
Synchronization with Read-Copy-Update
RCU Details

RCU API

Read-Copy-Update (RCU)
Yet another kernel synchronization primitive

Vasileios P. Kemerlis

Network Security Lab
Computer Science Department

Columbia University
New York, NY

02/17/2010

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

Outline

1 Synchronization with Read-Copy-Update
Introduction
Usage

2 RCU Details
What is it anyway?
Update internals

3 RCU API
Core API
Current state
More reading

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

Introduction
Usage

Outline

1 Synchronization with Read-Copy-Update
Introduction
Usage

2 RCU Details
What is it anyway?
Update internals

3 RCU API
Core API
Current state
More reading

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

Introduction
Usage

RCU
Read-Copy-Update

Kernel synchronization primitive (yet another)
Added in 2.5 kernel branch
Very popular in the kernel community

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

Introduction
Usage

RCU
Why bother?

Replacement for reader/writer locks
Used in many places inside the kernel
Performs very well (scalable, efficient, deterministic)
In 2.6.31 more than 292 source files under net/ utilize the
RCU API

But RCU has its cons also – there is no silver bullet

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

Introduction
Usage

RCU
Why bother?

Replacement for reader/writer locks
Used in many places inside the kernel
Performs very well (scalable, efficient, deterministic)
In 2.6.31 more than 292 source files under net/ utilize the
RCU API
But RCU has its cons also – there is no silver bullet

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

Introduction
Usage

Outline

1 Synchronization with Read-Copy-Update
Introduction
Usage

2 RCU Details
What is it anyway?
Update internals

3 RCU API
Core API
Current state
More reading

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

Introduction
Usage

RCU
Usage

1 Synchronize access to a protected resource
But access to the resource must be only via a pointer

2 No sleep inside an RCU region
3 It provides performance gains only if the resource is mostly

read (i.e., sparse writers, <10% time spend in updating)

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

What is it anyway?
Update internals

Outline

1 Synchronization with Read-Copy-Update
Introduction
Usage

2 RCU Details
What is it anyway?
Update internals

3 RCU API
Core API
Current state
More reading

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

What is it anyway?
Update internals

RCU
In a nutshell

It keeps track of all pointers that point to the shared
resource
When the resource is modified, a copy is first created and
the change is performed on that copy
After all readers are done with the previous (old) copy of
the resource, their pointer is updated (now points to the
new copy of the structure)

More aggressive concurrency – reads happen at the same
time that a write is performed

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

What is it anyway?
Update internals

RCU
In a nutshell

It keeps track of all pointers that point to the shared
resource
When the resource is modified, a copy is first created and
the change is performed on that copy
After all readers are done with the previous (old) copy of
the resource, their pointer is updated (now points to the
new copy of the structure)
More aggressive concurrency – reads happen at the same
time that a write is performed

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

What is it anyway?
Update internals

RCU
More detailed view

Updates are split into removal and reclamation phases
In the removal phase, all references to data items of the
protected structure are replaced (now pointing to new
versions)
During the reclamation phase, the old items are freed
(garbage collection?)

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

What is it anyway?
Update internals

Outline

1 Synchronization with Read-Copy-Update
Introduction
Usage

2 RCU Details
What is it anyway?
Update internals

3 RCU API
Core API
Current state
More reading

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

What is it anyway?
Update internals

RCU
Update internals

1 Remove the pointers of a data structure (i.e., subsequent
readers cannot gain a reference to it)

2 Wait for all previous readers to complete their RCU read-
side critical sections

3 At this point, there cannot be any readers who hold
references to the data structure, so it now may safely be
reclaimed (e.g., kfree())

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

What is it anyway?
Update internals

RCU
Update internals

1 Remove the pointers of a data structure (i.e., subsequent
readers cannot gain a reference to it)

2 Wait for all previous readers to complete their RCU read-
side critical sections

3 At this point, there cannot be any readers who hold
references to the data structure, so it now may safely be
reclaimed (e.g., kfree())

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

What is it anyway?
Update internals

RCU
Update internals

1 Remove the pointers of a data structure (i.e., subsequent
readers cannot gain a reference to it)

2 Wait for all previous readers to complete their RCU read-
side critical sections

3 At this point, there cannot be any readers who hold
references to the data structure, so it now may safely be
reclaimed (e.g., kfree())

