
RouteBricks: Exploiting Parallelism
To Scale Software Routers

Mihai Dobrescu1 and Norbert Egi2
∗

, Katerina Argyraki1, Byung-Gon Chun3,
Kevin Fall3, Gianluca Iannaccone3, Allan Knies3, Maziar Manesh3, Sylvia Ratnasamy3

1 EPFL 2 Lancaster University 3 Intel Research Labs
Lausanne, Switzerland Lancaster, UK Berkeley, CA

ABSTRACT
We revisit the problem of scaling software routers, motivated by
recent advances in server technology that enable high-speed paral-
lel processing—a feature router workloads appear ideally suited to
exploit. We propose a software router architecture that parallelizes
router functionality both across multiple servers and across multi-
ple cores within a single server. By carefully exploiting parallelism
at every opportunity, we demonstrate a35Gbps parallel router pro-
totype; this router capacity can be linearly scaled throughthe use of
additional servers. Our prototype router is fully programmable us-
ing the familiar Click/Linux environment and is built entirely from
off-the-shelf, general-purpose server hardware.

Categories and Subject Descriptors
C.2.6 [Computer-Communication Networks]: Internetworking;
C.4 [Performance of Systems]; D.4.4 [Operating Systems]: Com-
munications Management; D.4.7 [Operating Systems]: Organiza-
tion and Design; D.4.8 [Operating Systems]: Performance

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Software Router, Multicore, Parallelism, Programmability

1. INTRODUCTION
To date, the development of network equipment—switches,

routers, various middleboxes—has focused primarily on achieving
high performance for relatively limited forms of packet process-
ing. However, as networks have taken on increasingly sophisti-
cated functionality (e.g., data loss protection, application acceler-
ation, intrusion detection), and as major ISPs compete in offering
new services (e.g., video, mobility support services), there has been
a renewed interest in network equipment that is programmable and
extensible. In the absence of such extensibility, network providers

∗Work done while this author was an intern at Intel Labs Berkeley.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’09,October 11–14, 2009, Big Sky, Montana, USA.
Copyright 2009 ACM 978-1-60558-752-3/09/10 ...$5.00.

have typically incorporated new functionality by deploying special-
purpose network “appliances” or middleboxes [1, 8, 13–15].How-
ever, as the cost of deploying, powering, and managing this assort-
ment of boxes grows, the vision of a consolidated solution inthe
form of an extensible packet-processing “router” has grownmore
attractive. And indeed, both industry and research have recently
taken steps to enable such extensibility [9, 17,18,40,41].

The difficulty is that the necessary extensions often involve mod-
ification to the per-packet processing on a router’s high-speed data
plane. This is true, for example, of application acceleration [13],
measurement and logging [8], encryption [1], filtering and intru-
sion detection [14], as well as a variety of more forward-looking
research proposals [21, 36, 39]. In current networking equipment,
however, high performance and programmability are often compet-
ing goals—if not mutually exclusive. On the one hand, high-end
routers, because they rely on specialized and closed hardware and
software, are notoriously difficult to extend, program, or otherwise
experiment with. On the other, “software routers” perform packet-
processing in software running on general-purpose platforms; these
are easily programmable, but have so far been suitable only for low-
packet-rate environments [16].

The challenge of building network infrastructure that is pro-
grammableand capable of high performance can be approached
from one of two extreme starting points. One might start with
existing high-end, specialized devices and retro-fit programma-
bility into them [17, 18, 40, 41]. For example, some router ven-
dors have announced plans to support limited APIs that will allow
third-party developers to change/extend the software partof their
products (which does not typically involve core packet process-
ing) [17, 18]. A larger degree of programmability is possible with
network-processor chips, which offer a “semi-specialized” option,
i.e., implement only the most expensive packet-processing opera-
tions in specialized hardware and run the rest on conventional pro-
cessors. While certainly an improvement, in practice, network pro-
cessors have proven hard to program: in the best case, the program-
mer needs to learn a new programming paradigm; in the worst, she
must be aware of (and program to avoid) low-level issues likere-
source contention during parallel execution or expensive memory
accesses [27,32].

From the opposite end of the spectrum, one might start with
software routers and optimize their packet-processing performance.
The allure of this approach is that it would allow a broad commu-
nity of developers to build and program networks using the operat-
ing systems and hardware platforms they tend to be most familiar
with—that of the general-purpose computer. Such networks also
promise greater extensibility: data and control plane functionality
can be modified through a software-only upgrade, and router devel-
opers are spared the burden of hardware design and development.

In addition, leveraging commodity servers would allow networks
to inherit the many desirable properties of the PC-based ecosys-
tem, such as the economic benefits of large-volume manufacturing,
a widespread supply/support chain, rapid advances in semiconduc-
tor technology, state-of-the-art power management features, and so
forth. In other words, if feasible, this could enable networks that
are built and programmed in much the same way as end-systems
are today. The challenge, of course, lies in scaling this approach to
high-speed networks.

There exist interesting design points between these two ends of
the spectrum. It is perhaps too early to know which approach to
programmable routers is superior. In fact, it is likely thateach one
offers different tradeoffs between programmability and traditional
router properties (performance, form factor, power consumption),
and these tradeoffs will cause each to be adopted where appropri-
ate. As yet however, there has been little research exposingwhat
tradeoffs are achievable. As a first step, in this paper, we focus
on one extreme end of the design spectrum and explore the fea-
sibility of building high-speed routers using only PC server-based
hardware and software.

There are multiple challenges in building a high-speed router out
of PCs: one of them is performance; equally important are power
and space consumption, as well as choosing the right programming
model (what primitives should be exposed to the router’s software
developers, such that a certain level of performance is guaranteed
as in a traditional hardware router). In this paper, we focuson
performance; specifically, we study the feasibility of scaling soft-
ware routers to the performance level of their specialized hardware
counterparts. A legitimate question at this point is whether the per-
formance requirements for network equipment are just too high and
our exploration is a fool’s errand. The bar is indeed high. Interms
of individual link/port speeds,10Gbps is already widespread; in
terms of aggregate switching speeds, carrier-grade routers [5] range
from 10Gbps up to92Tbps! Software routers, in comparison, have
had trouble scaling beyond the1–5Gbps range [16].

Our strategy to closing this divide is RouteBricks, a routerarchi-
tecture that parallelizes router functionality across multiple servers
and across multiple cores within a single server. Parallelization
across servers allows us to incrementally scale our router capacity
by adding more servers. Parallelizing tasks within a serverallows
us to reap the performance benefits offered by the trend towards
greater parallelism in server hardware in the form of multiple sock-
ets, cores, memory controllers, and so forth. We present Route-
Bricks’ design and implementation, and evaluate its performance
with respect to three packet-processing applications: packet for-
warding, traditional IP routing, and IPsec encryption. We designed
RouteBricks with an ambitious goal in mind—to match the perfor-
mance of high-end routers with10s or 100s of 1Gbps or10Gbps
ports. The results we present lead us to be cautiously optimistic
about meeting this goal. We find that RouteBricks approachesour
target performance levels for realistic traffic workloads,but falls
short for worst-case workloads. We discoverwhy this is the case
and show that, fortunately, what is required to overcome this limi-
tation is well aligned with current server technology trends.

We continue with a discussion of our guiding design principles
and roadmap for the remainder of this paper.

2. DESIGN PRINCIPLES
Our ultimate goal is to make networks easier to program and

evolve, and this leads us to explore a router architecture based on
commodity, general-purpose hardware and operating systems. In
this section, we summarize the design principles that emerged from
translating this high-level goal into a practical system design.

Figure 1: High-level view of a traditional router and a server
cluster-based router.

Parallelism across servers. We want to design a router with
N ports, each port with full-duplex line rateR bps. The role of
the router is to receive the packets arriving at all these ports, pro-
cess them, and transfer each incoming packet from its input port to
the desired output port (which is typically determined by process-
ing the packet’s IP headers). This router’s functionality can thus
be broken into two main tasks: (1) packet processing, like route
lookup or classification, and (2) packet switching from input to out-
put ports. In current hardware routers, packet processing typically
happens at the linecard, which handles from one to a few ports,
while packet switching happens through a switch fabric and cen-
tralized scheduler; as a result, each linecard must processpackets
at a rate proportional to the line rateR, while the fabric/scheduler
must switch packets at rateNR (i.e., it must handle the aggregate
traffic that traverses the router). Existing software routers, on the
other hand, follow a “single server as router” approach; as aresult,
the server/router must perform switchingandpacket processing at
rateNR.

In many environments,N andR can be fairly high. The most
common values ofR today are1, 2.5 and10Gbps, with40Gbps
being deployed by some ISPs;N can range from ten up to a few
thousand ports. As specific examples: a popular mid-range “edge”
router supports up to360 1Gbps ports [3]; the highest-end “core”
router supports up to4608 10Gbps ports [5]. For suchN andR,
getting a general-purpose server to process and switch packets at
rateNR is an unrealistic goal: such performance is2–3 orders of
magnitude away from current server performance and, even with
recent server advances, we cannot hope to close so large a gap.

Recognizing this leads to our first design principle: that router
functionality be parallelized across multiple servers, such that the
requirements on each individual server can be met with existing or,
at least, upcoming server models. This in turn leads us to aclus-
ter router architecture (depicted in Fig. 1), where each serverplays
the role of a traditional router linecard,i.e., performs packet pro-
cessing for one up to a few router ports; as with a linecard, this
requires that each server can process packets at a rate proportional
to R. The problem then is how to switch packets between servers.
We look for an appropriatedecentralizedsolution within the litera-
ture on parallel interconnects [28]. In §3, we show that our use of
commodity server and link technology narrows our options toso-
lutions based onload-balancedinterconnects, in which each node
can independently make packet routing and dropping decisions for
a subset of the router’s overall traffic.

Thus, we design a router with no centralized components—in
fact, no component need operate at a rate greater thancR, wherec

is independent ofN and ranges typically from2 to3. By paralleliz-
ing both packet processingand switching across multiple servers,
we thus offer an approach to building a router withN ports and line
rateR bps, using servers whose performance need only scale with
cR, independently ofN .

