RouteBricks: Exploiting Parallelism
To Scale Software Routers

Mihai Dobrescu! and Norbert Egi2* , Katerina Argyraki', Byung-Gon Chun?,
Kevin Fall?, Gianluca lannaccone?, Allan Knies?, Maziar Manesh?, Sylvia Ratnasamy?

L EPFL
Lausanne, Switzerland

ABSTRACT

We revisit the problem of scaling software routers, moteaby
recent advances in server technology that enable higrdgpeal-
lel processing—a feature router workloads appear ideaiited to
exploit. We propose a software router architecture thaalpeizes
router functionality both across multiple servers and asnmulti-
ple cores within a single server. By carefully exploitinggiéelism
at every opportunity, we demonstrat8&Gbps parallel router pro-
totype; this router capacity can be linearly scaled thraihghuse of
additional servers. Our prototype router is fully prograabie us-
ing the familiar Click/Linux environment and is built ergly from
off-the-shelf, general-purpose server hardware.

Categories and Subject Descriptors

C.2.6 [Computer-Communication Networks]: Internetworking;
C.4[Performance of Systemf D.4.4 [Operating System$. Com-
munications Management; D.4 @perating System$. Organiza-
tion and Design; D.4.8Qperating System$: Performance

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Software Router, Multicore, Parallelism, Programmayilit

1. INTRODUCTION

To date, the development of network equipment—switches,
routers, various middleboxes—has focused primarily orieaig
high performance for relatively limited forms of packet pess-
ing. However, as networks have taken on increasingly stiphis
cated functionality €.g, data loss protection, application acceler-
ation, intrusion detection), and as major ISPs competefariafy
new servicesd.g, video, mobility support services), there has been
a renewed interest in network equipment that is programenaii
extensible. In the absence of such extensibility, netwoodkigers

*Work done while this author was an intern at Intel Labs Beel

Permission to make digital or hard copies of all or part of thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

SOSP’090ctober 11-14, 2009, Big Sky, Montana, USA.

Copyright 2009 ACM 978-1-60558-752-3/09/10 ...$5.00.

2 Lancaster University
Lancaster,

3 Intel Research Labs

UK Berkeley, CA

have typically incorporated new functionality by deplayispecial-
purpose network “appliances” or middleboxes [1, 8, 13—Hxw-
ever, as the cost of deploying, powering, and managing #ser&
ment of boxes grows, the vision of a consolidated solutiothen
form of an extensible packet-processing “router” has gromare
attractive. And indeed, both industry and research haventgc
taken steps to enable such extensibility [9,17, 18, 40, 41].

The difficulty is that the necessary extensions often invohod-
ification to the per-packet processing on a router’s highesipdata
plane. This is true, for example, of application accelera{il3],
measurement and logging [8], encryption [1], filtering anttu-
sion detection [14], as well as a variety of more forwardkiog
research proposals [21, 36, 39]. In current networking aeint,
however, high performance and programmability are oftenmet-
ing goals—if not mutually exclusive. On the one hand, higid-e
routers, because they rely on specialized and closed hezchval
software, are notoriously difficult to extend, program, trerwise
experiment with. On the other, “software routers” perforatket-
processing in software running on general-purpose plat$othese
are easily programmable, but have so far been suitable onlgwi-
packet-rate environments [16].

The challenge of building network infrastructure that i®pr
grammableand capable of high performance can be approached
from one of two extreme starting points. One might start with
existing high-end, specialized devices and retro-fit progna-
bility into them [17, 18, 40, 41]. For example, some routenve
dors have announced plans to support limited APIs that Widha
third-party developers to change/extend the software qfattieir
products (which does not typically involve core packet pss
ing) [17,18]. A larger degree of programmability is possilith
network-processor chips, which offer a “semi-specializegtion,
i.e,, implement only the most expensive packet-processingaeper
tions in specialized hardware and run the rest on convesitiom-
cessors. While certainly an improvement, in practice, oekvpro-
cessors have proven hard to program: in the best case, thepre
mer needs to learn a new programming paradigm; in the wdrst, s
must be aware of (and program to avoid) low-level issuesrigke
source contention during parallel execution or expensieenory
accesses [27,32].

From the opposite end of the spectrum, one might start with
software routers and optimize their packet-processinfppaance.
The allure of this approach is that it would allow a broad camm
nity of developers to build and program networks using therap
ing systems and hardware platforms they tend to be mostitamil
with—that of the general-purpose computer. Such netwolss a
promise greater extensibility: data and control plane fiomality
can be modified through a software-only upgrade, and roetezled
opers are spared the burden of hardware design and devatbpme

In addition, leveraging commodity servers would allow neitks
to inherit the many desirable properties of the PC-basedyseo
tem, such as the economic benefits of large-volume manuiiagtu
a widespread supply/support chain, rapid advances in sehic-
tor technology, state-of-the-art power management featand so
forth. In other words, if feasible, this could enable netkgothat

are built and programmed in much the same way as end-systems

are today. The challenge, of course, lies in scaling thiscgh to
high-speed networks.

There exist interesting design points between these twe ehd
the spectrum. It is perhaps too early to know which approach t
programmable routers is superior. In fact, it is likely tieach one
offers different tradeoffs between programmability arabittional
router properties (performance, form factor, power congstiom),
and these tradeoffs will cause each to be adopted where@ppro
ate. As yet however, there has been little research expogiag
tradeoffs are achievable. As a first step, in this paper, veedo

on one extreme end of the design spectrum and explore the fea-

sibility of building high-speed routers using only PC serbased
hardware and software.

There are multiple challenges in building a high-speedeooitt
of PCs: one of them is performance; equally important aregsow
and space consumption, as well as choosing the right pragiagn
model (what primitives should be exposed to the router'sigke
developers, such that a certain level of performance isaguieed
as in a traditional hardware router). In this paper, we foons
performance; specifically, we study the feasibility of soglsoft-
ware routers to the performance level of their specializadivare
counterparts. A legitimate question at this point is whethe per-
formance requirements for network equipment are just tgh bind
our exploration is a fool's errand. The bar is indeed highteims
of individual link/port speeds]0Gbps is already widespread; in
terms of aggregate switching speeds, carrier-grade ®[fgrange
from 10Gbps up t®2Tbps! Software routers, in comparison, have
had trouble scaling beyond the5Gbps range [16].

Our strategy to closing this divide is RouteBricks, a roatehi-
tecture that parallelizes router functionality acrosstiplé servers
and across multiple cores within a single server. Parallelirat
across servers allows us to incrementally scale our roateacity
by adding more servers. Parallelizing tasks within a seallexvs
us to reap the performance benefits offered by the trend tsvar
greater parallelism in server hardware in the form of mistigock-
ets, cores, memory controllers, and so forth. We presenteéRou
Bricks’ design and implementation, and evaluate its perforce
with respect to three packet-processing applications ketafor-
warding, traditional IP routing, and IPsec encryption. Vésidned
RouteBricks with an ambitious goal in mind—to match the perf
mance of high-end routers wittDs or 100s of 1Gbps or10Gbps
ports. The results we present lead us to be cautiously ogfani
about meeting this goal. We find that RouteBricks approaches
target performance levels for realistic traffic workloadsit falls
short for worst-case workloads. We discowehy this is the case
and show that, fortunately, what is required to overcoms lihii-
tation is well aligned with current server technology trend

We continue with a discussion of our guiding design prirespl
and roadmap for the remainder of this paper.

2. DESIGN PRINCIPLES

Our ultimate goal is to make networks easier to program and
evolve, and this leads us to explore a router architectusedan
commodity, general-purpose hardware and operating sgstém
this section, we summarize the design principles that eetsirgm
translating this high-level goal into a practical systersige.

————— external lines —————

internal switch fabric inter-server “switch

Cluster Router Architecture

Traditional Router Architecture

Figure 1: High-level view of a traditional router and a server
cluster-based router.

Parallelism across servers. We want to design a router with
N ports, each port with full-duplex line ratg bps. The role of
the router is to receive the packets arriving at all thesespqro-
cess them, and transfer each incoming packet from its inpit@
the desired output port (which is typically determined bgpqass-
ing the packet’s IP headers). This router’s functionalian ¢hus
be broken into two main tasks: (1) packet processing, likeeo
lookup or classification, and (2) packet switching from infmuout-
put ports. In current hardware routers, packet procesyipigdlly
happens at the linecard, which handles from one to a few Jports
while packet switching happens through a switch fabric agwt ¢
tralized scheduler; as a result, each linecard must prquasiets
at a rate proportional to the line rafé, while the fabric/scheduler
must switch packets at raf€ R (i.e., it must handle the aggregate
traffic that traverses the router). Existing software rositen the
other hand, follow a “single server as router” approach; essalt,
the server/router must perform switchiagd packet processing at
rate NR.

In many environmentsN and R can be fairly high. The most
common values of? today arel, 2.5 and 10Gbps, with40Gbps
being deployed by some ISP can range from ten up to a few
thousand ports. As specific examples: a popular mid-randge'e
router supports up t860 1Gbps ports [3]; the highest-end “core”
router supports up ta608 10Gbps ports [5]. For suciv and R,
getting a general-purpose server to process and switcretsmek
rate NR is an unrealistic goal: such performanceis3 orders of
magnitude away from current server performance and, evém wi
recent server advances, we cannot hope to close so large a gap

Recognizing this leads to our first design principle: thatteo
functionality be parallelized across multiple servers;hsthat the
requirements on each individual server can be met withiegjstr,
at least, upcoming server models. This in turn leads usdiois
ter router architecture (depicted in Fig. 1), where each seulgrs
the role of a traditional router linecardge., performs packet pro-
cessing for one up to a few router ports; as with a linecars, th
requires that each server can process packets at a ratatpwopb
to R. The problem then is how to switch packets between servers.
We look for an appropriatdecentralizedsolution within the litera-
ture on parallel interconnects [28]. In §3, we show that ae of
commodity server and link technology narrows our optionsde
lutions based otpad-balancednterconnects, in which each node
can independently make packet routing and dropping dediar
a subset of the router’s overall traffic.

