Packet Filters
Proposed solutions and current trends

Vasileios P. Kemerlis

Network Security Lab
Computer Science Department
Columbia University
New York, NY

04/14/2010 CSdb
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

Outline

@ Introduction
@ Overview
@ Why bother?

9 Packet Filters

@ CMU/Stanford Packet Filter (CSPF)

@ The BSD Packet Filter (BPF)

@ The Mach Packet Filter (MPF)

@ Dynamic Packet Filters (DPF)

@ The BSD Packet Filter+ (BPF+)

@ xPacket Filter (xPF) CS«¥
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction Overview
Why bother?

Outline

@ Introduction
@ Overview

CS&
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction Overview
Why bother?

Packet Filter

What is it anyway?

@ Kernel-level mechanism (typically, but not always)

@ Allows direct access to the packets (frames?) received
from the network interface controller (NIC) — “tap” NICs

@ Integral part of every modern operating system (OS)
CS&
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction Overview
Why bother?

Outline

0 Introduction

@ Why bother?

CS&
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

Introduction Overview
Why bother?

Packet Filter
Why bother?

@ Almost every user-space network protocol implementation
utilizes such facilities

@ Utilized by modern network monitoring tools (fcpdump,
wireshark)

@ Provides a critical handle to intrusion detection systems
(Snort, Bro)

CS&
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

Outline

9 Packet Filters
@ CMU/Stanford Packet Filter (CSPF)

CS&
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

CSPF

Status in the early 80’s

@ Historically, the first user-level “packet filter” appeared on
Xerox Alto [1]

@ Special-purpose process (demux) for deciding where each
packet should go

@ Multiple context switches and three system calls per
received packet

[1] Butler W. Lampson and Robert F. Sproull. An open operating system for a single-user machine. In Proceedings

of the 7th ACM Symposium on Operating Systems Principles (SOSP), pages 98-105, Pacific Grove, CA, USA,

December 1979. Csm
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

CSPF

User-level packet demultiplexing

Demux Process

Network Kernel

Destination Process

™

Figure: User-level packet demultiplexing C U

vpk@cs.columbi Columbia Universit OMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

CSPF

Motivation

@ User-space packet demultiplexing is expensive
@ TCP/IP has yet to become the de-facto standard;
experimental network protocols are flourishing

@ User-level protocol implementations are necessary to allow
experimentation without kernel hacking (tedious,
error-prone, overwhelming) — no fancy kernel-level
debugging facilities!

CS&
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

CSPF

Kernel-level packet demultiplexing

@ Kernel facility that offers packet demultiplexing services to
user-level network implementations

@ Avoids the “dashed” part illustrated in Figure 1

@ Flexible, protocol independent, mechanism for “selecting”
packets

CS&
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+
xPacket Filter

@ Uses a special-purpose language for a stack
pseudo-machine (VM in nowadays)

@ Applications use the language to describe arbitrary
predicates for the packets they are interested in (filters are
“programs” of that language)

@ Instructions are made from 16-bit words that encode
typical arithmetic/logical and stack-based operations

@ Each filter is “executed” with a packet as input

@ If the top of the stack is non-zero at the end, a copy of thfsm
packet is delivered to the process installed the filter CU

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter

Packet Filters Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

struct enfilter f = {

10, 12, /+ priority and length */

PUSHWORD+1, PUSHLIT | EQ, 2, /* packet type == PUP x/
PUSHWORD+3, PUSHOOFF | AND, /* mask low byte x/
PUSHZERO | GT, /* PupType > 0 =*/

PUSHWORD+3, PUSHOOFF | AND, /% mask low byte */
PUSHLIT | LE, 100, /x PupType <= 100 */

AND, /* 0 < PupType <= 100 x/

AND /x && packet type == PUP x/

bi

Figure: Example of a filter program for the Pup protocol

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Packet Filters Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

CSPF

User-level packet demultiplexing

16 bits = 1 word

[
EtherDst EtherSre |
| Ethernet header
EtherType |
'
PupLength
HopCount ‘ PupType
Pupldentifier
12 words