Parallelizing router functionality across multiple servers also
leads to an architecture that, unlike current network equipment, is
incrementally extensible in terms of ports: For practical port counts
(up to2048 ports—shown in §3.3), we show that we can increase
the number of ports byn (and switching capacity bynR) at a cost
that scales linearly withn, simply by adding servers to the cluster.
In this sense, a cluster of general-purpose servers is extensible, not
only in terms of router functionality, but also in terms of capacity.

Parallelism within servers. Our cluster router architecture is
only feasible if single-server performance can scale withcR. With
10Gbps ports and our lowestc = 2, this requires that a server
scale to at least20Gbps. While a less daunting target thanNR,
even this rate at first appears beyond the capabilities of commod-
ity servers—recent studies [23, 30] report rates under10Gbps, in
the1–4Gbps range for minimum-size packets. This leads us to our
second design principle: that router functionality be parallelized
not only across servers, but also across multiple processing paths
within each server. In §5 we show that, although non-trivial, scal-
ing to cR is within reach, provided: (1) the hardware architecture
of the server offers internal parallelism that extends beyond pro-
cessing power to I/O and memory accesses, and (2) the server’s
software architecture fully exploits this hardware parallelism. In
§4.2, we discuss how such parallelism may be exploited.

Resulting tradeoff. The downside to our two key design
decisions—using general-purpose servers and parallelizing router
functionality—is that they make it difficult for our router to offer
the strict performance guarantees that hardware routers have tradi-
tionally offered. In particular, packet reordering (considered unde-
sirable due to its potential impact on TCP throughput) and latency
are two fronts on which a software router may fundamentally have
to offer more “relaxed” performance guarantees. We discussper-
formance in greater detail throughout this paper, but note here that
the historical emphasis on strict performance guarantees,even for
worst-case traffic workloads, arose more because of vendors’ tradi-
tional benchmarking practices than the realism of these workloads
or criticality of these performance guarantees. Considering this,
and the fact that “relaxed” performance guarantees open thedoor
to more general-purpose network infrastructure, we deemedthis a
tradeoff worth exploring.

In the remainder of this paper, we present the design and imple-
mentation of a parallel software router that embodies theseprin-
ciples: we describe how we parallelize router functionality across
multiple servers in §3; how we design to exploit the parallelism
within a server in §4; and finally evaluate our designs in §5-6.

3. PARALLELIZING ACROSS SERVERS
In a cluster router, each server takes on packet processing

for one or a few ports and also participates in cluster-wide dis-
tributed switching. The challenge in coping with packet process-
ing is largely one of extracting the required performance from each
server—our focus in §4. Here, we focus on designing a distributed
switching solution that is compatible with our use of commodity
servers.

3.1 The Problem
A switching solution serves two high-level purposes: (1) itpro-

vides a physical path connecting input and output ports and (2) it
determines, at each point in time, which input gets to relay packets
to which output port and, consequently, which packets are dropped.
This must be achieved in a manner that offers the following guaran-
tees: (1)100% throughput (i.e., all output ports can run at full line
rateR bps, if the input traffic demands it), (2) fairness (i.e., each

input port gets its fair share of the capacity of any output port), and
(3) avoids reordering packets. Hence, a switching solutioninvolves
selecting an interconnecttopologywith adequate capacity and a
routing algorithm that selects the path each packet takes from its
input to output port. In this, commodity servers limit our choices
by introducing the following constraints:

1. Limited internal link rates:The “internal” links that inter-
connect nodes within the cluster (Fig. 1) cannot run at a rate
higher than the external line rateR. This is because we
want to use commodity hardware, including network inter-
face cards (NICs) and link technology.E.g., requiring an
internal link of 100Gbps to support an external line rate of
10Gbps would be expensive, even if feasible.

2. Limited per-node processing rate:As motivated earlier, we
assume that a single server can run at a rate no higher than
cR for a small constantc > 1. We estimate feasiblec values
for today’s servers in §5.

3. Limited per-node fanout:The number of physical connec-
tions from each server to other nodes should be a small value,
independent of the number of servers. This is because we
use commodity servers, which have a limited number of NIC
slots. E.g., today, a typical server can accommodate4–6
NICs, where each NIC fits2–8 ports.

We now look for an appropriate topology/routing combination
within the literature on parallel interconnects [28]. An appropriate
solution is one that offers the guarantees mentioned above,meets
our constraints, and is low-cost. In the interconnect literature, cost
typically refers to the capacity of the interconnect (i.e., # links×
link rate); in our case, the dominant cost is the number of servers
in the cluster, hence, we look for a solution that minimizes this
quantity.

3.2 Routing Algorithms

Design options.The literature broadly classifies interconnect rout-
ing algorithms as either single-path or load-balanced [28]. With the
former, traffic between a given input and output port followsa sin-
gle path. Withstaticsingle-path routing, this path remains constant
over time, independently of traffic demands. Such routing issimple
and avoids reordering, but, to achieve 100% throughput, it requires
that internal links run at high “speedups” relative to the external
line rateR; speedups violate our first constraint, hence, we elimi-
nate this option. The alternative isadaptivesingle-path routing, in
which a centralized scheduler (re)computes routes based oncurrent
traffic demands—for instance, centralized scheduling of rearrange-
ably non-blocking Clos topologies.1 Such centralized scheduling
avoids high link speedups (as the scheduler has global knowledge
and can pick routes that best utilize the interconnect capacity), but
requires that the scheduler run at rateNR (it must read the state of
all ports to arrive at a scheduling decision); this violates oursecond
constraint, hence, we also eliminate this option.

We are thus left withload-balanced routing, where traffic be-
tween a given input and output port is spread across multiplepaths.
We start with a classic load-balancing routing algorithm—Valiant
load balancing (VLB) [47]—and adapt it to our needs.

Background: VLB and Direct VLB. VLB assumes a set of nodes
interconnected in a full mesh. Routing happens in two phases: con-
sider a packet that enters at input nodeS and must exit at output
1Recent work on data-center networks uses distributed scheduling
over a rearrangeably non-blocking Clos topology, however,it does
not guarantee 100% throughput [20].

Figure 2: An 8-port Valiant load-balanced mesh.

nodeD; instead of going directly fromS to D, the packet is first
sent fromS to a randomly chosen intermediate node (phase1), then
from that node toD (phase2). In this way, a sequence of packets
that enter at nodeS and exit at nodeD is first load-balanced from
S across all nodes, then “re-assembled” atD. Fig. 2 shows an 8-
node VLB mesh with each physical node playing the role of source,
intermediary, and destination.

This routing algorithm has two desirable effects. Intuitively,
phase-1 randomizes the original input traffic such that the traffic
an individual node receives at the end of phase1 (i.e., the input
traffic to phase2) is a uniform sample of theoverall input traffic
at phase1. As a result, when a node handles phase-2 traffic, it
can make purely local scheduling decisions about which packets to
drop and which to forward to each output port. This allows VLB
to guarantee 100% throughput and fairness without any centralized
scheduling. Second, VLB does not require high link speedups, be-
cause it forces traffic to be uniformly split across the cluster’s in-
ternal links: in a full-mesh VLB cluster ofN nodes with a per-port
rate ofR, each internal link must have capacity2R

N
, which easily

meets our constraint on internal link speeds.
These benefits come at the cost of forwarding packets twice.

Without VLB, a server in a cluster-based router would be expected
to handle2R of traffic—R coming in from the server’s external
line (to be sent to the other servers) plusR arriving from the other
servers to be sentout on the server’s external line. With VLB, each
node (as an intermediate) receives an additionalR of incoming traf-
fic and hence is required to process traffic at rate3R. Hence, the
“tax” due to using VLB is a 50% increase in the required per-server
processing rate.

“Direct VLB” [49] reduces VLB overhead by leveraging the fol-
lowing observation: Phase1 in VLB serves to randomize traffic
across the cluster; however, when the cluster’s traffic matrix is al-
ready close to uniform (as is often the case), this first phase can
be mostly avoided. More specifically, in “adaptive load-balancing
with local information” [49], each input nodeS routes up toR

N

of the incoming traffic addressed to output nodeD directly to D

and load-balances the rest across the remaining nodes. The au-
thors show that this extension maintains the throughput andfairness
guarantees of the original VLB. With this extension, when the clus-
ter’s traffic matrix is close to uniform, each server processes traffic
at maximum rate2R, i.e., VLB introduces no processing overhead.

So, VLB requires that each server process traffic at ratecR,
wherec is between2 and 3, depending on the properties of the
traffic matrix. We deem this as satisfying our second constraint (on
server processing rates) and evaluate the extent to which today’s
servers can meet such processing rates in §5.

Our solution. Following the above reasoning, we start with Direct
VLB, which allows us to guarantee 100% throughput and fairness,
while meeting our constraints on link speeds and per-serverpro-
cessing rates. Two issues remain. First, like any load-balancing
algorithm, VLB can introduce packet reordering. We addressthis
with an algorithm that mostly avoids, but is not guaranteed to com-
pletely eliminate reordering; we describe it in §6, where wepresent
our router prototype. The second issue is that our third constraint
(on server fanout) prevents us from using a full-mesh topology
whenN exceeds a server’s fanout. We address this by extending
VLB to constant-degree topologies as described next.

3.3 Topologies

Design options. When each server handles a single router port,
the lowest-cost topology is one withN servers as achieved by the
full-mesh VLB. However, the full mesh becomes infeasible when
N grows beyond the number of ports a server can accommodate
(recall our constraint on per-server fanout).

One potential solution is to introduce intermediate nodes:rather
than connect ourN servers directly, connect them through extra
nodes that form a low-degree multihop network. In this way, each
server (both theN servers that handle the router ports and the extra,
intermediate servers) only needs to run at rate3R and can have low
(even constant) fanout. Of course, this solution comes at the cost
of an increase in cluster size.