Thus, we design a router with no centralized components—in
fact, no component need operate at a rate greaterdRawherec
is independent oV and ranges typically fro to 3. By paralleliz-
ing both packet processirand switching across multiple servers,
we thus offer an approach to building a router withports and line
rate R bps, using servers whose performance need only scale with
cR, independently ofV.

Parallelizing router functionality across multiple sewealso
leads to an architecture that, unlike current network emeipt, is
incrementally extensible in terms of ports: For practicaftgounts
(up t02048 ports—shown in §3.3), we show that we can increase
the number of ports by, (and switching capacity by R) at a cost
that scales linearly with, simply by adding servers to the cluster.
In this sense, a cluster of general-purpose servers issktennot
only in terms of router functionality, but also in terms opeaity.

Parallelism within servers. Our cluster router architecture is
only feasible if single-server performance can scale with With
10Gbps ports and our lowesgt = 2, this requires that a server
scale to at leas20Gbps. While a less daunting target thamnr,
even this rate at first appears beyond the capabilities ohoar

ity servers—recent studies [23, 30] report rates und#sbps, in

the 1-4Gbps range for minimum-size packets. This leads us to our
second design principle: that router functionality be paliaed

not only across servers, but also across multiple procggsiths
within each server. In 85 we show that, although non-trj\sahl-

ing to cR is within reach, provided: (1) the hardware architecture
of the server offers internal parallelism that extends Inelypro-
cessing power to 1/0 and memory accesses, and (2) the server’
software architecture fully exploits this hardware pagidim. In
84.2, we discuss how such parallelism may be exploited.

Resulting tradeoff. The downside to our two key design
decisions—using general-purpose servers and parafigliziuter
functionality—is that they make it difficult for our routeo offer
the strict performance guarantees that hardware routees thadi-
tionally offered. In particular, packet reordering (catesied unde-
sirable due to its potential impact on TCP throughput) atehiey
are two fronts on which a software router may fundamentadlyeh
to offer more “relaxed” performance guarantees. We dispess
formance in greater detail throughout this paper, but nete that
the historical emphasis on strict performance guaranwes) for
worst-case traffic workloads, arose more because of vehilads
tional benchmarking practices than the realism of thes&loads
or criticality of these performance guarantees. Considethis,
and the fact that “relaxed” performance guarantees opeddbe
to more general-purpose network infrastructure, we deethisca
tradeoff worth exploring.

In the remainder of this paper, we present the design anceimpl
mentation of a parallel software router that embodies thpse
ciples: we describe how we parallelize router functioyaditross
multiple servers in §3; how we design to exploit the paratal
within a server in 84; and finally evaluate our designs in §5-6

3. PARALLELIZING ACROSS SERVERS

input port gets its fair share of the capacity of any output)pand

(3) avoids reordering packets. Hence, a switching solutieolves
selecting an interconne¢bpology with adequate capacity and a
routing algorithm that selects the path each packet takes from its
input to output port. In this, commodity servers limit ourodtes

by introducing the following constraints:

1. Limited internal link rates: The “internal” links that inter-
connect nodes within the cluster (Fig. 1) cannot run at a rate
higher than the external line ratB. This is because we
want to use commaodity hardware, including network inter-
face cards (NICs) and link technologyE.g., requiring an
internal link of 100Gbps to support an external line rate of
10Gbps would be expensive, even if feasible.

. Limited per-node processing raté&s motivated earlier, we
assume that a single server can run at a rate no higher than
cR for a small constant > 1. We estimate feasiblevalues
for today’s servers in 85.

. Limited per-node fanoutThe number of physical connec-
tions from each server to other nodes should be a small value,
independent of the number of servers. This is because we
use commodity servers, which have a limited number of NIC
slots. E.g, today, a typical server can accommoddtes
NICs, where each NIC fit3—8 ports.

We now look for an appropriate topology/routing combinatio
within the literature on parallel interconnects [28]. Arpappriate
solution is one that offers the guarantees mentioned abmogets
our constraints, and is low-cost. In the interconnectditere, cost
typically refers to the capacity of the interconneice(# links x
link rate); in our case, the dominant cost is the number ofessr
in the cluster, hence, we look for a solution that minimizeis t
quantity.

3.2 Routing Algorithms

Design options. The literature broadly classifies interconnect rout-
ing algorithms as either single-path or load-balanced.[28th the
former, traffic between a given input and output port follaavsin-
gle path. Withstaticsingle-path routing, this path remains constant
over time, independently of traffic demands. Such routirgjigple
and avoids reordering, but, to achieve 100% throughpuggitiires
that internal links run at high “speedups” relative to theeemal
line rate R; speedups violate our first constraint, hence, we elimi-
nate this option. The alternative aslaptivesingle-path routing, in
which a centralized scheduler (re)computes routes basedroent
traffic demands—for instance, centralized scheduling afresage-
ably non-blocking Clos topologiés.Such centralized scheduling

In a cluster router, each server takes on packet processingayoids high link speedups (as the scheduler has global letigel

for one or a few ports and also participates in cluster-wide d
tributed switching. The challenge in coping with packetqa®s-
ing is largely one of extracting the required performancarfreach
server—our focus in 84. Here, we focus on designing a disteith
switching solution that is compatible with our use of comiityd
servers.

3.1 The Problem

A switching solution serves two high-level purposes: (Irit-
vides a physical path connecting input and output ports apd (
determines, at each point in time, which input gets to rekgkpts
to which output port and, consequently, which packets ayppd.
This must be achieved in a manner that offers the followiraygo-
tees: (1)100% throughput ice., all output ports can run at full line
rate R bps, if the input traffic demands it), (2) fairnesse(each

and can pick routes that best utilize the interconnect agpabut
requires that the scheduler run at rafe? (it must read the state of
all ports to arrive at a scheduling decision); this violatessaaond
constraint, hence, we also eliminate this option.

We are thus left witHoad-balanced routingwhere traffic be-
tween a given input and output port is spread across mujpities.
We start with a classic load-balancing routing algorithmaidht
load balancing (VLB) [47]—and adapt it to our needs.

Background: VLB and Direct VLB. VLB assumes a set of nodes
interconnected in a full mesh. Routing happens in two phases
sider a packet that enters at input nogl@nd must exit at output

'Recent work on data-center networks uses distributed stingd
over a rearrangeably non-blocking Clos topology, howeteioes
not guarantee 100% throughput [20].

- External links
(R bps)

Internal Links

,,,u S

2R/8 bps

Internal links Internal links
R/8 bps R/8 bps

Logical View Physical View

Figure 2: An 8-port Valiant load-balanced mesh.

node D; instead of going directly fron$ to D, the packet is first
sent fromS to a randomly chosen intermediate node (phgsthen
from that node taD (phase2). In this way, a sequence of packets
that enter at nodé and exit at nodé is first load-balanced from
S across all nodes, then “re-assembledTat Fig. 2 shows an 8-
node VLB mesh with each physical node playing the role of sur
intermediary, and destination.

This routing algorithm has two desirable effects. Intughy
phaset randomizes the original input traffic such that the traffic
an individual node receives at the end of phasg.e., the input
traffic to phase2) is a uniform sample of theverall input traffic
at phasel. As a result, when a node handles phageaffic, it
can make purely local scheduling decisions about whichgtadk
drop and which to forward to each output port. This allows VLB
to guarantee 100% throughput and fairness without any aléred
scheduling. Second, VLB does not require high link speedops
cause it forces traffic to be uniformly split across the austin-
ternal links: in a full-mesh VLB cluster aV nodes with a per-port
rate of R, each internal link must have capac%f?—, which easily
meets our constraint on internal link speeds.

These benefits come at the cost of forwarding packets twice.
Without VLB, a server in a cluster-based router would be esge
to handle2R of traffic—R comingin from the server's external
line (to be sent to the other servers) pRsarriving from the other
servers to be semut on the server’s external line. With VLB, each
node (as an intermediate) receives an additiéhaf incoming traf-
fic and hence is required to process traffic at rake Hence, the
“tax” due to using VLB is a 50% increase in the required paxvse
processing rate.

“Direct VLB” [49] reduces VLB overhead by leveraging the ol
lowing observation: Phasein VLB serves to randomize traffic
across the cluster; however, when the cluster’s traffic aral-
ready close to uniform (as is often the case), this first phase can
be mostly avoided. More specifically, in “adaptive loaddveling
with local information” [49], each input nod# routes up to%
of the incoming traffic addressed to output nabedirectly to D
and load-balances the rest across the remaining nodes. UrFhe a
thors show that this extension maintains the throughpufaintess
guarantees of the original VLB. With this extension, whea ¢hus-
ter’s traffic matrix is close to uniform, each server proesssaffic
at maximum rat@R, i.e., VLB introduces no processing overhead.

So, VLB requires that each server process traffic at rdte
wherec is between2 and 3, depending on the properties of the
traffic matrix. We deem this as satisfying our second coirgt(an
server processing rates) and evaluate the extent to whitzy'®
servers can meet such processing rates in §5.

Our solution. Following the above reasoning, we start with Direct
VLB, which allows us to guarantee 100% throughput and faisne
while meeting our constraints on link speeds and per-sgrx@r
cessing rates. Two issues remain. First, like any loadrcatg
algorithm, VLB can introduce packet reordering. We additbss
with an algorithm that mostly avoids, but is not guaranteecam-
pletely eliminate reordering; we describe it in 86, wherepresent
our router prototype. The second issue is that our third traim
(on server fanout) prevents us from using a full-mesh togplo
when N exceeds a server’s fanout. We address this by extending
VLB to constant-degree topologies as described next.

3.3 Topologies

Design options. When each server handles a single router port,
the lowest-cost topology is one witN servers as achieved by the
full-mesh VLB. However, the full mesh becomes infeasibleeswh
N grows beyond the number of ports a server can accommodate
(recall our constraint on per-server fanout).

One potential solution is to introduce intermediate nodather
than connect oulN servers directly, connect them through extra
nodes that form a low-degree multihop network. In this waghe
server (both theéV servers that handle the router ports and the extra,
intermediate servers) only needs to run at Bageand can have low
(even constant) fanout. Of course, this solution comeseattst
of an increase in cluster size.

