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RCU

Read-Copy-Update

@ Kernel synchronization primitive (yet another)
@ Added in 2.5 kernel branch
@ Very popular in the kernel community
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RCU

Why bother?

@ Replacement for reader/writer locks
@ Used in many places inside the kernel
@ Performs very well (scalable, efficient, deterministic)

@ In 2.6.31 more than 292 source files under net / utilize the
RCU API
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Usage

RCU

Why bother?

Replacement for reader/writer locks
Used in many places inside the kernel
Performs very well (scalable, efficient, deterministic)

In 2.6.31 more than 292 source files under net / utilize the
RCU API

@ But RCU has its cons also — there is no silver bullet
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@ Synchronize access to a protected resource
e But access to the resource must be only via a pointer

@ No sleep inside an RCU region

© It provides performance gains only if the resource is mostly
read (i.e., sparse writers, <10% time spend in updating)
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RCU

In a nutshell

@ It keeps track of all pointers that point to the shared
resource

@ When the resource is modified, a copy is first created and
the change is performed on that copy

@ After all readers are done with the previous (old) copy of
the resource, their pointer is updated (now points to the
new copy of the structure)
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What is it anyway?

RCU Details Update internals

RCU

In a nutshell

@ It keeps track of all pointers that point to the shared
resource

@ When the resource is modified, a copy is first created and
the change is performed on that copy

@ After all readers are done with the previous (old) copy of
the resource, their pointer is updated (now points to the
new copy of the structure)

@ More aggressive concurrency — reads happen at the same
time that a write is performed
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RCU Details Update internals

RCU

More detailed view

@ Updates are split into removal and reclamation phases

@ In the removal phase, all references to data items of the
protected structure are replaced (now pointing to new
versions)

@ During the reclamation phase, the old items are freed
(garbage collection?)
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RCU

Update internals

@ Remove the pointers of a data structure (i.e., subsequent
readers cannot gain a reference to it)
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Update internals

@ Remove the pointers of a data structure (i.e., subsequent
readers cannot gain a reference to it)

@ Wait for all previous readers to complete their RCU read-
side critical sections
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RCU

Update internals

@ Remove the pointers of a data structure (i.e., subsequent
readers cannot gain a reference to it)

@ Wait for all previous readers to complete their RCU read-
side critical sections

© At this point, there cannot be any readers who hold
references to the data structure, so it now may safely be
reclaimed (e.g., kfree())
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RCU

Core API

rcu_read_lock ()
rcu_read_unlock ()
synchronize_rcu/()
call _rcu()
rcu_assign_pointer ()

rcu_dereference ()
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RCU

Usage example 0x1

struct foo {
int a;
char b;
long c;

}i

DEFINE_SPINLOCK (foo_mutex) ;
struct foo xgbl_foo;
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RCU

Usage example 0x2

void foo_update_a (int new_a)
{

struct foo *new_fp;

struct foo xold_fp;

new_fp = kmalloc (sizeof (*new_fp), GFP_KERNEL);
spin_lock (&foo_mutex) ;

old_fp = gbl_foo;

snew_fp = xold_fp;

new_fp->a = new_a;

rcu_assign_pointer (gbl_foo, new_fp);

spin_unlock (&foo_mutex) ; Csm
synchronize_rcu(); CU
kfree (old_f£fp);
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RCU

Usage example 0x3

int foo_get_a(void)
{

int retval;

rcu_read_lock () ;

retval = rcu_dereference (gbl_foo)->a;
rcu_read_unlock () ;

return retval;

}
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RCU

Example summary

@ rcu_read_lock() and rcu_read_unlock() guard RCU
read-side critical sections

@ rcu_dereference() is used in order to dereference
RCU-protected pointers

@ still need some solid scheme (e.g., spinlocks) to keep
concurrent updates from interfering with each other

@ rcu_assign_pointer() updates an RCU-protected pointer

@ synchronize_rcu() is called after removing a data element
from an RCU-protected data structure, but before
reclaiming/freeing the data element Csm
CU
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Evolution 0x1
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Evolution 0x2
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References

@ The excellent LWN (http://1lwn.net) “Whatis RCU?”
series

@ “What is RCU, Fundamentally?”
(http://lwn.net/Articles/262464/)

@ “What is RCU, Part 2: Usage”
(http://1lwn.net/Articles/263130/)

© “What is RCU, RCU part 3: the RCU API”
(http://lwn.net/Articles/264090/)

@ Paul McKenney’s papers
(http://www.rdrop.com/users/paulmck/RCU/
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