
���������	��
��	
 � ��� ������������� �������

��� �"!$#&%(')!+*-,.�
/1032547698:6<;>= ?A@CBED>F�G&@&GH= IHJCKMLNGCDO?PG&I
QCR9SUTWV X)Y.Q[ZA\A]^T`_ V aUb�_ cd]`b

e � fhgji$kl,min�"o
/1032547698:6<;>= ?A@CBED>F�G&@&GH= IHJCKMLNGCDO?PG&I
TCQUpUSWbqX)YmQdZA\A]^T`_ V aUbr_ cd]`b

�s!+')'utsvwi",(fAx7i
/1032547698:6<;>= ?A@CBED>F�G&@&GH= IHJCKMLNGCDO?PG&I
QCQ[\yp&QWV zCpWX)Y.Q[ZA\A]^T`_ V aUb�_ cd]`b

{ 'u!7�}|<':~�,m� f
/1032���� ��=j��GCD�F�G&@&GH=EIHJ[K�LwG&D)?PG&I
Z��HYmQCR9V R�XmSC\H_ V aUb�_ cd]`b

Abstract
This paperprovides an overview of techniquesfor improving Web perfor-

mance.For improving server performance,multiple Webserverscanbeusedin
combinationwith efficient loadbalancingtechniques. We alsodiscusshow the
choiceof server architectureaffectsperformance. We examinecontentdistri-
bution networks (CDN’s) andtherouting techniques that they use.While Web
performancecanbeimprovedusingcaching, akey problemwith cachingis con-
sistency. We presentdifferenttechniquesfor achieving varying forms of cache
consistency.

Keywords: cacheconsistency, contentdistribution networks, Web caching,Web perfor-
mance,Webservers

�

�7���N�N�>�����q�N�W���

The World Wide Web hasemerged asoneof the mostsignificant applica-
tions over the past decade. The infrastructure required to support Webtraffic
is significant, and demands continue to increaseat a rapid rate. Highly ac-
cessed Websitesmayneedto serve over a million hits perminute. Additional
demands arecreated by theneedto serve dynamicandpersonalizeddata.

This paperpresentsan overview of techniques andcomponents needed to
support high volumeWebtraffic. Theseincludemultiple servers at Websites
which canbescaled to accommodatehigh requestrates. Variousload balanc-
ing techniqueshave beendevelopedto efficiently route requests to multiple
servers. Web sites may also be dispersedor replicatedacross multiple geo-
graphic locations.

Webserverscanuseseveral differentapproachesto handling concurrentre-
quests includingprocesses,threads,event-drivenarchitecturesin which a sin-
gleprocessis usedwith non-blocking I/O, andin-kernelservers.Eachof these
architectural choiceshascertain advantagesand disadvantages. We discuss
how thesedifferentapproachesaffect performance.

Over the pastfew years, a numberof content distribution networks (CDN)
have beendevelopedto aid Webperformance. A CDN is a sharednetwork of
servers or cachesthat deliver content to users on behalf of content providers.
The intent of a CDN is to serve content to a client from a CDN server so that
responsetime is decreasedover contacting the origin server directly. CDN’s
also reduce the load on origin servers. This paper examinesseveral issues
related to CDN’sincludingtheir overall architectureandtechniquesfor routing
requests.Wealsoprovideinsight into theperformanceimprovementstypically
achievedby CDN’s.

Cachingis a critical technique for improving performance. Caching can
take placeat several points within the network including clients, servers, and
in intermediate proxies betweenthe client and server. A key problem with
caching within the Web is maintaining cacheconsistency. Web objectsmay
have expiration timesassociatedwith themindicating whenthey becomeob-
solete. The problem with expiration times is that it is often not possible to
tell in advancewhenWebdatawill becomeobsolete.Expiration timesarenot
sufficient for applications which have strong consistency requirements.Stale
cached dataandtheinability in many casesto cachedynamicandpersonalized
datalimits theeffectivenessof caching.

Theremainder of this paper is organizedasfoll ows. Section1 providesan
overview of techniques usedfor improving performanceat a Web site. Sec-
tion 2 discussesdifferentserver architectures.Section3 presentsanoverview
of content distribution networks. Section4 discussesWebcaching andcache
consistency techniques.

��� �7���l�N� �s�^�s¡£¢}¤<�N¥E���"�§¦����3¤�¦ �¨¦5©ª¤¬«	­>�&�w¤

Highly accessedWebsites mayneedto handle peakrequestrates of over a
million hits perminute. Webserving lends itself well to concurrency because
transactions from different clients canbe handled in parallel. A single Web
server canachieve parallelism by multithreading or multitasking between dif-
ferentrequests.Additionalparallelismandhigherthroughputscanbeachieved
by using multiple servers andloadbalancing requestsamongtheservers.

Figure1 showsanexampleof a scalableWebsite. Requestsaredistributed
to multiple serversvia a load balancer. The Web serversmay access oneor
moredatabasesfor creating content. TheWebserverswould typically contain
replicatedcontentsothatarequestcouldbedirectedto any serverin thecluster.
For storingstaticfiles,onewayto sharethemacrossmultiple serversis to usea
distributedfile systemsuchasAFSor DFS[42]. Copiesof filesmaybecached
in oneor moreservers. Thisapproachworksfine if thenumberof Webservers
is not too large anddatadoesn’t change very frequently. For large numbers
of serversfor which dataupdatesarefrequent, distributedfile systemscanbe
highly inefficient. Part of the reason for this is the strong consistency model
imposedby distributed file systems. Sharedfile systemsrequire all copies
of files to be completely consistent. In order to update a file in one server,
all other copiesof the file need to be invalidated before the updatecan take
place. Theseinvalidation messagesaddoverheadandlatency. At someWeb
sites,thenumber of objectsupdatedin temporal proximity to eachothercanbe
quite large. During periodsof peakupdates,thesystemmight fail to perform
adequately.

Another methodof distributing contentwhich avoids someof theproblems
of distributedfile systemsis to propagateupdatesto serverswithout requiring
the strict consistency guaranteesof distributed file systems. Using this ap-
proach, updatesarepropagatedto serverswithout first invalidating all existing
copies. Thismeansthatat thetimeanupdateis made,datamaybeinconsistent
betweenserversfor a little while. For many Web sites, theseinconsistencies
arenot a problem,andtheperformancebenefitsfrom relaxing theconsistency
requirementscanbesignificant.

���^��� ® ��¦��°¯±¦�²W¦����r�^��¡

The load balancerin Figure1 distributesrequestsamongthe servers. One
methodof loadbalancing requeststo serversis via DNSservers.DNSservers
provide clients with the IP addressof oneof thesite’s content delivery nodes.
Whena request is madeto a Web site such ashttp://www.research.
ibm.com/compsci/, “www.research.ibm.com”mustbetranslatedto anIP
address,and DNS servers perform this translation. A nameassociatedwith
a Website canmapto multiple IP addresses,eachassociatedwith a different

Load Balancer

Web
Server

Web
Server

Web
Server

Database Database

³+´¶µE·:IHG¹¸E6
Architectureof a scalableWebsite. Requestsaredirectedfrom theloadbalancer

to oneof severalWebservers.TheWebserversmayaccessoneor moredatabasesfor creating
content.

Webserver. DNSserverscanselect oneof theseserversusingapolicy suchas
round robin [10].

Thereareotherapproacheswhichcanbeusedfor DNSload balanceswhich
offer someadvantages over simple round robin [13]. The DNS server can
useinformation about thenumberof requestsperunit time sentto a Website
aswell asgeographic information. The Internet2DistributedStorage Infras-
tructureProjectproposeda DNS that implementsaddressresolution basedon
network proximity information,suchasround-trip delays [8].

Oneof theproblemswith load balancingusing DNSis that name-to-IPmap-
pings resulting from a DNS lookup may be cachedanywherealong the path
betweenaclient andaserver. Thiscancauseload imbalancebecauseclient re-
questscanthenbypasstheDNSserverentirely andgodirectly to aserver [19].
Name-to-IP addressmappings have time-to-live attributes(TTL) associated
with themwhich indicatewhenthey areno longervalid. UsingsmallTTL val-
uescanlimit loadimbalancesdueto caching. Theproblemwith this approach
is thatit canincreaseresponsetimes[59]. Anotherproblemwith thisapproach
is thatnot all entitiescaching name-to-IPaddressmappingsobey TTL’swhich
aretoo short.

Adaptive TTL algorithms have beenproposedin which the DNS assigns
differentTTL valuesfor different clients [12]. A requestcomingfrom a client

with ahigh requestratewould typically receiveaname-to-IP addressmapping
with a shorter lifetime thanthat assignedto a client with a low request rate.
This prevents a proxy with many clients from directing requeststo the same
server for too long a period of time.

Another approachto loadbalancing is using a connectionrouter in front of
severalback-endservers. ConnectionroutershidetheIP addressesof theback-
end servers. That way, IP addressesof individual servers won’t be cached,
eliminating the problem experienced with DNS load balancing. Connection
routing canbeusedin combination with DNSrouting for handling largenum-
bersof requests. A DNS server can route requests to multiple connection
routers. The DNS server provides coarse grained load balancing, while the
connection routersprovide finer grained load balancing. Connection routers
alsosimplify the managementof a Website becauseback-endservers canbe
addedandremovedtransparently.

