
Introduction
Packet Filters

Packet Filters
Proposed solutions and current trends

Vasileios P. Kemerlis

Network Security Lab
Computer Science Department

Columbia University
New York, NY

04/14/2010

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

Outline

1 Introduction
Overview
Why bother?

2 Packet Filters
CMU/Stanford Packet Filter (CSPF)
The BSD Packet Filter (BPF)
The Mach Packet Filter (MPF)
Dynamic Packet Filters (DPF)
The BSD Packet Filter+ (BPF+)
xPacket Filter (xPF)

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

Overview
Why bother?

Outline

1 Introduction
Overview
Why bother?

2 Packet Filters
CMU/Stanford Packet Filter (CSPF)
The BSD Packet Filter (BPF)
The Mach Packet Filter (MPF)
Dynamic Packet Filters (DPF)
The BSD Packet Filter+ (BPF+)
xPacket Filter (xPF)

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

Overview
Why bother?

Packet Filter
What is it anyway?

Kernel-level mechanism (typically, but not always)
Allows direct access to the packets (frames?) received
from the network interface controller (NIC) – “tap” NICs
Integral part of every modern operating system (OS)

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

Overview
Why bother?

Outline

1 Introduction
Overview
Why bother?

2 Packet Filters
CMU/Stanford Packet Filter (CSPF)
The BSD Packet Filter (BPF)
The Mach Packet Filter (MPF)
Dynamic Packet Filters (DPF)
The BSD Packet Filter+ (BPF+)
xPacket Filter (xPF)

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

Overview
Why bother?

Packet Filter
Why bother?

Almost every user-space network protocol implementation
utilizes such facilities
Utilized by modern network monitoring tools (tcpdump,
wireshark)
Provides a critical handle to intrusion detection systems
(Snort, Bro)

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

Outline

1 Introduction
Overview
Why bother?

2 Packet Filters
CMU/Stanford Packet Filter (CSPF)
The BSD Packet Filter (BPF)
The Mach Packet Filter (MPF)
Dynamic Packet Filters (DPF)
The BSD Packet Filter+ (BPF+)
xPacket Filter (xPF)

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

CSPF
Status in the early 80’s

Historically, the first user-level “packet filter” appeared on
Xerox Alto [1]
Special-purpose process (demux) for deciding where each
packet should go
Multiple context switches and three system calls per
received packet

[1] Butler W. Lampson and Robert F. Sproull. An open operating system for a single-user machine. In Proceedings

of the 7th ACM Symposium on Operating Systems Principles (SOSP), pages 98–105, Pacific Grove, CA, USA,

December 1979.

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

CSPF
User-level packet demultiplexing

Destination Process

Network

Demux Process

Kernel

Figure: User-level packet demultiplexing

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

CSPF
Motivation

User-space packet demultiplexing is expensive
TCP/IP has yet to become the de-facto standard;
experimental network protocols are flourishing
User-level protocol implementations are necessary to allow
experimentation without kernel hacking (tedious,
error-prone, overwhelming) – no fancy kernel-level
debugging facilities!

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

CSPF
Kernel-level packet demultiplexing

Kernel facility that offers packet demultiplexing services to
user-level network implementations
Avoids the “dashed” part illustrated in Figure 1
Flexible, protocol independent, mechanism for “selecting”
packets

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

CSPF
Design

Uses a special-purpose language for a stack
pseudo-machine (VM in nowadays)
Applications use the language to describe arbitrary
predicates for the packets they are interested in (filters are
“programs” of that language)
Instructions are made from 16-bit words that encode
typical arithmetic/logical and stack-based operations
Each filter is “executed” with a packet as input
If the top of the stack is non-zero at the end, a copy of the
packet is delivered to the process installed the filter

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

struct enfilter f = {
10, 12, /* priority and length */
PUSHWORD+1, PUSHLIT | EQ, 2, /* packet type == PUP */
PUSHWORD+3, PUSH00FF | AND, /* mask low byte */
PUSHZERO | GT, /* PupType > 0 */
PUSHWORD+3, PUSH00FF | AND, /* mask low byte */
PUSHLIT | LE, 100, /* PupType <= 100 */
AND, /* 0 < PupType <= 100 */
AND /* && packet type == PUP */
};

