
I’ll Do It Later: Softirqs, Tasklets, Bottom Halves, Task Queues,

Work Queues and Timers

Matthew Wilcox

Hewlett-Packard Company

matthew.wilcox@hp.com

Abstract

An interrupt is a signal to a device driver that there
is work to be done. However, if the driver does too
much work in the interrupt handler, system respon-
siveness will be degraded. The standard way to avoid
this problem (until Linux 2.3.42) was to use a bot-
tom half or a task queue to schedule some work to do
later. These handlers are run with interrupts enabled
and lengthy processing has less impact on system re-
sponse.

The work done for softnet introduced two new fa-
cilities for deferring work until later: softirqs and
tasklets. They were introduced in order to achieve
better SMP scalability. The existing bottom halves
were reimplemented as a special form of tasklet which
preserved their semantics. In Linux 2.5.40, these old-
style bottom halves were removed; and in 2.5.41, task
queues were replaced with a new abstraction: work
queues.

This paper discusses the differences and relation-
ships between softirqs, tasklets, work queues and
timers. The rules for using them are laid out, along
with some guidelines for choosing when to use which
feature.

Converting a driver from the older mechanisms to
the new ones requires an SMP audit. It is also neces-
sary to understand the interactions between the var-
ious driver entry points. Accordingly, there is a brief
review of the basic locking primitives, followed by a
more detailed examination of the additional locking
primitives which were introduced with the softirqs
and tasklets.

1 Introduction

When writing kernel code, it is common to wish to
defer work until later. There are many reasons for
this. One is that it is inappropriate to do too much
work with a lock held. Another may be to batch
work to amortise the cost. A third may be to call
a sleeping function, when scheduling at that point is
not allowed.

The Linux kernel offers many different facilities for
postponing work until later. Bottom Halves are for
deferring work from interrupt context. Timers allow
work to be deferred for at least a certain length of
time. Work Queues allow work to be deferred to pro-
cess context.

2 Contexts and Locking

Code in the Linux kernel runs in one of three con-
texts: Process, Bottom-half and Interrupt. Process
context executes directly on behalf of a user process.
All syscalls run in process context, for example. In-
terrupt handlers run in interrupt context. Softirqs,
tasklets and timers all run in bottom-half context.

Linux is now a fairly scalable SMP kernel. To be
scalable, it is necessary to allow many parts of the
system to run at the same time. Many parts of the
kernel which were previously serialised by the core
kernel are now allowed to run simultaneously. Be-
cause of this, driver authors will almost certainly need
to use some form of locking, or expand their existing
locking.

Spinlocks should normally be used to protect ac-



cess to data structures and hardware. The normal
way to do this is to call spin lock irqsave(lock,

flags), which saves the current interrupt state in
flags, disables interrupts on the local CPU and ac-
quires the spinlock.

Under certain circumstances, it is not necessary to
disable local interrupts. For example, most filesys-
tems only access their data structures from pro-
cess context and acquire their spinlocks by calling
spin lock(lock). If the code is only called in in-
terrupt context, it is also not necessary to disable
interrupts as Linux will not reenter an interrupt han-
dler.

If a data structure is accessed only from pro-
cess and bottom half context, spin lock bh() can
be used instead. This optimisation allows inter-
rupts to come in while the spinlock is held, but
doesn’t allow bottom halves to run on exit from
the interrupt routine; they will be deferred until the
spin unlock bh().

The consequence of failing to disable interrupts is
a potential deadlock. If the code in process context
is holding a spinlock and the code in interrupt con-
text attempts to acquire the same spinlock, it will
spin forever. For this reason, it is recommended that
spin lock irqsave() is always used.

One way of avoiding locking altogether is to use
per-CPU data structures. If only the local CPU
touches the data, then disabling interrupts (using
local irq disable() or local irq save(flags))
is sufficient to ensure data structure integrity. Again,
this requires a certain amount of skill to use correctly.

3 Bottom Halves

3.1 History

Low interrupt latency is extremely important to any
operating system. It is a factor in desktop responsive-
ness and it is even more important in network loads.
It is important not to do too much work in the in-
terrupt handler lest new interrupts be lost and other
devices starved of the opportunity to proceed. This is
a common issue in Unix-like operating systems. The
standard approach is to split interrupt routines into a

‘top half’, which receives the hardware interrupt and
a ‘bottom half’, which does the lengthy processing.

Linux 2.2 had 18 bottom half handlers. Network-
ing, keyboard, console, SCSI and serial all used bot-
tom halves directly and most of the rest of the kernel
used them indirectly. Timers, as well as the immedi-
ate and periodic task queues, were run as a bottom
half. Only one bottom half could be run at a time.

