
pktgen the linux packet generator

Robert Olsson
Uppsala Universitet & SLU
robert.olsson@its.uu.se

Abstract

pktgen is a high-performance testing tool in-
cluded in the Linux kernel. pktgen is currently
the best tool to test the TX process of device
driver and NIC. pktgen can also be used to gen-
erate ordinary packets to test other network de-
vices. Especially of interest is the use of pkt-
gen to test routers or bridges which often also
use the Linux network stack. Because pktgen is
“in-kernel,” it can generate high bandwith and
very high packet rates to load routers, bridges,
or other network devices.

1 Introduction

This paper describes the novel rework of pktgen
in Linux 2.6.11. Much of the rework has been
focused on multi-threading and SMP support.
The main goal is to have one pktgen thread per
CPU which can then drive one or more NICs.
An in-kernel pseudo driver offers unique pos-
sibilities in performance and capabilities. The
trade-off is additional responsibility in terms of
robustness and avoiding kernel bloat (vs user
mode application).

Pktgen is not an all-in-one testing tool. It offers
a very efficient direct access to the host system
NIC driver/chip TX-process and bypasses most
of the Linux networking stack. Because of this,

use of pktgen requires root access. The packet
stream generated by pktgen can be used as in-
put to other network devices. Pktgen also exer-
cises other subsystems such as packet memory
allocators and I/O buses. The author has done
tests sending packets from memory to several
GIGE interfaces on different PCI-buses using
several CPU’s. Aggregate Rates > 10 GBit/s
have been seen.

1.1 Other testing tools

There are lots of good testing tools for network
and TCP testing. netperf and ttcp are probably
among the most widespread. Pktgen is not a
substitute for those tools but complements for
some types of tests. The test possibilities is de-
scribed later in this paper. Most importantly,
pktgen cannot do any TCP testing.

2 Pktgen performance

Performance varies of course with hardware
and type of test. Some examples follow. A
single flow of 1.48 Mpps is seen with a XEON
2.67 GHz using a patched e1000 driver (64 byte
packets). High numbers are also reported with
bcm5703 with tg3 driver. Aggregated perfor-
mance of >10 Gbit/s (1500 byte packets) comes
from using 12 GIGE NIC’s and DUAL XEON

12 • pktgen the linux packet generator

2.67 MHz with hyperthreading enabled (moth-
erboard has 4 independent PCI-X buses). Sim-
ilarly, DUAL 1.6ăGHz Opterons can generate
2.4 Mpps (64 byte packets). Tests involving
lots of alloc’s results in lower sending perfor-
mance (seeclone_skb()).

Many other things also affect performance: PCI
bus speed, PCI vs PCI-X, PCI-PCI Bridge,
CPU speed, memory latency, DMA latency,
number of MMIO reads/writes per packet or
per interrupt, etc.

Figure 1 compares performance of Intel’s
DUAL Port NIC (2 x 82546EB) with Intel’s
QUAD NIC (4 x 82546EB; Secondary PCI-X
Bus runs at 120 Mhz). on a Dual Opteron 242
(Linux 2.6.7 32-bit).

The graph shows a faster I/O bus gives higher
performance as this probably lowers DMA la-
tency. The effects of the PCI-X bridge are also
evident as the bridge is the difference between
the DUAL and QUAD boards.

It’s interesting to note that even bus bandwidth
is much faster than 1 Gbit/s it degrades the
small packet performance as seen from the ex-
periment. 133 MHz would theoretically cor-
respond to 8.5 Gbit/s. The patched version of
e1000 driver adds data prefetching and skb re-
fill at hard_xmit() .

Figure 1: PCI Bus Topology vs TX perf

3 Getting pktgen to run

EnableCONFIG_NET_PKTGENin the .config,
compile and build pktgen.o either in-kernel or
as module, insmod pktgen if needed. Once run-
ning, pktgen creates a kernel thread and binds
thread to that CPU. One can the register a de-
vice to exactly one of those threads.This to give
full control of the device to CPU relationship.
Modern platforms allow interrupts to be as-
signed to a CPU (aka IRQ affinity) and this is
necessary to minimize cache-line bouncing.

Generally, we want the same CPU that gener-
ates the packets to also take the interrupts given
a symmetrical configuration (CPU:NIC is 1:1).