Figure: Example of a filter program for the Pup protocol

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

CSPF
User-level packet demultiplexing

12 words

EtherType

EtherDst EtherSrc

PupLength

HopCount PupType

PupIdentifier

DstNet DstHost

DstSocket

SrcHostSrcNet

SrcSocket

Data

16 bits = 1 word

Ethernet header

Figure: The Pup protocol header (inside an Ethernet frame)

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

CSPF
Implementation & usage

CSPF was implemented in 4.3BSD UNIX (DEC VAX 11/790, PDP-11)

Usage procedure:
1 a special-purpose character device is called from the user

code via the usual system calls: open(2), close(2),
read(2), write(2)

2 assemble some filters, similar to the one showed in Figure
2, and use the ioctl(2) system call to bind them to the
character device opened in the previous step

Evaluation of CSPF [2] indicated that kernel-level packet demultiplexing can
gratefully assist user-level protocol implementations (minimize processing
latency)

[2] Jeffrey C. Mogul, Richard F. Rashid, and Michael J. Accetta. The Packet Filter: An Efficient Mechanism for

User-level Network Code. In Proceedings of the 11th ACM Symposium on Operating Systems Principles (SOSP),

pages 39–51, Austin, TX, USA, November 1987.

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

Outline

1 Introduction
Overview
Why bother?

2 Packet Filters
CMU/Stanford Packet Filter (CSPF)
The BSD Packet Filter (BPF)
The Mach Packet Filter (MPF)
Dynamic Packet Filters (DPF)
The BSD Packet Filter+ (BPF+)
xPacket Filter (xPF)

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

BPF
State of affairs in the early-90’s

4.3BSD UNIX brought a new TCP/IP implementation
Quickly became the authoritative reference, inherited by
many other free/commercial Unixes
User-level protocol implementation declined
Packet filtering facilities were mostly utilized for monitoring
purposes

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

BPF
Motivation

CSPF was designed around the ISA of old DEC machines
Worked well on a 64K PDP-11, but performed
sub-optimally on RISC-based architectures
Why?

The stack-based VM requires multiple memory references
for the execution of a single filter
Memory references result in hundreds of wasted CPU
cycles (divergence between CPU clock speed and memory
speed)

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

BPF
Motivation

CSPF was designed around the ISA of old DEC machines
Worked well on a 64K PDP-11, but performed
sub-optimally on RISC-based architectures
Why?
The stack-based VM requires multiple memory references
for the execution of a single filter
Memory references result in hundreds of wasted CPU
cycles (divergence between CPU clock speed and memory
speed)

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

BPF
Design & architecture

BPF uses a new register-based VM and a redefined
language
Maintains the flexibility and generality of CSPF
Performs better on modern, RISC, machines
Two main components:

1 the network tap
2 packet filter

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

BPF
The network tap

Part of BPF responsible for packet collection
“Taps” NICs; for every NIC with filters installed, it calls BPF
(Figure 4)
If the packet is accepted, a copy of it (actually a part of it) is
copied in a per-filter buffer
Can batch multiple packets and deliver them with one
system call (minimizes context switches)

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

BPF
Network tap overview

kernel

...

network
monitor monitor

networknetwork
monitor

driver driver driver

buffer buffer buffer

filter filter filter

protocol stack

BPF

network

kernel

user

Figure: BPF architecture

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

BPF
The packet filter

Most applications tend to reject more packets than they
accept
A filter should reject a packet after few instructions and
avoid redundant computations
CSPF filters are modeled as trees (Figure 5)

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

BPF
CSPF filter model

Simulated operand stack
Unnecessary or redundant computations
Cannot handle variable length packet headers
Requires multiple instructions to deal with 32-bit fields

ether.type == IP

OR

ether.type == ARP

Figure: CSPF tree example

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

BPF
VM design constrains

Protocol-independent design (handle future protocols)
Generality (rich ISA for handling unforeseen cases)
Simplified instruction decoding (performance)
One-to-one matching (ideally) between VM registers and
physical machine registers