IBM’ sNetwork Dispatcher[32] is oneexampleof aconnectionrouterwhich
hidesthe IP addressof back-endservers. Network Dispatcher usesWeighted
RoundRobin for load balancing requests. Using this algorithm, servers are
assignedweights.All serverswith thesameweight receive a new connection
before any server with a lesser weight receives a new connection. Servers
with higher weights getmoreconnections thanthose with lower weights, and
serverswith equal weightsgetanequal distribution of new connections.

With Network Dispatcher, requestsfrom the back-endservers go directly
backto theclient. This reducesoverheadat theconnection router. By contrast,
someconnectionroutersfunction asproxies betweenthe client andserver in
which all responsesfrom servers go throughtheconnection router to clients.

Network Dispatcher hasspecial features for handling client affinity to se-
lectedservers.Thesefeaturesareuseful for handling requestsencryptedusing
the SecureSocketsLayer protocol (SSL).Whenan SSLconnection is made,
a session key mustbe negotiatedandexchanged. Sessionkeys areexpensive
to generate. Therefore, they have a lifetime, typically 100seconds,for which
they exist aftertheinitial connection is made.SubsequentSSLrequestswithin
thekey lifetime reusethekey.

Network dispatcher recognizesSSLrequestsby the port number (443). It
allows certain ports to be designatedas“sticky”. Network Dispatcherkeeps
recordsof old connectionsonsuchportsfor adesignated affinity life span(e.g.
100secondsfor SSL).If a request for a new connection from thesameclient
onthesameport arrivesbeforetheaffinity life spanfor thepreviousconnection
expires, thenew connection is sentto thesameserver that theold connection
utilized.

Usingthis approach,SSLrequestsfrom thesameclient will go to thesame
server for the lifetime of a session key, obviating the needto negotiate new
session keys for each SSLrequest. This cancausesomeload imbalance,par-

ticularly sincetheclient addressseenby Network Dispatcher mayactually be
aproxy representing severalclientsandnot just theclient corresponding to the
SSLrequest. However, the reduction in overhead dueto reduced session key
generation is usually worth the load imbalancecreated. This is particularly
true for siteswhich make gratuitoususeof SSL.For example, somesites will
encrypt all of the imagefiles associatedwith anHTML pageandnot just the
HTML pageitself.

Connection routing is oftendone at layer 4 of the OSI model in which the
connectionrouterdoesnotknowthecontentsof therequest.Anotherapproach
is to perform routing at layer 7. In layer7 routing, alsoknownascontent-based
routing, therouter examinesrequestsandmakesits routing decisionsbasedon
the contents of requests[55]. This allows more sophisticated routing tech-
niques. For example, dynamic requests could be sentto one set of servers,
while static requestscould be sentto another set. Different quality of service
policiescould beassignedto different URL’sin whichthecontent-basedrouter
sendstherequestto anappropriateserverbased onthequality of servicecorre-
sponding to therequestedURL. Content-based routing allows theserversat a
Websiteto beassymetrical. For example,informationcould bedistributedata
Websitesothat frequently requestedobjectsarestoredonmany or all servers,
while infrequently requestedobjects are only storedon a few servers. This
reducesthestorage overheadof replicatingall information on all servers.The
content-basedrouter canthenuseinformation on how objects aredistributed
to make correct routing decisions.

Thekey problemwith content-basedroutingis thattheoverheadwhichis in-
curred canbehigh[60]. In order to examinethecontentsof arequest,therouter
mustterminatetheconnection with theclient. In a straightforwardimplemen-
tation of content-basedrouting, the router actsasa proxy betweenthe client
andserver, andall dataexchangedbetweenthe client andserver go through
therouter. Betterperformanceis achievedby usinga TCPhandoff protocol in
which theclient connection is transferred from therouter to aback-endserver;
this canbedone in a manner which is transparent to theclient.

A number of client-based techniqueshavebeen proposedfor loadbalancing.
A few yearsago, Netscapeimplementeda schemefor doingloadbalancing at
the Netscape Web site (before they were purchasedby AOL) in which the
Netscape browserwasconfiguredto pick theappropriate server [49]. Whena
useraccessedthe Web site www.netscape.com,the browserwould randomly
pick a numberº between 1 andthenumberof serversanddirect therequest to
www º .netscape.com.

Anotherclient-based technique is to usethe client’s DNS [23, 58]. When
a client wishesto accessa URL, it issues a query to its DNS to get the IP
addressof the site. The Web site’s DNS returns a list of IP addressesof the
servers instead of a single IP address.The client DNS selects an appropriate

server for the client. An alternative strategy is for the client to obtainthe list
of IP addressesfrom its DNS anddo theselection itself. An advantageto the
clientmakingtheselection itself is thattheclientcancollect informationabout
theperformanceof differentserversat thesiteandmake an intelligentchoice
basedon this. The disadvantagesof client-based techniques is that the Web
site losescontrol over how requestsarerouted, andsuchtechniques generally
require modificationsto theclient (or at leasttheclient’s DNSserver).

���&»�� ­¼¤¬�N�s�^�s¡�½�¾��s¦����U�¿©À¤<«ÂÁÃ�����w¤<���

Web servers satisfy two types of requests,static and dynamic. Static re-
quests arefor files that exist at the time a requestis made.Dynamicrequests
arefor content thathasto begeneratedby aserverprogramexecuted at request
time. A key differencebetweensatisfying static anddynamicrequestsis the
processingoverhead. The overhead of serving static pagesis relatively low.
A Web server running on a uniprocessor cantypically serve several hundred
static requestsper second. Of course, this number is dependenton the data
beingserved;for large files, thethroughputis lower.

Theoverhead for satisfying a dynamic request maybeordersof magnitude
morethantheoverheadfor satisfying a staticrequest. Dynamicrequestsoften
involveextensiveback-endprocessing.Many Websitesmakeuseof databases,
anda dynamicrequestmay invoke several databaseaccesses.Thesedatabase
accessescanconsumesignificant CPUcycles. Theback-end softwarefor cre-
ating dynamic pages may be complex. While the functionality performedby
suchsoftwaremaynot appear to becompute-intensive, such middlewaresys-
temsare often not designed efficiently; commercial products for generating
dynamicdatacanbehighly inefficient.

Onesourceof overheadin accessingdatabasesis connectingto thedatabase.
Many databasesystems require a client to first establish a connectionwith a
databasebeforeperformingatransaction in which theclient typically provides
authentication information. Establishingaconnection is oftenquiteexpensive.
A naive implementation of a Web site would establish a new connection for
eachdatabaseaccess. This approachcould overload the databasewith rela-
tively low traffic levels.

A significantly more efficient approach is to maintain one or more long-
running processeswith open connections to the database. Accesses to the
databasearethenmadewith oneof these long-running processes. That way,
multiple accessesto thedatabasecanbemadeover a single connection.

Another source of overhead is the interfacefor invoking server programs
in order to generate dynamic data.Thetraditional method for invoking server
programsfor Webrequestsis via theCommonGateway Interface(CGI). CGI
forks off a new processto handle eachdynamicrequest;this incurs significant

overhead.Thereareanumber of fasterinterfacesavailable for invoking server
programs[34]. Thesefasterinterfacesuseoneof two approaches. The first
approachis for theWebserver to provide an interfaceto allow a programfor
generatingdynamicdatato beinvokedaspartof theWebserver processitself.
IBM’ s GO Webserver API (GWAPI) is anexampleof suchaninterface.The
second approachis to establish long-running processesto which a Webserver
passes requests.While this approachincurssomeinterprocesscommunication
overhead,theoverheadis considerably lessthanthatincurredby CGI.FastCGI
is anexampleof thesecondapproach[53].

In order to reducetheoverheadfor generatingdynamic data,it is oftenfea-
sibleto generatedatacorresponding to adynamicobject once, storetheobject
in a cache,andsubsequently serve requests to the object from cache instead
of invoking theserver program again[33]. Usingthis approach,dynamicdata
canbeservedat about thesamerateasstaticdata.

However, therearetypesof dynamicdata that cannot beprecomputed and
servedfrom a cache. For instance,dynamic requeststhatcausea sideeffect at
theserver suchasa databaseupdate cannot besatisfied merelyby returning a
cached page.As anexample,consideraWebsitethatallowsclientsto purchase
items using credit cards. At the point at which a client commits to buying
something, that information hasto be recorded at the Web site; the request
cannot besolelyservicedfrom a cache.

Personalized Web pagescanalsonegatively affect the cacheability of dy-
namicpages. A personalizedWeb pagecontainscontent specificto a client,
suchastheclient’sname.SuchaWebpagecould notbeusedfor anotherclient.
Therefore, caching the pageis of limited utili ty sinceonly a singleclient can
useit. Eachclient would needa differentversion of thepage.

Onemethod which canreducethe overhead for generating dynamic pages
andenablecaching of somepartsof personalizedpagesis to definethesepages
asbeing composedof multiple fragments [15]. In this approach,a complex
Web pageis constructed from several simpler fragments. A fragment may
recursively embedother fragments. This is efficient becausetheoverheadfor
assembling a Webpagefrom simpler fragments is usually minor comparedto
theoverhead for constructing thepagefrom scratch,which canbequitehigh.

Thefragment-basedapproachalsomakesit easierto designWebsites. Com-
moninformationthatneedsto beincludedon multiple Webpages canbecre-
atedasa fragment. In order to change the informationon all pages, only the
fragment needsto bechanged.