Most multihop interconnect topologies fall under eithes thut-
terfly or the torus families [28]. We experimented with botida
chose thek-ary n-fly (a generalized butterfly topology that inter-
connectsN nodes withn = log, N stages ofk-degree nodes),
because it yields smaller clusters for the practical rarfigramme-
ters N andk that we considered (Fig. 3).

If servers can run at speeds greater tB&)then we can also ex-
ploit the tradeoff between per-node fanout and processtey ff
the per-server processing ratelisk (s > 1), then each server can
handles router ports of rate?, hence, we need onI%[input/output
servers instead aV. In this case, building a full mesh requires a
per-server fanout og — 1 and internal link rates of%R. Intu-
itively, if servers are more powerful, then we need fewertan
and fewer (but faster) links to interconnect them.

Our solution. We select a topology in the following way: First, we
assign to each server as many router ports as it can handém (g
processing capacity and the port rdt® Next, we check whether
the per-server fanout accommodates directly intercommgtte re-
sulting number of servers in a full mesh. If not, we useary n-fly
(n = log,, N) topology, wherek is the per-server fanout (as deter-
mined by the number of NIC slots and router ports per server).
We now look at the cost of our solution for three realisticrere
ios: We consider a line rate @ = 10Gbps. We assume that each
NIC accommodates 20Gbps or 81Gbps ports (the latter is cur-
rently available in compact form-factor cards). We consitieee
configurations:

1. Current serversEach server can handle one router port and
accommodate 5 NICs.

. More NICs: Each server can handle one router port and ac-
commodate 20 NICs. Such servers are available today as a
custom motherboard configuratiore(, requiring no compo-
nent redesign), typically for data-centers.

. Faster servers with more NIC£ach server can handle two
router ports and accommodate 20 NICs. This configuration
corresponds to expected upcoming servers (85).

—&— 48-port switches

—o&— one ext. port/server, 5 PCle slots
—— one ext. port/server, 20 PCle slots
H —&—two ext. ports/server, 20 PCle slots|

Number of servers

transition from mesh
to n-fly because # ports
exceeds server fanout

1 i i i i i i i
4 8 16 32 64 128 256 512

External router ports

I
1024

2048

Figure 3: The number of servers required to build an N-port,
R=10Gbps/port router, for four different server configurati ons.

For each scenario, Fig. 3 plots the total number of clusteess,
N’, required to handléV external ports, as a function of. Ignor-
ing, for the moment, the results labelet8“port switches,” we see
that, with the “current server” configuration, a full mesHessible
for a maximum of N = 32 external ports; the “more NICs” con-
figuration extends this t&v = 128 ports, and the “faster servers”
configuration toN = 2048 ports. We conclude that our cluster
architecture can scale to hundreds, potentially even a few-t
sand ports. We note that, in theory, our design can alwayle sca
to an arbitrary number of external ports by using extra imiedi-
ate servers. However, in practice, there will always be goeup
limit determined by the increase in cluster size that leadsigher
per-port cost and power consumption, as well as higher peket
latency. The results in Fig. 3 represent a range of port cofort
which we believe these overheads to be reasonable. For éxamp
even with current servers, we ne2dntermediate servers per port
to provide N = 1024 external ports (d0Tbps router). Assuming
each server introducexslusec of latency (86.2), such a configura-
tion would correspond te66usec of per-packet latency.

Switched cluster: arejected design option.Fig. 3 also shows the
cost of an alternative, “switched” cluster that we considieearly
on. In this architecture, packet processing is performeddneral-
purpose servers, whereas switching is delegated to contyriidti-
ernet switches: for a lowv, servers are interconnected by a single
switch; whenN exceeds the port count of a single switch, servers
are interconnected through a network of switches, arrangeal
strictly non-blocking constant-degree Clos topology [11]

We ultimately rejected this option for two reasons. Firstagn-
teeing switching performance using a network of switcheglires
support for new load-sensitive routing features in swigchguch
modification is beyond our reach and, even if adopted by $witc
vendors, would be significantly more complex than the sirtgaé-
agnostic routing switches currently support. Second, &lo&the-
envelope calculation reveals that, considering currendpcts, the
switched cluster would be more expensive: We consideré&-a
port 10Gbps/port Arista 7148S switch, which, a5® per port,
is the least expensive strictly non-blockin@Gbps switch we are
aware of. Assuming®00 per serverd Arista ports correspond to
1 server. Using this “conversion rate,” we computed the nunolbe
servers whose aggregate cost is equal to an Arista-baséchedi
cluster, and plotted this number as a function of the numbexo
ternal ports.

Fig. 3 shows the result, which indicates that the Aristaebas
switched cluster is more expensive than the server-basestiecs.
For small numbers of ports where we can interconnect semexs

full mesh, the server-based cluster is lower cost, becdusmids

the cost of the switch altogether while using the same nuraber
servers. For higher port counts, the difference in cost stduthe
significant level of over-provisioning that a non-blockiimgercon-
nect must provide to accommodate non-uniform traffic masic
our RouteBricks architecture avoids this through the us¥lds.

The penalty, of course, is that the latter requires a peresgiro-
cessing rate g3 R, whereas a switched-cluster architecture requires
a per-server processing rate k.

Summary. We select a router architecture that parallelizes both
packet processing and switching over a VLB interconnectt bui
from general-purpose servers. Our architecture reliesnankey
assumptions. First, that a modern server can handle at deast
router port of rateR. Specifically, since we are using Direct VLB,
to handle one port, a server must process packetsnaianumrate

of 2R (assuming a uniform traffic matrix) &R (assuming a worst-
case traffic matrix). For a line rate &t = 10Gbps, these require-
ments become0Gbps andB0Ghbps, respectively. The second (and
related) assumption is that a practical server-based ViBémen-
tation can live up to its theoretical promise. SpecificaliB'’s re-
quirement for a per-server processing rat€ B3R is derived as-
suming that all VLB phases impose the same burden on therserve
in reality, certain forms of processing will be more expessi-e.g,

IP route lookupsrs. load-balancing. Thus, we need to understand
whether/how VLB'’s analytically derived requirement deegfrom
what a practical implementation achieves.

The following sections test these assumptions: in 84 and 85
we evaluate the packet-processing capability of a stateesfirt
server; in 86, we present and evaluate RB4, a 4-node praatyp
our architecture.

4. PARALLELIZING WITHIN SERVERS

According to the last section, assuming a line ratefof=
10Gbps, our architecture is feasible only if each server cartme
a minimum performance target 20Gbps. This is more than twice
the rates reported by past studies. Yet recent advances\erse
hardware technology promise significant speedup for aaftins
that are amenable to parallelization; to leverage thesarams,
router software must exploit hardware resources to thdiest
Thus, in this section, we look for the right approach to dalia+
ing packet processingithin a server. We start with an overview of
our server architecture (84.1), then discuss how we exptaiter
parallelism (84.2).

4.1 Server Architecture

Hardware. For our study, we chose an early prototype of the Intel
Nehalem server [19], because it implements the most reaknt a
vances in server architecture, while conforming to therimfal no-

tion of a “commodity” server (it is targeted to replace therently
deployed generation of Xeon servers). Fig. 4 shows thisitach
ture at a high level: There are multiple processing cérmsanged

in “sockets”; all cores in a socket share the same L3 cacheh Ea
socket has an integrated memory controller, connected totep

of the overall memory space via a memory bus (hence, this is a
non-uniform memory access—NUMA—architecture). The sock-
ets are connected to each other and to the I/O hub via dedicate
high-speed point-to-point links. Finally, the I/O hub isncected

to the NICs via a set of PCle buses. Our server has two sock-
ets, each with fouR.8GHz cores and an 8MB L3 cache, and two
PClel.1 x8 slots, which we populated with two NICs, eachingld

2We use the terms “CPU,” “core,” and “processor” interchaatyjg.

integrated memory
controller
v

One Socket System

g

to II0
Hub

socket

inter-socket
link Core

Core Core
Shared Sharod
)

Cache
Core

Four Sockets System

Core

/socket-lo link

1/0 Hub |

Figure 4: A server architecture based on point-to-point iner-
socket links and integrated memory controllers.

two 10Gbps ports [6]. This server is the dual-socket configuration
of the single-socket Corei7 server, and future configurstiare ex-
pected to incorporate both more sockets (Fig. 4) and moesquer
socket, as well a$—8 PCle2.0 slots.

Software. Our server runs Linux 2.6.19 with Click [38] in polling
mode—t.e., the CPUs poll for incoming packets rather than being
interrupted. We started with the Linux 10G Ethernet drivehnjch

we extended as described in 84.2. We instrumented our s&itrer

a proprietary performance tool similar to Intel VTune [7].

Traffic generation. We equipped our server with two dual-port
10Gbps NICs, hence, a total of foufGhps ports. However, we
are only able to drive each NIC aR.3Gbps: each pair of ports
on the same NIC share the same x8 PClel.1 slot; accordingto th
PClel.1 standard, the maximupayload data rate enabled by
lanes is12.8Gbps—slightly above what we actually observe [44].
Hence, the maximum input traffic we can subject our servesto i
24.6Gbps. Note that the small number of available NIC slots is
an unfortunate consequence of our using a prototype se@®r—
mentioned above, the product server is expected to ¢ffesslots.

4.2 Exploiting Parallelism

We now summarize the key methods we selected to exploit
server parallelism. We illustrate our points with “toy” exp
iments, for which we use&4B packets and a simple packet-
processing scenario where packets are blindly forwardéadsn
pre-determined input and output ports with no header psiogor
routing lookups.

Multi-core alone is not enough. We first tried building our cluster
out of the widely used “shared bus” Xeon servers. Fig. 5 sh@ws
high-level view of this architecture. We see that this earsierver
architecture differs from Fig. 4 in two major aspects. Firsi
communication between the sockets, memory, and 1/0 devsces
routed over the shared front-side bus and “chipset”; in Ejghis
communication happens over a mesh of dedicated pointitd-po
links. Second, the older shared-bus architecture usesgée sin-
ternal memory controller; in Fig. 4, this has been replacéith w
multiple memory controllers, each integrated within a sickhus
offering a dramatic increase in aggregate memory bandwidth

‘ Front Side Bus (FSB)

ne | PCle Mem Bus| oo ‘

Figure 5: A traditional shared-bus architecture.