DstNet ‘ DstHost

DstSocket

SreNet ‘ SrcHost

SrcSocket

l

Data

CS&

Figure: The Pup protocol header (inside an Ethernet frame) CU

vpk@cs.columbia Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

CSPF

Implementation & usage

@ CSPF was implemented in 4.3BSD UNIX (DEC VAX 11/790, PDP-11)
@ Usage procedure:

@ a special-purpose character device is called from the user
code via the usual system calls: open(2), close(2),
read(2), write(2)

@ assemble some filters, similar to the one showed in Figure
2, and use the ioct1(2) system call to bind them to the
character device opened in the previous step

@ Evaluation of CSPF [2] indicated that kernel-level packet demultiplexing can

gratefully assist user-level protocol implementations (minimize processing
latency)

[2] Jeffrey C. Mogul, Richard F. Rashid, and Michael J. Accetta. The Packet Filter: An Efficient Mechanism for Gh)

User-level Network Code. In Proceedings of the 11th ACM Symposium on Operating Systems Principles (SOSP), C U

pages 39-51, Austin, TX, USA, November 1987.

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

Outline

9 Packet Filters

@ The BSD Packet Filter (BPF)

CS&
CU

vpk@cs.columbia Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

BPF

State of affairs in the early-90’s

@ 4.3BSD UNIX brought a new TCP/IP implementation

@ Quickly became the authoritative reference, inherited by
many other free/commercial Unixes

@ User-level protocol implementation declined

@ Packet filtering facilities were mostly utilized for monitoring
purposes

CS&
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

BPF

Motivation

@ CSPF was designed around the ISA of old DEC machines

@ Worked well on a 64K PDP-11, but performed
sub-optimally on RISC-based architectures
@ Why?

CS&
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

BPF

Motivation

@ CSPF was designed around the ISA of old DEC machines

@ Worked well on a 64K PDP-11, but performed
sub-optimally on RISC-based architectures

@ Why?

@ The stack-based VM requires multiple memory references
for the execution of a single filter

@ Memory references result in hundreds of wasted CPU

cycles (divergence between CPU clock speed and memoré

speed) Sﬁﬂ

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

BPF

Design & architecture

@ BPF uses a new register-based VM and a redefined
language

@ Maintains the flexibility and generality of CSPF

@ Performs better on modern, RISC, machines

@ Two main components:

@ the network tap
@ packet filter

CS&
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

BPF

The network tap

@ Part of BPF responsible for packet collection

@ “Taps” NICs; for every NIC with filters installed, it calls BPF
(Figure 4)

@ If the packet is accepted, a copy of it (actually a part of it) is
copied in a per-filter buffer

@ Can batch multiple packets and deliver them with one
system call (minimizes context switches)

CS&
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter
Packet Filters Dynamic Packet Filters
The BSD Packet Filter+

xPacket Filter

BPF

Network tap overview

network network network
monitor monitor

monitor

user

kernel

protocol stack

[ariver | [ariver | [ariver |

y T ke
|

| | network

Figure: BPF architecture Cg%;)

vpk@cs.columbia.ed

Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

BPF

The packet filter

@ Most applications tend to reject more packets than they
accept

@ A filter should reject a packet after few instructions and
avoid redundant computations

@ CSPF filters are modeled as trees (Figure 5)
CSel
L

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

BPF

CSPF filter model

@ Simulated operand stack

@ Unnecessary or redundant computations

@ Cannot handle variable length packet headers

@ Requires multiple instructions to deal with 32-bit fields

Figure: CSPF tree example

CS&
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

BPF

VM design constrains

@ Protocol-independent design (handle future protocols)
@ Generality (rich ISA for handling unforeseen cases)
@ Simplified instruction decoding (performance)

@ One-to-one matching (ideally) between VM registers and
physical machine registers