On a dual system we see two pktgen threads:
[pktgen/0], [pktgen/1]

pktgen is controlled and monitored via the
/proc file system. To help document a test con-
figuration and parameters, shell scripts are rec-
ommended to setup and start a test. Again
referring to our dual system, at start up the
files below are created in̆a /proc/net/
pktgen/ kpktgend_0, kpktgend_1, pgctrl

Assigning devices (e.g. eth1, eth2) to kpkt-
gend_X thread, makes new instances of the de-
vices show up in/proc/net/pktgen/ to
be further configured at the device level.

A test can be configured to run forever or ter-
minate after a fixed number of packets. Ctrl-C
aborts the run.

pktgen sends UDP packets to port 9 (discard
port) by default. IP, MAC addresses, etc. can be
configured. Pktgen packets can hence be iden-
tified within the kernel network stack for pro-
filing and testing.

2005 Linux Symposium • 13

4 Pktgen versioninfo

The pktgen version is printed in dmesg when
pktgen starts. Version info is also in/proc/

net/pktgen/pgctrl .

5 Interrupt affinity

When adding a device to a specific pktgen
thread, one should also set/proc/irq/X/

smp_affinity to bind the NIC to the same
CPU. This reduces cache line bouncing in sev-
eral areas: when freeing skb’s and in the NIC
driver. The clone_skb parameter can in
some cases mitigate the effect of cache line
bouncing as skb’s are not fully freed. One must
experiment a bit to achieve maximum perfor-
mance.

The irq numbers assigned to particular NICs
can be seen in/proc/interrupts . In the ex-
ample below, eth0 uses irq 26, eth1 uses irq 27
etc.

26: 933931 0 IO-APIC-level eth0
27: 936392 0 IO-APIC-level eth1
28: 8 936457 IO-APIC-level eth2
29: 8 939310 IO-APIC-level eth3

The example below assigns eth0, eth1 to CPU0,
and eth2, eth3 to CPU1:

echo 1 > /proc/irq/26/smp_affinity
echo 1 > /proc/irq/27/smp_affinity
echo 2 > /proc/irq/28/smp_affinity
echo 2 > /proc/irq/29/smp_affinity

The graph below illustrates the performance ef-
fects of affinity assignment of PII system.

Figure 2: Effects of irq affinity

5.1 clone_skb: limiting memory allocation

pktgen uses a trick to increment the skb’s refcnt
to avoid full path of kfree and alloc when send-
ing identical skb’s. This generally gives very
high sending rates. For Denial of Service (DoS)
and flow tests this technique can not be used as
each skb has to be modified.

The parameterclone_skb controls this func-
tionality. Think ofclone_skb as the number
of packet clones followed by a master packet.
Settingclone_skb=0 gives no clones, just
master packets, andclone_skb=1000000
givs 1 master packet followed by one million
clones.

clone_skb does not test normal use of a
NIC. While the kfree and alloc are avoided by
using clone_skb , one also avoids sending
packets from dirty cachelines. The clean cache
can contribute as much as 20% in performance
as shown in Table 1.

Data in Table 1 was collected on HP rx2600-
Itanium2 with BCM5703 (PCI-X) NIC running
2.6.11 kernel. The difference in performance
between columns (RC on vs. off) shows how
much dirty cache can affect DMA. Numbers
are in packets per second. Read Current (RC) is
a Mckinley bus transaction that allows the CPU
to respond to a cacheline request directly from
cache and retain ownership of the dirty cache-
line. I.e., the cacheline can stay dirty-private

14 • pktgen the linux packet generator

clone_skb RC on RC off % Drop
on 947315 913768 –3.54%
off 630736 506711 –19.66%

Table 1: clone_skb and cache effects (pps)

and the CPU can write the same cacheline again
without having to acquire ownership first.

It’s likely cache effects contribute to the differ-
ence in performance between rows too (with
and without clone_skb). But it’s just as
likely clone_skb reduces the CPU’s use of
memory bus bandwidth and thus contends less
with DMA. This data is contributed by Grant
Grundler.

5.2 Delay: Decreasing sending rate

pktgen can insert an extra artificial delay be-
tween packets. The unit is specified in nanosec-
onds. For small delays, pktgen busywaits be-
fore putting this skb on the TX-ring. This
means traffic is still bursty and somewhat
hard to control. Experimentation is probably
needed.

6 Setup examples

Below a very simple example of pktgen send-
ing on eth0. One only needs to bring up the
link.