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

ldh [12]
jeq #0x800 jt 2 jf 6
ld [26]
jeq #0xd0448b59 jt 12 jf 4
ld [30]
jeq #0xd0448b59 jt 12 jf 13
jeq #0x806 jt 8 jf 7
jeq #0x8035 jt 8 jf 13
ld [28]
jeq #0xd0448b59 jt 12 jf 10
ld [38]
jeq #0xd0448b59 jt 12 jf 13
ret #65535
ret #0

Figure: Example of a BPF program for “host optimus”

tcpdump monitoring utility (v4.0.0) on Mac OS X 10.6
tcpdump -d -i en0 host optimus

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

BPF
BPF filter model (CFG)

ldh [12]
jeq #0x800

jeq #0x805

ld [26]
jeq #foo

jeq #0x8035

ld [28]
jeq #foo

ld [30]
jeq #foo

#TRUE#FALSE

ld [38]
jeq #foo

Figure: CFG representation of filter “host foo”

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

BPF
Implementation & usage

BPF was implemented in 4.3BSD Tahoe/Reno UNIX, 4.4BSD UNIX,
HP-UX BSD variants, SunOS 3.5...

Currently is supported by every modern free BSD flavor (e.g., FreeBSD,
NetBSD, OpenBSD) as well as by Linux

Using BPF from application processes shared a great similarity with
CSPF

Evaluation of BPF [3] showed that it offers 20x times faster filtering than
CSPF and 150x times faster packet filtering than Sun’s Network
Interface Tap (NIT) – now known as Data Link Provider Interface (DLPI)

[3] Steven McCanne and Van Jacobson. The BSD Packet Filter: A New Architecture for User-level Packet Capture.

In Proceedings of the USENIX Winter Conference, pages 259-269, San Diego, CA, USA, January 1993.

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

Outline

1 Introduction
Overview
Why bother?

2 Packet Filters
CMU/Stanford Packet Filter (CSPF)
The BSD Packet Filter (BPF)
The Mach Packet Filter (MPF)
Dynamic Packet Filters (DPF)
The BSD Packet Filter+ (BPF+)
xPacket Filter (xPF)

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

MPF
Motivation

In early 90’s research in microkernel OSes made efficient
packet demultiplexing a hot topic, again
In a microkernel OS, traditional kernel-space facilities (e.g.,
protocol processing) are pushed to user-level processes
CSPF seems an adequate solution...
A single point of primary dispatch for all network traffic
results in an increased communication overhead (Figure 8)

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

MPF
Protocol processing model

The original packet filters (CSPF and BPF) shared two primary goals: protocol independence and generality. The
filters did not depend on any protocol, and future protocols could be accommodated without changing the kernel.
MPF shares these two goals, as it is implemented as an extension to the base BPF language. Consequently, a packet
filter program built for BPF will work with our system. AlthoughMPF has been implemented for the Mach operating
system, it requires no changes to the Mach microkernel interface, and has no Mach-specific aspects. Other BPF
implementations could be extended to support MPF programs, and our implementation should port easily to other
operating systems that support packet filters.

1.1 Motivation
A packet filter is a small body of code installed by user programs at or close to a network interrupt handler of an
operating system kernel. It is intended to carry an incoming packet up to its next logical level of demultiplexing
through a user-level process. An operating system kernel implements an interpreter that applies installed filters against
incoming network packets in their order of arrival. If the filter accepts the packet, the kernel sends it to its recipient
address space. Two packet filters, CSPF and BPF, are common in today’s systems. CSPF is based on a stack machine.
A CSPF filter program can push data from an input packet, execute ALU functions, branch forward, and accept or
reject a packet. BPF is a more recent packet filter mechanism which, instead of being stack-based, is register-based.
BPF programs can access two registers (A and X), an input packet (P[]), and a scratch memory (M[]). They execute
load, store, ALU, and branch instructions, as well as a return instruction that can specify the size of the packet to be
delivered to the target endpoint. BPF admits a somewhat more efficient interpreter than CSPF [McCanne and Jacobson
93].

