
824 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 6, DECEMBER 1997

Hashed and Hierarchical Timing Wheels: Efficient
Data Structures for Implementing a Timer Facility

George Varghese and Anthony Lauck

Abstract—The performance of timer algorithms is crucial
to many network protocol implementations that use timers for
failure recovery and rate control. Conventional algorithms to
implement an Operating System timer module takeOOO(nnn) time to
start or maintain a timer, where nnn is the number of outstanding
timers: this is expensive for largennn. This paper shows that by
using a circular buffer or timing wheel, it takes OOO(1) time to
start, stop, and maintain timers within the range of the wheel.
Two extensions for larger values of the interval are described. In
the first, the timer interval is hashed into a slot on the timing
wheel. In the second, a hierarchy of timing wheels with different
granularities is used to span a greater range of intervals. The
performance of these two schemes and various implementation
tradeoffs are discussed. We have used one of our schemes to
replace the current BSD UNIX callout and timer facilities. Our
new implementation can support thousands of outstanding timers
without much overhead. Our timer schemes have also been
implemented in other operating systems and network protocol
packages.

Index Terms—Callout facilities, hashed wheels, hierarchical
wheels, protocol implementations, Timers, Timer Facilities.

I. INTRODUCTION

I N a centralized or distributed system, we need timers for
the following.
Failure Recovery:Several kinds of failures cannot be de-

tected asynchronously. Some can be detected by periodic
checking (e.g., memory corruption) and such timers always
expire. Other failures can only be inferred by the lack of
some positive action (e.g., message acknowledgment) within a
specified period. If failures are infrequent, these timers rarely
expire.

Algorithms in Which the Notion of Time or Relative Time is
Integral: Examples include algorithms that control the rate
of production of some entity (process control, rate-based
flow control in communications), scheduling algorithms, and
algorithms to control packet lifetimes in computer networks.
These timers almost always expire.

Manuscript received November 1, 1996; revised June 19, 1997; approved
by IEEE/ACM TRANSACTIONS ONNETWORKING Editor L. Peterson. An earlier
version of this paper appeared inProc. 11th ACM Symp. on Operating Systems
Principles,Nov. 1987. The work of G. Varghese was supported by the Office
of Naval research under an ONR Young Investigator Award and by the
National Science Foundation under Grant NCR 940997.

G. Varghese was with Digital Equipment Corporation, Littleton, MA USA.
He is now with the Department of Computer Science, Washington University,
St. Louis, MO 63130 USA (e-mail: varghese@askew.wustl.edu).

A. Lauck was with Digital Equipment Corporation, Littleton, MA
USA. He is now at P.O. Box 59, Warren, VT 05674 USA (e-mail:
tlauck@madriver.com).

Publisher Item Identifier S 1063-6692(97)07265-8.

The performance of algorithms to implement a timer module
becomes an issue when any of the following are true.

• The algorithm is implemented by a processor that is
interrupted each time a hardware clock ticks, and the
interrupt overhead is substantial.

• Fine granularity timers are required.
• The average number of outstanding timers is large.

If the hardware clock interrupts the host every tick, and the
interval between ticks is in the order of microseconds, then the
interrupt overhead is substantial. Most host operating systems
offer timers of coarse (milliseconds or seconds) granularity.
Alternately, in some systems finer granularity timers reside
in special-purpose hardware. In either case, the performance
of the timer algorithms will be an issue as they determine the
latency incurred in starting or stopping a timer and the number
of timers that can be simultaneously outstanding.

As an example, consider communications between members
of a distributed system. Since messages can be lost in the
underlying network, timers are needed at some level to trigger
retransmissions. A host in a distributed system can have
several timers outstanding. Consider, for example, a server
with 200 connections and 3 timers per connection. Further, as
networks scale to gigabit speeds, both the required resolution
and the rate at which timers are started and stopped will
increase. Several recent network implementations (e.g., [6])
have been tuned to send packets at a rate of 25 000–40 000
packets per second.

Some network implementations (e.g., the BSD TCP im-
plementation) do not use a timer per packet; instead, only
a few timers are used for the entire networking package.
The BSD TCP implementation gets away with two timers
because the TCP implementation maintains its own timers for
all outstanding packets, and uses a single kernel timer as a
clock to run its own timers. TCP maintains its packet timers in
the simplest fashion: whenever its single kernel timer expires,
it ticks away at all its outstanding packet timers. For example,
many TCP implementations use two timers: a 200-ms timer
and a 500-ms timer.

The naive method works reasonably well if the granularity
of timers is low and losses are rare. However, it is desirable
to improve the resolution of the retransmission timer to allow
speedier recovery. For example, the University of Arizona has
a new TCP implementation called TCP Vegas [4] that performs
better than the commonly used TCP Reno. One of the reasons
TCP Reno has bad performance when experiencing losses is
the coarse granularity of the timeouts.

1063–6692/97$10.00 1997 IEEE

VARGHESE AND LAUCK: HASHED AND HIERARCHICAL TIMING WHEELS 825

Besides faster error recovery, fine granularity timers also
allow network protocols to more accurately measure small
intervals of time. For example, accurate estimates of round trip
delay are important for the TCP congestion control algorithm
[14] and the Scalable Reliable Multicast (SRM) framework
[11] that is implemented in the Wb conferencing tool [16].
Finally, many multimedia applications routinely use timers,
and the number of such applications is increasing. An example
can be found in Siemens’ CHANNELS run time system for
multimedia [3] where each audio stream uses a timer with
granularity that lies between 10 and 20 ms. For multime-
dia and other real-time applications, it is important to have
worst-case bounds on the processing time to start and stop
timers.

Besides networking applications, process control and other
real-time applications will also benefit from large numbers
of fine granularity timers. Also, the number of users on a
system may grow large enough to lead to a large number of
outstanding timers. This is the reason cited (for redesigning
the timer facility) by the developers of the IBM VM/XA SP1
operating system [10].

In the following sections, we will describe a family of
schemes for efficient timer implementations based on a data
structure called atiming wheel. We will also describe perfor-
mance results based on a UNIX implementation, and survey
some of the systems that have implemented timer packages
based on the ideas in this paper.

II. M ODEL

Our model of a timer module has the following four
component routines.