In April 1999, Mindcraft published a benchmark
[Mindcraft] which pointed out some weaknesses in
Linux’s networking performance on a 4-way SMP ma-
chine. As a result, Alexey Kuznetsov and Dave Miller
multithreaded the network stack. They soon realised
that this was not enough. The problem was that
although each CPU could handle an interrupt at the
same time, the bottom half layer was singly-threaded,
so the work being done in the NET BH was still not
distributed across all the CPUs.

The softnet work multithreaded the bottom halves.
This was done by replacing the bottom halves with
softirqs and tasklets. The old-style bottom halves
were reimplemented as a set of tasklets which exe-
cuted with a special spinlock held. This preserved
the single-threaded nature of the bottom half for
those drivers that assumed it while letting the net-
work stack run simultaneously on all CPUs.

In 2.5, the old-style bottom halves were removed
with all remaining users being converted to either
softirqs or tasklets. The term ‘Bottom Half’ is now
used to refer to code that is either a softirq or a
tasklet, like the spin lock bh() function mentioned
above.

It is amusing that when Ted Ts’o first implemented
bottom halves for Linux, he called them Softirqs. Li-
nus said he’d never accept softirqs so Ted changed
the name to Bottom Halves and Linus accepted it.

3.2 Implementing softirqs

On return from handling a hard interrupt, Linux
checks to see whether any of the softirqs have been
raised with the raise softirq() call. There are a
fixed number of softirqs and they are run in prior-
ity order. It is possible to add new softirqs, but it’s
necessary to have them approved and added to the
list.

2



Softirqs have strong CPU affinity. A softirq han-
dler will execute on the same CPU that it is raised
on. Of course, it’s possible that this softirq will also
be raised on another CPU and may execute first on
that CPU, but all current softirqs have per-CPU data
so they don’t interfere with each other at all.

Linux 2.5.48 defines 6 softirqs. The highest pri-
ority softirq runs the high priority tasklets. Then
the timers run, then network transmit and receive
softirqs are run, then the SCSI softirq is run. Finally,
low-priority tasklets are run.

3.3 Tasklets

Unlike softirqs, tasklets are dynamically allocated.
Also unlike softirqs, a tasklet may run on only one
CPU at a time. They are more SMP-friendly than
the old-style bottom halves in that other tasklets may
run at the same time. Tasklets have a weaker CPU
affinity than softirqs. If the tasklet has already been
scheduled on a different CPU, it will not be moved
to another CPU if it’s still pending.

Device drivers should normally use a tasklet to de-
fer work until later by using the tasklet schedule()

interface. If the tasklet should be run more urgently
than networking, SCSI, timers or anything else, they
should use the tasklet hi schedule() interface in-
stead. This is intended for low-latency tasks which
are critical for interactive feel – for example, the key-
board driver.

Tasklets may also be enabled and disabled. This
is useful when the driver is handling an exceptional
situation (eg network card with an unplugged cable).
If the driver needs to be sure the tasklet is not ex-
ecuting during the exceptional situation, it is easier
to disable the tasklet than to use a global variable to
indicate that the tasklet shouldn’t do its work.

3.4 ksoftirqd

When the machine is under heavy interrupt load, it
is possible for the CPU to spend all its time ser-
vicing interrupts and softirqs without making for-
ward progress. To prevent this from saturating the
machine, if too much work is happening in softirq

context, further softirq processing is handled by
ksoftirqd.

The current definition of “too much work” is when
a softirq is reactivated during a softirq processing run.
Some argue this is too eager and ksoftirqd activation
should be reserved for higher overload situations.

ksoftirqd is implemented as a set of threads, each
of which is constrained to only run on a specific CPU.
They are scheduled (at a very high priority) by the
normal task scheduler. This implementation has the
advantage that the time spent executing the bottom
halves is accounted to a system task. It is thus possi-
ble for the user to see that the machine is overloaded
with interrupt processing, and maybe take remedial
action.

Although the work is now being done in process
context rather than bottom half context, ksoftirqd
sets up an environment identical to that found in bot-
tom half context. Specifically, it executes the softirq
handlers with local interrupts enabled and bottom
halves disabled locally. Code which runs as a bottom
half does not need to change for ksoftirqd to run it.

3.5 Problems

There are some subtle problems with using softirqs
and tasklets. Some are obvious – driver writers must
be more careful with locking. Other problems are less
obvious. For example, it’s a great thing to be able
to take interrupts on all CPUs simultaneously, but
there’s no point in taking an interrupt if it can’t be
processed before the next one is received.