With a microkernel, where traditional operating system services such as protocol processing are implemented
outside the kernel, the original packet filter provided a convenient mechanism to route packets from the kernel to a
dedicated protocol server. Scalability was not important because relatively few packet filters would ever be installed
on a machine (typically two: one to recognize IP traffic and one to recognize all other traffic). Unfortunately, a single
point of primary dispatch for all network traffic resulted in communication overhead for microkernel-based systems
substantially larger than for monolithic systems, in which the protocols are implemented in the kernel [Maeda and
Bershad 92]. To address this problem, we have decomposed the protocol service architecture so that each application
is responsible for its own protocol processing [Maeda and Bershad 93]. That is, every address space contains, for
example, a complete TCP/IP stack. Figure 1 illustrates the structural differences between the two different protocol
strategies.

Microkernel

device driver

packet filter

••••

network packets

IP
TCP

IP
TCP

IP

TCP

TCP/IP server

 user
space

 user
space

(connection
 requests only)

(b) per-task protocol processing

Microkernel

device driver

network packets

packet filter

••••

IP

TCP

TCP/IP server

 user
space

 user
space

(a) Single protocol server

Figure 1: Two ways to structure protocol processing. In the system on the left, all packets are routed through a
central server and then on to their eventual destination. In the system on the right, the kernel routes an incoming,
but unprocessed network packet directly to the address space for which the packet is ultimately intended, resulting in
lower latency and higher throughput. A central server handles operations without critical performance requirements,
such as connection establishment.

At its core, our new protocol architecture relies on the kernel’s packet filter mechanism to deliver incoming packets

Figure: Protocol processing approaches in microkernel OSes

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

MPF
Details

Kernel-level facility that efficiently dispatches incoming
packets to multiple endpoints (e.g., address spaces)
Support for multiple active filters (scalable)
Flexible and generic (5 additional instructions in BPF)
Why not use BPF then?

1 scalability issues. The dispatching overhead increases with
the number of different endpoints

2 cannot handle multi-packet messages. BPF cannot identify
packet fragments (it cannot “remember” what it has seen)

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

MPF
Details

Kernel-level facility that efficiently dispatches incoming
packets to multiple endpoints (e.g., address spaces)
Support for multiple active filters (scalable)
Flexible and generic (5 additional instructions in BPF)
Why not use BPF then?

1 scalability issues. The dispatching overhead increases with
the number of different endpoints

2 cannot handle multi-packet messages. BPF cannot identify
packet fragments (it cannot “remember” what it has seen)

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

MPF
Efficient dispatching

MPF exploits structural and logical similarity among
different, but not identical filters
Identifies filters that have common “prefixes”
Collapses common filters into one
Uses associative matching for dispatching to the final
communication endpoint (Figure 9)

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

MPF
Associative model

process

filter

packets other protocol filters

...
user

kernel

process process

Figure: MPF associative model

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

/* Part (A) */
begin ; MPF identifier
ldh P[#OFF_ETHER_TYPE] ; A = ethernet type field
jeq #ETHER_TYPE_IP, L1, fail; if no IP fail
L1: ld P[#OFF_DST_IP] ; A = dst IP address
jeq #dst_addr, L2, fail ; if not from dst_addr fail
L2: ldb P[#OFF_PROTO] ; A = protocol
jeq #IPPROTO_TCP, L3, fail ; if not TCP, fail
L3: ldh P[#OFF_FRAG] ; A = fragmentation flags
jset #!DF_BIT, fail, L4 ; if DF_bit = 1, fail
L4:
/* Part (B) */
ld P[#OFF_SRC_IP] ; A = src IP address
st M[0] ; M[0] = A
ldxb 4 * (P[OFF_IHL] & 0xf) ; X = TCP header offset
ldh P[x + #OFF_SRC_PORT] ; A = src TCP port
st M[1] ; M[1] = A
ldh P[x + #OFF_DST_PORT] ; A = dst TCP port
st M[2] ; M[2] = A
/* Part (C) */
ret_match_imm #3, #ALL ; compare keys with M[0..2]
key #src_addr ; if matched, accept the
key #src_port ; whole packet. If not,
key #dst_port ; reject it
fail:
ret #0

Figure: Example of an MPF program for a TCP/IP session
vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

MPF
Dispatching multi-packet messages

Typical case when IP fragmentation is used
A large TCP/UDP packet is divided into multiple IP
fragments
Only one has the TCP/UDP header
MPF response:

1 filter state. Per-filter “state” buffers
2 additional instructions for handling fragments. Postpone the

dispatch decision for a while

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

MPF
Critique

8x faster than CSPF and 4x faster than BPF [4]

But...

