgType ;

} NeighbhorData ;

typedef struct neighbhors {
u i n t 8 t addr ;
u i n t 16 t r s s i ;

}neighbhors ;
#endif

A.2.2 ReceiverC.nc

i n c l ud e s GetNeighbhors ;

c on f i gu r a t i on GetNeighbhorsC {
prov ide s i n t e r f a c e StdControl ;

}

implementation {

StdControl = GetNeighbhorsM . StdControl ;
//Main . StdContro l −> GetNeighbhorsM . StdContro l ;
GetNeighbhorsM . SendMsg −> Comm. SendMsg [AM GETNEIGHBHORS] ;
GetNeighbhorsM . ReceiveMsg −> Comm. ReceiveMsg [AM GETNEIGHBHORS] ;
GetNeighbhorsM . Reg i s t e r −> Command.Cmd[ unique ( ”Command” ) ] ;
GetNeighbhorsM . Leds −> LedsC ;
GetNeighbhorsM . CommControl −> Comm. Control ;
GetNeighbhorsM . SetValue −> GlobalM . SetValue ;
GetNeighbhorsM . GetValue −> GlobalM . GetValue ;
GetNeighbhorsM .Commands −> Command;
GetNeighbhorsM .Random −> RandomLFSR;
GetNeighbhorsM . SetReqSentFlag −> ReqSentFlagM . SetReqSentFlag ;
GetNeighbhorsM . GetReqSentFlag −> ReqSentFlagM . GetReqSentFlag ;
GetNeighbhorsM . RadioControl −> CC1000ControlM . CC1000Control ;
GetNeighbhorsM . MicroTimer −> MicroTimerM . MicroTimer ;
GetNeighbhorsM . RefreshNeighbhorsTable −> GlobalM . StdControl ;

}

A.2.3 ReceiverM.nc

i n c l ud e s GetNeighbhors ;

module GetNeighbhorsM {

prov ide s {

i n t e r f a c e StdControl ;
}

uses {
i n t e r f a c e CC1000Control as RadioControl ;
i n t e r f a c e CommandRegister as Reg i s t e r ;
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i n t e r f a c e ReceiveMsg ;
i n t e r f a c e SendMsg ;
i n t e r f a c e StdControl as CommControl ;
i n t e r f a c e Random ;
i n t e r f a c e Leds ;
i n t e r f a c e GetValue ;
i n t e r f a c e SetValue ;
i n t e r f a c e CommandUse as Commands ;
i n t e r f a c e SetReqSentFlag ;
i n t e r f a c e GetReqSentFlag ;
i n t e r f a c e MicroTimer ;
i n t e r f a c e StdControl as RefreshNeighbhorsTable ;

}
}

implementation {

TOS Msg retBuf , respBuf , globalTosMsg ;
u i n t 16 t globalDaddr ;
TOS MsgPtr pmsg=&retBuf ;
NeighbhorData ∗data ;

command r e s u l t t StdControl . i n i t ( ) {

c a l l CommControl . i n i t ( ) ;
c a l l Leds . i n i t ( ) ;
c a l l Random . i n i t ( ) ;

return SUCCESS;
}

command r e s u l t t StdControl . s t a r t ( ) {

ParamList paramList ;

c a l l CommControl . s t a r t ( ) ;

/∗ Set Radio Power ∗/

i f ( c a l l RadioControl . SetRFPower (1 ) == FAIL) {

c a l l Leds . ye l lowToggle ( ) ;
}

/∗ Reg i s t e r Command to Send Request ∗/

paramList . params [ 0 ] = UINT16 ;
paramList . numParams = 1 ;
i f ( c a l l Reg i s t e r . registerCommand ( ”SENDMSG” , VOID, 0 ,

&paramList ) == FAIL) {
return FAIL ;

}

/∗ Set Timer ∗/

i f (TOS LOCAL ADDRESS != 0) {

c a l l MicroTimer . s t a r t (5000000) ;
}
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return SUCCESS;
}

command r e s u l t t StdControl . stop ( ) {

c a l l CommControl . s top ( ) ;

return SUCCESS;
}

event r e s u l t t Reg i s t e r . commandFunc(char ∗commandName , char ∗ re su l tBuf ,
SchemaErrorNo ∗ errorNo , ParamVals ∗params ) {

NeighbhorData ∗PayLoad ;
u i n t 8 t loca lNode id =0;

/∗ Get Local node ID ∗/

l o ca lNode id = TOS LOCAL ADDRESS;