Northbridge
(Memory Controller Hub)

not provide sufficient bandwidth between the CPUs and thelse s
systems. Increasing the number of cores does not help—etheir
putational resources are left unexploited, because thesamnnot
access the packets fast enough. These results led us tothdopt
more recent Nehalem architecture, where parallelism aCthgs

is coupled with parallelism in memory access; this changddeo
higher aggregate and per-CPU memory bandwidth, as welltas be
ter scaling—no single bus sees its load grow with the aggeeofa
memory transactions. As we shall see, this improved arctoite
alone offers 2-3x performance improvement.

Multi-queue NICs are essential. A packet-processing workload
involves moving lots of packets from input to output portsheT
question is how should we distribute this workload amongpteel-
able cores for best effect. We illustrate our approach withtby
scenarios shown in Fig. 6, in which we construct simple fodivey
paths (FPs) between pairs of interfaces and cores.

When the receive or transmit queue of a network port is aecess
by multiple cores, each core must lock the queue before aicaes
it—a forbiddingly expensive operation when the port sedtians
of packets per second. This leads to our first rthat each network
gueue be accessed by a single corée can easily enforce this in
Click by associating the polling of each input port and théing
to each output port to a separate thread, and staticallgrasgi
threads to cores.

The next question is, how should the processing of a packet be
shared among cores? One possibility is the “pipeline” aagno
where the packet is handled by multiple cores in a ron—one cor
reads the packet from its receive queue, then passes it theano
core for further processing and so on (scenario-(a) in PigTée
alternative is the “parallel” approach, where the packetésl from
its receive queue, processed, and written to its transraiteuall by
the same core (scenario-(b) in Fig. 6). For pipelining, wesider
both cases where two cores do and don’t share the same L3, cache
as this allows us to highlight the performance impact dubédia-
sic overhead of synchronizing cores to transfer the packet that
due to additional cache misses. Comparing the forwarditesra
for each case, we see that the parallel approach outperfidrens
pipelined one in all cases. The overhead just from synchation
across cores can lower performance by as muctpés (from 1.7
to 1.2Gbps); with additional cache misses, performance drops by
64% (from 1.7 to 0.6Gbps). This leads to our second ruliat
each packet be handled by a single core

Hence, we want that each queue and each packet be handled by a
single core. The problem is that there are two (very commasgs
where it is hard teimultaneouslgnforce both rules. The first case

The shared-bus Xeon server we used had multiple cores—it hadarises when there are many cores and few ports, and a single co

eight 2.4GHz cores, similar to our Nehalem prototype. Yet, f
small and even medium-sized packets, its performanceffeit f

the Nehalem'’s performance—and well short of @0Gbps target.

In an earlier study [29], we found that the bottleneck washat t
shared bus connecting the CPUs to the memory subsystemetPack
processing workloads—as streaming workloads, in genepédee

a heavy load on memory and 1/O, and shared-bus architeaiores

cannot by itself handle the processing demands of a port.inFor
stance, consider &6-core server handling twa0Gbps ports. A
single core cannot handli®Gbps of traffic and hence we'd like to
“split” the packet stream across multiple cores. But if atpotied
to a single core, then each packet is necessarily touchedutty m
ple cores (the core that polls in and splits the traffic, areldbre
that actually processes the packet); this is illustratedcienario-

Using cores in parallel v.s. pipeline

(a) (b)
Do’ o0
CJeT << A«

1.2 Gbps/FP (shared cache)
0.6 Gbps/FP (different cache)

1.7 Gbps/FP

Using multiple queues to split/merge traffic

(c) (d)

-0y >0~ =303
\).—)

1.6 Gbps/FP (splitting at core) ~ . 2

5.3 Gbps/FP

(splitting at NIC)

Using multiple queues to handle overlapping paths

(e) (f)
—-t . Baes=
_)
DX B

1.7 Gbps/FP (multiple queues)
0.7 Gbps/FP (single queue)

|Legend: [NiCport @ Core == NIC queue|

Figure 6: Forwarding rates with and without multiple queues.

(c), Fig.6. The second case is when we have “overlappindigat
in which multiple input ports must send traffic to the same- out
put port—scenario-(e) in Fig.6 (compare to scenario-(©))erlap-
ping paths arise in all realistic traffic matrices and, ongaim, ty-
ing each port to a single core unavoidably results in mdtigares
touching each packet.

Fortunately, both cases can be addressed by exploitingurdea
now available in most modern NICs: multiple receive andgnait
queues. Multi-queue NICs are used to support virtualiratio
turns out that, when coupled with careful scheduling, tHsy affer
a simple, practical solution to our problem [12]. We shoutden
that Bolla and Bruschi also evaluate this approach, allbethée
context of a shared-bus architecture and NICs with multi@®ps
interfaces [24]. To leverage multiple NIC queues, we dgwetba
lock-free device driver fot 0Gbps multi-queue NICs and extended
Click with multi-queue support. Our Click extension allows to
bind polling and sending elements to a particular queueffpesed
to a particular port); this, in turn, allows us to associaeltequeue
to a thread, then statically assign threads to cores in a haty t
enforces both our rules.

In Fig. 6, scenarios-(d) and (f) illustrate how using muéip
queues addresses the problematic scenarios in (c) ancépga-
tively. In both setups, multi-queue NICs allow us to respsath
our “one core per packet” and “one core per interface” ruld&e
see that the performance impact of leveraging multiple gaes
dramatic:e.g, scenario-(d) achieves more than three times higher
forwarding rate than scenario-(c); in the case of overlagmaths,
we see that, with multiple queues, overlapping paths seeafok
ing rates similar to those of non-overlapping paths (apipnexely
1.7Gbps/FP) compared to a performance drop of alrio%s with-
out (0.7Gbps vs.1.7Gbps/FP).

Polling configuration Rate (Gbps)

No batching k) = kn = 1) 1.46
Poll-driven batching, = 32, k, = 1) 4.97
Poll-driven and NIC-driven batching 9.77

(kp = 32, ky, = 16)

Table 1: Forwarding rates achieved with different polling con-
figurations. k,=32 is the default Click maximum. We stop at
k=16 because the maximum PCle packet size is 256B; a packet
descriptor is 16B, hence, we can pack at most 16 descriptors i
a single PCle transaction.

straightforward: if each core has its own dedicated recéiamns-
mit) queue at each port, then it can read (write) from any inpu
(output) port without sharing queues or packets with ottwes.
Multi-queue NICs with32—64 RX and TX queues already exist, so
our solution is feasible today [6]. Moreover, since mukipjueues
are needed for virtualization, and the number of virtual hiiaes
run on a single server is expected to increase with the nuiwiber
per-server cores, we expect NIC vendors to continue to m®du
multi-queue NICs where the number of queues follows the rermb
of per-server cores. Hence, unless stated otherwise, femam dn
we use multi-queue NICs as described above.

“Batch” processing is essential. Forwarding a packet involves
a certain amount of per-packet book-keeping overhead-rgad
and updating socket buffer descriptors and the data stes{ting
buffers) that point to them. This overhead can be reducedblk*
processing descriptorse., amortizing book-keeping operations by
incurring them once everk packets. The standard approach is to
drive such batching from the application : specifically,clcan
receive up tok, packets per poll operation—we call this “poll-
driven” batching. To this, we added “NIC-driven” batchingie
extended our NIC driver to relay packet descriptors to/frtiva
NIC only in batches ofk,, packets. This results in fewer (but
larger) transactions on the PCle and I/O buses and comptemen
poll-driven batching by ensuring that at leést packets are avail-
able to be polled in at a time.

We measure our server's maximum forwarding rate using all 8
cores and various polling configurations. Table 1 showsehalts:
Poll-driven batching offers &-fold performance improvement rel-
ative to no batching, while adding NIC-driven batching ioyas
performance by an additional factor 2f Hence, unless stated oth-
erwise, from here on we configure our servers with batching pa
rameterst, = 32 andk,, = 16.

Batching increases latency (since the NIC waitgfppackets to
arrive before initiating a PCle transaction) and jitten¢s different
packets may have to wait at the NIC for different periods wig].

On the other hand, batching is necessary only at high spebdse

packet inter-arrival times are small (on the order of nanoges),

hence, the extra latency and jitter are expected to be aogbyd
small. At lower packet rates, increased latency can beiatley by

using a timeout to limit the amount of time a packet can wakig¢o
“batched” (we have yet to implement this feature in our diive

NUMA-aware data placement is not. We initially expected
careful data placement to be essential in maximizing peréorce
since the Nehalem is a NUMA architecture. This expectatias w
strengthened when we found that Linux does not always platze d
in an ideal way: even though the packets themselves ardyideal
placed (each one closest to the core that reads it from thg, NIC

The next question is whether we always have enough queues tosocket-buffer descriptors are always placed in one pdaticuem-

follow this strategy; if a server withn cores hasn receive andn
transmit queues per port, then the answer is yes. The exgans

ory (socketd, the one that belongs to CPW; independently of
which core is processing the packet.

25

Nehalem, multiple queues,
with batching

20+ ~a q
Xeon, single queue,
2 151 no batching Nehalem, single queue,
Q . with batching
= 10+ Nehalem, single queue,

no batching

Figure 7: Aggregate impact on forwarding rate of new server
architecture, multiple queues, and batching.

Surprisingly, we found that, at least for our workloads,efar
data placement makes no difference in performance. We demon
strate this through a simple setup: we disable the coresakesd
and measure the maximum forwarding rate achieved by tteres
on socketd; in this case, both packets and socket-buffer descrip-
tors are ideally placed in the memory of socketwe record a
forwarding rate of6.3Gbps. We then repeat the experiment but
this time disable the cores on socke&nd use only thel cores
in socketd; in this case, the packets are placed in the memory of
socketi, while the descriptors are placed in the “remote” memory
of socket0. In this latter case, we find that approximately 23%

dramatic. At the same time, we note that our modifications-act
ally have little-to-no impact on Click’s programming modefi-
nally, we note that, although we focus on packet forwarding,
expect the above findings would apply to the more generakclas
of streaming applicationg(g, continuous query processors, stock
trading, or video streaming).