In order to usefragmentsto allow partial caching of personalized pages,
the personalized informationon a Web pageis encapsulated by oneor more
fragments that are not cacheable, but the other fragments in the page are.
When serving a request, a cache composes pagesfrom its constituent frag-
ments,many of which arelocally available. Only personalized fragmentshave

to be created by the server. As personalized fragments typically constitute a
small fraction of the entire page, generating only them would require lower
overhead thangeneratingall of thefragments in thepage.

Generating Webpagesfrom fragmentsprovidesother benefits aswell. Frag-
mentscanbeconstructedto represententitiesthathavesimilar lifetimes.When
a particular fragment changesbut the rest of the Web pagestaysthe same,
only the fragmentneedsto be invalidatedor updatedin thecache, not theen-
tire page. Fragmentscanalsoreduce the amount of cachespacetaken up by
multiple pageswith commoncontent. Suppose that a particular fragment is
containedin 2000popular Webpageswhich should becached.Usingthecon-
ventionalapproach,thecachewouldcontainaseparateversionof thefragment
for eachpageresulting in asmany as2000copies.By contrast,if thefragment-
basedmethodof pagecomposition is used,only a single copy of thefragment
needsto bemaintained.

A key problem with caching dynamic content is maintaining consistent
caches. It is advantageous for the cacheto provide a mechanism, suchas
an API, allowing the server to explicitly invalidateor updatecached objects
so that they don’t become obsolete. Web objects may be assignedexpiration
timesthat indicate whenthey should beconsideredobsolete. Suchexpiration
timesaregenerally notsufficient for allowing dynamicdatato becachedprop-
erly becauseit is oftennot possible to predict accurately whenadynamic page
will change.

»�� ­�¤<�N��¤¬�¨¢Ä¤¬�N¥j�¹�"�§¦����3¤Å�nÆwÆN��¤<Æ

A central component of the responsetime seenby Webusersis, of course,
the performanceof the origin server that providesthe content. Thereis great
interest,then, understandingtheperformanceof Webservers: How quickly can
they respondto requests?How well do they scalewith load?Are they capable
of operatingunderoverload, i.e.,canthey maintain somelevel of service even
whentherequestedloadfar outstrips thecapacity of theserver?

A Web server is an unusualpieceof software in that it mustcommunicate
with potentially thousands of remoteclients simultaneously. The server thus
mustbeableto dealwith a large degree of concurrency. A server cannot sim-
ply respond to eachclient in a non-preemptive, first-comefirst-serve manner,
for several reasons. Clients aretypically locatedfar away over the wide-area
Internet,andthusconnection lifetimescanlastmany secondsor evenminutes.
Particularly with HTTP1.1,aclient connection maybeopenbut idle for some
time beforea new request is submitted. Thusa server canhave many concur-
rent connections open, andshould be abledo work for oneconnectionwhen
another is quiescent.Anotherreason is thataclient mayrequestafile which is
not residentin memory. While theserverCPUwaitsfor thedisk to retrieve the

file, it canwork on responding to anotherclient. For these andother reasons,
a server mustbeableto multiplex thework it hasto do throughsomeform of
concurrency.

A fundamental factor which affects theperformanceof a Webserver is the
architectural modelthatit usesto implement that concurrency. Generally, Web
serverscanbeimplementedusingoneof four architectures: processes, threads,
event-driven, andin-kernel. Eachapproachhasits advantagesanddisadvan-
tageswhich we go into moredetail below. A central issuein this decision of
which model to useis what sort of performanceoptimizations areavailable
under that model. Another is how well that modelscales with the workload,
i.e.,how efficiently it canhandle growing numbers of clients.

»��^��� ¢Ç�N�>�3¤¬ÆwÆ-ÈÉ¯±¦�Æ7¤¬�	­¼¤<�N�¹¤<�+Æ
Processes are perhapsthe most commonform of providing concurrency.

The original NCSA server andthe widely-known Apacheserver [2] usepro-
cesses as the mechanism to handle large numbers of connections. In this
model,a processis created for eachnew request,which canblock whennec-
essary, for examplewaiting for datato becomeavailable on asocket or for file
I/O to beavailable from thedisk. Theserver handlesconcurrency by creating
multiple processes.

Processes have two mainadvantages. First, they areconsistent with a pro-
grammers’way of thinking, allowing the developer to proceedin a step-by-
stepfashion withoutworryingabout managingconcurrency. Second, they pro-
vide isolation andprotection betweendifferentclients. If oneprocesshangsor
crashes,theotherprocessesshould beunaffected.

The main drawback to processesis performance. Processes are relatively
heavyweight abstractions in mostoperating systems,andthuscreating them,
deleting them,andswitching context betweenthemis expensive. Apache,for
example, tries to amelioratethesecosts by pre-forking a number of processes
andonly destroys themif the load falls below a certain threshold. However,
thecosts arestill significant,aseachprocess requiresmemoryto beallocated
to them.As thenumberof processesgrow, large amounts of memoryareused
which putspressureon thevirtual memorysystem,which couldusethemem-
ory for other purposes,suchascaching frequently-accesseddata. In addition,
sharing information, suchasa cached file, acrossprocessescanbedifficult.

»��&»�� ÊÌË �N¤�¦���ÈÉ¯±¦�Æ7¤¬��­�¤<�N��¤¬�+Æ
Threadsarethe next mostcommonform of concurrency. Serversthat use

threadsincludeJAWS [31] andSun’s Java WebServer [64]. Threadsaresim-
ilar to processesbut areconsideredlighter-weight. Unlike processes,threads
sharethe sameaddressspace andtypically only provide a separatestackfor

eachthread. Thus,creation costsandcontext-switching costsareusually much
lower thanfor processes.In addition, sharing between threads is mucheasier.
Threadsalso maintain the abstraction of an isolated environment much like
processes,although the analogy is not exact since programmersmust worry
moreabout issueslikesynchronizationandlocking to protect shareddatastruc-
tures.

Threads have several disadvantages as well. Since the addressspaceis
shared, threadsarenotprotectedfrom oneanotherthewayprocessesare.Thus,
a poorly programmedthreadcancrashthewholeserver. Threadsalsorequire
proper operating systemsupport,otherwisewhenathreadblocksonsomething
like a file I/O, thewholeaddressspacewill bestopped.

»��[Í¼� Î ��¤<���nÈÉ½Ï�"�W��¤<�Ð­¼¤¬�N��¤¬�"Æ
The third form of concurrency is known as the event-driven architecture.

Serversthat usethis methodincludeFlash[56] andZeus[72]. With this ar-
chitecture, a single processis usedwith non-blocking I/O. Non-blocking I/O
is a way of doingasynchronousreadsandwriteson a socket or file descriptor.
For example, instead of a processreading a file descriptor andblocking until
datais available,an event-drivenserver will returnimmediately if thereis no
data.In turn, theO.S.will let theserverprocessknowwhenasocketor file de-
scriptor is readyfor reading or writing throughanotification mechanism. This
notification mechanismcanbeanactiveonesuchasasignal handler, or a pas-
sive onerequiring theprocessto asktheO.S.suchastheselect() system
call. Throughthesemechanismstheserver processwill essentially respond to
eventsandis typically guaranteed to never block.

Event-drivenservershaveseveraladvantages.First, they arevery fast.Zeus
is frequently usedby hardware vendors to generate high Web server num-
berswith the SPECWeb99benchmark [61]. Sharing is inherent, sincethere
is only oneprocess,andno locking or synchronization is needed. Thereare
no context-switch costs or extra memoryconsumption that arethe casewith
threads or processes.Maximizing concurrency is thusmucheasier thanwith
thepreviousapproaches.

Event-driven servers have downsides as well. Like threads,a failure can
halt thewholeserver. Event-drivenserverscantax operating systemresource
limits, suchas the numberof openfile descriptors. Different operating sys-
temshave varying levels of support for asynchronous I/O, so a full y event-
driven server may not be possible on a particular platform. Finally, event-
driven servers require a different way of thinking from the programmer, who
mustunderstandandaccount for the waysin which multiple requestscanbe
in varying stagesof progresssimultaneously. In this approach,the degree of

concurrency is fully exposedto thedeveloper, with all theattendantadvantages
anddisadvantages.

»��HÑ�� �7�>ÈÉÒÓ¤¬�"�s¤<²$­¼¤¬�N��¤¬�+Æ

Thefourth andfinal form of server architecturesis the in-kernel approach.
Serversthatusethismethod includeAFPA [36] andTux [66]. All of theprevi-
ousarchitecturesplacetheWebserver softwarein userspace; in this approach
the HTTP server is in kernel space, tightly integratedwith the host TCP/IP
stack.

Thein-kernelarchitecture hastheadvantagesthat it is extremely fast,since
potentially expensive transitions to userspace arecompletely avoided. Simi-
larly, nodataneedsto becopied acrosstheuser-kernel boundary, anothercostly
operation.

Thedisadvantagesfor in-kernel approachesareseveral. First, it is lessro-
bust to programmingerrors; a server fault cancrashthe whole machine, not
just the server! Development is much harder, since kernel programming is
moredifficult andmuch lessportable thanprogramminguser-space applica-
tions. Kernel internalsof Linux, FreeBSD,andWindows vary considerably,
makingdeploymentacrossplatformsmorework. Thesocket andthread APIs,
on theother hand, arerelatively stable andportableacross operating systems.