/∗ Assign to Globa l v a r i a b l e s ∗/

globalDaddr =
∗ ( ( u i n t 16 t ∗) params−>paramDataPtr [ 0 ] ) ;

/∗ F i l l Payload ∗/

memset ( ( char ∗)&globalTosMsg , 0 , s izeof ( globalTosMsg ) ) ;
PayLoad = ( NeighbhorData ∗) globalTosMsg . data ;
PayLoad−>msgType = REQUEST;
PayLoad−>saddr = loca lNode id ;
globalTosMsg . l ength = DATA LEN;

/∗ Send Request ∗/

i f ( c a l l SendMsg . send ( globalDaddr , DATA LEN,
&globalTosMsg ) == FAIL) {

c a l l Leds . ye l lowToggle ( ) ;
}

c a l l SetReqSentFlag . s e t ( 1 ) ;

return SUCCESS;
}

event r e s u l t t SendMsg . sendDone (TOS MsgPtr msg , r e s u l t t s u c c e s s ) {

char buf [ 1 0 ] ;
SchemaErrorNo errNo ;

c a l l Leds . redToggle ( ) ;

return SUCCESS;
}

event TOS MsgPtr ReceiveMsg . r e c e i v e (TOS MsgPtr msg) {
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TOS Msg tosMsg ;
TOS MsgPtr r e t ;
NeighbhorData ∗ resData ;
u i n t 8 t loca lNode id ;
u i n t 16 t backoffTime ;

/∗ Buf fer swapping ∗/

c a l l Leds . greenToggle ( ) ;

r e t = pmsg ;
pmsg = msg ;
memset ( ( char ∗)&tosMsg , 0 , s izeof ( tosMsg ) ) ;
data = ( NeighbhorData ∗)msg−>data ;

/∗ Process Request ∗/

i f ( data−>msgType == REQUEST) {

/∗ Get Local node ID ∗/

l o ca lNode id = TOS LOCAL ADDRESS;
resData = ( NeighbhorData ∗) respBuf . data ;
resData−>msgType = RESPONSE;
resData−>saddr = loca lNode id ;

/∗ Send Response ∗/

i f (TOS LOCAL ADDRESS == 0) {
return r e t ;

}

i f ( c a l l SendMsg . send ( data−>saddr ,
DATA LEN, &respBuf ) == FAIL) {

c a l l Leds . ye l lowToggle ( ) ;
}

return r e t ;
}

i f ( data−>msgType == RESPONSE) {
c a l l SetValue . s e t ( data−>saddr , msg−>s t r ength ) ;

}

return r e t ;
}

event r e s u l t t Commands . commandDone(char ∗commandName ,
char ∗ re su l tBuf , SchemaErrorNo errorNo ) {

return SUCCESS;
}

async event r e s u l t t MicroTimer . f i r e d ( ) {

ParamVals paramVals ;
char buf [ 1 0 ] ;
SchemaErrorNo errNo ;
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u in t 16 t daddr ;
stat ic u i n t 8 t re f r e shCounte r =0;

/∗ Per iod ic Refresh o f Neighbhors Table once in a Minute ∗/

r e f r e shCounte r++;
re f r e shCounte r = 0 ;
c a l l RefreshNeighbhorsTable . s t a r t ( ) ;
c a l l SetValue . s e t (REFRESH, REFRESH) ;

/∗ Send Request f o r Neighbhors ∗/

daddr = TOS BCAST ADDR;
paramVals . numParams = 1 ;
paramVals . paramDataPtr [ 0 ] = (char ∗)&daddr ;
i f ( c a l l Commands . invoke ( ”SENDMSG” ,
buf , &errNo , &paramVals ) == FAIL) {

c a l l Leds . ye l lowToggle ( ) ;
}

return SUCCESS;

}

} /∗ End implementat ion ∗/
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Appendix B