Most multihop interconnect topologies fall under either the but-
terfly or the torus families [28]. We experimented with both and
chose thek-ary n-fly (a generalized butterfly topology that inter-
connectsN nodes withn = logk N stages ofk-degree nodes),
because it yields smaller clusters for the practical range of parame-
tersN andk that we considered (Fig. 3).

If servers can run at speeds greater than3R, then we can also ex-
ploit the tradeoff between per-node fanout and processing rate: If
the per-server processing rate is3sR (s > 1), then each server can
handles router ports of rateR, hence, we need onlyN

s
input/output

servers instead ofN . In this case, building a full mesh requires a
per-server fanout ofN

s
− 1 and internal link rates of2sR

N
. Intu-

itively, if servers are more powerful, then we need fewer of them
and fewer (but faster) links to interconnect them.

Our solution. We select a topology in the following way: First, we
assign to each server as many router ports as it can handle (given its
processing capacity and the port rateR). Next, we check whether
the per-server fanout accommodates directly interconnecting the re-
sulting number of servers in a full mesh. If not, we use ak-aryn-fly
(n = logk N) topology, wherek is the per-server fanout (as deter-
mined by the number of NIC slots and router ports per server).

We now look at the cost of our solution for three realistic scenar-
ios: We consider a line rate ofR = 10Gbps. We assume that each
NIC accommodates 210Gbps or 81Gbps ports (the latter is cur-
rently available in compact form-factor cards). We consider three
configurations:

1. Current servers:Each server can handle one router port and
accommodate 5 NICs.

2. More NICs: Each server can handle one router port and ac-
commodate 20 NICs. Such servers are available today as a
custom motherboard configuration (i.e., requiring no compo-
nent redesign), typically for data-centers.

3. Faster servers with more NICs:Each server can handle two
router ports and accommodate 20 NICs. This configuration
corresponds to expected upcoming servers (§5).

4 8 16 32 64 128 256 512 1024 2048
1

2

4

8

16

32

64

128

256

512

1024

2048

4096

External router ports

N
u
m

b
e
r

o
f

s
e
rv

e
rs

48-port switches

one ext. port/server, 5 PCIe slots

one ext. port/server, 20 PCIe slots

two ext. ports/server, 20 PCIe slots

transition from mesh
to n-fly because # ports
exceeds server fanout

Figure 3: The number of servers required to build anN -port,
R=10Gbps/port router, for four different server configurati ons.

For each scenario, Fig. 3 plots the total number of cluster servers,
N ′, required to handleN external ports, as a function ofN . Ignor-
ing, for the moment, the results labeled “48-port switches,” we see
that, with the “current server” configuration, a full mesh isfeasible
for a maximum ofN = 32 external ports; the “more NICs” con-
figuration extends this toN = 128 ports, and the “faster servers”
configuration toN = 2048 ports. We conclude that our cluster
architecture can scale to hundreds, potentially even a few thou-
sand ports. We note that, in theory, our design can always scale
to an arbitrary number of external ports by using extra intermedi-
ate servers. However, in practice, there will always be an upper
limit determined by the increase in cluster size that leads to higher
per-port cost and power consumption, as well as higher per-packet
latency. The results in Fig. 3 represent a range of port counts for
which we believe these overheads to be reasonable. For example,
even with current servers, we need2 intermediate servers per port
to provideN = 1024 external ports (a10Tbps router). Assuming
each server introduces24µsec of latency (§6.2), such a configura-
tion would correspond to96µsec of per-packet latency.

Switched cluster: a rejected design option.Fig. 3 also shows the
cost of an alternative, “switched” cluster that we considered early
on. In this architecture, packet processing is performed bygeneral-
purpose servers, whereas switching is delegated to commodity Eth-
ernet switches: for a lowN , servers are interconnected by a single
switch; whenN exceeds the port count of a single switch, servers
are interconnected through a network of switches, arrangedin a
strictly non-blocking constant-degree Clos topology [11].

We ultimately rejected this option for two reasons. First, guaran-
teeing switching performance using a network of switches requires
support for new load-sensitive routing features in switches; such
modification is beyond our reach and, even if adopted by switch
vendors, would be significantly more complex than the simpleload-
agnostic routing switches currently support. Second, a back-of-the-
envelope calculation reveals that, considering current products, the
switched cluster would be more expensive: We considered a48-
port 10Gbps/port Arista 7148S switch, which, at $500 per port,
is the least expensive strictly non-blocking10Gbps switch we are
aware of. Assuming $2000 per server,4 Arista ports correspond to
1 server. Using this “conversion rate,” we computed the number of
servers whose aggregate cost is equal to an Arista-based switched
cluster, and plotted this number as a function of the number of ex-
ternal portsN .

Fig. 3 shows the result, which indicates that the Arista-based
switched cluster is more expensive than the server-based clusters.
For small numbers of ports where we can interconnect serversin a

full mesh, the server-based cluster is lower cost, because it avoids
the cost of the switch altogether while using the same numberof
servers. For higher port counts, the difference in cost is due to the
significant level of over-provisioning that a non-blockingintercon-
nect must provide to accommodate non-uniform traffic matrices;
our RouteBricks architecture avoids this through the use ofVLB.
The penalty, of course, is that the latter requires a per-server pro-
cessing rate of3R, whereas a switched-cluster architecture requires
a per-server processing rate of2R.

Summary. We select a router architecture that parallelizes both
packet processing and switching over a VLB interconnect built
from general-purpose servers. Our architecture relies on two key
assumptions. First, that a modern server can handle at leastone
router port of rateR. Specifically, since we are using Direct VLB,
to handle one port, a server must process packets at aminimumrate
of 2R (assuming a uniform traffic matrix) or3R (assuming a worst-
case traffic matrix). For a line rate ofR = 10Gbps, these require-
ments become20Gbps and30Gbps, respectively. The second (and
related) assumption is that a practical server-based VLB implemen-
tation can live up to its theoretical promise. Specifically,VLB’s re-
quirement for a per-server processing rate of2R–3R is derived as-
suming that all VLB phases impose the same burden on the servers;
in reality, certain forms of processing will be more expensive—e.g.,
IP route lookupsvs. load-balancing. Thus, we need to understand
whether/how VLB’s analytically derived requirement deviates from
what a practical implementation achieves.

The following sections test these assumptions: in §4 and §5
we evaluate the packet-processing capability of a state-of-the-art
server; in §6, we present and evaluate RB4, a 4-node prototype of
our architecture.

4. PARALLELIZING WITHIN SERVERS
According to the last section, assuming a line rate ofR =

10Gbps, our architecture is feasible only if each server can meet
a minimum performance target of20Gbps. This is more than twice
the rates reported by past studies. Yet recent advances in server
hardware technology promise significant speedup for applications
that are amenable to parallelization; to leverage these advances,
router software must exploit hardware resources to their fullest.
Thus, in this section, we look for the right approach to paralleliz-
ing packet processingwithin a server. We start with an overview of
our server architecture (§4.1), then discuss how we exploitserver
parallelism (§4.2).

4.1 Server Architecture

Hardware. For our study, we chose an early prototype of the Intel
Nehalem server [19], because it implements the most recent ad-
vances in server architecture, while conforming to the informal no-
tion of a “commodity” server (it is targeted to replace the currently
deployed generation of Xeon servers). Fig. 4 shows this architec-
ture at a high level: There are multiple processing cores,2 arranged
in “sockets”; all cores in a socket share the same L3 cache. Each
socket has an integrated memory controller, connected to a portion
of the overall memory space via a memory bus (hence, this is a
non-uniform memory access—NUMA—architecture). The sock-
ets are connected to each other and to the I/O hub via dedicated
high-speed point-to-point links. Finally, the I/O hub is connected
to the NICs via a set of PCIe buses. Our server has two sock-
ets, each with four2.8GHz cores and an 8MB L3 cache, and two
PCIe1.1 x8 slots, which we populated with two NICs, each holding

2We use the terms “CPU,” “core,” and “processor” interchangeably.

Figure 4: A server architecture based on point-to-point inter-
socket links and integrated memory controllers.

two 10Gbps ports [6]. This server is the dual-socket configuration
of the single-socket Corei7 server, and future configurations are ex-
pected to incorporate both more sockets (Fig. 4) and more cores per
socket, as well as4–8 PCIe2.0 slots.

Software. Our server runs Linux 2.6.19 with Click [38] in polling
mode—i.e., the CPUs poll for incoming packets rather than being
interrupted. We started with the Linux 10G Ethernet driver,which
we extended as described in §4.2. We instrumented our serverwith
a proprietary performance tool similar to Intel VTune [7].

Traffic generation. We equipped our server with two dual-port
10Gbps NICs, hence, a total of four10Gbps ports. However, we
are only able to drive each NIC at12.3Gbps: each pair of ports
on the same NIC share the same x8 PCIe1.1 slot; according to the
PCIe1.1 standard, the maximumpayloaddata rate enabled by8
lanes is12.8Gbps—slightly above what we actually observe [44].
Hence, the maximum input traffic we can subject our server to is
24.6Gbps. Note that the small number of available NIC slots is
an unfortunate consequence of our using a prototype server—as
mentioned above, the product server is expected to offer4–8 slots.

4.2 Exploiting Parallelism
We now summarize the key methods we selected to exploit

server parallelism. We illustrate our points with “toy” exper-
iments, for which we use64B packets and a simple packet-
processing scenario where packets are blindly forwarded between
pre-determined input and output ports with no header processing or
routing lookups.

Multi-core alone is not enough. We first tried building our cluster
out of the widely used “shared bus” Xeon servers. Fig. 5 showsa
high-level view of this architecture. We see that this earlier server
architecture differs from Fig. 4 in two major aspects. First, all
communication between the sockets, memory, and I/O devicesis
routed over the shared front-side bus and “chipset”; in Fig.4, this
communication happens over a mesh of dedicated point-to-point
links. Second, the older shared-bus architecture uses a single ex-
ternal memory controller; in Fig. 4, this has been replaced with
multiple memory controllers, each integrated within a socket, thus
offering a dramatic increase in aggregate memory bandwidth.