STARTTIMER (Interval,RequestId, ExpiryAction): The client
calls this routine to start a timer that will expire after “Interval”
units of time. The client supplies aRequestIdwhich is used
to distinguish this timer from other timers that the client has
outstanding. Finally, the client can specify what action must be
taken on expiry: for instance, calling a client-specified routine,
or setting an event flag.

STOPTIMER (RequestId): This routine uses its knowledge of
the client andRequestIdto locate the timer and stop it.

PERTICKBOOKKEEPING: Let the granularity of the timer be
units. Then every units this routine checks whether any

outstanding timers have expired; if this is the case, it calls
STOPTIMER, which in turn calls the next routine.

EXPIRYPROCESSING: This routine does theExpiryAction
specified in the STARTTIMER call.

The first two routines are activated on client calls while
the last two are invoked on timer ticks. The timer is often an
external hardware clock.

The following two performance measures can be used to
choose between the various algorithms described in the rest of
this paper. Both of them are parameterized by, the average
(or worst-case) number of outstanding timers.

1) Space: The memory required for the data structures used
by the timer module.

2) Latency: The time between the invoking of a routine in
the timer module and its completion, assuming that the

TABLE I
AN EXAMPLE OF THE PARAMETERS OF THETIMER MODULE THAT

A NETWORKING APPLICATION WOULD CONSIDER IMPORTANT

Routine Critical Parameter
STARTTIMER Latency(average and worst-case)
STOPTIMER Latency(average and worst-case)

PERTICKBOOKKEEPING Latency(average)
EXPIRYPROCESSING None

TABLE II
LATENCY METRICS FORTHREE PREVIOUSLY USED SCHEMES. NOTE THAT

STOPTIMER IS O(1) FOR UNBALANCED TREES ANDO[log (n)] FOR BALANCED

TREES; BALANCED TREE IMPLEMENTATIONS HAVE THE SLOWEST STOPTIMER

BECAUSE OF THENEED TO REBALANCE THE TREE AFTER A DELETION

Scheme STARTTIMER STOPTIMER PERTICK

1 O(1) O(1) O(n)

2 O(n) O(1) O(1)

3 O(log (n)) O(log (n)) or O(1) O(1)

caller of the routine blocks until the routine completes.
Both the average and worst case latency are of interest.

For example, a client application that implements a trans-
port protocol may find that space is cheap and the critical
parameters for each routine in the timer module are as shown
in Table I.

The performance measures important for the client applica-
tions should be used to choose among timer algorithms.

III. EXISTING TIMER SCHEMES

There are two standard schemes.

A. Scheme 1—Straightforward

Here [22] STARTTIMER finds a memory location and sets
that location to the specified timer interval. Every units,
PERTICKBOOKKEEPINGwill decrement each outstanding timer;
if any timer becomes zero, EXPIRYPROCESSINGis called.

This scheme is extremely fast except for per tick bookkeep-
ing. It also uses one record per outstanding timer, the minimum
space possible. Its performance is summarized in Table II. It
is appropriate if:

• there are only a few outstanding timers;
• most timers are stopped within a few ticks of the clock;
• PERTICKBOOKKEEPINGis done with suitable performance

by special-purpose hardware.

Note that instead of doing a Decrement, we can store the
absolute time at which timers expire and do a Compare. This
option is valid for all timer schemes we describe; the choice
between them will depend on the size of the time-of-day field,
the cost of each instruction, and the hardware on the machine
implementing these algorithms. In this paper we will use the
Decrement option, except when describing Scheme 2.

B. Scheme 2—Ordered List

Here [22] PERTICKBOOKKEEPING latency is reduced at the
expense of STARTTIMER performance. Timers are stored in an
ordered list. Unlike Scheme 1, we will store the absolute time
at which the timer expires, and not the interval before expiry.

826 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 6, DECEMBER 1997

Fig. 1. Timer queue example used to illustrate Scheme 2.

Fig. 2. A G/G/Inf/Inf queuing model of a timer module. Note thats(t) is
the density function of interval between starting and stopping (or expiration)
of a timer.

The timer that is due to expire at the earliest time is stored at
the head of the list. Subsequent timers are stored in increasing
order as shown in Fig. 1.

In Fig. 1, the lowest timer is due to expire at absolute time
10 h, 23 min, and 12 s.

Because the list is sorted, PERTICKBOOKKEEPINGneed only
increment the current time of day, and compare it with the
head of the list. If they are equal, or the time of day is greater,
it deletes that list element and calls EXPIRYPROCESSING. It
continues to delete elements at the head of the list until the
expiry time of the head of the list is strictly less than the time
of day.

STARTTIMER searches the list to find the position to insert
the new timer. In the example, STARTTIMER will insert a new
timer due to expire at 10:24:01 between the second and third
elements.

The worst-case latency to start a timer is O(n). The average
latency depends on the distribution of timer intervals (from
time started to time stopped), and the distribution of the arrival
process according to which calls to STARTTIMER are made.

Interestingly, this can be modeled (Fig. 2) as a single queue
with infinite servers; this is valid because every timer in the
queue is essentially decremented (or served) every timer tick.
It is shown in [17], that we can use Little’s result to obtain
the average number in the queue; also the distribution of the
remaining time of elements in the timer queue seen by a
new request is the residual life density of the timer interval
distribution.

If the arrival distribution is Poisson, the list is searched from
the head, and reads and writes both cost one unit, then the
average cost of insertion for negative exponential and uniform
timer interval distributions is shown in [17] to be

— negative exponential

— uniform.

Results for other timer interval distributions can be com-
puted using a result in [17]. For a negative exponential
distribution we can reduce the average cost to by
searching the list from the rear. In fact, if timers are always
inserted at the rear of the list, this search strategy yields an

(1) STARTTIMER latency. This happens, for instance, if all
timers intervals have the same value. However, for a general
distribution of the timer interval, we assume the average
latency of insertion is .

Fig. 3. Analogy between a timer module and a sorting module.

STOPTIMER need not search the list if the list is doubly
linked. When STARTTIMER inserts a timer into the ordered
list, it can store a pointer to the element. STOPTIMER can then
use this pointer to delete the element in(1) time from the
doubly linked list. This can be used by any timer scheme.