Figure 3: Just send/Link up

pktgen can send if the device is UP but many
derives also requires that link is up can be done

using a crossover cable connected to another
NIC in the same box. If generated packets
should be seen (i.e. Received) by the same host,
set dstmac to match the NIC on the cross over
cable as shown in Figure 4. Using a “fake” dst-
mac value (e.g. 0) will cause the other NIC to
just ignore the packets.

Figure 4: RX/TX in one Host

On SMP systems, it’s better if the TX flow (pk-
tgen thread) is on a different CPU from the RX
flow (set IRQ affinity). One way to test Full
Duplex functionality is to connect two hosts
and point the TX flows to each other’s NIC.

Next, the box with pktgen is used just a packet
source to inject packets into a local or remote
system. Note you need to configure dstmac of
localhost or gateway appropriate.

Figure 5: Send to other

Below pktgen in a forwarding setup. The sink
host receives and discards packets. Of course,
forwarding has to be configured on all boxes.
It might be possible to use a dummy device in-
stead of sink box.

Figure 6: Forwarding setup

Forwarding setup using dual devices. Pktgen
can use different threads to achieve high load
in terms of small packets or concurrent flows.

2005 Linux Symposium • 15

Figure 7: Parallel Forwarding setup

7 Viewing pktgen threads

Thread information as which devices are han-
dled by this thread as actual status for each de-
vice is seen.max_before_softirq is used to
avoid pktgen to avoid pktgen monopolize ker-
nel resources. This will probably be removed
as this of less problem with the threaded de-
sign. Result: is the “return” code “from the last
/proc write.

/proc/net/pktgen/kpktgend_0

Name: kpktgend_0
max_before_softirq: 10000
Running:
Stopped: eth1
Result: OK: max_before_softirq=10000

7.1 Viewing pktgen devices

‘Parm’ sections holds configured info. ‘Cur-
rent’ holds running stats. Result is printed after
run or after interruption for example: See Ap-
pendix.

8 Configuring

Configuring is done via the /proc interface this
is easiest done via scripts. Select a suitable
script and customize. This paper includes one
full example in Section 8. Additional example
scripts are available from:

..1-1 # 1 CPU 1 dev

..1-2 # 1 CPU 2 dev

..2-1 # 2 CPU’s 1 dev

..2-2 # 2 CPU’s 2 dev

..1-1-rdos # 1 CPU 1 dev route DoS

..1-1-ip6 # 1 CPU 1 dev ipv6

..1-1-ip6-rdos # 1 CPU 1 dev ipv6 route DoS

..1-1-flows # 1 CPU 1 dev multiple flows

Table 2: Script Filename Extensions

ftp://robur.slu.se/pub/Linux/
net-development/pktgen-testing/
examples/

Additional examples have been con-
tributed by Grant Grundler<grundler@
parisc-linux.org>
ftp://gsyprf10.external.hp.com/

pub/pktgen-testing/

See Appendix A for a quick-reference guide for
currently implemented commands. It’s divided
into three parts: Pgcontrol, Threads, and De-
vice. Each part has corresponding files in the
/proc file system.

A collection of small tutorial scripts for pktgen
are in examples dir. The file name extension is
described in Table reffilename-ext.

Run in shell: ./pktgen.conf-X-Y

It does all the setup and then starts/stops TX
thread. The scripts will need to be adjusted
based on which NICs one wishes to test.

8.1 Configuration examples

Below is concentrated anatomy of the example
scripts. This should be easy to follow.

pktgen.conf-1-2 A script fragment assigning
eth1, eth2 to CPU on single CPU system.

16 • pktgen the linux packet generator

PGDEV=/proc/net/pktgen/kpktgend_0
pgset "rem_device_all"
pgset "add_device eth1"
pgset "add_device eth2"

pktgen.conf-2-2 A script fragment assigning
eth1 to CPU0 respectivly eth2 to CPU1.

PGDEV=/proc/net/pktgen/kpktgend_0
pgset "rem_device_all"
pgset "add_device eth1"

PGDEV=/proc/net/pktgen/kpktgend_1
pgset "rem_device_all"
pgset "add_device eth2"

pktgen.conf-2-1 A script fragment assigning
eth1 and eth2 to CPU0 on a dual CPU system.

PGDEV=/proc/net/pktgen/kpktgend_0
pgset "rem_device_all"
pgset "add_device eth1"
pgset "add_device eth2"

PGDEV=/proc/net/pktgen/kpktgend_1
pgset "rem_device_all"

pktgen.conf-1-2 A script fragment assigning
eth1, eth2 to CPU on single CPU system.