MPF was designed for Mach 3.0 (microkernel OS). No port exists for
other OSes, yet

It demands from the filters to have specific structure in order to optimize
them (collapse into one). Reduced flexibility in expressions

Associative search instructions make extensive use of BPF’s scratch
memory. Depending of how memory accesses are emulated, MPF
might lead in memory spills – recall BPF’s original purpose

[4] Masanobu Yuhara, Brian N. Bershad, Chris Maeda, and J. Eliot B. Moss. Efficient Packet Demultiplexing for

Multiple Endpoints and Large Messages. In Proceedings of the Winter USENIX Technical Conference (USENIX

WTC), pages 153–165, San Francisco, CA, USA, January 1994.

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

MPF
Critique

8x faster than CSPF and 4x faster than BPF [4]

But...

MPF was designed for Mach 3.0 (microkernel OS). No port exists for
other OSes, yet

It demands from the filters to have specific structure in order to optimize
them (collapse into one). Reduced flexibility in expressions

Associative search instructions make extensive use of BPF’s scratch
memory. Depending of how memory accesses are emulated, MPF
might lead in memory spills – recall BPF’s original purpose

[4] Masanobu Yuhara, Brian N. Bershad, Chris Maeda, and J. Eliot B. Moss. Efficient Packet Demultiplexing for

Multiple Endpoints and Large Messages. In Proceedings of the Winter USENIX Technical Conference (USENIX

WTC), pages 153–165, San Francisco, CA, USA, January 1994.

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

Outline

1 Introduction
Overview
Why bother?

2 Packet Filters
CMU/Stanford Packet Filter (CSPF)
The BSD Packet Filter (BPF)
The Mach Packet Filter (MPF)
Dynamic Packet Filters (DPF)
The BSD Packet Filter+ (BPF+)
xPacket Filter (xPF)

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

DPF
Motivation

Similar to MPF:
Minimize end-to-end latency of user-level protocol stacks
Applications can explore new networking mechanisms
without kernel modifications
Usually trade flexibility for performance

Fast and flexible message demultiplexing is important
Proposed solutions sacrifice one for the other

BPF: flexible and general, but not scalable
MPF: less flexible, more scalable

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

DPF
Design & architecture

Kernel-level facility for rapid packet demultiplexing
New, carefully-designed, declarative language
Aggressive dynamic code generation
Performance is equivalent, or can exceed, hand-coded
demultiplexers

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

DPF
Packet filter language

Declarative language; general, flexible, protocol agnostic
Filters are described as sequences of boolean
comparisons (atoms) linked by conjunctions
Set of active filters are stored into a prefix tree data
structure (Figure 11)

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

DPF
Trie structure (prefix tree)

Figure: A trie for keys "A", "to", ..., "inn" (courtesy of Wikipedia)

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

(
check ethernet header

(12:16 == 0x8) && # IP datagram?
skip ether header (14 bytes)
(SHIFT(6 + 6 + 2)) &&

check IP header

(9:8 == 6) && # check protocol : TCP is 6
check IP src addr (192.12.69.1)
(12:32 == 0xc00c4501) &&

skip IP header (assume fixed sized; 20 bytes)
(SHIFT(20)) &&

check TCP header

check source port (2 bytes)
(0:16 == 1234) &&

check destination port (2 bytes)
(2:16 == 4321) &&
)