If Scheme 2 is implemented by a host processor, the
interrupt overhead on every tick can be avoided if there is
hardware support to maintain a single timer. The hardware
timer is set to expire at the time at which the timer at the head
of the list is due to expire. The hardware intercepts all clock
ticks and interrupts the host only when a timer actually expires.
Unfortunately, some processor architectures do not offer this
capability. Algorithms similar to Scheme 2 are used by both
VMS and UNIX in implementing their timer modules. The
performance of the two schemes is summarized in Table II.

As for Space, Scheme 1 needs the minimum space possible;
Scheme 2 needs extra space for the forward and back
pointers between queue elements.

IV. SORTING TECHNIQUES AND

TIME-FLOW MECHANISMS

A. Sorting Algorithms and Priority Queues

Scheme 2 reduced PERTICKBOOKKEEPING latency at the
expense of STARTTIMER by keeping the timer list sorted.
Consider the relationship between timer and sorting algorithms
depicted in Fig. 3. However, consider the following.

• In a typical sort, all elements are input to the module when
the sort begins; the sort ends by outputting all elements in
sorted order. A timer module performs a more dynamic
sort because elements arrive at different times and are
output at different times.

• In a timer module, the elements to be “sorted” change
their value over time if we store the interval. This is not
true if we store the absolute time of expiry.

A data structure that allows “dynamic” sorting is a priority
queue [7]. A priority queue allows elements to be inserted
and deleted; it also allows the smallest element in the set to
be found. A timer module can use a priority queue, and do
PERTICKBOOKKEEPING only on the smallest timer element.

1) Scheme 3—Tree-Based Algorithms:A linked list
(Scheme 2) is one way of implementing a priority queue. For
large , tree-based data structures are better. These include
unbalanced binary trees, heaps, post-order and end-order trees,
and leftist-trees [7], [26]. They attempt to reduce the latency
in Scheme 2 for STARTTIMER from to .
In [18] it is reported that this difference is significant for
large , and that unbalanced binary trees are less expensive
than balanced binary trees. Unfortunately, unbalanced binary
trees easily degenerate into a linear list; this can happen, for
instance, if a set of equal timer intervals are inserted.

VARGHESE AND LAUCK: HASHED AND HIERARCHICAL TIMING WHEELS 827

We will lump these algorithms together as Scheme 3:
tree-based algorithms. The performance of Scheme 3 is sum-
marized in Table II.

B. Discrete Event Simulation

In discrete event simulations [19], all state changes in the
system take place at discrete points in time. An important part
of such simulations are the event-handling routines or time-
flow mechanisms. When an event occurs in a simulation, it
may schedule future events. These events are inserted into
some list of outstanding events. The simulation proceeds by
processing the earliest event, which in turn may schedule
further events. The simulation continues until the event list is
empty or some condition (e.g.,clock MaxSimulationTime)
holds.

There are two ways to find the earliest event and update
the clock.

1) The earliest event is immediately retrieved from some
data structure (e.g., a priority queue [7]) and the clock
jumps to the time of this event. This is embodied in
simulation languages like GPSS [12] and SIMULA [9].

2) In the simulation of digital circuits, it is often sufficient
to consider event scheduling at time instants that are
multiples of the clock interval, say. Then, after the
program processes an event, it increments the clock
variable by until it finds any outstanding events at
the current time. It then executes the event(s). This
is embodied in languages for digital simulation like
TEGAS [21] and DECSIM [15].

We have already seen that algorithms used to implement
the first method are applicable for timer algorithms: these
include linked lists and tree-based structures. What is more
interesting is that algorithms for the second method are also
applicable. Translated in terms of timers, the second method
for PERTICKBOOKKEEPING is: “Increment the clock by the
clock tick. If any timer has expired, call EXPIRYPROCESSING.”

An efficient and widely used method to implement the sec-
ond method is the so-called timing-wheel [21], [24] technique.
In this method, the data structure into which timers are inserted
is an array of lists, with a single overflow list for timers beyond
the range of the array.

In Fig. 4, time is divided into cycles; each cycle is units
of time. Let the current number of cycles be. If the current
time pointer points to element, the current time is .
The event notice corresponding to an event scheduled to arrive
within the current cycle (e.g., at time , for integer

between 0 and) is inserted into the list pointed to by
the th element of the array. Any event occurring beyond
the current cycle is inserted into the overflow list. Within a
cycle, the simulation increments the current time until it finds
a nonempty list; it then removes and processes all events in the
list. If these schedule future events within the current cycle,
such events are inserted into the array of lists; if not, the new
events are inserted into the overflow list.

The current time pointer is incremented modulo. When
it wraps to 0, the number of cycles is incremented, and the
overflow list is checked; any elements due to occur in the

Fig. 4. Timing wheel mechanism used in logic simulation [21].

current cycle are removed from the overflow list and inserted
into the array of lists. This is implemented in TEGAS-2
[21].

The array can be conceptually thought of as a timing
wheel; every time we step through locations, we rotate
the wheel by incrementing the number of cycles. A problem
with this implementation is that as time increases within
a cycle and we travel down the array, it becomes more
likely that event records will be inserted in the overflow list.
Other implementations [15] reduce (but do not completely
avoid) this effect by rotating the wheel half-way through the
array.

In summary, we note that time flow algorithms used for
digital simulation can be used to implement timer algorithms;
conversely, timer algorithms can be used to implement time
flow mechanisms in simulations. However, there are differ-
ences to note.

• In digital simulations, most events happen within a short
interval beyond the current time. Since timing wheel
implementations rarely place event notices in the overflow
list, they do not optimize this case. This is not true for a
general-purpose timer facility.

• Most simulations ensure that if two events are scheduled
to occur at the same time, they are removed in FIFO
order. Timer modules need not meet this restriction.

• Stepping through empty buckets on the wheel represents
overhead for a digital simulation. In a timer module,
we have to increment the clock anyway on every tick.
Consequently, stepping through empty buckets on a clock
tick does not represent significant extra overheadif it is
done by the same entity that maintains the current time.