Networking is particularly vulnerable to this. As-
suming the interrupt controller distributes interrupts
among CPUs in a round-robin fashion (this is the de-
fault for Intel IO-APICs), worst-case behaviour can
be produced by simply ping-flooding an SMP ma-
chine. Interrupts will hit each CPU in turn, raising
the network receive softirq. Each CPU will then at-
tempt to deliver its packet into the networking stack.
Even if the CPUs don’t spend all their time spinning
on locks waiting for each other to exit critical regions,
they steal cachelines from each other and waste time
that way.

Advanced network cards implement a feature
called interrupt mitigation. Instead of interrupting

3



the CPU for each packet received, they queue pack-
ets in their on-card RAM and only generate an inter-
rupt when a sufficient number of packets have arrived.
The NAPI work, done by Jamal Hadi Salim, Alexey
Kuznetsov and Thomas Olsson, simulates this in the
OS.

When the network card driver receives a packet,
it calls disable irq() before passing the packet to
the network stack’s receive softirq. After the net-
work stack has processed the packet, it asks the driver
whether any more packets have arrived in the mean-
time. If none have, the driver calls enable irq().
Otherwise, the network stack processes the new pack-
ets and leaves the network card’s interrupt disabled.
This effectively leaves the card in polling mode, and
prevents any card from consuming too much of the
system’s resources.

4 Timers

A timer is another way of scheduling work to do
later. Like a tasklet, a timer list contains a func-
tion pointer and a data pointer to pass to that func-
tion. The main difference is that, as their name im-
plies, their execution is delayed for a specified period
of time. If the system is under load, the timer may
not trigger at exactly the requested time, but it will
wait at least as long as specified.

4.1 History

Originally there was an array of 32 timers. Like a
softirq today, special permission was needed to get
one. They were used for everything from SCSI, net-
working and the floppy driver to the 387 coprocessor,
the QIC-02 tape driver and assorted drivers for old
CD-ROMs.

Even by Linux 2.0, this was found to be insufficient
and there was a “new and improved” dynamic timer
interface. Nevertheless, the old timers persisted into
2.2 and were finally removed from 2.4 by Andrew
Morton.

Timers were originally run from their own bottom
half. The softnet work did not change this, so only
one timer could run at a time. Timers were also seri-

alised with other bottom halves and, as a special case,
they were serialised with respect to network proto-
cols which had not yet been converted to the softnet
framework.

This changed in 2.5.40 when bottom halves were
removed. The exclusion with other bottom halves
and old network protocols was removed, and timers
could be run on multiple CPUs simultaneously. This
was initially done with a per-CPU tasklet for timers,
but 2.5.48 simplified this to use softirqs directly.

Any code which uses timers in 2.5 needs to be au-
dited to make sure that it does not race with other
timers accessing the same data or with other asyn-
chronous events such as softirqs or tasklets.

4.2 Usage

The dynamic timers have always been controlled by
the following interfaces: add timer(), del timer()

and mod timer(). 2.4 added the del timer sync()

interface, which guarantees that when it returns,
the timer is no longer running. 2.5.45 adds
add timer on(), which allows a timer to be added
on a different CPU.

Drivers have traditionally had trouble using timers
in a safe and race-free way. Partly, this is because
the timer handler is permitted so much latitude in
what it may do. It may kfree() the timer list (or
the struct embedding the timer list). It may add,
modify or delete the timer.

Many drivers assume that after calling
del timer(), they can free the timer list,
exit the module or shut down a device safely. On
an SMP system, the timer can potentially still be
running on another CPU after the del timer()

call returns. If the timer handler re-adds the timer
after it has been deleted, it will continue to run
indefinitely.

The del timer sync() function waits until the
timer is no longer running on any CPU before it
returns. Unfortunately, it can deadlock if the code
that called del timer sync() is holding a lock which
the timer handler routine needs to exit. Converting
drivers to use this interface is an ongoing project.

Many users of timers are still unsafe in the 2.5 ker-
nel, and a comprehensive audit is required. Fortu-

4



nately, most of the unsafe uses occur in module exit
paths, so are only hit rarely. But the consequences of
hitting the del timer() race are catastrophic – the
kernel will probably panic.

5 Task and Work Queues

Task queues were originally designed to replace the
old-style bottom halves. When they were integrated
into the kernel, they did not replace bottom halves
but were used as an adjunct to them. Like tasklets
and the new-style timers, they were dynamically al-
located. Also like tasklets and timers, they consist
of a function pointer and a data argument to pass to
that function.

Despite their name, they are not related to tasks
(as in ‘threads, tasks and processes’), which is partly
why they were renamed to work queues in 2.5. This
distinction was even more blurry in Linux 2.2 as there
was a tq scheduler which was run from the sched-
uler.