5. EVALUATION: SERVER PARALLELISM

Having established how we parallelize packet-processiitigirw
a server, we now evaluate the resulting server performaorcgift
ferent workloads. After describing our test workloads (§5we
start with black-box testing (85.2), then analyze the olestiper-
formance (85.3). For clarity, in this section we evaluatefqgre
mance in the context of one server and one workload at a tige; §
then looks at server performance in a complete VLB-clusieter.

5.1 Workloads

At a high level, a packet-processing workload can be charact
ized by (1) the distribution gbacket sizesand (2) theapplication
i.e, the type of processing required per packet. As far as packet
size is concerned, we consider synthetic workloads, wheseye
packet has a fixed size @ bytes, as well as a trace-driven work-
load generated from the “Abilene-1" packet trace collectedthe
Abilene network [10]. As far as the application is concerned

of memory accesses are to remote memory (our tools breakdownconsider the following three:

memory accesses as loecal. remote), nonetheless, we get a for-
warding rate of6.3Gbps. Hence, we conclude that custom data
placement is not critical. This is not to suggest that cdréaia
placement is never required—just that, for our particufairly
memory-intensive) workload and server architecture nttis

Putting it all together. In summary, we found that the perfor-
mance potential of multi-core servers is best exploitedenvpar-
allelism at the CPUs is accompanied by parallelism in meragry
cess (through dedicated memory controllers and buses) #Bd N
(through multiple queues), and if the lower levels of thetsafe
stack are built to leverage this potential (through batghifio this
end, we took an existing0Gbps NIC driver and added support for
(1) polling/writing to multiple queues and (2) configurablgching
of socket-buffer descriptor operations.

We now look at the cumulative effect of our design lessons. We
record the forwarding rate achieved by our server using ighte
cores, fourl0Gbps portsf4B packets, under the same simple for-
warding as in the toy scenaridse, packets are forwarded between
pre-determined input and output ports) and a uniform argrtyp
traffic pattern {.e., traffic from each input is uniformly split across
all output ports). We repeat this experiment four times: yding
an 8-core Xeon server without any of our changes,(no multi-
gueue NICs and no batching), (2) our Nehalem server withoyt a
of our changes, (3) our Nehalem server with multiple queuds b
no batching, and (4) our Nehalem server with both multiplewsgs
and batching. Fig. 7 shows the results: we see that our madific
tions lead to &.7-fold (670%) improvement relative to the same
server without our modifications and am-fold improvement rela-
tive to the shared-bus Xeon.

Thus, we find that our modest design changes significantly im-

1. Minimal forwarding: In this application, traffic arriving at
port i is just forwarded to porj—there is no routing-table
lookup nor any other form of packet processing. This sim-
ple test is valuable for several reasons. First, it stresges
ability to rapidly stream large volumes of cache-unfrigndl
data through the system, the key requirement that makes
packet processing challenging. Second, it exercises thie mi
mal subset of operations thamy packet-processing (for that
matter, any streaming) application incurs and consequentl
offers an upper bound on the achievable performancalfor
such applications. Finally, minimal forwarding is predjse
the type of processing performed by VLB nodes when they
act as intermediate or destination nodes.

. IP routing: We implement full IP routing including check-
sum calculations, updating headers, and performing a
longest-prefix-match lookup of the destination address in a
routing table. For this latter, we use the Click distribut®
implementation of the D-lookup algorithm [34] and, in keep-
ing with recent reports, a routing-table size25GK entries.

For synthetic input traffic, we generate packets with random
destination addresses so as to stress cache locality for IP
lookup operations.

. IPsec packet encryptionn this application, every packet is
encrypted using AES-128 encryption, as is typical in VPNSs.

Our selection represents commonly deployed packet-psowes
applications that are fairly diverse in their computatiomzeds. For

pact performance. We arrived at these through a more careful example, minimal forwarding stresses memory and 1/O; IRingu

(than usual) understanding of the underlying hardware-r&ts
resource capability, potential bottlenecks, and conbenpoints.
While some “awareness” of hardware is always useful in ojgim
ing performance, we found that, with greater parallelisnsénver
hardware, the performance impact of this awareness canibte qu

additionally references large data structures; encryptsoCPU-
intensive.

Given this setup, our primary performance metric is the maxi
mum attainable loss-free forwarding rate, reported in seohei-
ther bits per second (bps) or packets per second (pps).

30
o 20
O 10

0
64 128 256 512 1024 Ab.
Packet size (bytes)

20

Mpps
S

0
64 128 256 512 1024 Ab.
Packet size (bytes)

30 20)
15 [Abilene
» 20 7}
aQ Q
o a 10
G
10 5
0 ! . 0
Forwarding Routing IPsec Forwarding Routing IPsec

Figure 8: Forwarding rate for different workloads. Top: as a
function of different packet-size distributions, when theserver
performs minimal forwarding. Bottom: as a function of dif-
ferent packet-processing applications, for 64B packets ahthe
Abilene trace. “Ab.” refers to the Abilene trace.

5.2 Black-Box System Performance

First, we measure the maximum loss-free forwarding rate our
server can sustain when running the minimal-forwardingliapp
tion, given (1) input traffic of fixed-size packets, repeateddif-
ferent packet sizes, and (2) the Abilene trace. The reguttte is
shown in Fig. 8 (top), in both bps and pps. We see that, giveeta
packets or the Abilene trace, the server sustain§Gbps; this is
the maximum input traffic we can generate, meaning that perfo
mance, in this case, is limited by the number of NICs our gerve
can fit—we do not hit any bottleneck inside the server. In @&sit
given64B packets, the server saturate9 atGbps or18.96Mpps.

We observe a similar relationship between packet size and pe
formance for all applications. Hence, from here on, we famugl)
fixed-size packets of minimum lengt® (= 64B) and (2) the Abi-
lene trace. Fig. 8 (bottom) shows server performance fotlmee
different applications. We see that performance drops agpén-
packet processing demands increase: for IP routing, thveissatu-
rates aR4.6Ghps given the Abilene trace a6dB5Gbps giver64B
packets; for IPSec, the rates are even lowér45Gbps given Abi-
lene,1.4Gbps giver64B packets. We should note that, compared to
the state of the art, our IPsec rates are still commendalieters
typically use additional IPsec accelerators to scal2iGbps [4]-
10Gbps [2].

T 25 ‘
< . —e— fwd
S of
8 \\ —v !’tr
2 s —=— ipsec
5 157 N — — —cycles available ||
>
[s) \
2 4t N]
% S—BA =
L 05 ~e 1
:) T = -
=8 — oD

5 o ‘ ‘

0 5 15 20

10
Packet rate (Mpps)

Figure 9: CPU load (in cycles/packet) as a function of incom-
ing traffic rate (in packets/sec) for different packet-processing
applications. In the legend, “fwd” corresponds to minimal for-
warding and “rtr” to IP routing, while “cycles available” co r-
responds to the nominal capacity of the CPUs.

We directly measure the actual loads on the system buseg usin
our tools. Computing the per-packet CPU load requires mibeaa
tion, because Click operates in polling mode, hence, thesCie
always100% utilized. To compute the “true” per-packet CPU load,
we need to factor out the CPU cycles consumectimyptypolls—

i.e,, cycles where the CPU polls for packets to process but nane ar
available in memory. We do this by measuring the number of cy-
cles consumed by an empty pall.J and the number of empty polls
measured per secondf) for each input packet rate deducting

ce X E, from the server’s total number of cycles per second gives
us the number of cycles per second consumed by packet pingess
for each input packet rate

We consider two approaches for estimating upper boundseon th
per-packet loads achievable by our server's components.fifgt
one is based on the nominal rated capacity of each compofRent.
example, our server has eight 2.8GHz cores and, hence, we est

mate an upper bound M cycles/packet given an input
packet rater. For certain component®.g, the memory buses),
actually achieving this nominal capacity is known to be diffi.
Hence, we also consider a second, empirical approach tleat us
benchmarks, specifically designed to impose a high load en th
target component. For example, to estimate an upper bound on
the per-packet load achievable by the memory buses, we arote
simple “stream” benchmark that writes a constant value nooa

We now look inside our server to understand these black-box locations in a very large array, and measured the resultiag, |

performance results.

5.3 Deconstructing System Performance

Our approach is to probe the limits of the server's compament
with the aim of understanding what bottleneck(s) currefitlyit
performance and how performance may be expected to scdie wit
future servers. Our methodology is as follows. We considehe

Mt-m, On the memory buses, in bytes/second. We then estimate
the maximum per-packet load achievable by the memory buses a
M—ﬁ” bytes/packet, given an input packet rate

Table 2 summarizes the nominal and empirical upper bounds we
derived for each system component. Figs. 9 and 10 plot both of
these upper bounds, as well as the per-packet loads measured

each system component, for each of our three applicaticth64

of the major system components: (1) CPUs, (2) memory buses, Packets. We draw the following conclusions from these tesul

(3) the socket-1/0 links, (4) the inter-socket link, and (6@ PCle
buses connecting the NICs to the I/0 hub (see Fig. Bpr each
component, we estimate apper boundn the per-packet load that
the component can accommodate, as a function of the inpliepac
rate. Then we measure the per-packet load on the componéet un
increasing input packet rates, given different workloa@smpar-
ing the actual loads to our upper bounds reveals which coemtsn
are under greatest stress and, hence, likely to be botkenec

3We do not directly consider L3 caches, since any increasadhe

1) Bottlenecks. We see that, for all three applications, the mea-
sured CPU load approaches the nominal upper bound, indigcati
that the CPUs are the bottleneck in all three ch¢Ew. 9). The

“We can conclude this because the cycles/packet remainsobns
under increasing packet rates. If, instead, the cyclekgtagere
growing with input packet rate, then we would have to conside
the possibility that the true problem is at the memory systém
that case, the problem would be that higher packet ratessstine
memory system leading to higher memory access times, which i

miss rates appears as load on the memory buses, which we €do conturn lead to higher CPU cycles/packet since the CPUs spemd mo

sider.

time waiting for memory accesses to return.