• Simulation languages assume that canceling event notices
is very rare. If this is so, it is sufficient to mark the notice
as “canceled” and wait until the event is scheduled; at that
point, the scheduler discards the event. In a timer module,
STOPTIMER may be called frequently; such an approach
can cause the memory needs to grow unboundedly beyond
the number of timers outstanding at any time.

We will use the timing-wheel method below as a point of
departure to describe further timer algorithms.

V. SCHEME 4—BASIC SCHEME

We describe a simple modification of the timing-wheel
algorithm. If we can guarantee that all timers are set for

828 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 6, DECEMBER 1997

Fig. 5. Array of lists used by Scheme 4 for timer intervals up toMaxInterval.

periods less thanMaxInterval, this modified algorithm takes
latency for STARTTIMER, STOPTIMER, and also for

PERTICKBOOKKEEPING. Let the granularity of the timer be 1
unit. The current time is represented in Fig. 5 by a pointer to an
element in a circular buffer with dimensions [0,MaxInterval

1].
To set a timer at units past current time, we index (Fig. 5)

into Element (modMaxInterval), and put the timer at the
head of a list of timers that will expire at a time =Current Time

units. Each tick we increment the current timer pointer
(modMaxInterval) and check the array element being pointed
to. If the element is 0 (no list of timers waiting to expire),
no more work is done on that timer tick. But if it is nonzero,
we do expiry processing on all timers that are stored in that
list. Thus, the latency for STARTTIMER is . The cost of
PERTICKBOOKKEEPINGis except when timers expire, but
this is the best possible. If the timer lists are doubly linked,
and, as before, we store a pointer to each timer record, then
the latency of STOPTIMER is also .

This is basically a timing-wheel scheme where the wheel
turns one array element every timer unit, as opposed to rotating
everyMaxIntervalor MaxInterval/2 units [21]. This guarantees
that all timers withinMaxInterval of the current time will
be inserted in the array of lists; this is not guaranteed by
conventional timing wheel algorithms [15], [21].

In sorting terms, this is similar to a bucket sort [7] that
trades off memory for processing. However, since the timers
change value every time instant, intervals are entered as offsets
from the current time pointer. It is sufficient if the current time
pointer increases every time instant.

A bucket sort sorts elements in time using
buckets, since all buckets have to be examined. This is
inefficient for large . In timer algorithms, however,
the crucial observation is that some entity needs to do
work per tick to update the current time; it costs only a few
more instructions for the same entity to step through an empty
bucket. What matters, unlike the sort, is not the total amount
of work to sort elements, but the average (and worst-case)
part of the work that needs to be done per timer tick.

Still memory is finite: it is difficult to justify 2 words
of memory to implement 32 bit timers. One solution is
to implement timers within some range using this scheme
and the allowed memory. Timers greater than this value are
implemented using, say, Scheme 2. Alternately, this scheme
can be extended in two ways to allow larger values of the
timer interval with modest amounts of memory.

Fig. 6. Array of lists used by Schemes 5 and 6 for arbitrary-sized timers:
basically a hash table.

VI. EXTENSIONS

A. Extension 1—Hashing

The previous scheme has an obvious analogy to inserting
an element in an array using the element value as an index. If
there is insufficient memory, we can hash the element value
to yield an index.

For example, if the table size is a power of 2, an arbitrary
size timer can easily be divided by the table size; the remainder
(low order bits) is added to the current time pointer to yield
the index within the array. The result of the division (high
order bits) is stored in a list pointed to by the index.

In Fig. 6, let the table size be 256 and the timer be a 32-
bit timer. The remainder on division is the last 8 bits. Let
the value of the last 8 bits be 20. Then the timer index is 10
(Current Time Pointer) 20 (remainder) 30. The 24 high
order bits are then inserted into a list that is pointed to by the
30th element.

Other methods of hashing are possible. For example, any
function that maps a timer value to an array index could be
used. We will defend our choice at the end of this subsection.

Next, there are two ways to maintain each list.
1) Scheme 5—Hash Table With Sorted Lists:Here each

list is maintained as a ordered list exactly as in Scheme
2. STARTTIMER can be slow because the 24 bit quantity must
be inserted into the correct place in the list. Although the
worst-case latency for STARTTIMER is still , the average
latency can be . This is true if TableSize, and
if the hash function (which isTimerValue mod TableSize)
distributes timer values uniformly across the table. If so, the
average size of the list that theth element is inserted into
is TableSize[7]. Since TableSize, the average
latency of STARTTIMER is . How well this hash actually
distributes depends on the arrival distribution of timers to this
module, and the distribution of timer intervals.

PERTICKBOOKKEEPING must increment the current time
pointer. If the value stored in the array element being pointed
to is zero, there is no more work. Otherwise, as in Scheme 2,
the top of the list is decremented. If the timer at the top of
the list expires, EXPIRYPROCESSINGis called and the top list
element is deleted. Once again, PERTICKBOOKKEEPING takes

average and worst-case latency except when multiple
timers are due to expire at the same instant, which is the best
we can do.

Finally, if each list is doubly linked and STARTTIMER stores
a pointer to each timer element, STOPTIMER takes time.

VARGHESE AND LAUCK: HASHED AND HIERARCHICAL TIMING WHEELS 829

A pleasing observation is that the scheme reduces to Scheme
2 if the array size is 1. In terms of sorting, Scheme 5 is similar
to doing a bucket sort on the low order bits, followed by an
insertion sort [7] on the lists pointed to by each bucket.

2) Scheme 6—Hash Table with Unsorted Lists:If a worst-
case STARTTIMER latency of is unacceptable, we can
maintain each time list as an unordered list instead of an
ordered list. Thus, STARTTIMER has a worst case and average
latency of . But the per-tick bookkeeping now takes
longer. Every timer tick, we increment the pointer (mod
TableSize); if there is a list there, we must decrement the high
order bits for every element in the array, exactly as in Scheme
1. However, if the hash table has the property described above,
then the average size of the list will be .

We can make a stronger statement about the average behav-
ior regardless of how the hash distributes. Notice that every
TableSizeticks we decrement once all timers that are still
living. Thus, for timers, we do TableSizework on average
per tick. If TableSizethen we do work on average
per tick. If all timers hash into the same bucket, then every
TableSizeticks we do work, but for intermediate ticks
we do work.