The shared-bus Xeon server we used had multiple cores—it had
eight 2.4GHz cores, similar to our Nehalem prototype. Yet, for
small and even medium-sized packets, its performance fell short of
the Nehalem’s performance—and well short of our20Gbps target.
In an earlier study [29], we found that the bottleneck was at the
shared bus connecting the CPUs to the memory subsystem: Packet
processing workloads—as streaming workloads, in general—place
a heavy load on memory and I/O, and shared-bus architecturesdo

Figure 5: A traditional shared-bus architecture.

not provide sufficient bandwidth between the CPUs and these sub-
systems. Increasing the number of cores does not help—theircom-
putational resources are left unexploited, because the cores cannot
access the packets fast enough. These results led us to adoptthe
more recent Nehalem architecture, where parallelism at theCPUs
is coupled with parallelism in memory access; this change leads to
higher aggregate and per-CPU memory bandwidth, as well as bet-
ter scaling—no single bus sees its load grow with the aggregate of
memory transactions. As we shall see, this improved architecture
alone offers a2–3x performance improvement.

Multi-queue NICs are essential. A packet-processing workload
involves moving lots of packets from input to output ports. The
question is how should we distribute this workload among theavail-
able cores for best effect. We illustrate our approach with the toy
scenarios shown in Fig. 6, in which we construct simple forwarding
paths (FPs) between pairs of interfaces and cores.

When the receive or transmit queue of a network port is accessed
by multiple cores, each core must lock the queue before accessing
it—a forbiddingly expensive operation when the port sees millions
of packets per second. This leads to our first rule:that each network
queue be accessed by a single core. We can easily enforce this in
Click by associating the polling of each input port and the writing
to each output port to a separate thread, and statically assigning
threads to cores.

The next question is, how should the processing of a packet be
shared among cores? One possibility is the “pipeline” approach,
where the packet is handled by multiple cores in a row—one core
reads the packet from its receive queue, then passes it to another
core for further processing and so on (scenario-(a) in Fig. 6). The
alternative is the “parallel” approach, where the packet isread from
its receive queue, processed, and written to its transmit queue, all by
the same core (scenario-(b) in Fig. 6). For pipelining, we consider
both cases where two cores do and don’t share the same L3 cache,
as this allows us to highlight the performance impact due to the ba-
sic overhead of synchronizing cores to transfer the packet from that
due to additional cache misses. Comparing the forwarding rates
for each case, we see that the parallel approach outperformsthe
pipelined one in all cases. The overhead just from synchronization
across cores can lower performance by as much as29% (from 1.7

to 1.2Gbps); with additional cache misses, performance drops by
64% (from 1.7 to 0.6Gbps). This leads to our second rule:that
each packet be handled by a single core.

Hence, we want that each queue and each packet be handled by a
single core. The problem is that there are two (very common) cases
where it is hard tosimultaneouslyenforce both rules. The first case
arises when there are many cores and few ports, and a single core
cannot by itself handle the processing demands of a port. Forin-
stance, consider a16-core server handling two10Gbps ports. A
single core cannot handle10Gbps of traffic and hence we’d like to
“split” the packet stream across multiple cores. But if a port is tied
to a single core, then each packet is necessarily touched by multi-
ple cores (the core that polls in and splits the traffic, and the core
that actually processes the packet); this is illustrated inscenario-

Figure 6: Forwarding rates with and without multiple queues.

(c), Fig.6. The second case is when we have “overlapping” paths
in which multiple input ports must send traffic to the same out-
put port—scenario-(e) in Fig.6 (compare to scenario-(b)).Overlap-
ping paths arise in all realistic traffic matrices and, once again, ty-
ing each port to a single core unavoidably results in multiple cores
touching each packet.

Fortunately, both cases can be addressed by exploiting a feature
now available in most modern NICs: multiple receive and transmit
queues. Multi-queue NICs are used to support virtualization; it
turns out that, when coupled with careful scheduling, they also offer
a simple, practical solution to our problem [12]. We should note
that Bolla and Bruschi also evaluate this approach, albeit in the
context of a shared-bus architecture and NICs with multiple1Gbps
interfaces [24]. To leverage multiple NIC queues, we developed a
lock-free device driver for10Gbps multi-queue NICs and extended
Click with multi-queue support. Our Click extension allowsus to
bind polling and sending elements to a particular queue (as opposed
to a particular port); this, in turn, allows us to associate each queue
to a thread, then statically assign threads to cores in a way that
enforces both our rules.

In Fig. 6, scenarios-(d) and (f) illustrate how using multiple
queues addresses the problematic scenarios in (c) and (e), respec-
tively. In both setups, multi-queue NICs allow us to respectboth
our “one core per packet” and “one core per interface” rules.We
see that the performance impact of leveraging multiple queues is
dramatic:e.g., scenario-(d) achieves more than three times higher
forwarding rate than scenario-(c); in the case of overlapping paths,
we see that, with multiple queues, overlapping paths see forward-
ing rates similar to those of non-overlapping paths (approximately
1.7Gbps/FP) compared to a performance drop of almost60% with-
out (0.7Gbps vs.1.7Gbps/FP).

The next question is whether we always have enough queues to
follow this strategy; if a server withm cores hasm receive andm
transmit queues per port, then the answer is yes. The explanation is

Polling configuration Rate (Gbps)
No batching (kp = kn = 1) 1.46

Poll-driven batching (kp = 32, kn = 1) 4.97

Poll-driven and NIC-driven batching 9.77

(kp = 32, kn = 16)

Table 1: Forwarding rates achieved with different polling con-
figurations. kp=32 is the default Click maximum. We stop at
kn=16 because the maximum PCIe packet size is 256B; a packet
descriptor is 16B, hence, we can pack at most 16 descriptors in
a single PCIe transaction.

straightforward: if each core has its own dedicated receive(trans-
mit) queue at each port, then it can read (write) from any input
(output) port without sharing queues or packets with other cores.
Multi-queue NICs with32–64 RX and TX queues already exist, so
our solution is feasible today [6]. Moreover, since multiple queues
are needed for virtualization, and the number of virtual machines
run on a single server is expected to increase with the numberof
per-server cores, we expect NIC vendors to continue to produce
multi-queue NICs where the number of queues follows the number
of per-server cores. Hence, unless stated otherwise, from here on
we use multi-queue NICs as described above.

“Batch” processing is essential. Forwarding a packet involves
a certain amount of per-packet book-keeping overhead—reading
and updating socket buffer descriptors and the data structures (ring
buffers) that point to them. This overhead can be reduced by “bulk”
processing descriptors,i.e., amortizing book-keeping operations by
incurring them once everyk packets. The standard approach is to
drive such batching from the application : specifically, Click can
receive up tokp packets per poll operation—we call this “poll-
driven” batching. To this, we added “NIC-driven” batching:we
extended our NIC driver to relay packet descriptors to/fromthe
NIC only in batches ofkn packets. This results in fewer (but
larger) transactions on the PCIe and I/O buses and complements
poll-driven batching by ensuring that at leastkn packets are avail-
able to be polled in at a time.

We measure our server’s maximum forwarding rate using all 8
cores and various polling configurations. Table 1 shows the results:
Poll-driven batching offers a3-fold performance improvement rel-
ative to no batching, while adding NIC-driven batching improves
performance by an additional factor of2. Hence, unless stated oth-
erwise, from here on we configure our servers with batching pa-
rameterskp = 32 andkn = 16.

Batching increases latency (since the NIC waits forkn packets to
arrive before initiating a PCIe transaction) and jitter (since different
packets may have to wait at the NIC for different periods of time).
On the other hand, batching is necessary only at high speeds,where
packet inter-arrival times are small (on the order of nanoseconds),
hence, the extra latency and jitter are expected to be accordingly
small. At lower packet rates, increased latency can be alleviated by
using a timeout to limit the amount of time a packet can wait tobe
“batched” (we have yet to implement this feature in our driver).

NUMA-aware data placement is not. We initially expected
careful data placement to be essential in maximizing performance
since the Nehalem is a NUMA architecture. This expectation was
strengthened when we found that Linux does not always place data
in an ideal way: even though the packets themselves are ideally
placed (each one closest to the core that reads it from the NIC),
socket-buffer descriptors are always placed in one particular mem-
ory (socket-0, the one that belongs to CPU-0), independently of
which core is processing the packet.

0

5

10

15

20

25
M

p
p
s

Nehalem, multiple queues,
with batching

Nehalem, single queue,
with batching

Nehalem, single queue,
no batching

Xeon, single queue,
no batching

Figure 7: Aggregate impact on forwarding rate of new server
architecture, multiple queues, and batching.

Surprisingly, we found that, at least for our workloads, careful
data placement makes no difference in performance. We demon-
strate this through a simple setup: we disable the cores on socket-1
and measure the maximum forwarding rate achieved by the4 cores
on socket-0; in this case, both packets and socket-buffer descrip-
tors are ideally placed in the memory of socket-0—we record a
forwarding rate of6.3Gbps. We then repeat the experiment but
this time disable the cores on socket-0 and use only the4 cores
in socket-1; in this case, the packets are placed in the memory of
socket-1, while the descriptors are placed in the “remote” memory
of socket0. In this latter case, we find that approximately 23%
of memory accesses are to remote memory (our tools breakdown
memory accesses as localvs. remote), nonetheless, we get a for-
warding rate of6.3Gbps. Hence, we conclude that custom data
placement is not critical. This is not to suggest that careful data
placement is never required—just that, for our particular (fairly
memory-intensive) workload and server architecture, it isn’t.

Putting it all together. In summary, we found that the perfor-
mance potential of multi-core servers is best exploited, when par-
allelism at the CPUs is accompanied by parallelism in memoryac-
cess (through dedicated memory controllers and buses) and NICs
(through multiple queues), and if the lower levels of the software
stack are built to leverage this potential (through batching). To this
end, we took an existing10Gbps NIC driver and added support for
(1) polling/writing to multiple queues and (2) configurablebatching
of socket-buffer descriptor operations.