Dynamiccontentposesanevengreater challengefor in-kernelservers, since
anarbitraryprogrammaybeinvokedin responseto arequestfor dynamiccon-
tent.A full -featuredin-kernelwebserver would needto have aPHPengine or
Java runtimeinterpreterloaded in with the kernel! Theway current in-kernel
serversdealwith this issueis to restrict their activitiesto thestaticcontent com-
ponent of Webserving,andpassdynamic contentrequeststo acompleteserver
in userspace,such asApache. For example,many entries in theSPECWeb99
site [61] that usethe Linux operating system usethis hybrid approach,with
Tux serving staticcontent in thekernel andApachehandling dynamic requests
in user space.

»��&Ô�� ­¼¤¬�N��¤¬��¢}¤¬�+¥E���"�§¦��s�3¤£ÁÃ������¦��"�UÆ7���

Sincewe areconcernedwith performance,it is thusinteresting to seehow
well the different server architectures perform. To evaluate them, we took
a experimental testbed setup andevaluate the performanceusing a synthetic
workloadgenerator[51] to saturatetheserverswith requestsfor arangeof web
documents.Theclients wereeight 500 MHz PC’s running FreeBSD,andthe
server wasa 400MHz PCrunning Linux 2.4.16.Eachclient hada 100mbps
Ethernet connectedto a gigabit switch, and the server wasconnectedto the
switchusing GigabitEthernet. Threeserverswereevaluatedasrepresentatives

0

500

1000

1500

2000

2500

3000

S
er

ve
r

T
hr

ou
gh

pu
t i

n
H

T
T

P
 o

ps
/s

ec

Tux 2.0
Flash
Apache 1.3.20

³"´¶µ ·:IdG Õ:6
Server Throughput

of their architecture: Apacheas a process-basedserver, Flashas an event-
drivenserver, andTux asanin-kernel server.

Figure2 showsthe server throughput in HTTP operations/secof the three
servers. As canbeseen, Tux, thein-kernelserver, is thefastestat2193ops/sec.
However, Flashis only 10percent slowerat2075ops/sec,despite beingimple-
mentedin userspace.Apache,on theotherhand,is significantly slower at875
ops/sec. Figure3 shows theserver responsetime for thethree servers.Again,
Tux is thefastest,at3 msec,Flashsecondat5 msec,andApacheslowestat10
msec.

Sincemultiple examplesof eachtype of server architecture exist, thereis
clearly no consensus for what is the best model. Instead,it may be that dif-
ferentapproaches arebetter suitedfor different scenarios. For example, the
in-kernel approachmay be mostappropriate for dedicatedserver appliances,
or asCDN nodes,whereasa back-enddynamic contentserver will rely on the
full generality of a process-basedserver like Apache. Still, web site opera-
tors should beawareof how thechoice of architecture will affect Webserver
performance.

Í¼� ÁÌ½ÏÖÓÆq×Ø�7���l�N� �¹¤<��©ª¤¬«°¢Ä¤¬�N¥j�¹�Ù�£¦����3¤Ó� Ë �N����¡ Ë
½¿�UÆ-�N�"�U«����N�W���

End-to-end Web performanceis influenced by numerous factors suchas
client and server network connectivity, network loss and delay, server load,
HTTP protocol version, andnameresolution delays. The content-serving ar-
chitecture hasa significant impact on someof these factors, as well factors

0

2

4

6

8

10

12

S
er

ve
r

R
es

po
ns

e
T

im
e

in
 m

se
c

Tux 2.0
Flash
Apache 1.3.20

³+´¶µE·:IHG�Új6
ServerResponseTime

not related to performancesuch ascost, reliability, andease of management.
In a traditional content-serving architecture all clients requestcontent from a
single location, asshown in Figure4. In this architecture, scalability andper-
formance areimproved by adding servers,without the ability to addresspoor
performancedueto problemsin thenetwork. Moreover, this approachcanbe
expensive sincethesitemustbeoverprovisionedto handle unexpectedsurges
in demand.

Oneway to addresspoor performancedueto network congestion, or flash
crowdsat servers, is to distributecontent to servers or caches locatedcloserto
theedges of thenetwork, asshown in Figure5. Sucha distributednetwork of
servers comprisesa content distribution network (CDN). A CDN is simply a
network of servers or cachesthatdeliver content to users on behalf of content
providers. The intent of a CDN is to serve content to a client from a CDN
server suchthat the response-time performanceis improved over contacting
theorigin serverdirectly. CDN serversaretypically shared, delivering content
belongingto multipleWebsitesthough all serversmaynotbeusedfor all sites.

CDNs have several advantages over traditional centralized content-serving
architectures,including [67]:

improving client-perceived responsetime by bringing content closer to
thenetwork edge,andthuscloser to end-users

off-loadingwork from origin serversby serving larger objects,suchas
imagesandmultimedia, from multiple CDN servers

origin servers

client

³"´ µE·:IdG�Û)6
Traditionalcentralizedcontent-serving architecture

reducing content provider costsby reducing the needto invest in more
powerful serversor morebandwidth asuser populationincreases

improvingsiteavailabili ty by replicatingcontent in many distributed lo-
cations

CDN serversmay be configured in tree-like hierarchies[71] or clusters of
cooperatingproxies thatemploy content-basedrouting to exchangedata[28].
CommercialCDNs alsovary significantly in their sizeandservice offerings.
CDN deploymentsrangefrom afew tensof servers(or serverclusters), to over
ten thousandserversplaced in hundredsof ISP networks. A large footprint
allows a CDN service provider (CDSP) to reachthe majority of clients with
very low latency andpathlength.

Content providersuseCDNsprimarily for serving staticcontentlike images
or large stored multimedia objects(e.g., movie trailers and audio clips). A
recent study of CDN-servedcontent found that96%of theobjectsservedwere
images[41]. However, the remaining few objectsaccountedfor 40–60% of
thebytesserved,indicating asmallnumberof very largeobjects. Increasingly,
CDSPs offer services to deliver streaming mediaand dynamic datasuchas
localizedcontent or targetedadvertising.

CDN server

origin server

client

³+´¶µE·:IHG�ÜE6
DistributedCDN architecture

Í¼�^��� ÁÌ½ÏÖ Ý��"� Ë �&�7¤<�q�N���N¦�² Î ²W¤<�§¤ ���wÆ

As illustratedin Figure 6, CDNs have threekey architectural elements in
addition to the CDN servers themselves: a distribution system, an account-
ing/billing system, and a request-routing system [18]. The distribution sys-
tem is responsible for moving content from origin servers into CDN servers
andensuring dataconsistency. Section4.4 describessometechniquesusedto
maintain consistency in CDNs.Theaccounting/billing systemcollects logsof
client accessesandkeepstracksCDN server usagefor useprimarily in admin-
istrative tasks. Finally, the request-routing systemis responsible for directing
client requeststo appropriateCDN servers. It mayalsointeract with the dis-
tribution system to keepanup-to-dateview of which content resideson which
CDN servers.

The request-routing system operatesasshown in Figure7. Clients access
content from the CDN servers by first contacting a request router (step 1).
The requestrouter makesa server selection decision andreturns a server as-
signment to the client (step2). Finally, the client retrievescontent from the
specified CDN server (step3).

CDN server

origin server

client

distribution
system

request
router accounting

and billing

measure/track

measure/track

³"´¶µE·:IHG�ÞE6
CDN architecturalelements

Í¼�&»�� ÁÌ½ÏÖ ß�¤¬às��¤<Æn�-ÈÉß������+�^�s¡

Clearly, the request-routing systemhasa direct impacton theperformance
of the CDN. A poor server selection decision can defeatthe purposeof the
CDN,namely to improveclient responsetimeoveraccessingtheorigin server.
Thus,CDNstypically rely onacombinationof static anddynamicinformation
whenchoosing thebestserver. Severalcriteria areusedin therequest-routing
decision, includingthecontent being requested,CDN server andnetwork con-
ditions,andclient proximity to thecandidateservers.

The mostobviousrequestrouting strategy is to direct the client to a CDN
server that hoststhe content being requested. This is complicated, however,
if the request router doesnot know the content beingrequested, for example
if request-routing is done in the context of nameresolution. In this casethe
request containsonly a server name(e.g.,www.service.com) asopposed
to thefull HTTPURL.

For goodperformancetheclient should bedirectedto a relatively unloaded
CDN server. This requires that the request router actively monitor the state
of CDN servers. If eachCDN location consists of a cluster of servers and
local load-balancer, it maybepossible to query a server-sideagent for server
load information, asshownin Figure8. After theclient makesits request,the

origin server

client

CDN server

1

request router

2

3

³+´¶µE·:IHG�á`6
CDN request-routing

request routerconsults an agent at eachCDN site load-balancer(step 2), and
returnsanappropriateanswer backto theclient.

As Web responsetime is heavily influenced by network conditions, it is
important to choose a CDN server to which the client hasgood connectiv-
ity. Uponreceivinga client request,therequest router canaskcandidateCDN
servers to measure network latency to the client usingICMP echo (i.e., ping)
andreport themeasuredvalues.Therequest router thenrespondsto theclient
request with the CDN server reporting the lowest delay. Since thesemea-
surements aredone on-line, this technique hasthe advantageof adapting the
request-routing decision to the mostcurrent network network. On the other
hand, it introducesadditional latency for theclient asthe requestrouterwaits
for responsesfrom theCDN servers.