PGDEV=/proc/net/pktgen/kpktgend_0
pgset "rem_device_all"
pgset "add_device eth1"
pgset "add_device eth2"

pktgen.conf-1-1-rdos A script fragment for
route DoS testing. Note clone_skb 0

PGDEV=/proc/net/pktgen/eth1
pgset "clone_skb 0"
Random address with in the
min-max range
pgset "flag IPDST_RND"
pgset "dst_min 10.0.0.0"
pgset "dst_max 10.255.255.255"

pktgen.conf-1-1-ipv6 Setting device ipv6 ad-
dresses.

PGDEV=/proc/net/pktgen/eth1
pgset "dst6 fec0::1"
pgset "src6 fec0::2"

pktgen.conf-1-1-ipv6-rdos

PGDEV=/proc/net/pktgen/eth1
pgset "clone_skb 0"
pgset "flag IPDST_RND"
pgset "dst6_min fec0::1"
pgset "dst6_max fec0::FFFF:FFFF"

pktgen.conf-1-1-flows A script fragment for
route flow testing. Note clone_skb 0

PGDEV=/proc/net/pktgen/eth1
pgset "clone_skb 0"
Random address within the
min-max range
pgset "flag IPDST_RND"
pgset "dst_min 10.0.0.0"
pgset "dst_max 10.255.255.255"
8k Concurrent flows at 4 pkts
pgset "flows 8192"
pgset "flowlen 4"

2x4+2 script

#Script contributed by Grant Grundler
<grundler@parisc-linux.org>
Note! 10 devices

PGDEV=/proc/net/pktgen/kpktgend_0
pgset "rem_device_all"
pgset "add_device eth3"
pgset "add_device eth5"
pgset "add_device eth7"
pgset "add_device eth9"
pgset "add_device eth11"
pgset "max_before_softirq 10000"

PGDEV=/proc/net/pktgen/kpktgend_1
pgset "rem_device_all"
pgset "add_device eth2"

2005 Linux Symposium • 17

pgset "add_device eth4"
pgset "add_device eth6"
pgset "add_device eth8"
pgset "add_device eth10"
pgset "max_before_softirq 10000"

Configure the individual devices

for i in 2 3 4 5 6 7 8 9 10 11
do

PGDEV=/proc/net/pktgen/eth$i
echo "Configuring $PGDEV"

pgset "clone_skb 500000"
pgset "min_pkt_size 60"
pgset "max_pkt_size 60"
pgset "dst 192.168.3.10$i"
pgset "dst_mac 01:02:03:04:05:0$i"
pgset "count 0"

done
echo "Running... CTRL-C to stop"
PGDEV=/proc/net/pktgen/pgctrl
pgset "start"

tail -2 /proc/net/pktgen/eth*

9 Tips for driver/chip testing

When testing a particular driver/chip/platform,
start with TX. Use pktgen on the host system
to get a sense of which ptkgen parameters are
optimal and how well a particular NIC can per-
form TX. Try with a range of packet sizes from
64 bytes to 1500 bytes or jumbo frames.

Then start looking at the RX on the target plat-
form by using pktgen to inject packets either
direct via crossover cable or via pktgen from
another host.

Again, vary the packet size etc To isolate
driver/chip from other parts of kernel stack pkt-
gen packets can be counted and dropped at var-
ious points. See section on detecting pktgen
packets.

Depending on the purpose of the test repeat the
process with additional devices, one at a time.

Multiple devices are trickier since one needs to
know I/O bus topology. Typically one tries to
balance I/O loads by installing the NICs in the
“right” slots or utilizing built-in devices appro-
priately.

9.1 Multiple Devices

With multiple devices, it is best to use CTRL-
C to stop a test run. This prevents any pktgen
thread from stopping before others and skew-
ing the test results. Sometimes, one NIC will
TX packets faster than another NIC just be-
cause of bias in the DMA latency or PCI bus
arbiter (to name only two of several possibili-
ties). Using CTRL-C to stop a test run aborts all
pktgen threads at once. This results in a clean
snapshot of how many packets a given configu-
ration could generate over the same period of
time. After the CTRL-C is received, pktgen
will print the statistics the same as if the test
had been stopped by a counter going to zero.