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

Core API
Current state
More reading

Outline

1 Synchronization with Read-Copy-Update
Introduction
Usage

2 RCU Details
What is it anyway?
Update internals

3 RCU API
Core API
Current state
More reading

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

Core API
Current state
More reading

RCU
Core API

rcu_read_lock()

rcu_read_unlock()

synchronize_rcu()

call_rcu()

rcu_assign_pointer()

rcu_dereference()

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

Core API
Current state
More reading

RCU
Usage example 0x1

struct foo {
int a;
char b;
long c;
};

DEFINE_SPINLOCK(foo_mutex);
struct foo *gbl_foo;

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

Core API
Current state
More reading

RCU
Usage example 0x2

void foo_update_a(int new_a)
{
struct foo *new_fp;
struct foo *old_fp;

new_fp = kmalloc(sizeof(*new_fp), GFP_KERNEL);
spin_lock(&foo_mutex);
old_fp = gbl_foo;

*new_fp = *old_fp;
new_fp->a = new_a;
rcu_assign_pointer(gbl_foo, new_fp);
spin_unlock(&foo_mutex);
synchronize_rcu();
kfree(old_fp);
} vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

Core API
Current state
More reading

RCU
Usage example 0x3

int foo_get_a(void)
{
int retval;

rcu_read_lock();
retval = rcu_dereference(gbl_foo)->a;
rcu_read_unlock();
return retval;
}

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

Core API
Current state
More reading

RCU
Example summary

rcu_read_lock() and rcu_read_unlock() guard RCU
read-side critical sections
rcu_dereference() is used in order to dereference
RCU-protected pointers
still need some solid scheme (e.g., spinlocks) to keep
concurrent updates from interfering with each other
rcu_assign_pointer() updates an RCU-protected pointer
synchronize_rcu() is called after removing a data element
from an RCU-protected data structure, but before
reclaiming/freeing the data element

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

Core API
Current state
More reading

Outline

1 Synchronization with Read-Copy-Update
Introduction
Usage

2 RCU Details
What is it anyway?
Update internals

3 RCU API
Core API
Current state
More reading

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

Core API
Current state
More reading

RCU
Evolution 0x1

tionality required by the system it is running on, conserving
memory while also preserving the ability to adapt to a wide
variety of hardware configurations. The Linux kernel also
allows such modules to be unloaded, which removes the un-
loaded module’s code and data from the kernel.

Such a module might use RCU’s asynchronous call_rcu()
interface, which can result in some of that module’s func-
tions (“RCU callbacks”) being invoked at a later time, once
all pre-existing RCU read-side critical sections have com-
pleted. Clearly, that module’s code and data must remain
in memory until all such RCU callbacks have been invoked,
which means that module unloading must be delayed until
after all of that module’s RCU callbacks have completed.
This requirement can be expected to affect any technology
that relies on deferred processing.

When an RCU-using module appeared, an rcu_barrier()

primitive [32], originally developed for ReiserFS by Dipankar
Sarma, was added to the Linux 2.6.15 kernel. This primitive
blocks until all RCU callbacks created by earlier calls to
call_rcu() have been invoked, allowing the module to be
safely unloaded.

This primitive permits Linux kernel modules using the
call_rcu() primitive to be dynamically unloaded.

5.11 RCU Readers Must Block
People have asked for RCU readers to be able to block for

well over a decade. This request has invariably indicated a
lack of understanding of RCU.

That is, it indicated a lack of understanding of RCU un-
til early 2006, when a group of Linux kernel developers
really did need RCU readers to block. This meant cre-
ating a variant of RCU (named “SRCU”) that permitted
generalized blocking in read-side critical sections, but while
avoiding the memory-exhaustion scenarios that would nor-
mally ensue [28]. Because the resulting implementation re-
quired slight changes to the RCU API, this also required
adding the srcu_read_lock(), srcu_read_unlock(), and
synchronize_srcu() primitives to the Linux 2.6.19 kernel.
These primitives are roughly analogous to the rcu_read_

lock(), rcu_read_unlock(), and synchronize_kernel() prim-
itives described in Section 4.

Addition of these primitives permitted RCU to be used
in situations requiring RCU’s extremely low read-side over-
heads, but where readers might occasionally need to block.
An example of such a situation would be a heavily used in-
memory cache of a disk-based data structure with a high hit
rate. The design of such a system can be simplified by use
of SRCU without sacrificing performance or scalability.