CS&
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter

Packet Filters Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

1dh [12]

jeq #0x800 it 2 3f 6

1d [26]

jeq #0xd0448b59 jt 12 Jf 4

1d [30]

jeq #0xd0448b59 jt 12 Jf 13
jeq #0x806 it 8 f 7

jeq #0x8035 jt 8 jf 13

1d [28]

jeq #0xd0448b59 jt 12 Ff 10
1d [38]

jeq #0xd0448b59 jt 12 Hf 13
ret #65535

ret #0

Figure: Example of a BPF program for “host optimus”

@ tcpdump monitoring utility (v4.0.0) on Mac OS X 10.6
@ tcpdump -d -i en0 host optimus

CS&
CU

vpk@cs.columbia Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

BPF

BPF filter model (CFG)

Figure: CFG representation of filter “host foo”

CS&
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

BPF

Implementation & usage

@ BPF was implemented in 4.3BSD Tahoe/Reno UNIX, 4.4BSD UNIX,
HP-UX BSD variants, SunOS 3.5...

@ Currently is supported by every modern free BSD flavor (e.g., FreeBSD,
NetBSD, OpenBSD) as well as by Linux

@ Using BPF from application processes shared a great similarity with
CSPF

@ Evaluation of BPF [3] showed that it offers 20x times faster filtering than
CSPF and 150x times faster packet filtering than Sun’s Network
Interface Tap (NIT) — now known as Data Link Provider Interface (DLPI)

[3] Steven McCanne and Van Jacobson. The BSD Packet Filter: A New Architecture for User-level Packet Capturg. Sm

In Proceedings of the USENIX Winter Conference, pages 259-269, San Diego, CA, USA, January 1993. C U

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

Outline

9 Packet Filters

@ The Mach Packet Filter (MPF)

CS&
CU

vpk@cs.columbia Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

MPF

Motivation

@ In early 90’s research in microkernel OSes made efficient
packet demultiplexing a hot topic, again

@ In a microkernel OS, traditional kernel-space facilities (e.g.,
protocol processing) are pushed to user-level processes

@ CSPF seems an adequate solution...

@ A single point of primary dispatch for all network traffic
results in an increased communication overhead (Figure 8)

CS&
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

MPF

Protocol processing model

user user user user
space space Space space
TCP/IP server wees TCP/IP server
TCP TCP
TCP TCP
il 1P P P

‘ (connection
! requests only)
packet filter i packet filter
Microkernel Microkernel

device driver device driver

t f

network packets network packets

oo
Figure: Protocol processing approaches in microkernel OSes CU

vpk@cs.columbia.ed Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

MPF

Details

@ Kernel-level facility that efficiently dispatches incoming
packets to multiple endpoints (e.g., address spaces)

@ Support for multiple active filters (scalable)

@ Flexible and generic (5 additional instructions in BPF)
@ Why not use BPF then?

CS&
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

MPF

Details

@ Kernel-level facility that efficiently dispatches incoming
packets to multiple endpoints (e.g., address spaces)

@ Support for multiple active filters (scalable)

@ Flexible and generic (5 additional instructions in BPF)

@ Why not use BPF then?

@ scalability issues. The dispatching overhead increases with
the number of different endpoints

@ cannot handle multi-packet messages. BPF cannot identify
packet fragments (it cannot “remember” what it has seen)C Sm

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

MPF

Efficient dispatching

@ MPF exploits structural and logical similarity among
different, but not identical filters

@ |dentifies filters that have common “prefixes”
@ Collapses common filters into one

@ Uses associative matching for dispatching to the final
communication endpoint (Figure 9)

CS&
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

MPF

Associative model

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

process process process
|:|\ |;| hadd /|:| u S er
/ kernel
packets other protocol filters

Figure: MPF associative model

vpk@cs.columbi Columbia University - COMS W6998

CS&
CU

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter

Packet Filters Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

/% Part (A) x/

begin ; MPF identifier

1dh P[#OFF_ETHER_TYPE] ; A = ethernet type field
jeq #ETHER_TYPE_IP, L1, fail; if no IP fail