We now look at the cumulative effect of our design lessons. We
record the forwarding rate achieved by our server using all eight
cores, four10Gbps ports,64B packets, under the same simple for-
warding as in the toy scenarios (i.e., packets are forwarded between
pre-determined input and output ports) and a uniform any-to-any
traffic pattern (i.e., traffic from each input is uniformly split across
all output ports). We repeat this experiment four times: (1)using
an 8-core Xeon server without any of our changes (i.e., no multi-
queue NICs and no batching), (2) our Nehalem server without any
of our changes, (3) our Nehalem server with multiple queues but
no batching, and (4) our Nehalem server with both multiple queues
and batching. Fig. 7 shows the results: we see that our modifica-
tions lead to a6.7-fold (670%) improvement relative to the same
server without our modifications and an11-fold improvement rela-
tive to the shared-bus Xeon.

Thus, we find that our modest design changes significantly im-
pact performance. We arrived at these through a more careful
(than usual) understanding of the underlying hardware—itsraw
resource capability, potential bottlenecks, and contention points.
While some “awareness” of hardware is always useful in optimiz-
ing performance, we found that, with greater parallelism inserver
hardware, the performance impact of this awareness can be quite

dramatic. At the same time, we note that our modifications actu-
ally have little-to-no impact on Click’s programming model. Fi-
nally, we note that, although we focus on packet forwarding,we
expect the above findings would apply to the more general class
of streaming applications (e.g., continuous query processors, stock
trading, or video streaming).

5. EVALUATION: SERVER PARALLELISM
Having established how we parallelize packet-processing within

a server, we now evaluate the resulting server performance for dif-
ferent workloads. After describing our test workloads (§5.1), we
start with black-box testing (§5.2), then analyze the observed per-
formance (§5.3). For clarity, in this section we evaluate perfor-
mance in the context of one server and one workload at a time; §6
then looks at server performance in a complete VLB-cluster router.

5.1 Workloads
At a high level, a packet-processing workload can be character-

ized by (1) the distribution ofpacket sizes, and (2) theapplication,
i.e., the type of processing required per packet. As far as packet
size is concerned, we consider synthetic workloads, where every
packet has a fixed size ofP bytes, as well as a trace-driven work-
load generated from the “Abilene-I” packet trace collectedon the
Abilene network [10]. As far as the application is concerned, we
consider the following three:

1. Minimal forwarding: In this application, traffic arriving at
port i is just forwarded to portj—there is no routing-table
lookup nor any other form of packet processing. This sim-
ple test is valuable for several reasons. First, it stressesour
ability to rapidly stream large volumes of cache-unfriendly
data through the system, the key requirement that makes
packet processing challenging. Second, it exercises the mini-
mal subset of operations thatanypacket-processing (for that
matter, any streaming) application incurs and consequently
offers an upper bound on the achievable performance forall
such applications. Finally, minimal forwarding is precisely
the type of processing performed by VLB nodes when they
act as intermediate or destination nodes.

2. IP routing: We implement full IP routing including check-
sum calculations, updating headers, and performing a
longest-prefix-match lookup of the destination address in a
routing table. For this latter, we use the Click distribution’s
implementation of the D-lookup algorithm [34] and, in keep-
ing with recent reports, a routing-table size of256K entries.
For synthetic input traffic, we generate packets with random
destination addresses so as to stress cache locality for IP
lookup operations.

3. IPsec packet encryption:In this application, every packet is
encrypted using AES-128 encryption, as is typical in VPNs.

Our selection represents commonly deployed packet-processing
applications that are fairly diverse in their computational needs. For
example, minimal forwarding stresses memory and I/O; IP routing
additionally references large data structures; encryption is CPU-
intensive.

Given this setup, our primary performance metric is the maxi-
mum attainable loss-free forwarding rate, reported in terms of ei-
ther bits per second (bps) or packets per second (pps).

64 128 256 512 1024 Ab.
0

10

20

Packet size (bytes)

M
p
p
s

64 128 256 512 1024 Ab.
0

10

20

30

Packet size (bytes)

G
b
p
s

Forwarding Routing IPsec
0

5

10

15

20

M
p
p
s

Forwarding Routing IPsec
0

10

20

30

G
b
p
s

64B

Abilene

Figure 8: Forwarding rate for different workloads. Top: as a
function of different packet-size distributions, when theserver
performs minimal forwarding. Bottom: as a function of dif-
ferent packet-processing applications, for 64B packets and the
Abilene trace. “Ab.” refers to the Abilene trace.

5.2 Black-Box System Performance
First, we measure the maximum loss-free forwarding rate our

server can sustain when running the minimal-forwarding applica-
tion, given (1) input traffic of fixed-size packets, repeatedfor dif-
ferent packet sizes, and (2) the Abilene trace. The resulting rate is
shown in Fig. 8 (top), in both bps and pps. We see that, given larger
packets or the Abilene trace, the server sustains24.6Gbps; this is
the maximum input traffic we can generate, meaning that perfor-
mance, in this case, is limited by the number of NICs our server
can fit—we do not hit any bottleneck inside the server. In contrast,
given64B packets, the server saturates at9.7Gbps or18.96Mpps.

We observe a similar relationship between packet size and per-
formance for all applications. Hence, from here on, we focuson (1)
fixed-size packets of minimum length (P = 64B) and (2) the Abi-
lene trace. Fig. 8 (bottom) shows server performance for ourthree
different applications. We see that performance drops as the per-
packet processing demands increase: for IP routing, the server satu-
rates at24.6Gbps given the Abilene trace and6.35Gbps given64B
packets; for IPSec, the rates are even lower—4.45Gbps given Abi-
lene,1.4Gbps given64B packets. We should note that, compared to
the state of the art, our IPsec rates are still commendable—routers
typically use additional IPsec accelerators to scale to2.5Gbps [4]–
10Gbps [2].

We now look inside our server to understand these black-box
performance results.

5.3 Deconstructing System Performance
Our approach is to probe the limits of the server’s components

with the aim of understanding what bottleneck(s) currentlylimit
performance and how performance may be expected to scale with
future servers. Our methodology is as follows. We consider each
of the major system components: (1) CPUs, (2) memory buses,
(3) the socket-I/O links, (4) the inter-socket link, and (5)the PCIe
buses connecting the NICs to the I/O hub (see Fig. 4).3 For each
component, we estimate anupper boundon the per-packet load that
the component can accommodate, as a function of the input packet
rate. Then we measure the per-packet load on the component under
increasing input packet rates, given different workloads.Compar-
ing the actual loads to our upper bounds reveals which components
are under greatest stress and, hence, likely to be bottlenecks.

3We do not directly consider L3 caches, since any increase in cache
miss rates appears as load on the memory buses, which we do con-
sider.

0 5 10 15 20
0

0.5

1

1.5

2

2.5
x 10

4

Packet rate (Mpps)

C
P

U
 l
o
a
d
 (

c
y
c
le

s
/p

a
c
k
e
t)

fwd

rtr

ipsec

cycles available

Figure 9: CPU load (in cycles/packet) as a function of incom-
ing traffic rate (in packets/sec) for different packet-processing
applications. In the legend, “fwd” corresponds to minimal for-
warding and “rtr” to IP routing, while “cycles available” co r-
responds to the nominal capacity of the CPUs.

We directly measure the actual loads on the system buses using
our tools. Computing the per-packet CPU load requires more atten-
tion, because Click operates in polling mode, hence, the CPUs are
always100% utilized. To compute the “true” per-packet CPU load,
we need to factor out the CPU cycles consumed byemptypolls—
i.e., cycles where the CPU polls for packets to process but none are
available in memory. We do this by measuring the number of cy-
cles consumed by an empty poll (ce) and the number of empty polls
measured per second (Er) for each input packet rater; deducting
ce × Er from the server’s total number of cycles per second gives
us the number of cycles per second consumed by packet processing
for each input packet rater.

We consider two approaches for estimating upper bounds on the
per-packet loads achievable by our server’s components. The first
one is based on the nominal rated capacity of each component.For
example, our server has eight 2.8GHz cores and, hence, we esti-
mate an upper bound of8×2.8×10

9

r
cycles/packet given an input

packet rater. For certain components (e.g., the memory buses),
actually achieving this nominal capacity is known to be difficult.
Hence, we also consider a second, empirical approach that uses
benchmarks, specifically designed to impose a high load on the
target component. For example, to estimate an upper bound on
the per-packet load achievable by the memory buses, we wrotea
simple “stream” benchmark that writes a constant value to random
locations in a very large array, and measured the resulting load,
Mstrm, on the memory buses, in bytes/second. We then estimate
the maximum per-packet load achievable by the memory buses as
Mstrm

r
bytes/packet, given an input packet rater.

Table 2 summarizes the nominal and empirical upper bounds we
derived for each system component. Figs. 9 and 10 plot both of
these upper bounds, as well as the per-packet loads measuredon
each system component, for each of our three applications and 64B
packets. We draw the following conclusions from these results:

1) Bottlenecks. We see that, for all three applications, the mea-
sured CPU load approaches the nominal upper bound, indicating
that the CPUs are the bottleneck in all three cases4 (Fig. 9). The

4We can conclude this because the cycles/packet remains constant
under increasing packet rates. If, instead, the cycles/packet were
growing with input packet rate, then we would have to consider
the possibility that the true problem is at the memory system. In
that case, the problem would be that higher packet rates stress the
memory system leading to higher memory access times, which in
turn lead to higher CPU cycles/packet since the CPUs spend more
time waiting for memory accesses to return.