Although this change was specific to RCU, it clearly il-
lustrates how the wide usage of the Linux kernel can force
unexpected changes into a given technology.

5.12 RCU Readers of Lists Being Reaped
One of the more unconventional features of RCU is that it

allows readers and updaters to make forward progress even
when running concurrently. This property is key to the high
performance, unlimited scalability, and O(1) computational
complexity for RCU’s read-side primitives, but can provide
interesting challenges in some situations.

In particular, Corey Minyard needed to remove all ele-
ments of an RCU-protected circular doubly linked list with
a single operation. Of course, the fact that RCU readers
run concurrently with updaters means that readers might

 0

 5

 10

 15

 20

 25

 30

 35

 2002 2003 2004 2005 2006 2007 2008

R

C
U

 A
PI

 M
em

be
rs

Year

Figure 4: RCU API Growth Over Time

be referencing such a list at the time of full-list removal.
Such removal must therefore be performed carefully, using
the following steps:

1. Adjust the list so that new readers perceive it to be
empty, but so that old readers still find the list header
so that they terminate correctly upon reaching the end
of the list.

2. Wait for all old readers to complete their scan of the
list. RCU provides primitives such as synchronize_

rcu() for this purpose.

3. Complete the removal process, linking the list into a
new list header so that it may be processed further.

This process was packaged into the list_splice_init_

rcu() primitive [46]. As with the change described in Sec-
tion 5.11, this change is specific to RCU, but again demon-
strates how the wide usage of the Linux kernel can force
changes into a given technology.

5.13 Summary of RCU API Evolution
Seven years of exposure to Linux increased the size of

the RCU API from the initial six components (seven if one
counts explicit memory barriers) to 31 components as of the
Linux 2.6.24 kernel, as shown in Figure 4. Any way you
calculate it, this is an extremely large increase in size, an in-
crease that was completely unexpected, given that the initial
DYNIX/ptx RCU API had been running in production sup-
porting large datacenter workloads for well over five years
beforehand. Of course, the Linux kernel has a variety of
internal software environments, including process context,
interrupt context, and so on, which results in more than 50
API members for simple locking. However, DYNIX/ptx had
a similar variety of internal software environments.

This situation therefore motivated a search for the reasons
why a technology so well-suited for datacenter workloads
should require so much change upon being introduced into

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

Core API
Current state
More reading

RCU
Evolution 0x2{1,2,3 5,6,7 11,4,8}, while others will see {1,2,3 11,4,8}.

The synchronize_rcu() primitive blocks until all pre-
existing RCU readers complete, after which point there can
be no readers referencing the second element, as indicated
by the green shading on the third row. At this point, all
RCU readers see a single version of the list, namely, {1,2,3
11,4,8}. It is then safe to free that element, as shown on the
last row.

This of course leads to the question of how one could
possibly implement synchronize_rcu(), especially in cases
where the read-side primitives generate no code. This ques-
tion is taken up in the next section.

2.4 Toy RCU Implementation
Consider a non-preemptive kernel environment, where all

threads run to block. In this case, it is illegal to block while
holding a spinlock, as doing so can result in a deadlock sit-
uation where all the CPUs are spinning on a lock held by
a blocked thread. The CPUs cannot acquire the lock until
it is released, but the blocked thread cannot release until
after at least one of the CPUs acquires the lock. This same
restriction applies to RCU read-side critical sections, so that
it is illegal to block while traversing an RCU-protected data
structure.

This restriction is sufficient to admit the following trivial
implementation of synchronize_rcu():

1 void synchronize_rcu()

2 {

3 foreach_cpu(cpu)

4 run_on(cpu);

5 }

This code fragment simply runs on each CPU in turn. To
see how this works, consider the situation once synchronize_
rcu() has started running on CPU 0. Whatever was run-
ning on CPU 0 beforehand must have blocked, otherwise
synchronize_rcu() could not have begun running on CPU 0.
Because it is illegal to block within an RCU read-side critical
section, all prior RCU read-side critical sections running on
CPU 0 must have completed. This same line of reasoning
applies to each of the other CPUs that synchronize_rcu()
runs on, so that once synchronize_rcu() has completed, all
prior RCU read-side critcial sections throughout the system
must have completed.