Component(s) Nominal capacity

Benchmark for empirical upper-bound

CPUs 8 x 2.8 GHz (#corex cpu-speed)

None

Memory 410 Gbps (#mem-busesbus-capacity)

262 Gbps (stream with random access)

Inter-socket link | 200 Gbps [19]

144.34 Gbps (stream)

I/0-socket links | 2 x 200 Gbps [19]

117 Gbps (min. forwarding with 024B packets)

PCle buses (v1.1) 64 Gbps @ NICs x 8 lanes< 2 Gbps per direction) [44] 50.8 Gbps (min. forwarding withl 024B packets)

Table 2: Upper bounds on the capacity of system components bad on nominal ratings and empirical benchmarks.

Application instructions/packet| cycles/instruction
Minimal forwarding 1,033 1.19
IP routing 1,512 1.23
IPsec 14,221 0.55

Table 3: Instructions-per-packet (IPP) and cycles-per-
instruction (CPI) for 64B packet workloads.

next question is whether the CPUs are efficient in their pagi®
cessingj.e., whether they spend their cycles doing useful work, as
opposed to, for example, waiting for memory accesses to @mp
We answer this question by breaking down CPU load (cycles per
packet) into instructions per packet and cycles per ingsn¢CPI)
for each application. These are listed in Table 3. Nehalergs-
SOors can retire up td instructions/cycle leading to a minimum CPI
of 0.25 [19]. Discussion with CPU architects reveals that, as a
rule of thumb, a CPI 06.4-0.7, for CPU-intensive workloads, and
1.0-2.0, for memory-intensive workloads, is regarded as efficient
CPU usage. We thus conclude that our CPUs are efficiently;, used
moreover, in the case of minimal forwarding, the small numife
instructions per packet shows that Click’s software agdtiire is
efficient. In other words, a poor software architecture is the
problem; performance truly is limited by a lack of CPU cycles

We note that having the CPUs as the bottleneck is not unde-
sirable, since this (finally) aligns the performance nedd®uater
workloads with the vast majority of PC applications. Hersmt-
ware routers stand to benefit from the expectation that tineben
of cores will scale with Moore’s law [33].

2) Smallvs. large packets. We compared the per-packet load im-
posed on the system hy24B-packet workloads to that imposed
by 64B-packet workloads (we omit the graph for brevity)1824B
packet is16 times larger than 4B one, so, initially, we expected
the load imposed by eadi924B packet on each system bus to be
16 times larger than the load imposed by4B packet. Yet, we
found that itis only6, 11, and1.6 times larger, respectively, for the
memory buses, I/O, and CPU. This means that thebgtrioad

is higher for smaller packets. In retrospect, this makesselue
to the book-keeping performed for each packet, which ispede
dent of packet size; for larger packets, book-keeping @exihis
amortized across more bytes.

3) Non-bottlenecks. We see that the per-packet loads on the mem-
ory and 1/O buses are well below their empirically derivegep
bounds, indicating that these traditional problem areapézket
processing are no longer the primary performance limit&ike-
wise, a traditional concern regarding multi-socket amttitires is
the scalability of the inter-socket interconnects; howewe see
that these links are not heavily loaded for our workloads.

4) Expected scaling.Finally, we see that, for all three applications
and all packet-size distributions, the per-packet loachenstystem
is constant with increasing input packet rate. This allowsauex-
trapolate in a straightforward manner how performance tliese
particular applications, is expected to scale with nextegation

—©—fwd —¥ —rtir —* ipsec — > benchmark = — = nom

Memory load (bytes/packet)

1/0 load (bytes/packet)

PCle load (bytes/packet)

0 2 4 6 8 10 12 14 16 18 20
Packet rate (Mpps)

inter—socket (bytes/packet)

Figure 10: Load on system buses (in bytes/packet) as a func-
tion of the incoming traffic rate (in packets/sec). From top b
bottom: memory buses, socket-1/0 links, PCle buses, and igt-
socket links.

servers. As an example, we consider the expected follovo-apit
server, which had sockets an@ cores per socket, thus offering a
4z, 2z and2z increase in total CPU, memory, and 1/O resources,
respectively (Nehalem is designed to scale up tores [33]). Ad-
justing the upper bounds in Figs. 9—10 accordingly and prted-

ing where the observed loads would intersect with the neweupp
bounds, we project performance rates3sfg8, 19.9, and5.8Gbps

for minimal forwarding, IP routing, and IPsec, respectyeiven
64B packets, and find that the CPU remains the bottleneck. Sim-
ilarly, we can estimate the performance we might have obthin
given the Abilene trace, had we not been limited to just tw@€ NI
slots: ignoring the PCle bus and assuming the socket-I/Cchns
reach80% of its nominal capacity, we estimate a performance of
70Gbps for the minimal-forwarding application given the Adnke
trace. These are, of course, only projections, and we irtierelli-
date them when possible.

In summary, we found that current servers achieve commend-
able performance given the realistic Abilene workloadsnfmal
forwarding: 24.6Gbps, IP routing: 24.6Gbps), but fare worse
given the worst-casé4B-packet workloads (minimal forwarding:
9.7Gbps, IP routing:6.35Ghps). We showed that the CPU is the
bottleneck, but estimated that next-generation serversxected
to offer a4-fold performance improvement. In the next section, we
look at server performance in a complete cluster router.

6. THE RB4 PARALLEL ROUTER

We built a prototype parallel router based on the design a&nd p
formance lessons presented so far. Our router—the RB4—igtens
of 4 Nehalem servers, interconnected through a full-mesh topol
ogy with Direct-VLB routing (83). Each server is assignedragke
10Gbps external line.

6.1 Implementation

We start with a straightforward implementation of the altions
described earlier, then add certain modifications to DikécB,
aimed at reducing the load on the CPUs (since we identifieskthe
as our bottleneck) and avoiding reordering (the issue werdsd
from 83). We discuss each in turn.

Minimizing packet processing. In Direct VLB, each packet is
handled by2 or 3 nodes 2, when it is directly routed from its
input to its output node3, when it is routed via an intermedi-
ate node). The straightforward implementation would beaweh
at each node, the CPU process the packet's header and determi
where to send it next, which would result in each packet'slhea
being processed by a CPor 3 times. Instead, in RB4, each
packet's header is processed by a G#tily once at its input node;
subsequent nodes simply move the packet from a receive aosttr
mit queue. To achieve this, we leverage a NIC feature thagrss
packets to receive queues based on their MAC addresses.

More specifically: When a packet arrives at its input nodes on
of the node’s CPUs processes the packet’s headers and srtbede
identity of the output node in the packet's MAC address. Attea
subsequent node, the packet is stored in a receive queué base
its MAC address; hence, by looking at the receive queue wihere
packet is stored, a CPU can deduce the packet's MAC addrdss an
from that, the packet’s output node. In this way, the CPU liaat-
dles the packet at subsequent nodes can determine whergita se
without actually reading its headers. We should clarifyt the par-
ticular implementation works only if each “internal” pogtgch port
that interconnects two cluster servers) has as many reqeivees
as there are external ports—hence, with current NICs, itlevaot
be applicable to a router with more thé or so external ports.

Avoiding reordering. In a VLB cluster, two incoming packets
can be reordered because they take different paths withisame
server (due to multiple cores) or across the cluster (dueaal |
balancing). One approach to avoiding reordering relies er p
fectly synchronized clocks and deterministic per-packetessing
latency [37]; we reject this, because it requires custonraipe
systems and hardware. Another option would be to tag incomin
packets with sequence numbers and re-sequence them atpi ou
node; this is an option we would pursue, if the CPUs were not ou
bottleneck. Instead, we pursue an alternative approachrtbstly
avoids, but does not completely eliminate reordering.

We try to avoid reorderingvithin each TCP or UDP flow-after
all, the main reason for avoiding reordering is that it cafectf
TCP or streaming performance. First, same-flow packetsiagri
at a server are assigned to the same receive queue. Secendfa s
same-flow packets arriving at the cluster witBinmsec from one
another are sent, whenever possible, through the sameniediéaite
node—this is akin to the Flare load-balancing scheme [33jel\a
burst of same-flow packets (a “flowlet” in Flare terminologiges
not “fit” in one path {.e., sending the whole flowlet to the same in-
termediate node would overload the corresponding linlgntthe
flowlet is load-balanced at the packet level as in classic VW@
found that, in practicej = 100msec (a number well above the
per-packet latency introduced by the cluster) works wiedl, al-
lows most flowlets to be sent through one path, thereby avgidi
reordering (86.2).

6.2 Performance

Forwarding performance. Given a workload ofi4B packets, we
measure RB4’s routing performance i&Gbps,i.e., each server
supports an external line rate Gbps. This number is in keeping
with our expectations: VLB theory tells us that, idanode Direct-
VLB cluster of external ratg?, each node must process packets
at a rate betweeBR (when all packets are directly routed) and
3R (83.2). Given a&4B packet workload, RB4 routes all packets
directly (because the traffic rate between any two nodesvsrne
enough to saturate the link between them), hence, each nosie m
process packets at rapdR. Moreover, we know that, givei4B
packets, a single server achieves a maximum processingfate
9.7Gbps when running minimal forwarding arid35Gbps when
running IP routing (85). In RB4, each server performs both IP
routing (for packets entering the cluster at that served amin-
imal forwarding (for packets exiting the cluster at thatvesy or
being load-balanced during the second VLB phase). Hence, we
expected RB4 performance to lie betwegrx 6% = 12.7 and

4 x % = 19.4Gbps. The reason for RB4’s somewhat lower per-
formance is due to the extra overhead caused by the reogderin
avoidance algorithm (recall that our bottleneck is the Catd] re-
ordering avoidance requires it to maintain per-flow countand
packet-arrival times, as well as keep track of link utilinat to
avoid overloading).