A commonstrategy usedin CDNrequest-routing is to chooseaserver“near”
the client, where proximity is definedin terms of network topology, geo-
graphic distance,or network latency. Examplesof proximity metricsinclude
autonomoussystem (AS) hops or network hops. Thesemetricsarerelatively
staticcompared with server load or network performance,andarealsoeasier
to measure.

client

CDN server cluster

1

request router
2

3

load balancer

4

³"´¶µE·:IHG â�6
InteractionbetweenrequestrouterandCDN servers

Note that it is unlikely that any oneof these metricswill be suitable in all
cases. Most request routers usea combination of proximity andnetwork or
server load to make server selection decisions. For example,client proximity
metricscanbeused to assign aclientto a“default” CDNserver, whichprovides
goodperformancemostof thetime. Theselection canbetemporarily changed
if loadmonitoring indicatesthatthedefault server is overloaded.

Request-routing techniquesfall into three main categories: transport-layer
mechanisms, application-layer redirection, and DNS-basedapproaches[6].
Transport-layer requestrouters useinformation in the transport-layer headers
to determinewhich CDN server should serve the client. For example, the re-
questrouter canexaminetheclient IP addressandport number in a TCPSYN
packet andforward thepacket to anappropriate CDN server. Thetarget CDN
serverestablishestheTCPconnection andproceedsto serve therequestedcon-
tent.Forwardtraffic (including TCPacknowledgements)from theclient to the
target server continuesto be sent to the request router and forwarded to the
CDN server. Thebulk of traffic (i.e., the requestedcontent) will travel on the
directpath from theCDN server to theclient.

Application-layerrequest-routing hasaccessto muchmoreinformationabout
the content being requested. For example,the request-router canuseHTTP

headerslike the URL, HTTP cookies, andLanguage. A simple implementa-
tion of anapplication-layer requestrouter is a Web server that receivesclient
requestsandreturns an HTTP redirect (e.g.,return code302) to theclient in-
dicating theappropriate CDN server. Theflexibilit y affordedby this approach
comesat theexpenseof addedlatency andoverhead, however, sinceit requires
TCPconnection establishment andHTTP header parsing.

With request-routingbasedontheDomainNameSystem(DNS),clientsare
directed to the nearestCDN server during the nameresolution phaseof Web
access. Typically, the authoritative DNS server for the domainor subdomain
is controlled by the CDSP. In this scheme,a specializedDNS server receives
nameresolution requests,determinesthe location of theclient andreturnsthe
addressof a nearby CDN server or a referral to another nameserver. The an-
swermayonly becached at theclient-sidefor a shorttime sothat therequest
router canadapt quickly to changesin network or server load. This is achieved
by setting theassociated time-to-live (TTL) field in theanswer to a very small
value(e.g.,20 seconds).

DNS-basedrequestrouting maybeimplementedwith either full - or partial-
site content delivery [41]. In full-site delivery, the content provider dele-
gatesauthority for its domainto the CDSPor modifiesits own DNS servers
to return a referral (CNAME record) to the CDSPs DNS servers. In this
way, all requestsfor www.company.com, for example, are resolved to a
CDN server which then delivers all of the content. With partial-site deliv-
ery, the content provider modifiesits content so that links to specificobjects
have hostnamesin a domain for which the CDSPis authoritative. For ex-
ample,links tohttp://www.company.com/image.gif arechangedto
http://cdsp.net/company.com/image.gif. In thisway, theclient
retrievesthe baseHTML page from the origin server but retrievesembedded
imagesfrom CDN serversto improve performance.

The appeal of DNS-basedserver selection lies in both its simplicity – it
requiresno changeto existing protocols, andits generality – it works across
any IP-basedapplication regardlessof thetransport-layer protocol being used.
Thishasled to adoption of DNS-basedrequestroutingasthedefacto standard
methodby many CDSPs andequipmentvendors. Using theDNS for request-
routingdoeshavesomefundamental drawbacks,however, someof whichhave
beenrecently studiedandevaluated[59, 45,6].

Í¼�[Í¼� ÁÌ½ÏÖ ¢}¤¬�+¥E���"�§¦��s�3¤£­��N�����W¤¬Æ

Several research studieshave recently tried to quantify theextent to which
CDNsareableto improveresponse-timeperformance.An early studyby John-
sonetal. focusedonthequality of therequest-routing decision[35]. Thestudy
comparedtwo CDSPsthatuseDNS-basedrequest-routing. Themethodology

wasto measure the responsetime to download a single object from the CDN
serverassignedby therequest router andthetimeto downloadit from all other
CDN servers that could be identified. The findings suggestedthat the server
selection did not alwayschoosethe bestCDN server, but it waseffective in
avoiding poorly performing servers, andcertainly betterthanchoosinga CDN
server randomly. Thescopeof thestudy waslimited, however, sinceonly three
client locationswereconsidered, performancewascomparedfor downloading
only onesmall object, andtherewasno comparison with downloading from
theorigin server.

A study donein the context of developing the request mirroring Medusa
Web proxy, evaluated the performanceof oneCDN (Akamai) by download-
ing the sameobjects from CDN servers and origin servers [37]. The study
wasdoneonly for a single-user workload,but showedsignificantperformance
improvement for thoseobjectsthat wereservedby theCDN, whencompared
with theorigin server.

More recently, Krishnamurthyet al. studied the performanceof a number
of commercial CDNsfrom thevantage point of approximately20 clients [41].
The authors conclude that CDN servers generally offer much better perfor-
mancethan origin servers, though the gainsweredependent on the level of
caching and the HTTP protocol options. Therewerealso significant differ-
encesin downloadtimesfrom differentCDNs. Thestudyfindsthat,for some
CDNs,DNS-basedrequestrouting significantly hampers performancedueto
multiple namelookups.

Ñ�� ÁÃ¦�� Ë ¤5ÁÃ���sÆN�UÆn�w¤<���q¾
Caching hasproven to beaneffective andpractical solution for improving

thescalability andperformanceof Webservers. StaticWebpagecaching has
beenapplied both at browsers at the client, or at intermediaries that include
isolatedproxy cachesor multiple cachesor serverswithin aCDN network. As
with caching in any system, maintaining cacheconsistency is oneof themain
issues that a Webcaching architecture needs to address.As moreof the data
on theWebis dynamicallyassembled,personalized,andconstantly changing,
thechallengesof efficientconsistency managementbecomemorepronounced.
To preventstaleinformation from beingtransmittedto clients,anintermediary
cachemustensure thatthelocally cached datais consistentwith thatstoredon
servers. Theexactcacheconsistency mechanismandthedegreeof consistency
employedby anintermediarydependson thenatureof thecached data;not all
typesof data needthe samelevel of consistency guarantees. Consider the
following example.

Example 1 Online auctions: Consider a Web server that offers online auc-
tions over the Internet. For each item being sold, the server maintains in-

formation such as its latest bid price (which changes every few minutes)as
well as other informationsuch as photographs and reviews for the item (all
of which change lessfrequently). Consider an intermediary that cachesthis
information.Clearly, thebid price returnedby the intermediary cacheshould
alwaysbeconsistentwith that at theserver. In contrast,reviewsof itemsneed
not alwaysbeup-to-date, sincea usermaybewilling to receiveslightly stale
information.

The above exampleshows that an intermediary cache will needto provide
differentdegreesof consistency for differenttypes of data.Thedegree of con-
sistency selectedalsodeterminesthemechanismsused to maintain it, andthe
overheadsincurredby boththeserver andtheintermediary.

Ñ��^��� ½�¤�¡��N¤�¤<Æ���¥ãÁÃ����ÆN�UÆn�7¤ ���q¾
In general thedegreesof consistency thatanintermediary cachecansupport

fall into thefollowing four categories.

strong consistency: A cache consistency level that always returns the
results of thelatest(committed) write at theserver is saidto bestrongly
consistent. Due to the unbounded message delays in the Internet, no
cacheconsistency mechanismcanbestrongly consistentin this idealized
sense. Strongconsistency is typically implementedusinga two-phase
message exchangealongwith timeoutsto handle unbounded delays.

delta consistency: A consistency level that returnsdatathatis never out-
dated by morethan ä time units, where ä is a configurable parameter,
with thelastcommittedwrite at theserver is saidto bedeltaconsistent.
In practice the value of deltashould be larger than å which is the net-
work delay betweentheserver andthe intermediaryat that instant, i.e.,
å�æçä�è�é .

weakconsistency: For this level of consistency, a readat the intermedi-
ary doesnotnecessarily reflectthelastcommittedwrite at theserver but
somecorrect previousvalue.

mutualconsistency: A consistency guaranteein whichagroupof objects
are mutually consistentwith respect to eachother. In this casesome
objects in the group cannot be more current than the others. Mutual
consistency canco-exist with theother levelsof consistency.

Strongconsistency is useful for mirror sitesthatneed to reflectthe current
stateat theserver. Someapplications basedon financial transactionsmayalso
requirestrong consistency. Certaintypesof applicationscantoleratestaledata
aslongasit is within someknown timebound. For suchapplicationsdeltacon-
sistency is recommended. Delta consistency assumesthat thereis a bounded

Overheads Polling Periodicpolling Invalidates Leases TTL

File Transfer W’ êãëOìMí W’ W’ W’
ControlMsgs. 2R-W’ 2R/t - îPêïë)ì�íjð 2W’ 2W’ W’
Staleness 0 t 0 0 0
Write delay 0 0 notify(all) min(t, notify(ñ)ò�ò�ó)) 0
Server State None None All ô<ò�ò�ó None

4)=�õ&�¶Gs¸E6
Overheads of DifferentConsistency Mechanisms. Key: ö is the periodin periodic

polling or theleasedurationin theleasesapproach. W’ is thenumberof non-consecutivewrites.
All consecutive writeswith no interleaving readsis countedasa singlewrite. R is thenumber
of reads. í is the numberof writes that were not notified to the intermediaryasonly weak
consistency wasprovided.

communicationdelay betweentheserver andthe intermediary cache. Mutual
consistency is useful whenacertainsetof objectsat theintermediary(e.g.,the
fragments within a sports score page, or within a financial page) need to be
consistentwith respect to eachother. To maintain mutualconsistency theob-
jectsneedto beatomically invalidated suchthat they all either reflectthenew
version or maintain theearlier staleversion.