Thus, the hash distribution in Scheme 6 only controls
the variance of the latency of PERTICKBOOKKEEPING, and
not the average latency. Since the worst-case latency of
PERTICKBOOKKEEPING is always (all timers expire at
the same time), we believe that the choice of hash function for
Scheme 6 is insignificant. Obtaining the remainder after divid-
ing by a power of 2 is cheap, and consequently recommended.
Further, using an arbitrary hash function to map a timer value
into an array index would require PERTICKBOOKKEEPING to
compute the hash on each timer tick, which would make it
more expensive.

We discuss implementation strategies for Scheme 6 in
Appendix A.

B. Extension 2—Exploiting Hierarchy

The last extension of the basic scheme exploits the concept
of hierarchy. To represent the number 1 000 000 we need only
seven digits instead of 1 000 000 because we represent num-
bers hierarchically in units of 1’s, 10’s, 100’s etc. Similarly,
to represent all possible timer values within a 32-bit range, we
do not need a 2 element array. Instead we can use a number
of arrays, each of different granularity. For instance, we can
use four arrays as follows:

• a 100-element array in which each element represents a
day;

• a 24-element array in which each element represents an
hour;

• a 60-element array in which each element represents a
minute;

• a 60-element array in which each element represents a
second.

Thus, instead of million locations
to store timers up to 100 days, we need only 10024 60

60 244 locations.

Fig. 7. Hierarchical set of arrays of lists used by Scheme 7 to “map” time
more efficiently.

As an example, consider Fig. 7. Let the current time be 11
days, 10 h, 24 min, 30 s. Then to set a timer of 50 min and 45
s, we first calculate the absolute time at which the timer will
expire. This is 11 days, 11 h, 15 min, 15 s. Then we insert
the timer into a list beginning 1 (11–10 hrs) element ahead of
the current hour pointer in the hour array. We also store the
remainder (15 min and 15 s) in this location. We show this in
Fig. 7, ignoring the day array which does not change during
the example.

The seconds array works as usual: every time the hardware
clock ticks, we increment the second pointer. If the list pointed
to by the element is nonempty, we process all elements in the
list using EXPIRYPROCESSING. However, the other three arrays
work slightly differently.

Even if there are no timers requested by the user of the
service, there will always be a 60-s timer that is used to update
the minute array, a 60-min timer to update the hour array, and
a 24-h timer to update the day array. For instance, every time
the 60-s timer expires, we will increment the current minute
timer, do any required expiry processing for the minute timers,
and reinsert another 60-s timer.

Returning to the example, if the timer is not stopped,
eventually the hour timer will reach 11. When the hour timer
reaches 11, the list is examined. The expiry processing routine
will insert the remainder of the seconds (15) in the minute
array, 15 elements after the current minute pointer (0). Of
course, if the minutes remaining were zero, we could go
directly to the second array. At this point, the table will look
like Fig. 8.

Eventually, the minute array will reach the 15th element; as
part of EXPIRYPROCESSING, we will move the timer into the
second array 15 s after the current value. Fifteen seconds later,
the timer will actually expire, at which point the user-specified
EXPIRYPROCESSINGis performed.

What are the performance parameters of this scheme?
STARTTIMER: Depending on the algorithm, we may need

time, where is the number of arrays in the hierarchy, to
find the right table to insert the timer and to find the remaining
time. A small number of levels should be sufficient to cover
the timer range with an allowable amount of memory; thus
should be small (say,).

830 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 6, DECEMBER 1997

Fig. 8. The previous example, after the hour component of the timer expires
(using Scheme 7).

STOPTIMER: Once again, this can be done in time if
all lists are doubly linked.

PERTICKBOOKKEEPING: It is useful to compare this to the
corresponding value in Scheme 6. Both have the same average
latency of for sufficiently large array sizes but the
constants of complexity are different. More precisely: let
be the average timer interval (from start to stop or expiry); let

be the total amount of array elements available; and let
be the total number of levels in the hierarchy.

The total work done in Scheme 6 for such an average sized
timer is

where is a constant denoting the cost of decrementing the
high order bits, indexing, etc., in Scheme 6. If a timer lives
for units of time, it will be decremented times.

And in Scheme 7 it is bounded from above by

where represents the cost of finding the next list to migrate
to, and the cost of migration, in Scheme 7;is the maximum
number of lists to migrate between.

The average cost per unit time for an average oftimers
then becomes

— Scheme

— Scheme

The choice between Scheme 6 and Scheme 7 will depend
on the parameters above. Since and will not be
drastically different, for small values of and large values
of , Scheme 6 can be better than Scheme 7 for both
STARTTIMER and PERTICKBOOKKEEPING. However, for large
values of and small values of , Scheme 7 will have a
better average cost (latency) for PERTICKBOOKKEEPING but a
greater cost for STARTTIMER latency.

W. Nichols has pointed out that if the timer precision is
allowed to decrease with increasing levels in the hierarchy,
then we need not migrate timers between levels. For instance,
in the example above, we would round off to the nearest hour
and only set the timer in hours. When the hour timer goes off,
we do the user-specified EXPIRYPROCESSINGwithout migrating
to the minute array. Essentially, we now have different timer

modes: one for hour timers, one for minute timers, etc. This
reduces PERTICKBOOKKEEPING overhead further at the cost
of a loss in precision of up to 50% (e.g., a 1-min and 30-s
timer that is rounded to 1 min). Alternately, we can improve
the precision by allowing just one migration between adjacent
lists.

Scheme 7 has an obvious analogy to a radix sort [7]. We
discuss implementation strategies for Scheme 7 in Appendix
A.

VII. UNIX I MPLEMENTATION

A. Costello of Washington University has implemented
[8] a new version of the BSD UNIX callout and timer
facilities. Current BSD kernels take time proportional to the
number of outstanding timers to set or cancel timers. The new
implementation, which is based on Scheme 6, takes constant
time to start, stop, and maintain timers; this leads to a highly
scalable design that can support thousands of outstanding
timers without much overhead.