Ll: 1d P[#OFF_DST_IP] ; A = dst IP address

jeq #dst_addr, L2, fail ; if not from dst_addr fail
L2: 1ldb P[#OFF_PROTO] ; A = protocol

jeq #IPPROTO_TCP, L3, fail ; if not TCP, fail

L3: 1dh P[#OFF_FRAG] ; A = fragmentation flags

jset #!DF_BIT, fail, L4 ; if DF_bit = 1, fail

L4:

/+ Part (B) x/

1d P[#OFF_SRC_IP] ; A = src IP address

st M[0] ; M[0] = A

ldxb 4 % (P[OFF_IHL] & O0xf) ; X = TCP header offset
1dh P[x + #OFF_SRC_PORT] ; A = src TCP port

st M[1] ; M[1] = A
ldh P[x + #OFF_DST_PORT] ; A = dst TCP port
st M[2] ; M[2] = A

/* Part (C) =/

ret_match_imm #3, #ALL ; compare keys with M[0..2]
key #src_addr ; 1if matched, accept the

key #src_port ; whole packet. If not,

key #dst_port ; reject it
fail: ‘ Sﬁ;l;?
ret #0 CU

Figure: Example of an MPF program for a TCP/IP session

vpk@cs.columbia.ed Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

MPF

Dispatching multi-packet messages

@ Typical case when IP fragmentation is used

@ A large TCP/UDP packet is divided into multiple IP
fragments

@ Only one has the TCP/UDP header
@ MPF response:

@ filter state. Per-filter “state” buffers
@ additional instructions for handling fragments. Postpone the

dispatch decision for a while
CS&
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

MPF

Critique

@ 38x faster than CSPF and 4x faster than BPF [4]
@ But...

[4] Masanobu Yuhara, Brian N. Bershad, Chris Maeda, and J. Eliot B. Moss. Efficient Packet Demultiplexing for Csm
Multiple Endpoints and Large Messages. In Proceedings of the Winter USENIX Technical Conference (USENIX CU
WTC), pages 153—165, San Francisco, CA, USA, January 1994.

vpk@cs.columbia Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

MPF

Critique

@ 38x faster than CSPF and 4x faster than BPF [4]
@ But...

@ MPF was designed for Mach 3.0 (microkernel OS). No port exists for
other OSes, yet

@ [t demands from the filters to have specific structure in order to optimize
them (collapse into one). Reduced flexibility in expressions

@ Associative search instructions make extensive use of BPF’s scratch
memory. Depending of how memory accesses are emulated, MPF
might lead in memory spills — recall BPF’s original purpose

[4] Masanobu Yuhara, Brian N. Bershad, Chris Maeda, and J. Eliot B. Moss. Efficient Packet Demultiplexing for Csm
Multiple Endpoints and Large Messages. In Proceedings of the Winter USENIX Technical Conference (USENIX CU
WTC), pages 153—165, San Francisco, CA, USA, January 1994.

vpk@cs.columbia Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

Outline

9 Packet Filters

@ Dynamic Packet Filters (DPF)

CS&
CU

vpk@cs.columbia Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

DPF

Motivation

@ Similar to MPF:
e Minimize end-to-end latency of user-level protocol stacks
e Applications can explore new networking mechanisms
without kernel modifications
e Usually trade flexibility for performance
@ Fast and flexible message demultiplexing is important
@ Proposed solutions sacrifice one for the other
e BPF: flexible and general, but not scalable
e MPF: less flexible, more scalable CSGﬁ?