Most intermediariesdeployedin theInternet todayprovideonly weakcon-
sistency guarantees[29,62]. Until recently, mostobjectsstored onWebservers
wererelatively staticandchangedinfrequently. Moreover, this data wasac-
cessed primarily by humans using browsers. Sincehumanscan tolerate re-
ceiving staledata (andmanually correct it usingbrowserreloads),weakcache
consistency mechanismswereadequatefor thispurpose.In contrast,many ob-
jectsstored on Web serverstoday change frequently andsomeobjects (such
asnews storiesor stockquotes) areupdatedevery few minutes [7]. Moreover,
theWebis rapidly evolving from a predominantly read-only informationsys-
tem to a system wherecollaborative applications andprogram-driven agents
frequently readas well as write data. Suchapplications are lesstolerant of
staledatathan humans accessing information using browsers. Thesetrends
argue for augmentingtheweakconsistency mechanismsemployed by today’s
proxieswith those thatprovidestrongconsistency guaranteesin order to make
caching moreeffective. In theabsenceof suchstrong consistency guarantees,
servers resort to markingdataasuncacheable, andthereby reduce the effec-
tiveness of proxy caching.

Ñ��&»�� ÁÃ����ÆN�UÆn�7¤ �s�q¾�÷ø¤<� Ë ¦��l�UÆw��Æ

Themechanismsusedby an intermediaryandtheserver to provide thede-
greesof consistency describedearlier fall into 3 categories: i) client-driven, ii)
server-driven, andiii) explicit mechanisms.

Server-drivenmechanisms,referred to asserver-basedinvalidation, canbe
usedto provide strongor delta consistency guarantees [69]. Server-basedin-
validation, requiresthe server to notify proxies whenthe datachanges. This
approachsubstantially reducesthenumber of control messagesexchangedbe-
tweenthe server andthe intermediary(sincemessagesaresentonly whenan
object is modified). However, it requires the server to maintain per-object
stateconsisting of a list of all proxies that cachethe object; the amountof
statemaintainedcanbe significant especially at popular Web servers. More-
over, whenan intermediary is unreachable dueto network failures,the server
musteither delaywrite requestsuntil it receivesall the acknowledgments or
a timeoutoccurs,or risk violating consistency guarantees. Severalnew proto-
cols have beenproposedrecently to provide delta andstrongconsistency us-
ing server-basedinvalidations.Webcacheinvalidationprotocol (WCIP) is one
suchproposalfor propagating server invalidationsusingapplication-level mul-
ticast while providingdeltaconsistency [43]. Webcontentdistribution protocol
(WCDP)is anotherproposalthatsupports multiple consistency levelsusinga
request-responseprotocol thatcanbescaled to support distribution hierarchies
[65].

The client-driven approach,alsoreferred to asclient polling, requiresthat
intermediariespoll theserveroneveryreadto determineif thedatahaschanged
[69]. Frequent polling imposesalargemessageoverheadandalsoincreasesthe
responsetime (sincethe intermediary mustawait the result of its poll before
responding to a readrequest). The advantage, though, is that it does not re-
quire any state to be maintainedat the server, nor doesthe server ever need
to delay write requests(since the onus of maintaining consistency is on the
intermediary).

Most existing proxies provide only weakconsistency by (i) explicitly pro-
viding a server specified lifetime of an object (referred to as the time-to-live
(TTL) value), or (ii) by periodic polling of the the server to verify that the
cached datais not stale [14, 29, 62]. The TTL value is sentas part of the
HTTP responsein anExpires tagor using theCache-Control headers.
However, a priori knowledge of whenan objectwill be modified is difficult
in practice andthe degreeof consistency is dependent on the clock skew be-
tweenthe server andthe intermediaries. With periodic polling the length of
theperiod determinestheextent of theobject staleness.In either case,modi-
fications to theobjectbefore its TTL expires or betweentwo successive polls
causes theintermediaryto return staledata.Thusbothmechanismsareheuris-
tics andprovide only weakconsistency guarantees. Hybrid approacheswhere
the server specifies a time-to-live value for eachobject andthe intermediary
polls theserver only whentheTTL expires alsosuffer from thesedrawbacks.

Server-basedinvalidation andclient polling form two endsof a spectrum.
Whereas theformer minimizesthenumberof control messagesexchangedbut

 DEC Boston Univ. Berkeley
Traceù

0

50000

100000

150000

200000

250000

St
at

e
sp

ac
e

ov
er

he
ad

ú

SI û

SI

SI û

CP ü CP ü CP ü
 DEC ý Boston Univ.þ Berkeleyÿ

Trace�

0

500000

1000000

1500000

N
um

be
r

of
 m

es
sa

ge
s

�

SI �

SI

SI �

CP �

CP �

CP

(a) StateSpaceoverhead (b) ControlMessages

³+´¶µE·:IHG��j6
Efficacy of server-basedinvalidationandclient polling for threedifferent trace

workloads(DEC,Berkeley, BostonUniversity).Thefigureshows thatserver-basedinvalidation
hasthelargeststatespaceoverhead;client polling hasthehighestcontrolmessageoverhead

mayrequire a significant amountof stateto be maintained, the latter is state-
lessbut canimposea large control messageoverhead. Figure9 quantitatively
compares these two approaches with respect to (i) the server overhead, (ii)
the network overhead, and (iii) the client responsetime. Due to their large
overheads,neitherapproachis appealing for Webenvironments. A strong con-
sistency mechanismsuitablefor theWebmustnot only reduce client response
time,but alsobalanceboth network andserver overheads.

Oneapproachthat providesstrong consistency, while providing a smooth
tradeoff between thestatespaceoverhead andthenumber of control messages
exchanged,is leases [27]. In this approach,the server grants a lease to each
request from an intermediary. The lease duration denotesthe interval of time
during which theserver agrees to notify theintermediary if theobjectis mod-
ified. After theexpiration of the lease, the intermediarymustsenda message
requestingrenewal of thelease.Theduration of theleasedeterminestheserver
andnetwork overhead.A smaller leaseduration reducestheserver state space
overhead, but increasesthe numberof control (lease renewal) messages ex-
changedandviceversa.In fact,aninfinite leaseduration reducestheapproach
to server-basedinvalidation, whereas a zerolease duration reduces it to client-
polling. Thus,the leasesapproachspans theentire spectrumbetweenthe two
extremesof server-basedinvalidation andclient-polling.

Theconceptof aleasewasfirst proposedin thecontext of cacheconsistency
in distributed file systems [27]. Recentlysomeresearch groups have begun
investigating theuseof leasesfor maintainingconsistency in Webintermediary
caches. Theuseof leasesfor Webproxy cacheswasfirst alluded to in [11] and
wassubsequently investigated in detail in [69]. The latter effort focused on
thedesign of volumeleases– leasesgranted to a collectionof objects– soas
to reduce (i) the leaserenewal overheadand(ii) the blocking overheadat the
server due to unreachable proxies. Other efforts have focusedon extending
leasesto hierarchical proxy cache architectures[70, 71]. Theadaptive leases

effort describedanalytical andquantitativeresultsonhow to select theoptimal
leasedurationbased on theserver andmessageexchangeoverheads[21].

A qualitativecomparisonof theoverheadsof thedifferentconsistency mech-
anismsis shown in Table1. The messageoverheadsof an invalidation-based
or lease-based approachis smaller thanthat of polling especially whenreads
dominate writes,asin theWebenvironment.

Ñ��[Í¼� �7��� ¦�²^�U��¦ �w¤¬Æ ¦������Ï� ��¦ �w¤¬Æ

With server-driven consistency mechanisms,when an object is modified,
the origin server notifies each“subscribing” intermediary. The notification
consistsof either aninvalidatemessageor anupdated(new) version of theob-
ject. Sendinganinvalidatemessage causesanintermediaryto marktheobject
as invalid; a subsequentrequest requiresthe intermediaryto fetch the object
from the server (or from a designatedsite). Thus,eachrequest after a cache
invalidate incurs anadditional delay dueto this remotefetch. An invalidation
addsto 2 control messagesandadata transfer (aninvalidation message,a read
request on a miss,anda new datatransfer) along with the extra latency. No
suchdelay is incurred if the server sends out the new version of the object
uponmodification. In an update-basedscenario, subsequentrequestscanbe
servicedusinglocally cached data. A drawback,however, is thatsending up-
datesincursalargernetwork overhead(especially for largeobjects).Thisextra
effort is wasted if theobject is never subsequently requestedat the intermedi-
ary. Consequently, cacheinvalidatesarebetter suitedfor lesspopular objects,
while updatescanyield better performancefor frequently requestedsmallob-
jects. Deltaencoding techniqueshave been designedto reducethesizeof the
datatransferred in an update by sending only the changes to the object[40].
Notethatdeltaencoding is not relatedto delta consistency. Updates,however,
require better security guarantees andmake strongconsistency management
more complex. Nevertheless,updatesareuseful for mirror sites wheredata
needs to be”pushed” to thereplicaswhenit changes.Updates arealsouseful
for pre-loadingcaches with content that is expected to becomepopular in the
nearfuture.