In the existing BSD implementation, each callout is repre-
sented by acallout structure containing a pointer to the
function to be called (c func), a pointer to the function’s
argument (c arg), and a time (c time) expressed in units
of clock ticks. Outstanding callouts are kept in a linked list,
sorted by their expiration times. Thec time member of each
callout structure is differential, not absolute—the first callout
in the list stores the number of ticks from now until expiration,
and each subsequent callout in the list stores the number of
ticks between its own expiration and the expiration of its
predecessor.

In BSD UNIX, Callouts are set and canceled using routines
called timeout() and untimeout() , respectively.
The routine timeout(func, arg, time) registers
func(arg) to be called at the specified time;untime-
out(func, arg) cancels the callout with matching
function and argument. Because thecalltodo list must
be searched linearly, both operations take time proportional to
the number of outstanding callouts. Interrupts are locked out
for the duration of the search.

The Costello implementation is based on Scheme 6 de-
scribed above. Unfortunately, the existingtimeout() inter-
face in BSD does not allow the passing of handles, which was
used in all our schemes to quickly cancel a timer. The Costello
implementation used two solutions to this problem. For calls
using the existing interface, a search for a callout given a
function pointer and argument is done using a hash table. A
second solution was also implemented: a new interface func-
tion was defined for removing a callout (unsetcallout())
that takes a handle as its only argument. This allows existing
code to use the old interface and new applications to use the
new interface. The performance difference between these two
approaches appears to be slight, so the hash table approach
appears to be preferable.

In the new implementation, the timer routines are guaranteed
to lock out interrupts only for a small, bounded amount of time.
The new implementation also extends thesetitimer()
interface to allow a process to have multiple outstanding

VARGHESE AND LAUCK: HASHED AND HIERARCHICAL TIMING WHEELS 831

Fig. 9. Real-time performance comparison of BSD UNIX callout implementations. Note that the new callout implementations using timing wheels take
constant time. By contrast, the traditional BSD implementation takes time that increases linearly with the number of outstanding callouts.

timers, thereby reducing the need for users to maintain their
own timer packages. The changes to the BSD kernel are small
(548 lines of code added, 80 removed) and are available on
the World Wide Web. The details of this new implementation
are described elsewhere [8]; the written report contains several
important implementation details that are not described here.

A. Performance

The performance of Scheme 6 was tested (using the Costello
implementation). The tests took advantage of the new inter-
face extensions that allow a single process to have multiple
outstanding callouts. We quote the following results from [8].

Three kernels were tested on a Sun 4/360. The first kernel
used thetimeout() interface to the old callout facility. The
second kernel used the existing interface but used the new
callout facility (and a hash table). The last kernel used the
newsetcallout() interface (which allows handles) to the
new callout facility.

In each test, one process created a number of outstanding
timers set for random times far in the future, causing a number
of outstanding callouts. It then created one more timer, and
repeatedly set it for a random time farther in the future
than the others, causing repeated calls tountimeout() and
timeout() (or unsetcallout() andsetcallout() ,
depending on which kernel was being used). The results
(Fig. 9) show that the time for the original callout facility
increases linearly with the number of outstanding callouts,
whereas the time for the replacement callout facility is constant
with respect to the number of outstanding callouts, for both
the old interface (using hashing) and the new interface (using
handles). The new interface performs very slightly better,
and provides guaranteed constant time operations, but the
old interface is needed for compatibility with the rest of the
kernel.

VIII. L ATER WORK

A preliminary version of the work described in this paper
was first described in [25]. Since then, a number of systems
have built timer implementations based on this approach, and
there have been a few extensions of the basic approach.

1) Systems that Use Timing Wheels:Some well-known net-
work protocol implementations have used the timing wheel
ideas described in this paper. These include the fast TCP
implementation in [6] and the X-kernel timer facility [1]. The
efficient user level protocol implementation in [23] mentions
the possible use of timing wheels but did not do an implemen-
tation. We also know of commercial networking products that
use timing wheels as part of their operating system. These
include DEC’s Gigaswitch [20] and Siemens’ CHANNELS
run time system [2].

2) Timing Wheel Extensions:Brown [5] extended the idea
of hashed timing wheels to what he calls calendar queues.1 The
major difference is that calendar queue implementations also
periodically resize the wheel in order to reduce the overhead2

of stepping through empty buckets. For timer applications, the
clock time must be incremented on every clock tick anyway;
thus adding a few instructions to step through empty buckets is
not significant. Davison [10] describes a timer implementation
for the IBM VM/XA SP1 operating system based on calendar
queues. The empirical improvement in per tick bookkeeping
(due to resizing the wheel periodically) does not appear to
warrant the extra complexity of resizing.

1Some authors refer to timing wheels as a variant of calendar queues; given
the dates of invention and publication, it is perhaps more accurate to say that
calendar queues are an extension of timing wheels.

2The improvement is not worst-case and is only demonstrated empirically
for certain benchmarks.

832 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 6, DECEMBER 1997

IX. A N ALGORITHMIC VIEW

From an algorithmic point of view, a timing wheel is just
a priority queue [7]. It appears to be just an application
of bucket sorting techniques to priority queues. However,
bucket sorting cannot be used efficiently forall priority queue
implementations. Timing wheels work efficiently only for
priority queue applications that satisfy the following bounded
monotonicity property: any elements inserted into the priority
queue are withinMax of the last minimum extracted.

If this condition is satisfied and the inserted values are all
integers, then we can implement the priority queue using a
circular array of sizeMax. New elements are inserted into the
circular array based on the difference between their value and
the current minimum element. A pointer is kept to the last
minimum extracted. To find the new minimum at any point,
we simply advance the pointer till an array location is found
that contains a valid element. This is exactly what is done in
Scheme 4, whereMax corresponds toMaxInterval.

It is easy to see what goes wrong if the monotonicity
condition is not satisfied. If we can insert an element that
is smaller than the last minimum extracted, then we cannot
advance the pointer to find the new minimum value; the pointer
may have to backtrack, leading to a potential search of the
entire array.

Even with the monotonicity condition, the wheel approach
to priority queues still requires stepping through empty buck-
ets. However, the nice thing about timer applications is that
many systems must maintain the time of day anyway, and
thus the cost of stepping through empty buckets is amortized
over the existing cost of incrementing the time-of-day clock.
This example illustrates how an algorithm, that may have a
poor algorithmic complexity when considered in isolation, can
be very efficient when considered as part of a system, where
parts of the algorithms cost can be charged to other system
components.