Figure: Example of a DPF program for a TCP/IP session

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

DPF
Filter handling

New filters are stored in the trie along with path with the
longest prefix match – similar to MPF, this leads in prefix
“collapse”
Duplicate checks are eliminated
Filters that cannot merge with the trie, or they form a new
one, are connected with it using an or branch
“Forest” of prefix trees

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

DPF
Dynamic code generation

Eliminates interpretation overhead by compiling into native
code
Aggressive optimization

Runtime information is encoded in the instruction scheme
(e.g., constants that are known only after a connection is
established)
Fast disjunctions. Avoids hash-based lookups for
disjunctive filters that have been merged, but the necessary
checks are relatively few
Atom coalescing (Figure 13)
Alignment estimation
Bounds checking

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

TCP header before coalescing
(0:16 == 1234) && # check source port
(2:16 == 4321) # check destination port

TCP header after coalescing
(0:32 == 283182290) # 283182290 ==
((4321 << 16) | 1234)

Figure: Coalescing example

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

DPF
Critique

25–50x times faster than MPF [5]
But...

DPF was designed for Aegis (exokernel OS). No port
exists for other OSes, yet
Relies on VCODE dynamic code generation system
(portability?)
No side-effects; what about variable-length headers?
multi-packet messages?

[5] Dawson R. Engler and M. Frans Kaashoek. DPF: Fast, Flexible Message Demultiplexing using Dynamic Code

Generation. In Proceedings of the ACM Conference on Applications, Technologies, Architectures, and Protocols for

Computer Communication (SIGCOMM), pages 53–59, Standford, CA, USA, 1996.

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

DPF
Critique

25–50x times faster than MPF [5]
But...
DPF was designed for Aegis (exokernel OS). No port
exists for other OSes, yet
Relies on VCODE dynamic code generation system
(portability?)
No side-effects; what about variable-length headers?
multi-packet messages?

[5] Dawson R. Engler and M. Frans Kaashoek. DPF: Fast, Flexible Message Demultiplexing using Dynamic Code

Generation. In Proceedings of the ACM Conference on Applications, Technologies, Architectures, and Protocols for

Computer Communication (SIGCOMM), pages 53–59, Standford, CA, USA, 1996.

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

Outline

1 Introduction
Overview
Why bother?

2 Packet Filters
CMU/Stanford Packet Filter (CSPF)
The BSD Packet Filter (BPF)
The Mach Packet Filter (MPF)
Dynamic Packet Filters (DPF)
The BSD Packet Filter+ (BPF+)
xPacket Filter (xPF)

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

BPF+
Motivation

BPF has limitations (reason to have MPF, DPF, ...)
Decision tree reduction is NP-complete
But...

Filters have a regular structure that can be exploited from
optimization frameworks
MPF, DPF use local optimizations and they do not
eliminate common subexpressions

Restrict the expressibility of the filters by imposing a
specific structure (MPF)
Rely on the programmer to express the filter in an optimized
and compact way (DPF)

Bottom line: we need global filter optimization

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

BPF+
Motivation

BPF has limitations (reason to have MPF, DPF, ...)
Decision tree reduction is NP-complete
But...
Filters have a regular structure that can be exploited from
optimization frameworks
MPF, DPF use local optimizations and they do not
eliminate common subexpressions

Restrict the expressibility of the filters by imposing a
specific structure (MPF)
Rely on the programmer to express the filter in an optimized
and compact way (DPF)

Bottom line: we need global filter optimization

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

BPF+
Motivation

BPF has limitations (reason to have MPF, DPF, ...)
Decision tree reduction is NP-complete
But...
Filters have a regular structure that can be exploited from
optimization frameworks
MPF, DPF use local optimizations and they do not
eliminate common subexpressions

Restrict the expressibility of the filters by imposing a
specific structure (MPF)
Rely on the programmer to express the filter in an optimized
and compact way (DPF)

Bottom line: we need global filter optimization

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

BPF+
Features

Exploits data-flow algorithms for generalized optimization
among filters (Figure 14)
Eliminates redundant predicates
Allows for matching header fields against one another
Enables arithmetic operations on header words before
matching
Can generate native code using just-in-time (JIT)
compilation
Relies upon a refined VM (more GPR, branch instructions
can use register values)

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

BPF+
Generalized optimization

source host X?

source host Y?