A server candynamically decide between invalidatesandupdatesbased on
the characteristics of an object. Onepolicy could be to sendupdatesfor ob-
jectswhosepopularity exceedsa thresholdandto sendinvalidatesfor all other
objects. A morecomplex policy is to take bothpopularity andobject sizeinto
account. Sincelarge objects imposea larger network transfer overhead, the
server canuseprogressively larger thresholds for such objects (the larger an
object, the more popular it needsto be before the server starts sending up-
dates).

The choice betweeninvalidation andupdatesalsoaffects the implementa-
tion of a strong consistency mechanism. For invalidationsonly, with a strong
consistency guarantee,theserver needsto wait for all acknowledgmentsof the
invalidation message(or a timeout) to committhewrite at theserver. With up-
dates, on theother hand, theserver updatesarenot immediately committedat
theintermediary. Only after theserver receivesall theacknowledgments (or a
timeout) andthensends a commitmessage to all the intermediariesis thenew
update versioncommitted at the intermediary. Suchtwo-phasemessage ex-
changesareexpensive in practice andarenot required for weaker consistency
guarantees.

Ñ��HÑ�� ÁÃ����ÆN�UÆn�7¤ �s�q¾�÷ø¦��s¦ ¡�¤ �§¤<����¥j�¹�ÓÁÌ½ÏÖÓÆ

An important issue thatmustbeaddressedin a CDN is that of consistency
maintenance. The problem of consistency maintenancein the context of a
singleproxy usedseveraltechniquessuchastime-to-live (TTL) values,client-
polling, server-based invalidation, adaptive refresh [63], and leases [68]. In
thesimplestcase,aCDN canemploy thesetechniquesateachindividualCDN
server or proxy – eachproxy assumes responsibility for maintaining consis-
tency of datastored in its cacheand interacts with the server to do so inde-
pendently of otherproxies in the CDN. Sincea typical CDN may consist of
hundredsor thousandsof proxies (e.g., Akamai currently hasa footprint of
more than14,000 servers), requiring eachproxy to maintain consistency in-
dependently of otherproxies is not scalable from theperspective of theorigin
servers(sincetheserver will needto individually interactwith a large number
of proxies).Further, consistency mechanismsdesignedfrom theperspectiveof
a single proxy (or a small groupof proxies)do not scalewell to large CDNs.
The leasesapproach, for instance,requires the origin server to maintain per-
proxy statefor eachcached object. This state space canbecomeexcessive if
proxiescache a large numberof objectsor someobjects arecached by a large
numberof proxieswithin a CDN.

A cacheconsistency mechanismfor hierarchical proxycacheswasdiscussed
in [71]. Theapproachdoes not proposea new consistency mechanism,rather
it examinesissuesin instantiating existing approachesinto ahierarchical proxy
cacheusing mechanismssuchasmulticast. They argue for a fixed hierarchy
(i.e., a fixed parent-child relationship betweenproxies). In addition to con-
sistency, they alsoconsiderpushing of content from origin serversto proxies.
Mechanismsfor scaling leasesarestudiedin [68]. Theapproachassumesvol-
umeleases,whereeachleaserepresents multiple objects cached by a stand-
aloneproxy. They examineissues suchasdelaying invalidationsuntil lease
renewalsanddiscussprefetchingandpushing leaserenewals.

Anothereffort describescooperativeconsistency along with a mechanism,
called cooperative leases,to achieve it [52]. Cooperative consistency enables
proxies to cooperatewith oneanother to reduce the overheadsof consistency
maintenance.By supporting deltaconsistency semantics andby using asingle
leasefor multipleproxies,thecooperative leasesmechanismallowsthenotion
of leasesto beapplied in ascalablemannerto CDNs.Anotheradvantageof the
approachis that it employs application-level multicastto propagateserver no-
tificationsof modificationsto objects,which reducesserveroverheads.Exper-
imental results show that cooperative leasescanreduce the number of server
messages by a factor of 3.2 and the server stateby 20% whencompared to
original leases,albeit at anincreasedproxy-proxy communicationoverhead.

Finally, numerous studies have focusedon specific aspects of cache con-
sistency for content distribution. For instance,piggybacking of invalidations
[40], theuseof deltasfor sending updates[48], anapplication-level multicast
framework for Internet distribution [26] and the efficacy of sending updates
versusinvalidates[22].

ßç¤¬¥E¤<�N¤<���3¤¬Æ
[1] V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira. Characterizingreference

locality in theWWW. In Proceedingsof PDIS’96:TheIEEEConferenceonParallel and
DistributedInformationSystems, Miami Beach,Florida,December1996.

[2] TheApacheProject.TheApacheWWW server. http://httpd.apache.org.

[3] M. F. Arlitt andT. Jin. Workloadcharacterizationof the1998world cupwebsite. IEEE
Network, 14(3):30–37,May/June 2000.

[4] M. F. Arlitt andC. L. Williamson. InternetWebservers:Workloadcharacterizationand
performanceimplications. IEEE/ACM Transactionson Networking, 5(5):631–646,Oct
1997.

[5] G. Banga,J.Mogul, andP. Druschel.A scalableandexplicit eventdelivery mechanism
for UNIX. In Proceedingsof the USENIX1999Technical Conference, Monterey, CA,
June1999.

[6] A. Barbir, B. Cain, F. Douglis, M. Green,M. Hofmann, R. Nair, D. Potter and O.
Spatscheck.Known CDN request-routingmechanisms.IETF Internet-Draft,February
2002.

[7] P. Barford,A. Bestavros,A. Bradley, andM. E. Crovella. Changesin WebClientAccess
Patterns:CharacteristicsandCachingImplications.World Wide WebJournal, 1999.

[8] M. Beck and T. Moore. The Internet2Distributed StorageInfrastructureProject:An
Architecturefor InternetContentChannels.In Proceedingsof the3rd International Web
Caching Workshop, 1998.

[9] T. Berners-Lee,R. Fielding,andH. Frystyk. Hypertext transferprotocol– HTTP/1.0.
IETF RFC1945, May 1996.

[10] T. Brisco. DNSSupportfor LoadBalancing.IETF RFC1794, April 1995.

[11] P. Cao and C. Liu. Maintaining StrongCacheConsistency in the World-Wide Web.
In Proceedingsof the SeventeenthInternational Conference on DistributedComputing
Systems, May 1997.

[12] V. Cardellini,M. Colajanni,andP. Yu. DNS DispatchingAlgorithmswith StateEstima-
torsfor ScalableWebServerClusters.World Wide Web, 2(2),July 1999.

[13] V. Cardellini,M. Colajanni,andP. Yu. DynamicLoadBalancingonWeb-ServerSystems.
IEEEInternetComputing, pages28–39, May/June1999.

[14] V. Cate. Alex: A GlobalFile System.In Proceedingsof the1992USENIXFile System
Workshop, pages1–12,May 1992.

[15] J. Challenger, A. Iyengar, K. Witting, C. Ferstat,andP. Reed.A PublishingSystemfor
Efficiently CreatingDynamicWeb Content. In Proceedingsof IEEE INFOCOM2000,
March2000.

[16] M. Crovella andA. Bestavros. Self-similarity in World Wide Webtraffic: Evidenceand
possiblecauses.IEEE/ACM Transactionson Networking, 5(6):835–846,Nov 1997.

[17] C. R. Cunha,A. Bestavros, andM. E. Crovella. Characteristicsof www client-based
traces.TechnicalReportCS95-010, BostonUniversityComputerScienceDepartment,
Boston,MA, June1995.

[18] M. Day, B. Cain,G. Tomlinson,andP. Rzewski. A model for contentinternetworking
(CDI). InternetDraft (draft-ietf-cdi-model-01.txt),February2002.

[19] D. Dias,W. Kish, R. Mukherjee,andR. Tewari. A ScalableandHighly AvailableWeb
Server. In Proceedingsof the1996IEEEComputerConference(COMPCON), February
1996.

[20] A. Downey. Thestructuralcauseof file sizedistributions.In Proceedingsof theNinth In-
ternationalSymposiumonModeling, AnalysisandSimulationof ComputerandTelecom-
municationSystems(MASCOTS), Cincinnati,OH, Aug 2001.

[21] V. Duvvuri, P. Shenoy, andR. Tewari. Adaptive Leases:A StrongConsistency Mecha-
nismfor theWorld Wide Web. In Proceedingsof theIEEE Infocom’00,Tel Aviv, Israel,
March2000.

[22] Z. Fei. A Novel Approachto Managing Consistency in ContentDistribution Networks.
In Proceedings of the6th Workshop on WebCaching and ContentDistribution, Boston,
MA, June2001.

[23] Z. Fei, S. Bhattacharjee,E. Zegura,and M. Ammar. A Novel Server SelectionTech-
niquefor Improving theResponseTimeof aReplicatedService.In Proceedingsof IEEE
INFOCOM’98, 1998.

[24] R. Fielding, J. Gettys,J. Mogul, H. Frystyk, and T. Berners-Lee. Hypertext transfer
protocol– HTTP/1.1.IETF RFC2068, January1997.