The bounded monotonicity condition is satisfied by other
algorithmic applications. For example, for graphs with integer
edge weights, the Dijkstra algorithm for shortest paths and
Prim’s algorithm for minimum spanning trees [7] both satisfy
the monotonicity condition withMax equal to the maximum
edge weight. While it has been observed before [7] that these
two algorithms can benefit from bucket sorting using a linear
array, the required size of the linear array was supposed to be
the equal to the cost of the largest shortest cost path between
any two nodes. Our observation shows that a circular array
of size equal to the maximum edge weight suffices. While
this is a mild observation, it does reduce the memory needs
of networking implementations that use Dijkstra’s algorithm
and integer edge weights [13]. To the best of our knowledge,
the bounded monotonicity condition has not been described
before in the literature.

The efficiency of the hashed wheel solution (Scheme 6)
for larger timer values is based on bounding the number of
timers and doing an amortized analysis. This does not appear
to have any direct correspondence with bucket sorting. The
hierarchical scheme (Scheme 7) uses essentially logarithmic
time to insert an element; thus it is comparable in complexity

to standard priority queue implementations like heaps [7].
However, the constants appear to be better for Scheme 7.

X. SUMMARY AND CONCLUSIONS

In this paper, we have examined the relationship between
sorting algorithms, time flow mechanisms in discrete event
simulations, and timer algorithms. We have extended the
timing wheel mechanism used in logic simulation to yield 3
timer algorithms (Schemes 5–7) that have constant complexity
for setting, stopping, and maintaining a timer. The extensions
include rotating the timing wheel every clock tick, having
separate overflow lists per bucket, and using a hierarchical
set of timing wheels (Scheme 7): the extensions are necessary
because the requirements of a scheduler in a logic simulation
and those of a general timer module are different.

In choosing between schemes, we believe that Scheme 1 is
appropriate in some cases because of its simplicity, limited use
of memory, and speed in starting and stopping timers. Scheme
2 is useful in a host that has hardware to maintain the clock
and a single timer. Although it takes time to start a timer,
the host is not interrupted every clock tick.

In a host without hardware support for timers, we believe
Schemes 2 and 3 are inappropriate because of the cost of
STARTTIMER when there are a large number of outstanding
timers. Clearly, this is not uncommon in hosts that have a
significant amount of real-time activity or have several open
communication links.

Scheme 4 is useful when most timers are within a small
range of the current time. For example, it could be used
by a networking module that is maintaining its own timers.
Scheme 5 depends too much on the hash distribution (for a
fast STARTTIMER) to be generally useful. However, a variant
of this scheme has been implemented in the X-kernel [1].

For a general timer module, similar to the operating system
facilities found in UNIX or VMS, that is expected to work
well in a variety of environments, we recommend Scheme 6
or 7. The UNIX results described in this paper are encouraging,
and show that it is possible to support thousands of outstanding
timers at low overhead using Scheme 6.

If the amount of memory required for an efficient implemen-
tation of Scheme 6 is a problem, Scheme 7 can be pressed into
service. Scheme 7, however, will need a few more instructions
in STARTTIMER to find the correct table to insert the timer.

Both Schemes 6 and 7 can be completely or partially (see
Appendix A) implemented in hardware using some auxiliary
memory to store the data structures. If a host had such
hardware support, the host software would need time
to start and stop a timer and would not need to be interrupted
every clock tick.

Finally, we note that designers and implementers have
assumed that protocols that use a large number of timers are
expensive and perform poorly. This is an artifact of existing
implementations and operating system facilities. Given that a
large number of timers can be implemented efficiently, we
hope this will no longer be an issue in the design of protocols
for distributed systems.

VARGHESE AND LAUCK: HASHED AND HIERARCHICAL TIMING WHEELS 833

APPENDIX A
HARDWARE ASSIST

Since the cost of handling clock interrupts becomes more
significant for fine granularity (e.g., microseconds) timers, it
may be necessary to employ special-purpose hardware assist.
In the extreme, we can use a timer chip which maintains all the
data structures (say in Scheme 6) and interrupts host software
only when a timer expires.

Another possibility is a chip (actually just a counter) that
steps through the timer arrays, and interrupts the host only if
there is work to be done. When the host inserts a timer into an
empty queue pointed to by array element, it tells the chip
about this new queue. The chip then marksas “busy.” As
before, the chip scans through the timer arrays every clock tick.
During its scan, when the chip encounters a “busy” location, it
interrupts the host and gives the host the address of the queue
that needs to be worked on. Similarly when the host deletes
a timer entry from some queue and leaves behind an empty
queue it needs to inform the chip that the corresponding array
location is no longer “busy.”

Note that the synchronization overhead is minimal because
the host can keep the actual timer queues in its memory which
the chip need not access, and the chip can keep the timing
arrays in its memory, which the host need not access. The
only communication between the host and chip is through
interrupts.

In Scheme 6, the host is interrupted an average of
times per timer interval, where is the average timer interval
and is the number of array elements. In Scheme 7, the
host is interrupted at most times, where is the number
of levels in the hierarchy. If and are small and is
large, the interrupt overhead for such an implementation can
be made negligible.

Finally, we note that conventional hardware timer chips use
Scheme 1 to maintain a small number of timers. However, if
Schemes 6 and 7 are implemented as a single chip that operates
on a separate memory (that contains the data structures),
then there is noa priori limit on the number of timers
that can be handled by the chip. Clearly the array sizes
need to be parameters that must be supplied to the chip on
initialization.

APPENDIX B
SYMMETRIC MULTIPROCESSING

If the host consists of a set of processors, each of which
can process calls to the timer module (symmetric multi-
processing), S. Glaser has pointed out that algorithms that
tie up a common data structure for a large period of time
will reduce efficiency. For instance, in Scheme 2, when
ProcessorA inserts a timer into the ordered list, other proces-
sors cannot process timer module routines until ProcessorA
finishes and releases its semaphore. Schemes 5–7 seem suited
for implementation in symmetric multiprocessors. However,
given the recent research into techniques for maintaining
consistency in multiprocessors, these differences may not be
significant.