Component(s) Nominal capacity Benchmark for empirical upper-bound
CPUs 8 × 2.8 GHz (#cores×cpu-speed) None
Memory 410 Gbps (#mem-buses×bus-capacity) 262 Gbps (stream with random access)
Inter-socket link 200 Gbps [19] 144.34 Gbps (stream)
I/O-socket links 2 × 200 Gbps [19] 117 Gbps (min. forwarding with1024B packets)
PCIe buses (v1.1) 64 Gbps (2 NICs× 8 lanes× 2 Gbps per direction) [44] 50.8 Gbps (min. forwarding with1024B packets)

Table 2: Upper bounds on the capacity of system components based on nominal ratings and empirical benchmarks.

Application instructions/packet cycles/instruction
Minimal forwarding 1,033 1.19
IP routing 1,512 1.23
IPsec 14,221 0.55

Table 3: Instructions-per-packet (IPP) and cycles-per-
instruction (CPI) for 64B packet workloads.

next question is whether the CPUs are efficient in their packet pro-
cessing,i.e., whether they spend their cycles doing useful work, as
opposed to, for example, waiting for memory accesses to complete.
We answer this question by breaking down CPU load (cycles per
packet) into instructions per packet and cycles per instruction (CPI)
for each application. These are listed in Table 3. Nehalem proces-
sors can retire up to4 instructions/cycle leading to a minimum CPI
of 0.25 [19]. Discussion with CPU architects reveals that, as a
rule of thumb, a CPI of0.4–0.7, for CPU-intensive workloads, and
1.0–2.0, for memory-intensive workloads, is regarded as efficient
CPU usage. We thus conclude that our CPUs are efficiently used;
moreover, in the case of minimal forwarding, the small number of
instructions per packet shows that Click’s software architecture is
efficient. In other words, a poor software architecture is not the
problem; performance truly is limited by a lack of CPU cycles.

We note that having the CPUs as the bottleneck is not unde-
sirable, since this (finally) aligns the performance needs of router
workloads with the vast majority of PC applications. Hence,soft-
ware routers stand to benefit from the expectation that the number
of cores will scale with Moore’s law [33].

2) Small vs. large packets. We compared the per-packet load im-
posed on the system by1024B-packet workloads to that imposed
by64B-packet workloads (we omit the graph for brevity). A1024B
packet is16 times larger than a64B one, so, initially, we expected
the load imposed by each1024B packet on each system bus to be
16 times larger than the load imposed by a64B packet. Yet, we
found that it is only6, 11, and1.6 times larger, respectively, for the
memory buses, I/O, and CPU. This means that the per-byte load
is higher for smaller packets. In retrospect, this makes sense due
to the book-keeping performed for each packet, which is indepen-
dent of packet size; for larger packets, book-keeping overhead is
amortized across more bytes.

3) Non-bottlenecks.We see that the per-packet loads on the mem-
ory and I/O buses are well below their empirically derived upper
bounds, indicating that these traditional problem areas for packet
processing are no longer the primary performance limiters.Like-
wise, a traditional concern regarding multi-socket architectures is
the scalability of the inter-socket interconnects; however, we see
that these links are not heavily loaded for our workloads.

4) Expected scaling.Finally, we see that, for all three applications
and all packet-size distributions, the per-packet load on the system
is constant with increasing input packet rate. This allows us to ex-
trapolate in a straightforward manner how performance, forthese
particular applications, is expected to scale with next-generation

0 2 4 6 8 10 12 14 16 18 20
10

2

10
3

10
4

10
5

M
e
m

o
ry

 l
o
a
d
 (

b
y
te

s
/p

a
c
k
e
t) fwd rtr ipsec benchmark nom

0 2 4 6 8 10 12 14 16 18 20
10

2

10
3

10
4

10
5

I/
O

 l
o
a
d
 (

b
y
te

s
/p

a
c
k
e
t)

0 2 4 6 8 10 12 14 16 18 20
10

2

10
3

10
4

P
C

Ie
 l
o
a
d
 (

b
y
te

s
/p

a
c
k
e
t)

0 2 4 6 8 10 12 14 16 18 20

10
2

10
3

10
4

10
5

Packet rate (Mpps)

in
te

r!
s
o
c
k
e
t

(b
y
te

s
/p

a
c
k
e
t)

Figure 10: Load on system buses (in bytes/packet) as a func-
tion of the incoming traffic rate (in packets/sec). From top to
bottom: memory buses, socket-I/O links, PCIe buses, and inter-
socket links.

servers. As an example, we consider the expected follow-up to our
server, which has4 sockets and8 cores per socket, thus offering a
4x, 2x and2x increase in total CPU, memory, and I/O resources,
respectively (Nehalem is designed to scale up to8 cores [33]). Ad-
justing the upper bounds in Figs. 9–10 accordingly and extrapolat-
ing where the observed loads would intersect with the new upper
bounds, we project performance rates of38.8, 19.9, and5.8Gbps
for minimal forwarding, IP routing, and IPsec, respectively, given
64B packets, and find that the CPU remains the bottleneck. Sim-
ilarly, we can estimate the performance we might have obtained
given the Abilene trace, had we not been limited to just two NIC
slots: ignoring the PCIe bus and assuming the socket-I/O buscan
reach80% of its nominal capacity, we estimate a performance of
70Gbps for the minimal-forwarding application given the Abilene
trace. These are, of course, only projections, and we intendto vali-
date them when possible.

In summary, we found that current servers achieve commend-
able performance given the realistic Abilene workloads (minimal
forwarding: 24.6Gbps, IP routing: 24.6Gbps), but fare worse
given the worst-case64B-packet workloads (minimal forwarding:
9.7Gbps, IP routing:6.35Gbps). We showed that the CPU is the
bottleneck, but estimated that next-generation servers are expected
to offer a4-fold performance improvement. In the next section, we
look at server performance in a complete cluster router.

6. THE RB4 PARALLEL ROUTER
We built a prototype parallel router based on the design and per-

formance lessons presented so far. Our router—the RB4—consists
of 4 Nehalem servers, interconnected through a full-mesh topol-
ogy with Direct-VLB routing (§3). Each server is assigned a single
10Gbps external line.

6.1 Implementation
We start with a straightforward implementation of the algorithms

described earlier, then add certain modifications to DirectVLB,
aimed at reducing the load on the CPUs (since we identified these
as our bottleneck) and avoiding reordering (the issue we deferred
from §3). We discuss each in turn.

Minimizing packet processing. In Direct VLB, each packet is
handled by2 or 3 nodes (2, when it is directly routed from its
input to its output node,3, when it is routed via an intermedi-
ate node). The straightforward implementation would be to have,
at each node, the CPU process the packet’s header and determine
where to send it next, which would result in each packet’s header
being processed by a CPU2 or 3 times. Instead, in RB4, each
packet’s header is processed by a CPUonly once, at its input node;
subsequent nodes simply move the packet from a receive to a trans-
mit queue. To achieve this, we leverage a NIC feature that assigns
packets to receive queues based on their MAC addresses.

More specifically: When a packet arrives at its input node, one
of the node’s CPUs processes the packet’s headers and encodes the
identity of the output node in the packet’s MAC address. At each
subsequent node, the packet is stored in a receive queue based on
its MAC address; hence, by looking at the receive queue wherethe
packet is stored, a CPU can deduce the packet’s MAC address and,
from that, the packet’s output node. In this way, the CPU thathan-
dles the packet at subsequent nodes can determine where to send it
without actually reading its headers. We should clarify that this par-
ticular implementation works only if each “internal” port (each port
that interconnects two cluster servers) has as many receivequeues
as there are external ports—hence, with current NICs, it would not
be applicable to a router with more than64 or so external ports.

Avoiding reordering. In a VLB cluster, two incoming packets
can be reordered because they take different paths within the same
server (due to multiple cores) or across the cluster (due to load
balancing). One approach to avoiding reordering relies on per-
fectly synchronized clocks and deterministic per-packet processing
latency [37]; we reject this, because it requires custom operating
systems and hardware. Another option would be to tag incoming
packets with sequence numbers and re-sequence them at the output
node; this is an option we would pursue, if the CPUs were not our
bottleneck. Instead, we pursue an alternative approach that mostly
avoids, but does not completely eliminate reordering.

We try to avoid reorderingwithin each TCP or UDP flow—after
all, the main reason for avoiding reordering is that it can affect
TCP or streaming performance. First, same-flow packets arriving
at a server are assigned to the same receive queue. Second, a set of
same-flow packets arriving at the cluster withinδ msec from one
another are sent, whenever possible, through the same intermediate
node—this is akin to the Flare load-balancing scheme [35]. When a
burst of same-flow packets (a “flowlet” in Flare terminology)does
not “fit” in one path (i.e., sending the whole flowlet to the same in-
termediate node would overload the corresponding link), then the
flowlet is load-balanced at the packet level as in classic VLB. We
found that, in practice,δ = 100msec (a number well above the
per-packet latency introduced by the cluster) works well,i.e., al-
lows most flowlets to be sent through one path, thereby avoiding
reordering (§6.2).

6.2 Performance

Forwarding performance. Given a workload of64B packets, we
measure RB4’s routing performance at12Gbps, i.e., each server
supports an external line rate of3Gbps. This number is in keeping
with our expectations: VLB theory tells us that, in a4-node Direct-
VLB cluster of external rateR, each node must process packets
at a rate between2R (when all packets are directly routed) and
3R (§3.2). Given a64B packet workload, RB4 routes all packets
directly (because the traffic rate between any two nodes is never
enough to saturate the link between them), hence, each node must
process packets at rate2R. Moreover, we know that, given64B
packets, a single server achieves a maximum processing rateof
9.7Gbps when running minimal forwarding and6.35Gbps when
running IP routing (§5). In RB4, each server performs both IP
routing (for packets entering the cluster at that server) and min-
imal forwarding (for packets exiting the cluster at that server, or
being load-balanced during the second VLB phase). Hence, we
expected RB4 performance to lie between4 × 6.35

2
= 12.7 and

4 × 9.7

2
= 19.4Gbps. The reason for RB4’s somewhat lower per-

formance is due to the extra overhead caused by the reordering-
avoidance algorithm (recall that our bottleneck is the CPU,and re-
ordering avoidance requires it to maintain per-flow counters and
packet-arrival times, as well as keep track of link utilization to
avoid overloading).