False dest host Y?

True

FALSE

False dest host X?

True

False

TRUE

True

TrueFalse

Figure 2: Control-flow graph for “(src host X and dst host Y)
or (src host Y and dst host X)”. The dashed edge points to
a redundant predicate and may be redirected to the FALSE
node.

Before presenting the details of the translation modules that map
filter predicates to the BPF+ machine representation, we sketch in
this section a high-level overview of the BPF+ machine model to
establish context for the rest of the paper. This version of the BPF
virtual machine represents a number of iterative refinements made
over the past several years to the original BPF machine model.

The BPF+ abstract machine is a RISC-like, 32-bit, load-store
architecture consisting of a set of 32 general purpose registers, a
program counter, read/write data memory, read-only packet mem-
ory, a packet length register, and a pseudo-random register. A filter
program is represented as an array of byte codes that conform to a
well-defined instruction format.

The BPF+ virtual machine supports five classes of operations:

load instructions copy a value into a register. The source can
be an immediate value, packet data at a fixed offset, packet
data at a variable offset, the packet length constant, or the
scratch memory store (a reference to data beyond the end of
the packet results in a return value of 0);

the store instruction copies a register into a fixed location in
data memory;

ALU instructions perform arithmetic or logic on a register us-
ing a register or a constant as an operand and a register as the
destination (division by zero causes the filter to immediately
return a value of zero);

branch instructions alter the flow of control, based on a com-
parison test between a register and an immediate value or
another register; and,

return instructions terminate the filter and indicate the integer-
valued result of evaluation.

A filter is evaluated by initializing the packet memory to the
packet in question and executing byte codes on the BPF+ machine
until a return instruction is reached. The data memory is persis-
tent and may be queried by agents external to the filter engine. The
pseudo-random register is a read-only register that returns a uni-
formly distributed random value each time read, which is a use-
ful primitive for building filters that can perform probabilistic sam-
pling. To facilitate safety verification, we require that all program
branches be forward (thus forgoing loops) and that the last instruc-
tion on each path be a “return”. In addition to the set of conditional

branch instructions, we add a lookup table instruction to abstract
multiway conditional branches for later just-in-time optimization.

We omit the details of the instruction format and throughout the
rest of this paper use an assembly language syntax that is relatively
self-explanatory . For example, a simple BPF+ byte-code program
that matches TCP packets has the following form:

lh [12], r0
jne r0, #ETHERTYPE IP, L5
lb [23], r1
jne r1, #IPPROTO TCP, L5
ret #TRUE

L5: ret #FALSE

Presuming Ethernet encapsulation, this filter first checks that
the packet is an IP packet. If so, it checks if the IP protocol type is
TCP, in which case it branches to an instruction that returns true. In
any other case, the program branches to line L5 and returns false.

This form of representation is far too low-level for many appli-
cations of packet filters. In the next section, we argue that high-
level filtering languages are important for a number of problem do-
mains and we sketch the characteristics of the high-level filtering
language that BPF+ employs.

The input to our system is a high-level filter represented in a declar-
ative predicate language. By employing a high-level language, we
hide the complexity and details of the underlying, imperative ex-
ecution model of the BPF+ virtual machine. This facilitates the
expression of complex boolean relationships among many differ-
ent predicates using natural logical expressions rather than awk-
ward control structures. Unlike other high-performance packet fil-
ter packages that have adopted more restrictive semantics for their
packet filter abstractions (e.g., the template matching model), we
retain the full generality of a programmable, control-flow graph
model for our virtual filter machine.

There are many reasons to support higher-level abstractions for
packet filtering. To begin with, the system should hide the details
of where particular fields are located in a packet and how variable-
length headers must be parsed to locate those fields. For example,
BPF+ refers to the IP destination address field in a packet as “IP dst
host” rather than “packet[20:4]”. Additionally, a seemingly simple
BPF+ expression like “TCP port HTTP” turns out to have a rela-
tively complex low-level structure that should not be a burden to
the filter programmer (i.e., in this case, the packet must be IP; if
fragmented, it must be the first fragment so as to contain the IP
header; there may be IP options which must be skipped over to find
the TCP ports; and finally both the source and the destination TCP
port field must be checked against the constant 80).