9.2 Other testing aspects

To isolate driver/chip from other parts of ker-
nel stack, pktgen packets can be counted and
dropped at various points. See Section 9.3 on
detecting pktgen packets.

If the tested system only has one interface, the
dummy interface can be setup as the output de-
vice. The advantage is we can test the system
at very high load and the results are very re-
produceable. Of course, other variables such
as different types of offload and checksumming
should be tested as well.

Besides knowing the hardware topology, one
should know what workloads are expected to
be present on the target system when placed in
production (i.e. real world use). An FTP server
can see quite a different workload than a web

18 • pktgen the linux packet generator

server, mail handler, or router, etc. Roughly
160 Kpps seems to fill a Gigabit link when run-
ning an FTP server. While this can vary, it gives
an useful estimate of required packet per sec-
ond (pps) versus bandwidth for this type of pro-
duction system.

For routers the number of routes in the rout-
ing table is also an issue as lookup times and
other behaviour may be affected. The author
has taken snapshots from current Internet rout-
ing table IPV4 and IPV6 (BGP) and formed
into scripts for this purpose. The routes are
added via the ip utility so the tested system does
not need any routing connectivity nor routing
daemon. Some scripts are available from:

ftp://robur.slu.se/pub/Linux/
net-development/inet_routes/

At last use your fantasy when testing, elaborate
with new setups try to understand how things
are functioning, monitor interested and related
variables add printouts etc. Testing understand-
ing and development are closely related.

9.3 Detecting pktgen packets in kernel

Sometimes it’s very useful to monitor/drop pk-
tgen packets within the driver/network stack ei-
ther at ingress or egress. The technique for both
is essentially the same. The patchlet in Sec-
tion 13.1 drops pktgen packets at ingress and
uses an unused counter.

Also it should be possible to capture pktgen
packets via the tc command and the u32 clas-
sifier which might be a better solution in most
cases.

10 Thanks to. . .

Thanks to Grant Grundler, Jamal Hadi Salim,
Jens Låås, and Hans Wassen for comments and

useful insights. This paper covers several years
of work and conversations with all of the above.

Relevant site:
ftp://robur.slu.se://pub/Linux/
net-development/pktgen-testing/

Good luck with the linux net-development!

2005 Linux Symposium • 19

11 Appendix A

Table 3: Command Summary

Commands

Pgcontrol commands
start Starts sending on all threads
stop
Threads commands
add_device Add a device to thread i.e eth0
rem_device_all Removes all devices from this thread
max_before_softirq do_softirq() after sending a number of packets
Device commands
debug
clone_skb Number of identical copies of the same packet 0 means alloc for each skb.

For DoS etc we must alloc new skb’s.
clear_counters normally handled automatically
pkt_size Link packet size minus CRC (4)
min_pkt_size Range pkt_size setting If < max_pkt_size, then cycle through the port

range.
max_pkt_size
frags Number of fragments for a packet
count Number of packets to send. Use zero for continious sending
delay Artificial gap inserted between packets in nanoseconds
dst IP destination address i.e 10.0.0.1
dst_min Same as dst If < dst_max, then cycle through the port range.
dst_max Maximum destination IP. i.e 10.0.0..1
src_min Minimum (or only) source IP. i.e. 10.0.0.254 If < src_max, then cycle

through the port range.
src_max Maximum source IP.
dst6 IPV6 destination address i.e fec0::1
src6 IPV6 source address i.e fec0::2
dstmac MAC destination adress 00:00:00:00:00:00
srcmac MAC source adress. If omitted it’s automatically taken from source device
src_mac_count Number of MACs we’ll range through. Minimum’ MAC is what you set

with srcmac.
dst_mac_count Number of MACs we’ll range through. Minimum’ MAC is what you set

with dstmac.
Flags
IPSRC_RND IP Source is random (between min/max),
IPDST_RND Etc
TXSIZE_RND
UDPSRC_RND

20 • pktgen the linux packet generator

Commands continued

UDPDST_RND
MACSRC_RND
MACDST_RND
udp_src_min UDP source port min, If < udp_src_max, then cycle through the port range.
udp_src_max UDP source port max.
udp_dst_min UDP destination port min, If < udp_dst_max, then cycle through the port

range.
udp_dst_max UDP destination port max.
stop Aborts packet injection. Ctrl-C also aborts generator.Note: Use count 0