Given the Abilene workload, we measure RB4’s routing perfor-
mance at35Gbps, which, again, is in keeping with what we ex-
pected: A single server (running either minimal forwardingor IP
routing) can process the Abilene workload at24.6Gbps (§5), hence,
we expected RB4 to process the same workload at a rate between
4× 24.6

3
= 33 and4× 24.6

2
= 49Gbps (the latter for a perfectly uni-

form traffic matrix). At the same time, the performance of ourpro-
totype is constrained by the limit of approximately12Gbps that a
single (dual port) NIC can sustain, as described in §4.1. At35Gbps,
we are close to this per-NIC limit: each NIC that handles an exter-
nal line sustains approximately8.75Gbps of traffic on the port con-

nected to the external line plus approximately3Gbps on the sec-
ond “internal” port. So, RB4’s performance is within the expected
range, but, unfortunately, the limited number of PCIe slotson our
prototype server (because of which we face the per-NIC limit) pre-
vents us from precisely quantifying where—in the range between
2R and3R—VLB implementation overhead lies. In future work,
we plan to upgrade our server motherboards to fully explore this
overhead.

Reordering. To measure the amount of reordering introduced by
RB4, we replay the Abilene trace, forcing the entire trace toflow
between a single input and output port—this generated more traffic
than could fit in any single path between the two nodes, causing
load-balancing to kick in, hence, creating opportunity forreorder-
ing. We measure reordering as the fraction of same-flow packet
sequences that were reordered within their TCP/UDP flow; forin-
stance, if a TCP flow consists of5 packets that enter the cluster
in sequence〈p1, p2, p3, p4, p5〉 and exit the cluster in sequence
〈p1, p4, p2, p3, p5〉, we count one reordered sequence. With this
metric, we observe0.15% reordering when using our reordering-
avoidance extension and5.5% reordering when using Direct VLB
without our extension.

Latency. We estimate packet latency indirectly: a packet’s traver-
sal through a single server involves two back-and-forth DMAtrans-
fers between the NIC and memory (one for the packet and one
for its descriptor) plus processing by the CPUs. In addition,
NIC-driven batching means that a packet may wait for16 pack-
ets before transmission. We estimate a DMA transfer for a64B
packet at2.56µsecs based on our DMA engine speed of400MHz
and published reports [50]. From Table 3, routing a64B packet
takes2425 cycles or0.8µsecs and, hence, batching can add up to
12.8µsecs. Thus, we estimate a per-server packet latency of24µs
(4×2.56+12.8+0.8). Traversal through RB4 includes2–3 hops;
hence we estimate RB4’s latency as47.6 − 66.4µs. As an addi-
tional point of reference, [42] reports a packet-processing latency
of 26.3µs for a Cisco 6500 Series router.

7. RELATED WORK
Using general-purpose elements to build programmable routers

is not a new idea. The original NSFNET used computers running
Berkeley UNIX interconnected with a4Mbps IBM token ring [26].
MGR, an early high-speed router, used custom forwarding-engine
cards interconnected through a switched bus, yet the processor on
these cards was a general-purpose one [43]. This combination
of custom cards/interconnect with general-purpose processors was
also used in commercial routers, until router manufacturers transi-
tioned to ASIC-based forwarding engines for higher performance.
More recently, single-server software routers have emerged as low-
cost solutions for low-speed (1–5Gbps) environments [16]. Our
contribution lies in detailing how multiple servers can be clustered
to achieve greater scalability and studying how modern servers can
be exploited to this end.

Several efforts have sought to reconcile performance and pro-
grammability using network processors (NPs) [45]. Most recently,
Turneret al.proposed a “supercharged” Planetlab Platform, which
uses IXP NPs (for the data plane) and general-purpose servers
(for the control plane), interconnected by an Ethernet switch; they
achieve forwarding rates of5Gbps for130B packets [46]. We fo-
cus, instead, on using general-purpose servers even on the data
plane, and our results indicate these offer competitive performance.

Click [25, 38] and Scout [45] explored how to architect router
software so as to enable easy programmability and extensibility;
SMP Click [25] extended the early Click architecture to better ex-

ploit multiprocessor PCs. We also started with Click, extended it
to exploit new server technologies, studied the performance bene-
fits of these technologies, and, finally, applied Click to building a
cluster-based router.

Biancoet al.measured the routing performance of a single-core
server equipped with a PCI-X (rather than PCIe) I/O bus; they
found that the bottlenecks were the (single) CPU and the PCI-X
bus [23]. More recent work studied the performance of multicore
shared-bus Xeon servers in the context of TCP termination [48] and
virtual routers [31], and we, also, studied the packet-processing ca-
pabilities of that architecture [29]; these studies reportthat the bot-
tleneck lies in the shared bus (the “front-side bus” or FSB) connect-
ing the CPUs to the memory subsystem. In contrast, RouteBricks
relies on a newer server architecture; we showed that this enables a
2 − 3x performance improvement, and that the packet-processing
bottleneck now lies at the CPUs.

Finally, our work extends an earlier workshop paper [22], where
we made the case for scaling software routers and proposed a
cluster-based approach [22]; in this paper, we presented a detailed
design, implementation, and evaluation for that approach.

8. DISCUSSION
We evaluated the feasibility of our router architecture from the

standpoint of performance—the traditional Achilles’ heelof soft-
ware routers. However, its ultimate feasibility depends onaddi-
tional, equally important issues, such as space and power con-
sumption, where any solution based on general-purpose server
components faces tough competition from solutions using cus-
tom hardware. On the other hand, server-based solutions en-
able programmability and extensibility. So, to compare a server-
based, programmable router to a specialized, non-programmable
one, we would have to quantify the benefits of programmability—
e.g., would a20% increase in power consumption be worth the abil-
ity to rapidly upgrade network functionality, say, to protect against
a new type of worm? We do not attempt such a comparison here—it
merits to be the topic of a research project in itself. We onlydiscuss
space and power consumption, as well as cost, briefly, and offer a
few data points on how current routers fare, as relevant points of
reference.

Form factor. Router form factor is typically a question of port den-
sity. Off the shelf, the RB4 would be a40Gbps router (assuming we
can close our remaining performance gap) that occupies4U, which
is not unreasonable. However, scaling RB4 up would be problem-
atic, especially if we introduce additional servers to copewith the
limited per-server fanout. One avenue is to grow the per-server
fanout; however, doing so by adding external NIC slots wouldlead
to larger servers. Instead, we can integrate Ethernet controllers di-
rectly on the motherboard (commonly done for laptops, requiring
only hardware reconfiguration). The question is whether we can in-
tegrate many such controllers and still satisfy concerns over cool-
ing and chipset area. We estimate that a regular400mm mother-
board could accommodate16 controllers to drive2 × 10Gbps and
30× 1Gbps interfaces for a reasonable+48W. With this, we could
directly connect30–40 servers. Thus,1U servers, each handling
one10Gbps external line, would result in a300–400Gbps router
that occupies30U. In addition, form factor will benefit from server
advances;e.g., we estimated that the4-socket Nehalem would offer
a4x performance improvement (§5.3) and, hence, for the same per-
formance, we can expect to reduce form factor by4x. The above is,
of course, just a back-of-the-envelope estimate that requires evalu-
ation before we draw final conclusions. For reference, we note that
the Cisco 7600 Series [3] offer up to360Gbps in a21U form-factor.

Power. Based on our server’s nominal power rating, the RB4 con-
sumes2.6KW. As a point of reference, the nominal power rating
of a popular mid-range router loaded for40Gbps is1.6KW [3]—
about60% lower. One approach to reducing power consumption
would be to slow-down, or put to sleep, system components that
are not stressed by router workloads, using commonly available
low-power modes for different subsystems (memory, serial links,
floating-point units).

Cost/Price. With respect to the price/cost: our RB4 prototype cost
us $14, 500; for reference, the quoted price for a40Gbps Cisco
7603 router was $70, 000. Again, this should not be viewed as a
direct comparison, since the former represents raw costs, while the
latter is a product price.

Programmability. Our high-level goal was to achieve both high
performance and ease of programming. Hence, we started with
Click—which offers an elegant programming framework for rout-
ing applications [38]—and sought to maximize performance with-
out compromising Click’s programming model. Our design main-
tained Click’s modularity and extensibility; our only intervention
was to enforce a specific element-to-core allocation. As a result,
our router is not just programmable in the literal sense (i.e., one
can update its functionality), it also offers ease of programmability.
Case in point: beyond our 10G NIC driver, the RB4 implementa-
tion required us to write only two new Click “elements”; the effort
to develop a stable NIC driver far exceeded the effort to write our
two Click elements and tie them with other pre-existing elements
in a Click configuration.

As a next step, future research must demonstrate what new kinds
of packet processing RouteBricks enables and how these affect per-
formance. Since we have identified CPU processing as the bottle-
neck of our design, we expect performance to vary significantly as
a function of the application, as showcased by the IP-routing and
IPsec experiments (§5). Hence, the key challenge will be to iden-
tify the right API (perhaps the right Click extension), which will
allow the programmer not only to easily add new, non-traditional
functionality, but also to easily predict and control the resulting
performance implications.

9. CONCLUSIONS
We looked to scale software routers as a means of moving from

a network of special-purpose hardware routers to one of general-
purpose infrastructure. We proposed a parallel router architec-
ture that parallelizes routing functionality both across and within
servers. The goal we set was high: essentially to match the perfor-
mance of even high-end routers (with line rates of10Gbps and10s
or100s of ports). We cannot claim that our results, based on today’s
servers, make a slam-dunk case for getting there. That said,they do
show that we are a whole lot closer than common expectations for
software routers would have led us to believe: we can comfortably
build software routers with multiple (about8–9) 1Gbps ports per
server, which we can scale to10s or100s of ports by grouping mul-
tiple servers; we come very close to achieving a line rate of10Gbps
and, importantly, show that emerging servers promise to close the
remaining gap to10Gbps, possibly offering up to40Gbps. The
broad implications of this are twofold: one is that softwarerouters
could play a far more significant role than previously believed; the
more ambitious extrapolation is that a very different industry struc-
ture and way of building networks might actually be within not-so-
distant reach.