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

DPF

Design & architecture

@ Kernel-level facility for rapid packet demultiplexing
@ New, carefully-designed, declarative language
@ Aggressive dynamic code generation

@ Performance is equivalent, or can exceed, hand-coded
demultiplexers

CS&
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

DPF

Packet filter language

@ Declarative language; general, flexible, protocol agnostic

@ Filters are described as sequences of boolean
comparisons (atoms) linked by conjunctions

@ Set of active filters are stored into a prefix tree data
structure (Figure 11)

CS&
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

DPF

Trie structure (prefix tree)

Figure: A trie for keys "A", "to", ..., "inn" (courtesy of Wikipedia) CS@

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter

Packet Filters Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

(
check ethernet header

(12:16 == 0x8) && # IP datagram?
skip ether header (14 bytes)
(SHIFT(6 + 6 + 2)) &&

check IP header

(9:8 == 6) && # check protocol : TCP is 6
check IP src addr (192.12.69.1)
(12:32 == 0xc00c4501) &&

skip IP header (assume fixed sized; 20 bytes
(SHIFT (20)) &&

check TCP header

check source port (2 bytes)
(0:16 == 1234) &&

check destination port (2 bytes)

)(2:16 == 4321) s& CS@
CU

Figure: Example of a DPF program for a TCP/IP session

vpk@cs.columbia.ed Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

DPF

Filter handling

@ New filters are stored in the trie along with path with the
longest prefix match — similar to MPF, this leads in prefix
“collapse”

@ Duplicate checks are eliminated

@ Filters that cannot merge with the trie, or they form a new
one, are connected with it using an or branch

@ “Forest” of prefix trees
CSe
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

DPF

Dynamic code generation

@ Eliminates interpretation overhead by compiling into native
code
@ Aggressive optimization
e Runtime information is encoded in the instruction scheme
(e.g., constants that are known only after a connection is
established)
e Fast disjunctions. Avoids hash-based lookups for
disjunctive filters that have been merged, but the necessary
checks are relatively few
e Atom coalescing (Figure 13)
Alignment estimation CSGQ
CU

e Bounds checking

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter
The BSD Packet Filter
The Mach Packet Filter

Packet Filters Dynamic Packet Filters
The BSD Packet Filter+
xPacket Filter

TCP header before coalescing
(0:16 == 1234) && # check source port
(2:16 == 4321) # check destination port

TCP header after coalescing
(0:32 == 283182290) # 283182290 ==
((4321 << 16) | 1234)

Figure: Coalescing example

CS&
CU

vpk@cs.columbi Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

DPF

Critique

@ 25-50x times faster than MPF [5]
@ But...

[5] Dawson R. Engler and M. Frans Kaashoek. DPF: Fast, Flexible Message Demultiplexing using Dynamic Cod Gh)

Generation. In Proceedings of the ACM Conference on Applications, Technologies, Architectures, and Protocols for C U

Computer Communication (SIGCOMM), pages 53-59, Standford, CA, USA, 1996.

vpk@cs.columbia Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

DPF

Critique

@ 25-50x times faster than MPF [5]
@ But...

@ DPF was designed for Aegis (exokernel OS). No port
exists for other OSes, yet

@ Relies on VCODE dynamic code generation system
(portability?)

@ No side-effects; what about variable-length headers?
multi-packet messages?

[5] Dawson R. Engler and M. Frans Kaashoek. DPF: Fast, Flexible Message Demultiplexing using Dynamic Cod Gh)

Generation. In Proceedings of the ACM Conference on Applications, Technologies, Architectures, and Protocols for C U

Computer Communication (SIGCOMM), pages 53-59, Standford, CA, USA, 1996.

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

Outline

9 Packet Filters

@ The BSD Packet Filter+ (BPF+)

CS&
CU

vpk@cs.columbia Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

BPF+

Motivation

@ BPF has limitations (reason to have MPF, DPF, ...)
@ Decision tree reduction is NP-complete
@ But...

CS&
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

BPF+

Motivation

@ BPF has limitations (reason to have MPF, DPF, ...)
@ Decision tree reduction is NP-complete
@ But...
@ Filters have a regular structure that can be exploited from
optimization frameworks
@ MPF, DPF use local optimizations and they do not
eliminate common subexpressions
e Restrict the expressibility of the filters by imposing a
specific structure (MPF)
e Rely on the programmer to express the filter in an optimiz

e
and compact way (DPF) éggﬁ?