One bottom half was dedicated to running the
tq timer task queue, and another was dedicated to
running the tq immediate task queue. The interface
for using tq timer was fine, but tq immediate’s in-
terface was awful.

To defer execution from interrupt context,
the driver had to call queue task(tq immediate,

&my tqueue) and then mark bh(BH IMMEDIATE).
This exposed internal implementation details to
drivers and some drivers actually missed the call to
mark bh(), causing their processing to be delayed un-
til some other process marked the bottom-half ready
to run.

Another well-known task queue was tq disk. It
was run whenever some random part of the kernel felt
like calling run task queue(tq disk). Instructions
for using various interfaces said to call it, either be-
fore or after. This interface was removed in 2.5, and
replaced with blk run queues(). Unfortunately, it’s
still called in all the same places, and both failing
to call it and calling it too frequently affects system
performance negatively.

A feature introduced to the 2.4 kernel was a task
queue that would be run by keventd in process con-

text. The interface was much more sensible, involving
a single call to schedule task(). Various parts of
the kernel had their own private task queues which
would run when appropriate. For example, reiserfs
used a task queue for its journal commit thread.

2.5.41 replaced the task queue with the work
queue. Drivers which once used tq immediate

should normally switch to tasklets. Users of
tq timer should use timers directly. If these inter-
faces are inappropriate, the schedule work() and
schedule delayed work() interfaces may be used.
These interfaces queue the work to keventd, which
executes it in process context. Interrupts and bot-
tom halves are both enabled while the work queues
are being run. Functions called from a work queue
may call blocking operations, but this is discouraged
as it prevents other users from running.

Work queues may be created and destroyed dy-
namically, normally on module init and exit. This
is intended to provide a replacement for the private
task queues that were available before. Creating a
new work queue with create workqueue() starts a
new kernel thread per CPU. Work may then be sched-
uled to this work queue with the queue work() and
queue delayed work() interfaces.

Note that the routines for scheduling work to be
performed by keventd are available to everyone, but
the routines for using custom work queues are only
available to modules which are distributed under a
GPL-compatible licence. They should be used with
discretion, anyway, as creating a thread for each pro-
cessor quickly leads to a very large number of threads
being created on 64-CPU systems.

6 SCSI

In Linux 2.5.22, the SCSI subsystem was still using
an old-style bottom half. It seemed inappropriate
that parts of the SCSI system were still serialised
against random other parts of the kernel which could
not possibly interact with it.

Linux 2.5.23 introduced the SCSI tasklet. This was
accepted and removed a source of contention on the
global bh lock. As I investigated the softirq/tasklet
framework, it became clear that there was really no

5



reason to use a single tasklet for all SCSI hosts.

Linux 2.5.25 replaced the SCSI tasklet with the
SCSI SOFTIRQ. This made it possible to service SCSI
interrupts on all CPUs simultaneously. It was not
necessary to audit all the SCSI drivers because each
request queue and each host is already locked by the
SCSI midlayer.

SCSI does not suffer from the same kind of inter-
rupt storms as networking. For one thing, it’s not
possible for an arbitrary user on the Internet to gen-
erate an interrupt on your SCSI card, and SCSI cards
typically do much more work per interrupt than a
network card does. Nevertheless, it may be worth
changing SCSI to use one tasklet per host.

This would queue all work for one card to the same
CPU in a similar way to how NAPI ties work from
a network card to a CPU. Then there would be no
contention between multiple CPUs attempting to ac-
cess the same card. This optimisation is not being
considered for 2.5, but it’s on the long-term to-do
list.

7 Acknowledgements

I’d like to thank those who did the work on the
softirq/tasklet framework: Alexey Kuznetsov, Dave
Miller, Ingo Molnar and Jamal Hadi Salim. Also the
SCSI guys: James Bottomley and Douglas Gilbert
for harassing me to do the work on SCSI SOFTIRQ

and taking my work into their tree.

For review of early versions of this paper and
the talk, I’d like to thank Danielle Wilcox, Andrew
Morton, Martin Petersen and the whole of Ottawa
Canada Linux Users Group.

And finally, I’d also like to thank my em-
ployer Hewlett-Packard for funding me to speak at
Linux.Conf.Au.

References

[Mindcraft] Mindcraft Web and File Server Com-
parison: Microsoft Windows NT Server 4.0 and
Red Hat Linux 5.2 Upgraded to the Linux 2.2.2
Kernel,

http://www.mindcraft.com/whitepapers/nts4rhlinux.html,
(1999).

6