Java File : Localization.java

%\ begin
%verbatim}

/∗ The f o l l ow i n g code c a r r i e s out the l o c a l i z a t i o n on the sensors :
The ne ighbours o f the motes are taken as the input to the module and the
i t e r a t i v e procedure i s ca r r i e d out p e r i o d i c a l l y ∗/

package net . t i nyo s . t inydb ;
import java . i o . ∗ ;
import net . t i nyo s . t inydb . g l oba l ;

pub l i c c l a s s l o c a l i z a t i o n
{

int noofnodes = 20 ;
/∗no . o f nodes i s taken to be 20 ; i t can be changed acco rd ing l y ∗/

pub l i c stat ic boolean array [ ] [ ] [ ] ;
/∗ the array v a r i a b l e s i g n i f i e s whether i t i s p o s s i b l e f o r a node
to be occupied at a p a r t i c u l a r p o s i t i o n
i f array [ i ] [ x ] [ y]= t rue => ( x , y ) i s a v i a b l e p o s i t i o n o f node i ;
i f array [ i ] [ x ] [ y]= f a l s e => ( x , y ) i s a not a v i a b l e p o s i t i o n o f node i ; ∗/

boolean nbrs [ ] [ ] ;
/∗ S im i l a r l y i f nbrs [ i ] [ j ]= t rue =>node i i s a neighbour o f node j ;
S im i l a r l y i f nbrs [ i ] [ j ]= f a l s e =>node i i s not a neighbour o f node j ; ∗/

boolean beacon [ ] ;
/∗ i f beacon [ i ]= t rue => node i i s a beacon mote ;
i f beacon [ i ]= f a l s e => node i i s not a beacon mote ; ∗/
}

boolean [ ] [ ]
i n t e r s e c t i o n ( boolean arr1 [ ] [ ] , boolean arr2 [ ] [ ] )
/∗

c a l c u l a t e s the i n t e r s e c t i o n o f 2 s e t s d e p i c t i n g p o s s i b l e l o c a t i o n s
∗/

{
boolean r e s u l t [ ] [ ] = new boolean [ 2 0 0 ] [ 2 0 0 ] ;

for ( int i = 0 ; i < 200 ; i++)
for ( int j = 0 ; j < 200 ; j++)

{
r e s u l t [ i ] [ j ] = arr1 [ i ] [ j ] && arr2 [ i ] [ j ] ;

}
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return r e s u l t ;
}

boolean [ ] [ ]
union ( boolean arr1 [ ] [ ] , boolean arr2 [ ] [ ] ) /∗ c a l c u l a t e s

the union o f 2 s e t s d e p i c t i n g p o s s i b l e l o c a t i o n s ∗/
{

boolean r e s u l t [ ] [ ] = new boolean [ 2 0 0 ] [ 2 0 0 ] ;

for ( int i = 0 ; i < 200 ; i++)
for ( int j = 0 ; j < 200 ; j++)

{
r e s u l t [ i ] [ j ] = arr1 [ i ] [ j ] | | arr2 [ i ] [ j ] ;

}
return r e s u l t ;

}

boolean [ ] [ ] subrange ( int r , boolean arr1 [ ] [ ] )
/∗ s u b t r a c t s from the s e t o f p o s s i b l e l o c a t i o n s o f a mote ,
s e t s o f l o c a t i o n s which a r i s e from
the f a c t t h a t some beacons are not i t s ne ighbours ∗/

{
boolean r e s u l t [ ] [ ] = new boolean [ 2 0 0 ] [ 2 0 0 ] ;

for ( int i 2 = 0 ; i 2 < 200 ; i 2++)
for ( int j 2 = 0 ; j 2 < 200 ; j 2++)

r e s u l t [ i 2 ] [ j 2 ] = true ;

for ( int i = 0 ; i < 200 ; i++)
for ( int j = 0 ; j < 200 ; j++)

i f ( ar r1 [ i ] [ j ] )
{

for ( int i 1 = i − r ; i 1 <= i + r ; i 1++)
for ( int j 1 = j − r ; j 1 <= j + r ; j 1++)

i f ( i 1 >= 0 && i1 < 200 && j1 >= 0 && j1 < 200)
{

i f ( ( i 1 − i ) ∗ ( i 1 − i ) + ( j1 − j ) ∗ ( j 1 − j ) <= r ∗ r )
r e s u l t [ i 1 ] [ j 1 ] = f a l s e ;

}
}

return r e s u l t ;
}

boolean [ ] [ ] addrange ( int r , boolean arr1 [ ] [ ] )
/∗ computes the s e t o f l o c a t i o n s which are in t ransmiss ion range
o f a po in t f o r each po in t in a s e t o f p o s s i b l e l o c a t i o n s o f a mote ∗/