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

BPF+

Motivation

@ BPF has limitations (reason to have MPF, DPF, ...)
@ Decision tree reduction is NP-complete
@ But...
@ Filters have a regular structure that can be exploited from
optimization frameworks
@ MPF, DPF use local optimizations and they do not
eliminate common subexpressions
e Restrict the expressibility of the filters by imposing a
specific structure (MPF)
e Rely on the programmer to express the filter in an optimiz

e
and compact way (DPF) éggﬁ?

@ Bottom line: we need global filter optimization

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

BPF+

Features

@ Exploits data-flow algorithms for generalized optimization
among filters (Figure 14)

@ Eliminates redundant predicates
@ Allows for matching header fields against one another
@ Enables arithmetic operations on header words before

matching

@ Can generate native code using just-in-time (JIT)
compilation

@ Relies upon a refined VM (more GPR, branch instruction{:sm
can use register values) CU

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

BPF+

Generalized optimization

Figure: Typical (DPF) CFG for “(src host X and dst host Y)Csm
or (src host Y and dst host X)” CU

vpk@cs.columbi Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

BPF+

Architecture overview

High-Level

VM |

F.llter. —| Front End ‘ SSA ‘ Optimizer | o> | —
Specification Form Byte
Codes

Protection

Boundary
JIT

‘ Intel‘lJl‘etel" ‘ Assembler‘
Native
Code

Figure: BPF+ architecture

vpk@cs.columbi Columbia Universit

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

BPF+

Design & architecture

@ Filter specifications written in a high-level predicate
language (libpcap)
@ ((src network MIT and dst network UCB) or
(src netork UCB and dst network MIT)) and
(TCP port HTTP)

@ Typical compiler structure (front end, back end)

@ Straightforward code generator (on the fly translation to the
intermediate SSA form)

@ The CFG is guaranteed to by acyclic (forward branches

onl
oo | . CSd
@ Optimizer eliminated redundancies and performs register
allocation CU

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

BPF+

Critique

@ Misses juxtaposition (BPF, MPF, DPF, ...) [6]

@ No per-filter state (MPF)

@ No side-effects on user-level state variables or packets

@ No backward branches (cannot implement loops, counting)

@ Return value is still true/false. What about #predicates
matched?

[6] Andrew Begel, Steven McCanne, and Susan L. Graham. BPF+: Exploiting Global Data-flow Optimization in a

Generalized Packet Filter Architecture. ACM SIGCOMM Computer Communication Review, 29(4):123—134, 1994 Sm

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

Outline

9 Packet Filters

@ xPacket Filter (xPF) CS«¥
CU

vpk@cs.columbi Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

xPF

Motivation & enhancements

@ Need for more elaborate computational capabilities

@ Engine for executing monitoring applications in
kernel-space rather than a demultiplexing mechanism

@ Persistent memory (per-filter)
@ Support for backward branches

CS&
CU

vpk@cs.columbia.edu Columbia University - COMS W6998

The Packet Filter

The BSD Packet Filter

The Mach Packet Filter
Packet Filters Dynamic Packet Filters

The BSD Packet Filter+

xPacket Filter

xPF

Implementation & usage

@ xPF was implemented in OpenBSD [7]
@ No comparative evaluation
@ No safety guarantees because of the backward branches

[7] Sotiris loannidis, Kostas G. Anagnostakis, John loannidis, and Angelos D. Keromytis. xPF: Packet Filtering for

Low-cost Network Monitoring. In Proceedings of the IEEE Workshop on High-Performance Switching and Routing

CS&
CU

(HPSR), pages 121-126, Kobe, Hyogo, Japan, 2002.

vpk@cs.columbi Columbia University - COMS W6998

	Introduction
	Overview
	Why bother?

	Packet Filters
	CMU/Stanford Packet Filter (CSPF)
	The BSD Packet Filter (BPF)
	The Mach Packet Filter (MPF)
	Dynamic Packet Filters (DPF)
	The BSD Packet Filter+ (BPF+)
	xPacket Filter (xPF)