Given the Abilene workload, we measure RB4’s routing perfor
mance at35Ghps, which, again, is in keeping with what we ex-
pected: A single server (running either minimal forwardimglP
routing) can process the Abilene workloadat6Gbps (85), hence,
we expected RB4 to process the same workload at a rate between
4x 258 = 33and4 x 23° = 49Gbps (the latter for a perfectly uni-
form traffic matrix). At the same time, the performance of ptw-
totype is constrained by the limit of approximatal§Gbps that a
single (dual port) NIC can sustain, as described in §4. B5&bps,
we are close to this per-NIC limit: each NIC that handles aerex
nal line sustains approximatey75Gbps of traffic on the port con-

nected to the external line plus approximatéigbps on the sec-
ond “internal” port. So, RB4's performance is within the exped
range, but, unfortunately, the limited number of PCle stotsour
prototype server (because of which we face the per-NIC Jipri-
vents us from precisely quantifying where—in the range leetw
2R and3R—VLB implementation overhead lies. In future work,
we plan to upgrade our server motherboards to fully explbre t
overhead.

Reordering. To measure the amount of reordering introduced by
RB4, we replay the Abilene trace, forcing the entire tracldw
between a single input and output port—this generated nnaiffict
than could fit in any single path between the two nodes, cgusin
load-balancing to kick in, hence, creating opportunity feorder-
ing. We measure reordering as the fraction of same-flow pgacke
sequences that were reordered within their TCP/UDP flowirfor
stance, if a TCP flow consists 6f packets that enter the cluster
in sequence(p1, p2, p3, p4, ps) and exit the cluster in sequence
(p1,pa, p2,p3,ps), We count one reordered sequence. With this
metric, we observ@.15% reordering when using our reordering-
avoidance extension arid5% reordering when using Direct VLB
without our extension.

Latency. We estimate packet latency indirectly: a packet'’s traver-
sal through a single server involves two back-and-forth Divis-

ploit multiprocessor PCs. We also started with Click, eseshit
to exploit new server technologies, studied the perforredrene-
fits of these technologies, and, finally, applied Click tolding a
cluster-based router.

Biancoet al. measured the routing performance of a single-core
server equipped with a PCI-X (rather than PCle) 1/O bus; they
found that the bottlenecks were the (single) CPU and the®PClI-
bus [23]. More recent work studied the performance of matgc
shared-bus Xeon servers in the context of TCP terminati8hdrd
virtual routers [31], and we, also, studied the packet-pssing ca-
pabilities of that architecture [29]; these studies refiuat the bot-
tleneck lies in the shared bus (the “front-side bus” or FSBect-
ing the CPUs to the memory subsystem. In contrast, Routk®8ric
relies on a newer server architecture; we showed that tlaibles a
2 — 3z performance improvement, and that the packet-processing
bottleneck now lies at the CPUs.

Finally, our work extends an earlier workshop paper [22]even
we made the case for scaling software routers and proposed a
cluster-based approach [22]; in this paper, we presentexdzal el
design, implementation, and evaluation for that approach.

8. DISCUSSION

We evaluated the feasibility of our router architecturenfrthe

fers between the NIC and memory (one for the packet and one standpoint of performance—the traditional Achilles’ heélsoft-

for its descriptor) plus processing by the CPUs. In addijtion
NIC-driven batching means that a packet may wait férpack-
ets before transmission. We estimate a DMA transfer fédB
packet aR.56usecs based on our DMA engine speedi@iMHz
and published reports [50]. From Table 3, routing4B packet
takes2425 cycles or0.8usecs and, hence, batching can add up to
12.8usecs. Thus, we estimate a per-server packet latengyof

(4 x 2.56 + 12.8 4 0.8). Traversal through RB4 includ@s-3 hops;
hence we estimate RB4’s latency 456 — 66.4us. As an addi-
tional point of reference, [42] reports a packet-procegsatency

of 26.3us for a Cisco 6500 Series router.

7. RELATED WORK

Using general-purpose elements to build programmablesrsut
is not a new idea. The original NSFNET used computers running
Berkeley UNIX interconnected with4#Mbps IBM token ring [26].
MGR, an early high-speed router, used custom forwardirgjren
cards interconnected through a switched bus, yet the goces
these cards was a general-purpose one [43]. This comhinatio
of custom cards/interconnect with general-purpose psmrssvas
also used in commercial routers, until router manufactiremsi-
tioned to ASIC-based forwarding engines for higher perfance.
More recently, single-server software routers have enteagdow-
cost solutions for low-speed{5Gbps) environments [16]. Our
contribution lies in detailing how multiple servers can lhestered
to achieve greater scalability and studying how modernessrean
be exploited to this end.

Several efforts have sought to reconcile performance and pr
grammability using network processors (NPs) [45]. Mosersty,
Turneret al. proposed a “supercharged” Planetlab Platform, which
uses IXP NPs (for the data plane) and general-purpose server
(for the control plane), interconnected by an Ethernetdwithey
achieve forwarding rates &fGbps for130B packets [46]. We fo-
cus, instead, on using general-purpose servers even onathe d
plane, and our results indicate these offer competitivéopeance.

Click [25, 38] and Scout [45] explored how to architect raute
software so as to enable easy programmability and extdibgibi
SMP Click [25] extended the early Click architecture to betx-

ware routers. However, its ultimate feasibility dependsaoldli-
tional, equally important issues, such as space and power co
sumption, where any solution based on general-purposeerserv
components faces tough competition from solutions using cu
tom hardware. On the other hand, server-based solutions en-
able programmability and extensibility. So, to compare vese
based, programmable router to a specialized, non-progedsiem
one, we would have to quantify the benefits of programmabit

e.g, would a20% increase in power consumption be worth the abil-
ity to rapidly upgrade network functionality, say, to prategainst

a new type of worm? We do not attempt such a comparison here—it
merits to be the topic of a research project in itself. We atibguss
space and power consumption, as well as cost, briefly, ared aff
few data points on how current routers fare, as relevanttpanh
reference.

Form factor. Router form factor is typically a question of port den-
sity. Off the shelf, the RB4 would be4Gbps router (assuming we
can close our remaining performance gap) that occugiesvhich

is not unreasonable. However, scaling RB4 up would be pnoble
atic, especially if we introduce additional servers to coegih the
limited per-server fanout. One avenue is to grow the pereser
fanout; however, doing so by adding external NIC slots woeiddl
to larger servers. Instead, we can integrate Ethernetates di-
rectly on the motherboard (commonly done for laptops, neogi
only hardware reconfiguration). The question is whether arein-
tegrate many such controllers and still satisfy concerres owol-
ing and chipset area. We estimate that a regéd@mm mother-
board could accommodai& controllers to drive2 x 10Gbps and
30 x 1Gbps interfaces for a reasonabte8W. With this, we could
directly connect30—40 servers. ThuslU servers, each handling
one 10Gbps external line, would result in 200-400Gbps router
that occupies0U. In addition, form factor will benefit from server
advancese.g, we estimated that thesocket Nehalem would offer
a4z performance improvement (85.3) and, hence, for the same per
formance, we can expect to reduce form factodby The above is,
of course, just a back-of-the-envelope estimate that regu@valu-
ation before we draw final conclusions. For reference, we tiwdt
the Cisco 7600 Series [3] offer up 360Gbps in &21U form-factor.

Power. Based on our server's nominal power rating, the RB4 con- 10. REFERENCES
sumes2.6KW. As a point of reference, the nominal power rating
of a popular mid-range router loaded f#0Gbps is1.6KW [3]—
about60% lower. One approach to reducing power consumption
would be to slow-down, or put to sleep, system components tha]))
are not stressed by router workloads, using commonly diaila [3] Cisco 7600 Series Routetst t p: // ci sco. cont en/

low-power modes for different subsystems (memory, seiiws), US/ product s/ hw/ r out er s/ ps368/ i ndex. htn .
floating-point units). [4] Cisco 7600 VPN Port Adapteht t p: // ci sco. com

en/ US/ product s/ ps6917/i ndex. htn .
Cost/Price. With respect to the price/cost: our RB4 prototype cost [5] Cisco Carrier Routing Systerht t p: / / ci sco. conl en/
us $14, 500; for reference, the quoted price for4dGbps Cisco US/ pr oduct s/ ps5763/ i ndex. ht ni .
7603 router was ®, 000. Again, this should not be viewed as a [6] Intel 10 Gigabit XF SR Server Adapters.
direct comparison, since the former represents raw costite whe

[1] Astaro: Security Gatewaynt t p: / / ww. ast ar o. com
[2] Cavium Octeon Multi-Core Processor Famiht.t p:
/I cavi umet wor ks. coni OCTEON_M PS64. ht i .

http://intel.conl Products/ Server/

latter is a product price. Adapt er s/ 10- GhE- XFSR- Adapt er s/
Programmability. Our high-level goal was to achieve both high 10- GbE- XFSR- Adapt er s- overvi ew. ht m
performance and ease of programming. Hence, we started with [7] Intel VTune Performance Analyzent t p:

Click—which offers an elegant programming framework fouto //software.intel.con en-us/intel-vtune/.
ing applications [38]—and sought to maximize performandw [8] Narus: Real-Time Traffic Intelligence.

out compromising Click’'s programming model. Our design maai http://narus. com

tained Click’s modularity and extensibility; our only imention [9] NetFPGA: A Line-rate, Flexible Platform for Researctdan
was to enforce a specific element-to-core allocation. Assalte Classroom Experimentatioht t p: / / net f pga. or g.

our router is not just programmable in the literal sense,(one [10] NLANR: Internet Measurement and Analysis.

can update its functionality), it also offers ease of pragraability. http://moat.nl anr. net.

Case in point: beyond our 10G NIC driver, the RB4 implementa- [11] principles and Practices of Interconnection Networks

tion required us to write only two new Click “elements”; thigoet Chapter 6. William J. Dally and Brian Towles, Morgan
to develop a stable NIC driver far exceeded the effort toenoir Kaufmann. 2004. '

two Click elements and tie them with other pre-existing edais [12]
in a Click configuration.