ACKNOWLEDGMENT

B. Spinney suggested extending Scheme 4 to Scheme 5.
H. Wilkinson independently thought of exploiting hierarchy
in maintaining timer lists. J. Forecast helped the authors
implement an early version of Scheme 6. A. Black commented
on an earlier version and helped improve the presentation. A.
Black, B. Spinney, H. Wilkinson, S. Glaser, W. Nichols, P.
Koning, A. Kirby, M. Kempf, and C. Kaufman (all at DEC)
were a pleasure to discuss these schemes with. The authors are
grateful to E. Cooper, M. Bjöorkman, C. Thekath, V. Seidel,
B. Souza, and A. Costello for giving information about their
implementations.

REFERENCES

[1] M. Bj örkman, personal communication.
[2] S. Boecking and V. Seidel, “TIP’s protocol run-time system,” in

EFOCN’94, June 1994.
[3] S. Boecking, V. Seidel, and P. Vindeby, “CHANNELS—A run-time

system for multimedia protocols,” inICCCN’95, Sept. 1995.
[4] L. Brakmo, S. O Malley, and L. Peterson, “TCP Vegas: New techniques

for congestion detection and avoidance,” inProc. ACM SIGCOMM’94,
London, England.

[5] R. Brown, “Calendar queues: A fastO(1) priority queue implementation
for the simulation event set problem,”Commun. ACM,vol. 31, no. 10,
pp. 1220–1227, Oct. 1988.

[6] D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An analysis of
TCP processing overhead,”IEEE Commun. Mag.,vol. 27, no. 6, pp.
23–29, June 1989.

[7] T. Cormen, C. Leiserson, and R. Rivest,Introduction to Algorithms.
Cambridge, MA: MIT Press/McGraw-Hill, 1990.

[8] A. Costello and G. Varghese, “Redesigning the BSD callout and timeout
facilities,” Dept. Computer Science, Washington Univ., St. Louis, MO,
Tech. Rep. 95-23, Sept. 1995.

[9] O.-J. Dahl, B. Myhrhaug, and K. Nygaard,SIMULA’67 Common Base
Language,Norwegian Computing Center, Forksningveien, 1B, Oslo 3,
Pub. S22.

[10] G. Davison, “Calendar p’s and q’s,”Commun. ACM,vol. 32, no. 10,
pp. 1241–1242, Oct. 1989.

[11] S. Floyd, V. Jacobson, S. McCanne, C. Liu, and L. Zhang, “A reliable
multicast framework for light-weight sessions and application level
framing,” in Proc ACM SIGCOMM’95,Boston, MA.

[12] General Purpose Simulation System 360—User’s Manual,IBM Corp.,
White Plains, NY, Pub. H20-0326, 1968.

[13] International Organization for Standardization (ISO), “Protocol for pro-
viding the connectionless-model network service,” Draft International
Standard 8473, Mar. 1988.

[14] V. Jacobson, “ Congestion avoidance and control,” inProc. ACM
SIGCOMM’88,Stanford, CA.

[15] M. A. Kearney, “DECSIM: A multi-level simulation system for digital
design,” in1984 Int. Conf. Computer Design.

[16] S. Mccanne, “A distributed whiteboard for network conferencing,”
University of California–Berkeley, Computer Networks Term project
CS 268, May 1992.

[17] C. M. Reeves, “Complexity analysis of event set algorithms,”Computer
J., vol. 27, no. 1, 1984.

[18] B. Myhrhaug,Sequencing Set Efficiency,Norwegian Computing Center,
Forksningveien, 1B, Oslo 3, Pub. A9.

[19] A. A. Pritsker and P. J. Kiviat,Simulation with GASP-II. Englewood
Cliffs, NJ: Prentice-Hall, 1969.

[20] R. Souzaet al., “GIGAswitch system: A high-performance packet-
switching platform,”Digital Tech. J.,vol. 6, no. 1, Winter 1994.

[21] S. Szygenda, C. W. Hemming, and J. M. Hemphill, “Time flow
mechanisms for use in digital logic simulations,” inProc. 1971 Winter
Simulation Conf.,New York.

[22] A. S. Tanenbaum,Computer Networks,3rd ed. Upper Saddle River,
NJ: Prentice-Hall, 1996.

[23] C. Thekkath, T. Nguyen, E. Moy, and E. Lazowska, “Implementing
network protocols at user level,”IEEE Trans. Networking,vol. 1, pp.
554–564, Oct. 1993.

[24] E. Ulrich, “Time-sequenced logical simulation based on circuit delay
and selective tracing of active network paths,” in1965 ACM Nat. Conf.

834 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 6, DECEMBER 1997

[25] G. Varghese and A. Lauck, “Hashed and hierarchical timing wheels:
Data structures for the efficient implementation of a timer facility,”
in Proc. 11th ACM Symp. Operating Syst. Principles,Nov. 1987, pp.
171–180.

[26] J. G. Vaucher and P. Duval, “A comparison of simulation event list
algorithms,”Commun. ACM,vol. 18, 1975.

George Varghese received the Ph.D. degree in
computer science from the Massachusetts Institute
of Technology (MIT), Cambridge, in 1992.

He worked from 1983 to 1993 at Digital design-
ing network protocols and doing systems research
as part of the DECNET architecture and advanced
development group. He has worked on design-
ing protocols and algorithms for DECNET and
GIGAswitch products. He is currently an Asso-
ciate Professor of Computer Science at Washington
University, St. Louis, MO, where he works on

distributed algorithms and efficient algorithms for network implementations.
Dr. Varghese has been awarded six patents with colleagues at DEC, with

six more patents being applied for. His Ph.D. dissertation on self-stablization
was jointly awarded the Sprowls Prize for best thesis in Computer Science
at MIT. He was among two computer scientists to receive the ONR Young
Investigator Award in 1996.

Tony Lauck received the B.A. degree from Harvard University, Cambridge,
MA.

He is currently an independent computer networking consultant. A former
Corporate Consulting Engineer at Digital Equipment Corporation, he was
responsible for Digital’s network architecture for 18 years.

Mr. Lauck was a member of the Internet Architecture Board (IAB) from
1990 to 1994.