This sort of high-level representation is crucial if a human user
is specifying the packet filters. While a low-level pattern spec-
ification might have sufficient generality and simultaneously be
amenable to an efficient implementation, a network administrator
that is diagnosing network malfunctions on-the-fly or chasing down
an intruder in real-time must have a flexible and easy-to-use syn-
tax for specifying packet predicates. Thus, a high-level predicate
syntax that allows one to look for, say, packets “between MIT and
UCB” that are “HTTP connections” should be naturally and eas-
ily specified. To this end, the user should be able to specify which
fields of the packets they want to match and connect those predi-
cates with boolean operators “and”, “or”, and “not”. In BPF+, the
filter would look like this expression:

There are four types of load instructions: “ld” is load word, “lh” is load half word,
“lb” is load byte, and “li” is load immediate. There are seven branch operations: “jeq”
is jump if equal, “jne” is jump if not equal, “jlt” is jump if less than, “jle” is jump if
less than or equal, “jgt” is jump if greater than”, “jge” is jump if greater than or equal,
“ja” is an unconditional jump.

Figure: Typical (DPF) CFG for “(src host X and dst host Y)
or (src host Y and dst host X)”

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

BPF+
Architecture overview

 Filter Front End OptimizerSSA VM
Byte
Codes

Safety
Checker

Interpreter Assembler
JIT

Native

Form

Code

Protection
Boundary

Specification

High Level

Figure: BPF+ architecture

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

BPF+
Design & architecture

Filter specifications written in a high-level predicate
language (libpcap)

((src network MIT and dst network UCB) or
(src netork UCB and dst network MIT)) and
(TCP port HTTP)

Typical compiler structure (front end, back end)
Straightforward code generator (on the fly translation to the
intermediate SSA form)
The CFG is guaranteed to by acyclic (forward branches
only)
Optimizer eliminated redundancies and performs register
allocation

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

BPF+
Critique

Misses juxtaposition (BPF, MPF, DPF, ...) [6]
No per-filter state (MPF)
No side-effects on user-level state variables or packets
No backward branches (cannot implement loops, counting)
Return value is still true/false. What about #predicates
matched?

[6] Andrew Begel, Steven McCanne, and Susan L. Graham. BPF+: Exploiting Global Data-flow Optimization in a

Generalized Packet Filter Architecture. ACM SIGCOMM Computer Communication Review, 29(4):123–134, 1999.

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

Outline

1 Introduction
Overview
Why bother?

2 Packet Filters
CMU/Stanford Packet Filter (CSPF)
The BSD Packet Filter (BPF)
The Mach Packet Filter (MPF)
Dynamic Packet Filters (DPF)
The BSD Packet Filter+ (BPF+)
xPacket Filter (xPF)

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

xPF
Motivation & enhancements

Need for more elaborate computational capabilities
Engine for executing monitoring applications in
kernel-space rather than a demultiplexing mechanism
Persistent memory (per-filter)
Support for backward branches

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction
Packet Filters

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

xPF
Implementation & usage

xPF was implemented in OpenBSD [7]
No comparative evaluation
No safety guarantees because of the backward branches

[7] Sotiris Ioannidis, Kostas G. Anagnostakis, John Ioannidis, and Angelos D. Keromytis. xPF: Packet Filtering for

Low-cost Network Monitoring. In Proceedings of the IEEE Workshop on High-Performance Switching and Routing

(HPSR), pages 121–126, Kobe, Hyogo, Japan, 2002.

vpk@cs.columbia.edu Columbia University - COMS W6998

	Introduction
	Overview
	Why bother?

	Packet Filters
	CMU/Stanford Packet Filter (CSPF)
	The BSD Packet Filter (BPF)
	The Mach Packet Filter (MPF)
	Dynamic Packet Filters (DPF)
	The BSD Packet Filter+ (BPF+)
	xPacket Filter (xPF)