10. REFERENCES
[1] Astaro: Security Gateway.http://www.astaro.com.
[2] Cavium Octeon Multi-Core Processor Family.http:

//caviumnetworks.com/OCTEON_MIPS64.html.
[3] Cisco 7600 Series Routers.http://cisco.com/en/

US/products/hw/routers/ps368/index.html.
[4] Cisco 7600 VPN Port Adapter.http://cisco.com/

en/US/products/ps6917/index.html.
[5] Cisco Carrier Routing System.http://cisco.com/en/

US/products/ps5763/index.html.
[6] Intel 10 Gigabit XF SR Server Adapters.

http://intel.com/Products/Server/
Adapters/10-GbE-XFSR-Adapters/
10-GbE-XFSR-Adapters-overview.htm.

[7] Intel VTune Performance Analyzer.http:
//software.intel.com/en-us/intel-vtune/.

[8] Narus: Real-Time Traffic Intelligence.
http://narus.com.

[9] NetFPGA: A Line-rate, Flexible Platform for Research and
Classroom Experimentation.http://netfpga.org.

[10] NLANR: Internet Measurement and Analysis.
http://moat.nlanr.net.

[11] Principles and Practices of Interconnection Networks,
Chapter 6. William J. Dally and Brian Towles, Morgan
Kaufmann, 2004.

[12] Receive-Side Scaling Enhancements in Windows Server
2008.http://www.microsoft.com/whdc/
device/network/NDIS_RSS.mspx.

[13] Riverbed: Application Acceleration.
http://www.riverbed.com.

[14] Sourcefire: Network Security.
http://www.sourcefire.com.

[15] Symantec: Data Loss Protection.
http://www.vontu.com.

[16] Vyatta Series 2500.
http://vyatta.com/downloads/datasheets/
vyatta_2500_datasheet.pdf.

[17] Cisco Opening Up IOS.http://www.networkworld.
com/news/2007/121207-cisco-ios.html,
December 2007.

[18] Juniper Press Release: Open IP Solution Program.
http://www.juniper.net/company/
presscenter/pr/2007/pr-071210.html, July
2007.

[19] Next Generation Intel Microarchitecture (Nehalem).
http://intel.com/pressroom/archive/
reference/whitepaper_Nehalem.pdf, 2008.

[20] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
Commodity, Data Center Network Architecture. In
Proceedings of the ACM SIGCOMM Conference, Seattle,
WA, USA, August 2008.

[21] T. Anderson, T. Roscoe, and D. Wetherall. Preventing
Internet Denial-of-Service with Capabilities. InProceedings
of the ACM Workshop on Hot Topics in Networks (HotNets),
Cambridge, MA, USA, November 2003.

[22] K. Argyraki, S. Baset, B.-G. Chun, K. Fall, G. Iannaccone,
A. Knies, E. Kohler, M. Manesh, S. Nedevschi, and
S. Ratnasamy. Can Software Routers Scale? InProceedings
of the ACM SIGCOMM Workshop on Programmable Routers
for Extensible Services of TOmorrow (PRESTO), Seattle,
WA, USA, August 2008.

[23] A. Bianco, R. Birke, D. Bolognesi, J. M. Finochietto,
G. Galante, and M. Mellia. Click vs. Linux. InProceedings
of the IEEE Workshop on High Performance Switching and
Routing (HPSR), Hong Kong, May 2005.

[24] R. Bolla and R. Bruschi. PC-based Software Routers: High
Performance and Application Service Support. In
Proceedings of the ACM SIGCOMM Wokshop on
Programmable Routers for Extensible Services of TOmorrow
(PRESTO), Seattle, WA, USA, August 2008.

[25] B. Chen and R. Morris. Flexible Control of Parallelism in a
Multiprocesor PC Router. InUSENIX Technical Conference,
2001.

[26] B. Chinoy and H.-W. Braun. The National Science
Foundation Network. Technical Report GA-21029, SDSC
Applied Network Research group, 1992.

[27] D. Comer.Network System Design using Network
Processors. Prentice Hall, 2004.

[28] W. J. Dally and B. Towles.Principles and Practices of
Interconnection Networks. Morgan Kaufmann, 2004.

[29] N. Egi, M. Dobrescu, J. Du, K. Argyraki, B.-G. Chun,
K. Fall, G. Iannaccone, A. Knies, M. Manesh, L. Mathy, and
S. Ratnasamy. Understanding the Packet Processing
Capabilities of Multi-Core Servers. Technical Report
LABOS-REPORT-2009-001, EPFL, Switzerland, February
2009.

[30] N. Egi, A. Greenhalgh, mark Handley, M. Hoerdt, F. Huici,
and L. Mathy. Fairness Issues in Software Virtual Routers. In
Proceedings of the ACM SIGCOMM Workshop on
Programmable Routers for Extensible Services of TOmorrow
(PRESTO), Seattle, WA, USA, August 2008.

[31] N. Egi, A. Greenhalgh, mark Handley, M. Hoerdt, F. Huici,
and L. Mathy. Towards High Performance Virtual Routers on
Commodity Hardware. InProceedings of the ACM
International Conference on Emerging Networking
EXperiments and Technologies (CoNEXT), Madrid, Spain,
December 2008.

[32] R. Ennals, R. Sharp, and A. Mycroft. Task Partitioning for
Multi-Core Network Processors. InProceedings of the IEEE
International Conference on Computer Communications
(ICCC), Mauritius, April 2005.

[33] P. P. Gelsinger. Intel Architecture Press Briefing.http:
//download.intel.com/pressroom/archive/
reference/Gelsinger_briefing_0308.pdf,
March 2008.

[34] P. Gupta, S. Lin, and N. McKeown. Routing Lookups in
Hardware at Memory Access Speeds. InProceedings of the
IEEE INFOCOM Conference, San Francisco, CA, USA,
March 1998.

[35] S. Kandula, D. Katabi, S. Sinha, and A. Berger. Flare:
Responsive Load Balancing Without Packet Reordering.
ACM Computer Communications Review (CCR), 37(2),
April 2007.

[36] D. Katabi, M. Handley, and C. Rohrs. Internet Congestion
Control for High Bandwidth-Delay Product Networks. In
Proceedings of the ACM SIGCOMM Conference, Pittsburgh,
PA, USA, August 2002.

[37] I. Keslassy, S.-T. Chuang, K. Yu, D. Miller, M. Horowitz,
O. Solgaard, and N. McKeown. Scaling Internet Routers
Using Optics. InProceedings of the ACM SIGCOMM
Conference, Karlsruhe, Germany, August 2003.

[38] E. Kohler, R. Morris, et al. The Click Modular Router.ACM
Transactions on Computer Systems, 18(3):263–297, August
2000.

[39] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H.
Kim, S. Shenker, and I. Stoica. A Data-Oriented (and
Beyond) Network Architecture. InProceedings of the ACM
SIGCOMM Conference, Kyoto, Japan, August 2007.

[40] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turn. OpenFlow:
Enabling Innovation in Campus Networks.ACM Computer
Communications Review, 38(2), April 2008.

[41] J. C. Mogul, P. Yalagandula, J. Tourrilhes, R. McGeer,
S. Banerjee, T. Connors, and P. Sharma. API Design
Challenges for Open Router Platforms on Proprietary
Hardware. InProceedings of the ACM Workshop on Hot
Topics in Networks (HotNets), Calgary, Alberta, Canada,
October 2008.

[42] K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, and
C. Diot. Analysis of Measured Single-Hop Delay from an
Operational Backbone Network. InProceedings of the IEEE
INFOCOM Conference, New York, NY, USA, June 2002.

[43] C. Partridge, P. P. Carvey, E. Burgess, I. Castineyra,
T. Clarke, L. Graham, M. Hathaway, P. Herman, A. King,
S. Kohalmi, T. Ma, J. Mcallen, T. Mendez, W. C. Milliken,
R. Pettyjohn, J. Rokosz, J. Seeger, M. Sollins, S. Starch,
B. Tober, G. D. Troxel, D. Waitzman, and S. Winterble. A 50
Gigabit Per Second IP Router.IEEE/ACM Transactions on
Networking, 6(3), June 1998.

[44] PIC-SIG. PCI Express Base 2.0 Specification, 2007.
http://www.pcisig.com/specifications/pciexpress/base2.

[45] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb. Building a
Robust Software-Based Router Using Network Processors.
In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), Banff, Canada, October 2001.

[46] J. Turner, P. Crowley, J. Dehart, A. Freestone, B. Heller,
F. Kuhms, S. Kumar, J. Lockwood, J. Lu, M. Wilson,
C. Wiseman, and D. Zar. Supercharging PlanetLab – A High
Performance, Multi-Application, Overlay Network Platform.
In Proceedings of the ACM SIGCOMM Conference, Kyoto,
Japan, August 2007.

[47] L. Valiant and G. Brebner. Universal Schemes for Parallel
Communication. InProceedings of the ACM Symposium on
Theory of Computing (STOC), Milwaukee, WI, USA, June
1981.

[48] B. Veal and A. Foong. Performance Scalability of a
Multi-Core Web Server. InProceedings of the ACM/IEEE
Symposium on Architectures for Networking and
Communications Systems (ANCS), Orlando, FL, USA,
December 2007.

[49] R. Zhang-Shen and N. McKeown. On Direct Routing in the
Valiant Load-Balancing Architecture. InProceedings of the
IEEE Global Telecommunications Conference
(GLOBECOM), St Louis, MO, USA, November 2005.

[50] L. Zhao, Y. Luo, L. Bhuyan, and R. Iyer. SpliceNP: A TCP
Splicer using a Network Processor. InProceedings of the
ACM Symposium on Architectures for Networking and
Communications Systems (ANCS), Princeton, NJ, USA,
October 2005.