(forever) and stop the run with Ctrl-C when multiple devices are assigned
to one pktgen thread. This avoids some devices finishing before others and
skewing the results. We are primarily interested in how many packets all
devices can send at the same time, not absolute number of packets each
NIC sent.

flows Number of concurrent flows
flowlen Length of a flow

12 Appendix B

12.1 Sample pktgen output

/proc/net/pktgen/eth1output after run

Params: count 10000000 min_pkt_size: 60 max_pkt_size: 60
frags: 0 delay: 0 clone_skb: 1000000 ifname: eth1
flows: 0 flowlen: 0
dst_min: 10.10.11.2 dst_max:
src_min: src_max:
src_mac: 00:00:00:00:00:00 dst_mac: 00:07:E9:13:5C:3E
udp_src_min: 9 udp_src_max: 9 udp_dst_min: 9 udp_dst_max: 9
src_mac_count: 0 dst_mac_count: 0
Flags:

Current:
pkts-sofar: 10000000 errors: 39192
started: 1076616572728240us stopped: 1076616585502839us idle: 1037781us
seq_num: 11 cur_dst_mac_offset: 0 cur_src_mac_offset: 0
cur_saddr: 0x10a0a0a cur_daddr: 0x20b0a0a
cur_udp_dst: 9 cur_udp_src: 9
flows: 0

Result: OK: 12774599(c11736818+d1037781) usec, 10000000 (64byte)
782840pps 382Mb/sec (400814080bps) errors: 39192

Results show 10 millon 64 byte packets were sent on eth1 to 10.10.11.2
with a rate at 783 kpps

2005 Linux Symposium • 21

\section{Appendix C}
\subsection{pktgen.conf-1-1 script}

Below is the full pktgen.conf-1-1 script

\begin{footnotesize}
\begin{verbatim}
#!/bin/sh

#modprobe pktgen

function pgset() {
local result

echo $1 > $PGDEV

result=‘cat $PGDEV | fgrep "Result: OK:"‘
if ["$result" = ""]; then

cat $PGDEV | fgrep Result:
fi

}

function pg() {
echo inject > $PGDEV
cat $PGDEV

}

Config Start Here -------------------------------------

thread config
Each CPU has own thread. Two CPU exammple.
We add eth1, eth2 respectively.

PGDEV=/proc/net/pktgen/kpktgend_0
echo "Removing all devices"

pgset "rem_device_all"
echo "Adding eth1"

pgset "add_device eth1"
echo "Setting max_before_softirq 10000"

pgset "max_before_softirq 10000"

device config
delay is inter packet gap. 0 means maximum speed.

CLONE_SKB="clone_skb 1000000"
NIC adds 4 bytes CRC
PKT_SIZE="pkt_size 60"

COUNT 0 means forever
#COUNT="count 0"
COUNT="count 10000000"
delay="delay 0"

22 • pktgen the linux packet generator

PGDEV=/proc/net/pktgen/eth1
echo "Configuring $PGDEV"

pgset "$COUNT"
pgset "$CLONE_SKB"
pgset "$PKT_SIZE"
pgset "$delay"
pgset "dst 10.10.11.2"
pgset "dst_mac 00:04:23:08:91:dc"

Time to run
PGDEV=/proc/net/pktgen/pgctrl

echo "Running... ctrl^C to stop"
pgset "start"
echo "Done"

Result can be vieved in /proc/net/pktgen/eth1

13 Appendix D

13.1 Patchlet to ip_input.c

Below is the patchlet to count and drop pktgen packets.

--- linux/net/ipv4/ip_input.c.orig Mon Feb 10 19:37:57 2003
+++ linux/net/ipv4/ip_input.c Fri Feb 21 21:42:45 2003
@@ -372,6 +372,23 @@

IP_INC_STATS_BH(IpInDiscards);
goto out;

}

+ {
+ __u8 *data = (__u8 *) skb->data+20;
+
+ /* src and dst port 9 --> pktgen */
+
+ if(data[0] == 0 &&
+ data[1] == 9 &&
+ data[2] == 0 &&
+ data[3] == 9) {
+ netdev_rx_stat[smp_processor_id()].fastroute_hit+
+;
+ goto drop;
+ }
+ }
+

2005 Linux Symposium • 23

if (!pskb_may_pull(skb, sizeof(struct iphdr)))
goto inhdr_error;

24 • pktgen the linux packet generator

Proceedings of the
Linux Symposium

Volume Two

July 20nd–23th, 2005
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