As a next step, future research must demonstrate what neis kin
of packet processing RouteBricks enables and how thegs pie
formance. Since we have identified CPU processing as thiebott
neck of our design, we expect performance to vary signiflgaag
a function of the application, as showcased by the IP-rgugind
IPsec experiments (85). Hence, the key challenge will beea-i

Receive-Side Scaling Enhancements in Windows Server
2008.ht t p: / / www. mi cr osof t . com whdc/
devi ce/ net wor k/ NDI S_RSS. nspx.
[13] Riverbed: Application Acceleration.
http://ww. riverbed. com
[14] Sourcefire: Network Security.
http://ww. sourcefire.com

tify the right API (perhaps the right Click extension), whiwill [15] Syma.ntec: Data Loss Protection.

allow the programmer not only to easily add new, non-tradii htt p: //V‘f""‘N- vontu.com

functionality, but also to easily predict and control theuiing [16] Vyatta Series 2500.

performance implications. http://vyatta. com downl oads/ dat asheet s/

vyatta_2500_dat asheet . pdf.

[17] Cisco Opening Up I0Sht t p: / / www. net wor kwor | d.
cont news/ 2007/ 121207- ci sco-i os. htm

9. CONCLUSIONS December 2007.

We looked to scale software routers as a means of moving from [18] Junip?r Press Release: Open IP Solution Program.
a network of special-purpose hardware routers to one ofrgéne http://wwmv. j uni per. net/conpany/
purpose infrastructure. We proposed a parallel routerigech ggg;sce”t er/pr/ 2007/ pr-071210. ht nl , July

ture that parallelizes routing functionality both acrossl avithin)])
servers. The goal we set was high: essentially to match ttierpe ~ [19] Next Generation Intel Microarchitecture (Nehalem).

mance of even high-end routers (with line rated @Gbps and.0s http://intel.conl pressroontarchive/

or 100s of ports). We cannot claim that our results, based on tsday’ ref er ence/ whi t epaper _Nehal em pdf , 2008.
servers, make a slam-dunk case for getting there. Thattsaigldo [20] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
show that we are a whole lot closer than common expectatmms f Commodity, Data Center Network Architecture. In

software routers would have led us to believe: we can coimtbtyt Proceedings of the ACM SIGCOMM Conferengeattle,

build software routers with multiple (abo&t9) 1Gbps ports per WA, USA, August 2008.

server, which we can scale 16s or100s of ports by grouping mul- [21] T. Anderson, T. Roscoe, and D. Wetherall. Preventing

tiple servers; we come very close to achieving a line rate®)&bps Internet Denial-of-Service with Capabilities. Rroceedings
and, importantly, show that emerging servers promise teectbe of the ACM Workshop on Hot Topics in Networks (HotNets)
remaining gap tal0Gbps, possibly offering up td0Gbps. The Cambridge, MA, USA, November 2003.

broad implications of this are twofold: one is that softwesaters [22] K. Argyraki, S. Baset, B.-G. Chun, K. Fall, G. lannacegn
could play a far more significant role than previously bedigyvthe A. Knies, E. Kohler, M. Manesh, S. Nedevschi, and

more ambitious extrapolation is that a very different irtdystruc- S. Ratnasamy. Can Software Routers Scale?rdceedings
ture and way of building networks might actually be withirt1so- of the ACM SIGCOMM Workshop on Programmable Routers
distant reach. for Extensible Services of TOmorrow (PRESTEBattle,

WA, USA, August 2008.

(23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

A. Bianco, R. Birke, D. Bolognesi, J. M. Finochietto,

G. Galante, and M. Mellia. Click vs. Linux. IRroceedings

of the IEEE Workshop on High Performance Switching and
Routing (HPSR)Hong Kong, May 2005.

R. Bolla and R. Bruschi. PC-based Software RoutershHig
Performance and Application Service Support. In
Proceedings of the ACM SIGCOMM Wokshop on

Programmable Routers for Extensible Services of TOmorrow [40]

(PRESTO)Seattle, WA, USA, August 2008.

B. Chen and R. Morris. Flexible Control of Parallelisma
Multiprocesor PC Router. INSENIX Technical Conference
2001.

B. Chinoy and H.-W. Braun. The National Science
Foundation Network. Technical Report GA-21029, SDSC
Applied Network Research group, 1992.

D. Comer.Network System Design using Network
ProcessorsPrentice Hall, 2004.

W. J. Dally and B. TowlesPrinciples and Practices of
Interconnection Network$Morgan Kaufmann, 2004.

N. Egi, M. Dobrescu, J. Du, K. Argyraki, B.-G. Chun,

K. Fall, G. lannaccone, A. Knies, M. Manesh, L. Mathy, and
S. Ratnasamy. Understanding the Packet Processing
Capabilities of Multi-Core Servers. Technical Report
LABOS-REPORT-2009-001, EPFL, Switzerland, February
20009.

N. Egi, A. Greenhalgh, mark Handley, M. Hoerdt, F. Huici
and L. Mathy. Fairness Issues in Software Virtual Routers. |
Proceedings of the ACM SIGCOMM Workshop on

[38] E. Kohler, R. Morris, et al. The Click Modular Routé&xCM

[39]

[41]

[42]

[43]

Programmable Routers for Extensible Services of TOmorrow [44]

(PRESTO)Seattle, WA, USA, August 2008.

N. Egi, A. Greenhalgh, mark Handley, M. Hoerdt, F. Huici
and L. Mathy. Towards High Performance Virtual Routers on
Commodity Hardware. IiProceedings of the ACM
International Conference on Emerging Networking
EXperiments and Technologies (CoNEXMIadrid, Spain,
December 2008.

R. Ennals, R. Sharp, and A. Mycroft. Task Partitioning f
Multi-Core Network Processors. Proceedings of the IEEE
International Conference on Computer Communications
(ICCC), Mawiritius, April 2005.

P. P. Gelsinger. Intel Architecture Press Briefihgt p:

/I downl oad. i nt el . cont pressrooni archi ve/
ref erence/ Gel si nger_bri efing_0308. pdf,
March 2008.

P. Gupta, S. Lin, and N. McKeown. Routing Lookups in
Hardware at Memory Access SpeedsPiioceedings of the
IEEE INFOCOM ConferengeSan Francisco, CA, USA,
March 1998.

S. Kandula, D. Katabi, S. Sinha, and A. Berger. Flare:
Responsive Load Balancing Without Packet Reordering.
ACM Computer Communications Review (CCR)2),
April 2007.

D. Katabi, M. Handley, and C. Rohrs. Internet Congestio
Control for High Bandwidth-Delay Product Networks. In
Proceedings of the ACM SIGCOMM Conferenedtsburgh,
PA, USA, August 2002.

I. Keslassy, S.-T. Chuang, K. Yu, D. Miller, M. Horowjtz
0. Solgaard, and N. McKeown. Scaling Internet Routers
Using Optics. InProceedings of the ACM SIGCOMM
ConferenceKarlsruhe, Germany, August 2003.

[45]

[46]

[47]

[48]

[49]

[50]

Transactions on Computer Systerh8(3):263-297, August
2000.

T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H.
Kim, S. Shenker, and I. Stoica. A Data-Oriented (and
Beyond) Network Architecture. IRroceedings of the ACM
SIGCOMM ConferengeKyoto, Japan, August 2007.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turn. OpenFlow:
Enabling Innovation in Campus NetworkSCM Computer
Communications Review88(2), April 2008.

J. C. Mogul, P. Yalagandula, J. Tourrilhes, R. McGeer,

S. Banerjee, T. Connors, and P. Sharma. API Design
Challenges for Open Router Platforms on Proprietary
Hardware. InProceedings of the ACM Workshop on Hot
Topics in Networks (HotNetsEalgary, Alberta, Canada,
October 2008.

K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, and

C. Diot. Analysis of Measured Single-Hop Delay from an
Operational Backbone Network. Proceedings of the IEEE
INFOCOM ConferenceNew York, NY, USA, June 2002.

C. Partridge, P. P. Carvey, E. Burgess, I. Castineyra,

T. Clarke, L. Graham, M. Hathaway, P. Herman, A. King,
S. Kohalmi, T. Ma, J. Mcallen, T. Mendez, W. C. Milliken,
R. Pettyjohn, J. Rokosz, J. Seeger, M. Sollins, S. Starch,
B. Tober, G. D. Troxel, D. Waitzman, and S. Winterble. A 50
Gigabit Per Second IP RoutédEEE/ACM Transactions on
Networking 6(3), June 1998.

PIC-SIG. PCI Express Base 2.0 Specification, 2007.
http://www.pcisig.com/specifications/pciexpress/i2ase

T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb. Bling a
Robust Software-Based Router Using Network Processors.
In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSBanff, Canada, October 2001.

J. Turner, P. Crowley, J. Dehart, A. Freestone, B. Helle

F. Kuhms, S. Kumar, J. Lockwood, J. Lu, M. Wilson,

C. Wiseman, and D. Zar. Supercharging PlanetLab — A High
Performance, Multi-Application, Overlay Network Platfor
In Proceedings of the ACM SIGCOMM Confereni€goto,
Japan, August 2007.

L. Valiant and G. Brebner. Universal Schemes for Patall
Communication. IrfProceedings of the ACM Symposium on
Theory of Computing (STOYlilwaukee, WI, USA, June
1981.

B. Veal and A. Foong. Performance Scalability of a
Multi-Core Web Server. IiiProceedings of the ACM/IEEE
Symposium on Architectures for Networking and
Communications Systems (ANCSjlando, FL, USA,
December 2007.

R. Zhang-Shen and N. McKeown. On Direct Routing in the
Valiant Load-Balancing Architecture. Froceedings of the
IEEE Global Telecommunications Conference
(GLOBECOM) St Louis, MO, USA, November 2005.

L. Zhao, Y. Luo, L. Bhuyan, and R. lyer. SpliceNP: A TCP
Splicer using a Network Processor.Pmoceedings of the
ACM Symposium on Architectures for Networking and
Communications Systems (ANCjinceton, NJ, USA,
October 2005.