{
boolean r e s u l t [ ] [ ] = new boolean [ 2 0 0 ] [ 2 0 0 ] ;

for ( int i = 0 ; i < 200 ; i++)
for ( int j = 0 ; j < 200 ; j++)

i f ( ar r1 [ i ] [ j ] )
{
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for ( int i 1 = i − r ; i 1 <= i + r ; i 1++)
for ( int j 1 = j − r ; j 1 <= j + r ; j 1++)

i f ( ( i 1 − i ) ∗ ( i 1 − i ) + ( j1 − j ) ∗ ( j 1 − j ) <= r ∗ r )
i f ( i 1 >= 0 && i1 < 200 && j1 >= 0 && j1 < 200)

r e s u l t [ i 1 ] [ j 1 ] = true ;
}

return r e s u l t ;
}

void
i n i t i a l i z e ( ) /∗ i d e n t i f i e s the beacon motes

and s e t s t h e i r p o s i t i o n s ∗/
{

for ( int i = 0 ; i < noofnodes ; i++)
try
{

F i l e prim = new F i l e ( i + ” locX . dat” ) ;
Fi le InputStream f o s = new Fi leInputStream ( prim ) ;
DataInputStream dos = new DataInputStream ( f o s ) ;
int x = ( int ) dos . readLong ( ) ;
dos . c l o s e ( ) ;
f o s . c l o s e ( ) ;
prim = new F i l e ( i + ” locY . dat” ) ;
f o s = new Fi leInputStream ( prim ) ;
dos = new DataInputStream ( f o s ) ;
int y = ( int ) dos . readLong ( ) ;
dos . c l o s e ( ) ;
f o s . c l o s e ( ) ;
beacon [ i ] = true ;

for ( int x1 = 0 ; x1 < 200 ; x1++)
for ( int y1 = 0 ; y1 < 200 ; y1++)

array [ i ] [ x1 ] [ y1 ] = f a l s e ;

array [ i ] [ x ] [ y ] = true ;
}

catch ( Exception e )
{

for ( int x1 = 0 ; x1 < 200 ; x1++)
for ( int y1 = 0 ; y1 < 200 ; y1++)

array [ i ] [ x1 ] [ y1 ] = true ;
}

}

void
i t e r a t e ( ) /∗ c a r r i e s out l o c a l i s a t i o n where a

mote ’ s p o s i t i o n i s l o c a l i s e d to a s e t o f p o s i t i o n s
based on the l o c a t i o n s o f i t s ne ighbours ∗/

{
int n o o f i t e r = 5 ;

for ( int i t e r = 0 ; i t e r < n o o f i t e r ; i t e r++)
{
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for ( int node = 0 ; node < 20 ; node++)
{

boolean y [ ] [ ] = new boolean [ 2 0 0 ] [ 2 0 0 ] ;
boolean temp [ ] [ ] = new boolean [ 2 0 0 ] [ 2 0 0 ] ;

for ( int m = 0 ; m < 200 ; m++)
for ( int n = 0 ; n < 200 ; n++)

{
y [m] [ n ] = temp [m] [ n ] = true ;

}
for ( int nbr = 0 ; nbr < 20 ; nbr++)

{
i f ( nbrs [ node ] [ nbr ] )

temp = addrange (5 , array [ nbr ] ) ;
y = i n t e r s e c t i o n (y , temp ) ;

}
array [ node ] = i n t e r s e c t i o n ( array [ node ] , y ) ;

}
}

for ( int node = 0 ; node < 20 ; node++)
for ( int nbr = 0 ; nbr < 20 ; nbr++)

{
i f ( ! nbrs [ node ] [ nbr ] && beacon [ nbr ] && node != nbr )

{
boolean temp [ ] [ ] = new boolean [ 2 0 0 ] [ 2 0 0 ] ;
temp = subrange (5 , array [ nbr ] ) ;
array [ node ] = i n t e r s e c t i o n ( array [ node ] , temp ) ;

}
}

}

/∗This func t i on i s c a l l e d when the
f i r s t o b j e c t o f the c l a s s i s c rea t ed . ∗/
pub l i c void
s t a r t 1 ( )
{

array = new boolean [ 2 0 ] [ 2 0 0 ] [ 2 0 0 ] ;
beacon = new boolean [ 2 0 ] ;
nbrs = g l oba l . nbrs ;
i n i t i a l i z e ( ) ;
i t e r a t e ( ) ;

}

/∗ This func t i on i s evoked p e r i o d i c a l l y , to r e f r e s h
the computation o f l o c a t i o n s ∗/
pub l i c void
s t a r t ( )
{

beacon = new boolean [ 2 0 ] ;
nbrs = g l oba l . nbrs ;
i n i t i a l i z e ( ) ;
i t e r a t e ( ) ;

}

}
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