[25] R. Fielding,J. Gettys,J. Mogul, H. Frystyk,L. Masinter, P. Leach,andT. Berners-Lee.
Hypertext transferprotocol– HTTP/1.1. IETF RFC2616,June1999.

[26] P. Francis.Yoid: ExtendingtheInternetMulticastArchitecture.Technicalreport,AT&T
Centerfor InternetResearchat ICSI (ACIRI), April 2000.

[27] C. GrayandD. Cheriton.Leases:An EfficientFault-TolerantMechanismfor Distributed
File CacheConsistency. In Proceedingsof the Twelfth ACM Symposiumon Operating
SystemsPrinciples, pages202–210,1989.

[28] M. GritterandD R. Cheriton.An Architecturefor ContentRoutingSupportin theInter-
net. In Proceedingsof theUSENIXSymposiumon InternetTechnologies,SanFrancisco,
CA, March2001.

[29] J. GwertzmanandM. Seltzer. World-Wide WebCacheConsistency. In Proceedingsof
the1996USENIXTechnical Conference, January 1996.

[30] J. C. Hu, S. Mungee,and D. C. Schmidt. Techniquesfor developing and measuring
high-performance Web serversover ATM networks. In Proceedingsof the Conference
on ComputerCommunications(IEEEInfocom), SanFrancisco,CA, Mar 1998.

[31] J. C. Hu, I. Pyarali,andD. C. Schmidt. Measuringthe impactof eventdispatching and
concurrency modelson Webserver performance over high-speednetworks. In Proceed-
ingsof the2ndGlobal InternetConference(heldaspart of GLOBECOM ’97), Phoenix,
AZ, Nov 1997.

[32] G.Hunt,G.Goldszmidt,R.King, andR.Mukherjee.Network Dispatcher:A Connection
Routerfor ScalableInternetServices.In Proceedingsof the7thInternational World Wide
WebConference, April 1998.

[33] A. IyengarandJ.Challenger. Improving WebServer Performanceby CachingDynamic
Data. In Proceedingsof theUSENIXSymposium on InternetTechnologiesandSystems,
December1997.

[34] A. Iyengar, J. Challenger, D. Dias,andP. Dantzig. High-PerformanceWebSiteDesign
Techniques.IEEEInternetComputing, 4(2),March/April 2000.

[35] K. L. Johnson, J. F. Carr, M. S. Day, andM. F. Kaashoek.The measuredperformance
of contentdistribution networks. In InternationalWeb Caching and ContentDelivery
Workshop (WCW), Lisbon,Portugal,May 2000. http://www.terena.nl/conf/
wcw/Proceedings/S4/S4-1.pdf.

[36] P. Joubert,R. King, R. Neves, M. Russinovich, and J. Tracey. High-performance
memory-based web servers:Kernelanduser-spaceperformance.In Proceedingsof the
USENIXAnnualTechnical Conference, Boston,MA, June2001.

[37] M. KoletsouandG. M. Voelker. TheMedusaproxy: A tool for exploring user-perceived
web performance.In Proceedingsof InternationalWeb Caching and ContentDelivery
Workshop (WCW), Boston,MA, June2001.Elsevier.

[38] B. KrishnamurthyandJ.Rexford. WebProtocolsandPractice. AddisonWesley, 2001.

[39] B. KrishnamurthyandC. Wills. ProxyCacheCoherency andReplacement—Towardsa
More CompletePicture. In Proceedingsof the 19th International Conferenceon Dis-
tributedComputingSystems(ICDCS), June1999.

[40] B. KrishnamurthyandC. Wills. Studyof PiggybackCacheValidationfor ProxyCaches
in the WWW. In Proceedingsof the 1997USENIXSymposiumon InternetTechnology
andSystems,Monterey, CA, pages1–12,December 1997.

[41] B. Krishnamurthy, C. Wills, andY. Zhang.On theuseandperformanceof contentdistri-
bution networks. In Proceedingsof ACM SIGCOMMInternetMeasurementWorkshop,
November2001.

[42] T. T. Kwan,R. E. McGrath,andD. A. Reed.NCSA’s World Wide WebServer: Design
andPerformance.IEEEComputer, 28(11):68–74,November1995.

[43] D. Li, P. Cao,andM. Dahlin. WCIP: Web CacheInvalidationProtocol. IETF Internet
Draft, November2000.

[44] B. Mah. An empiricalmodelof HTTPnetwork traffic. In Proceedingsof theConference
on ComputerCommunications(IEEEInfocom), Kobe,Japan,Apr 1997.

[45] Z. Morley Mao, C. D. Cranor, F. Douglis,M. Rabinovich, O. Spatscheck, andJ. Wang.
A preciseandefficient evaluationof the proximity betweenweb clientsandtheir local
DNSservers. In Proceedingsof USENIXAnnual Technical Conference, June2002.

[46] J. C. Mogul. Clarifying the fundamentalsof HTTP. In Proceedingsof WWW2002
Conference, Honolulu,HA, May 2002.

[47] J. C. Mogul. Network behavior of a busy Webserver andits clients. TechnicalReport
95/5, Digital EquipmentCorporationWesternResearchLab, Palo Alto, CA, October
1995.

[48] JC. Mogul, F. Douglis,A. Feldmann,andB. Krishnamurthy. PotentialBenefitsof Delta
EncodingandDataCompressionfor HTTP. In Proceedingsof ACM SIGCOMMConfer-
ence, 1997.

[49] D. Mosedale,W. Foss,andR. McCool. LessonsLearnedAdministeringNetscape’s In-
ternetSite. IEEEInternetComputing, 1(2):28–35, March/April 1997.

[50] E. M. Nahum, T. Barzilai, and D. Kandlur. Performanceissuesin WWW servers.
IEEE/ACM Transactionson Networking, 10(2):2–11, Feb2002.

[51] E. M. Nahum,M. Rosu,S.Seshan,andJ.Almeida. Theeffectsof wide-areaconditions
on WWW server performance. In Proceedingsof the ACM SigmetricsConferenceon
Measurement andModelingof ComputerSystems, Cambridge,MA, June2001.

[52] A. Ninan,P. Kulkarni,P. Shenoy, K. Ramamritham,andR. Tewari. Cooperative Leases:
ScalableConsistency Maintenancein ContentDistribution Networks. In Proceedingsof
theWorld Wide Webconference(WWW2002), May 2002.

[53] OpenMarket. FastCGI.http://www.fastcgi.com/.

[54] V. N. Padmanabhan andL. Qui. The contentandaccessdynamicsof a busy web site:
findingsandimplications.In SIGCOMM, pages111–123,2000.

[55] V. Pai,M. Aron,G.Banga,M. Svendsen, P. Druschel,W. Zwaenepoel, andE.M. Nahum.
Locality-AwareRequestDistribution in Cluster-basedNetwork Services.In Proceedings
of ASPLOS-VIII, October1998.

[56] V. Pai, P. Druschel,andW. Zwaenepoel. Flash:An efficient andportableWebserver. In
USENIXAnnualTechnical Conference, Monterey, CA, June1999.

[57] V. S.Pai,P. Druschel,andW. Zwaenepoel. I/O Lite: A copy-freeUNIX I/O system.In 3rd
USENIXSymposium on Operating SystemsDesignand Implementation, New Orleans,
LA, February1999.

[58] M. Rabinovich and O. Spatscheck.Web Caching and Replication. Addison-Wesley,
2002.

[59] A. Shaikh,R. Tewari, andM. Agrawal. On the Effectivenessof DNS-basedServer Se-
lection. In Proceedingsof IEEEINFOCOM2001, 2001.

[60] J. Song,A. Iyengar, E. Levy, andD. Dias. Architectureof a Web Server Accelerator.
ComputerNetworks, 38(1),2002.

[61] The Standard Performance Evaluation Corporation. SpecWeb99.
http://www.spec.org/osg/web99,1999.

[62] Squid Internet Object Cache Users Guide. Available on-line at http://squid.nlanr.net,
1997.

[63] R. Srinivasan,C. Liang, and K. Ramamritham. Maintaining TemporalCoherency of
Virtual Warehouses.In Proceedingsof the 19th IEEE Real-Time SystemsSymposium
(RTSS98),Madrid, Spain, December1998.

[64] Sun Microsystems Inc. The Java Web server.
http://wwws.sun.com/software/jwebserver/index.html.

[65] R. Tewari, T. Niranjan,andS.Ramamurthy. WCDP:WebContentDistributionProtocol.
IETF InternetDraft, March2002.

[66] RedHat Inc. TheTux WWW server. http://people.redhat.com/mingo/TUX-patches/.

[67] D. C. Verma.ContentDistribution Networks:An EngineeringApproach. JohnWiley &
Sons,2002.

[68] J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar. EngineeringServer-driven Consistency
for Large-scaleDynamic Web Services. In Proceedingsof the 10th World Wide Web
Conference, HongKong, May 2001.

[69] J.Yin, L. Alvisi, M. Dahlin,andC. Lin. VolumeLeasesfor Consistency in Large-Scale
Systems.IEEETransactionson Knowledge andData Engineering, January1999.

[70] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. HierarchicalCacheConsistency in a WAN.
In Proceedingsof theUsenixSymposiumon InternetTechnologies(USITS’99),Boulder,
CO, October1999.

[71] H. Yu, L. Breslau,andS.Shenker. A ScalableWebCacheConsistency Architecture.In
Proceedingsof theACM SIGCOMM’99,Boston,MA, September1999.

[72] ZeusInc. TheZeusWWW server. http://www.zeus.co.uk.