Production-quality synchronize_rcu() implementations
are more complex due to the need for performance and scal-
ability, the need to preempt RCU read-side critical sections
in real-time systems, and the need to tolerate CPUs being
added to and removed from the system, for example, in or-
der to conserve energy when the system is mostly idle.

2.5 Additional Information on RCU
Readers wishing more information on RCU are referred to

a number of RCU-related publications covering fundamen-
tal concepts [42], usage [35], the Linux-kernel RCU API [34],
implementation of the RCU infrastructure [1, 24, 28, 31, 32,
33], real-time adaptations of RCU [12, 16, 40, 38, 29, 57],
and the performance of RCU [13, 25, 48, 50]. There are also
a number of publications on other mechanisms that in some
ways resemble RCU [10, 15, 18, 19, 20, 21, 22, 52, 53, 56,
58]. In addition, the Linux 2.4 kernel’s use of the brlock

per-CPU reader-writer locking primitive in the networking
stack also has some resemblance to RCU. (The brlock prim-

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 2002 2003 2004 2005 2006 2007 2008 2009

R

C
U

 A
PI

 U
se

s

Year

Figure 2: RCU API Usage in the Linux Kernel

itive resembles Hsieh’s and Weihl’s scalable reader-writer
locks [17].)

3. RCU USAGEWITHIN LINUX
RCU’s usage within the Linux kernel has increased rapidly

over the past five years, as shown in Figure 2 [27]. In some
cases, RCU has displaced other synchronization mechanisms
in existing code (for example, brlock in the networking pro-
tocol stacks [47, 62, 63]), while in other cases it has been in-
troduced with code implementing new functionality (for ex-
ample, the audit system within SELinux [48]). Despite its
rapid growth, RCU remains a niche technology, as shown
by the comparison with locking in Figure 3. Nonetheless,
RCU can be characterized as a reasonably successful niche
technology within the Linux kernel. As such, it is useful to
review the path RCU took in achieving this modest level of
success, which was due more to RCU’s being dramatically
changed by Linux than by Linux being changed by RCU.

4. RCU BEFORE LINUX
Before Linux, production use of RCU-like mechanisms ap-

pears to have been confined to large data-processing systems
such as the IBM mainframe’s VM/XA [15] and Sequent’s
(now IBM’s) Symmetry and NUMA-Q systems running the
DYNIX/ptx operating system [41]. These were large (for the
time) enterprise systems running parallel data-processing
workloads. These systems normally ran in a protected net-
working environment, behind firewalls or client machines
with restricted usage modes. The real-time response re-
quired of these machines is perhaps best exemplified by the
TPC/A benchmark [64], which has the very soft real-time
requirement that 90% of transactions complete in two sec-
onds or less.

Back when the author was still foolish enough to believe
that he knew all that there was to know about RCU, the
RCU API for DYNIX/ptx [37] consisted of only the follow-
ing members (translated to their Linux equivalents, where

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

Core API
Current state
More reading

Outline

1 Synchronization with Read-Copy-Update
Introduction
Usage

2 RCU Details
What is it anyway?
Update internals

3 RCU API
Core API
Current state
More reading

vpk@cs.columbia.edu Columbia University - COMS W6998

Synchronization with Read-Copy-Update
RCU Details

RCU API

Core API
Current state
More reading

RCU
References

The excellent LWN (http://lwn.net) “What is RCU?”
series

1 “What is RCU, Fundamentally?”
(http://lwn.net/Articles/262464/)

2 “What is RCU, Part 2: Usage”
(http://lwn.net/Articles/263130/)

3 “What is RCU, RCU part 3: the RCU API”
(http://lwn.net/Articles/264090/)

Paul McKenney’s papers
(http://www.rdrop.com/users/paulmck/RCU/

vpk@cs.columbia.edu Columbia University - COMS W6998

http://lwn.net
http://lwn.net/Articles/262464/
http://lwn.net/Articles/263130/
http://lwn.net/Articles/264090/
http://www.rdrop.com/users/paulmck/RCU/

	Synchronization with Read-Copy-Update
	Introduction
	Usage

	RCU Details
	What is it anyway?
	Update internals

	RCU API
	Core API
	Current state
	More reading

